
Modelling Spatially Varying Coeffi cients via Sparsity Priors

Abstract. Sparsity inducing priors are widely used in Bayesian regression analysis, and
seek dimensionality reduction to avoid unnecessarily complex models. An alternative to
sparsity induction are discrete mixtures, such as spike and slab priors. These ideas extend to
selection of random effects, either iid or structured (e.g. spatially structured). In contrast to
sparsity induction in mixed models with iid random effects, in this paper we apply sparsity
priors to spatial regression for area units (lattice data), and to spatial random effects in
conditional autoregressive priors. In particular, we consider the use of global-local shrinkage
to distinguish areas with average predictor effects from areas where the predictor effect is
amplified or diminished because the response-predictor pattern is distinct from that of most
areas. The operation and utility of this approach is demonstrated using simulated data, and
in a real application to diabetes related deaths in New York counties.
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Introduction
Sparsity inducing priors are widely used in Bayesian regression analysis, and seek dimension-
ality reduction to avoid unnecessarily complex models that may predict poorly. This involves
estimating relatively sparse models where some of the regression coeffi cients are effectively
zero, or have credible intervals including zero. For example, the horseshoe prior (Carvalho
et al., 2009) for a collection of regression coeffi cients is an example of a global-local shrink-
age prior, with a global hyperparameter that tends to shrink all parameters towards zero,
while predictor specific local hyperparameters (following heavy-tailed half-Cauchy priors) al-
low some coeffi cients to avoid the shrinkage (Piironen and Vehtari, 2017). An alternative to
sparsity induction are discrete mixtures, or spike and slab priors, which place a positive prior
probability on zero values of coeffi cients. Here binary retention indicators δh specific to pre-
dictors Xh determine whether such predictors take zero values (Kuo and Mallick, 1998), or
have priors that confine predictors to effectively zero values (George and McCulloch, 1993).
These retention indicators are in turn defined by retention probabilities ξh, which may be
preset or unknowns.

These ideas extend to selection of random effects. For example, Frühwirth-Schnatter and
Wagner (2011) propose discrete mixture selection to unit-specific random effects with the
aim of identifying units that are “average” in the sense of not deviating significantly from
the overall mean. This application involves iid random effects. By contrast, van der Pas
et al. (2014) consider sparsity inducing priors as a way of selecting distinct random effects
from average effects, again for iid random effects. To illustrate, suppose bi are normal iid
random unit intercepts in a normal linear mixed model for univariate longitudinal responses
yit for units i and times t, with subject level model

yit ∼ N(Xitγ + bi, σ
2). (1)
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Here yit is a scalar, Xit = (X1it, ..., Xpit) is a row p−vector of predictors (excluding an
intercept), γ is a column p−vector of regression coeffi cients, bi is a normal random effect
(random intercept), and the residual variance is σ2. For the full sample i = 1, ..., n of units,
and at time t, the model may be stated as

yt ∼ N(Xtγ + b, σ2), (2)
where yt is a column n-vector, Xt is a n× p matrix, and b is a column n-vector.

One may aim to seek out significant predictor or random effects by shrinking the relevant
regression coeffi cients or random effects towards zero. Applied to the random effects, the
sparsity inducing prior (which shrinks less relevant effects towards zero) for the above model
is

bi ∼ N(0, τ 2
bλ

2
i ), (3)

with global shrinkage parameter τ 2
b , and local shrinkage parameters with half Cauchy priors,

λi ∼ C+(0, 1). (4)
For the global parameter τ b in (3), a half Cauchy prior may also be used (Carvalho et al.,
2009).

The Scope of this Study
Dimensionality reduction is also relevant to structured random effects, namely effects depen-
dent over space, time, or space-time. Spatial random effects are the focus in this paper, and
in particular sparsity priors aimed at spatially varying regression coeffi cients in area (spa-
tial lattice) data, as opposed to continuous spatial data (Saveliev et al., 2007). The model
framework is therefore considerably distinct from that in equations (1) to (2).

Regarding related papers, Choi and Lawson (2016) consider a disease mapping framework
with disease count responses for sets of areas. They propose a discrete mixture selection
approach in models allowing spatially varying regression coeffi cients (SVC models). Thus
predictor selection probabilities ξhi for areas i and predictor h determine whether local re-
gression coeffi cients γhi are zero (or effectively zero). The ξhi follow a spatially structured
prior.

By contrast, a continuous shrinkage prior is proposed by Jhuang et al. (2019), for a spatial
process framework (Gelfand et al., 2005), with continuous outcomes and continuous space
(e.g. point data), and so using spatial priors relevant to that form of spatial data. The
shrinkage prior uses the method of Carvalho et al. (2009).

In this paper, we consider spatially structured random effects, sparsity selection, and a
discrete spatial framework for spatial lattice data (e.g. disease counts for administrative
small areas). Sparsity inducing priors are proposed to distinguish areas with average pre-
dictor effects from areas where the predictor effect is amplified or diminished because the
response-predictor pattern is distinct from that of most areas. The operation and utility
of this approach is demonstrated using simulated data, and a real application to diabetes
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related deaths in New York counties.

Spatially Varying Coeffi cients in Regressions for Spatial Lattice Data

For concreteness, consider a spatially defined disease outcome (for lattice data). The data
often consist of disease counts yi (for areas i = 1, ..., n), which are assumed Poisson distrib-
uted with means µi = Eiρi, where Ei are pre-calculated Poisson offsets for expected event
totals, and the ρi represent unknown relative disease risk in areas i. The expected event
totals are obtained using demographic methods, with national disease rates applied to the
populations of the n areas; for example, see Vranckx et al. (2019) and Richardson et al., 2004
(page 1017). The interest is often in the impacts of p ecologically defined area predictors
(X1i, ..., Xpi) on relative risks, and the coeffi cients are usually assumed constant over space.
However spatially varying coeffi cients may be assumed, this being an acknowledgement of
one form of spatial heterogeneity (e.g. Graif and Sampson, 2009).

Assume a Poisson model with means µi = Eiρi, and area-specific coeffi cients γi = (γ0, γ1i, ..., γpi)
for a spatially varying coeffi cient (SVC) model (Assunçao, 2003). The relative risk is then
defined as

log(ρi) = γ0 + γ1iX1i + ...+ γpiXpi, (5)
where γ0 is an intercept. The same framework may be applied to binomial illness outcomes
yi ∼ Bin(Ni, πi), where Ni is the population at risk, and a logit regression links disease
probabilities πi to a spatially varying coeffi cient specification:

logit(πi) = γ0 + γ1iX1i + ...+ γpiXpi. (6).
In actual estimation, varying coeffi cients such as γhi (for area i and predictor h) may be rep-
resented, and estimated, as a sum of the central fixed effect (say Γh) and zero mean spatial
random effects.

The coeffi cients γhi (h = 1, ..., p) are assumed to be spatially correlated following a suitable
prior, typically of conditional autoregressive or CAR form (De Oliveira, 2012). A particular
form of this type of prior is proposed by Besag and co-authors (Besag et al., 1991) - see
equation (10) below. One may also assume spatially varying intercepts in (5) or (6), for
example

γ0i = γ0 + si, (7)
where si is a zero mean spatial residual, typically a CAR random effect. However, models
which allow for heterogeneity in regression impacts may account for most of the spatial cor-
relation in residuals (Fotheringham et al., 2002, p 117).

Sparsity Prior for Spatially Varying Coeffi cients

The SVC approach of Assuncao (2003) assumes spatially smooth coeffi cient effects (with
a homogenous smoothing mechanism across all areas). However, in some situations, one
may have subregions with distinct outcome-predictor patterns, e.g. where there is ethnic or
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social segregation, localized to some areas, may affect predictor effects. In such situations
the usual approaches to varying coeffi cients may be subject to oversmoothing, not allowing
for spatial discontinuity (Xu et al., 2017). Lee and Mitchell (2013) refer to step changes in
the spatial pattern, although their model applies to spatial residuals. Consider a predictor
which is a positive risk factor (one that enhances area disease risk). Then unusual outcome-
predictor patterns might be highly elevated risk combined with a below average predictor
value; highly elevated disease risk combined with an unusually high predictor value (implying
a stronger than average regression effect); or low relative disease risk, but a relatively high
predictor value. A suitable shrinkage mechanism would shrink the regression effect γhi to
the average effect Γh (areas i and predictors h) for typical areas, but for atypical areas one
might seek local adaptivity to express stronger or weaker effects.

Here we propose a model linking local shrinkage parameters to spatially structured effects
to allow local adaptivity in regression coeffi cients. Thus for a single predictor X1i (p = 1)
and areas i, we assume a regression coeffi cient prior

γ1i ∼ N(Γ1, τ
2
γ1
λ2

1i), (8)
where τ γ1 is a global shrinkage parameter, the λ1i are local shrinkage parameters, and Γ1 is
the region-wide predictor effect. The local parameters are half Cauchy according to

λ1i ∼ C+(r1i, 1), (9)
where r1 = (r11, ...r1n) is a vector of spatially structured random effects. Here the spatial
effects follow the prior of Besag et al. (1991, page 8) with conditional normal form

r1i ∼ N(R1i, τ r1/Lr) (10)
where τ r1 is a conditional variance, Lr is the number of areas adjacent to area i (termed the
locality of area i), and R1i is the average of the effects r1j in this locality.

Adaptivity to unusual outcome-predictor patterns implies larger λ2
1i in some areas (and

hence a more diffuse prior for γ1i). Lower λ
2
1i apply to areas following the typical regression

pattern, with the regression coeffi cient shrunk towards Γ1. So the parameters λ1i add extra
information to the usual inferences made with disease data and observed predictors, provid-
ing a measure of outlyingness in the outcome-predictor space.

Equivalently, using the normal/gamma representation of a Cauchy variable
λ2

1i = η2
1i/φ

0.5
1i , (11)

η1i ∼ N+(r1i, 1), (12)
φ1i ∼ Gamma(aφ1 , bφ1), (13)

with aφ1 = bφ1 = 0.5. Note that the assumed parameterisation of the gamma density with
random variable u is

p(u|a, b) = ba

Γ(a)
ua−1e−bu. (14)

Under a Bayesian hierarchical approach (Gelfand, 2012), the likelihood is the first stage
of a three stage specification. For the Poisson approach with a single predictor, area relative
risks defined by
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log(ρi) = γ0 + γ1iX1i, (15)
and means ρiEi, the likelihood for area i conditions on the data (Ei, X1i), the hyperparame-
ters θ = (β,Γ1, τ γ1 , τ r1 , γ0), and random effects (γ1i, λ1i, r1i) as in (8)− (10), namely

p(yi|Ei, X1i, θ, γ1i, λ1i, r1i) = e−ρiEi(ρiEi)
yi/yi! (16)

For binomial data with disease probability
logit(πi) = γ0 + γ1iX1i, (17)

the relevant conditional likelihood is
p(yi|Ni, X1i, θ, γ1i, λ1i, r1i) =

(
Ni
yi

)
πyii (1− πi)Ni−yi (18)

For multiple predictors Xhi (h = 1, ..., p) and areas i, one may similarly specify global-local
shrinkage parameters specific to predictor h, and area-predictor specific local hyperparame-
ters, namely

γhi ∼ N(Γh, τ
2
γh
λ2
hi), (19)

λhi ∼ C+(rhi, 1), (20)
with p sets of CAR spatial effects rhi determining the level of local adaptivity. As above,
the spatial effects follow the CAR prior of Besag et al. (1991) with conditional normal prior

rhi ∼ N(Rhi, τ rh/Lr) (21)
where τ rh is a conditional variance, and Rhi is the average of the effects rhj in the locality
of area i.

Application to Simulated Data
We consider a simulation based on the spatial structure of the 62 counties of New York state
and a Poisson likelihood structure as in equations (15) and (16). Expected disease counts
Ei for counties i are simulated as gamma with shape 30 and rate 2, and values of a single
predictor X1i are simulated as N(0,1). The simulation introduces contamination into the
generation of spatially varying coeffi cients. Thus the regression term defining area relative
risks is obtained as

log(ρi) = −0.5 + (γ1i + ai )X1i, (22)
where γ0 = −0.5, and the γ1i are CAR random spatial effects as per Besag et al. (1991),
with mean Γ1 = 1 and precision 1/τ γ1 = 50. Additive effects ai are uniform U(-0.75,0.75)
and apply only to a random subsample of counties. So for areas not in the subsample, the
relative risk is specified as log(ρi) = −0.5 + γ1iX1i. Two contamination rates are considered
to obtain the random subsamples: 20% and 33%. So in this subset of counties, the impact of
the covariate X1 is shifted away from the normal CAR terms γ1i by additive uniform effects.
Disease counts are then simulated as yi ∼ Poisson(Eiρi).

We simulate 100 datasets and compare three model formulations with regard to (a) fit
to each simulated dataset, measured by the leave one out information criterion (LOO-
IC) of Vehtari et al. (2017) (b); recovery of the underlying parameters, specifically the
mean γ1 of the simulated area regression parameters γ1i + ai; thus the true value is taken
as recovered if the 95% credible interval of the estimated parameter contains the true
value; and (c) predictive discrepancies, namely tail values (over 0.95 or under 0.05) for
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Pr(yrep,i > yi|y) + 0.5 Pr(yrep,i = yi|y), where yrep,i are posterior predicted counts (Marshall
and Spiegelhalter, 2003).

In a first analysis of the simulated data, we consider three forms of model addressing re-
gression coeffi cient estimation. The first is a simple Poisson regression (model A), with a
homogenous predictor effect:

log(ρi) = γ0 + γ1X1i, (23)
with regression coeffi cients assigned N(0,10) priors. This option is denoted as HPE. The
second (model B) allows spatial variation in the predictor effect, as per the usual spatially
varying coeffi cient model (Assuncao, 2003) with varying coeffi cients γ1i, but with no sparsity
or shrinkage mechanism:

log(ρi) = γ0 + γ1iX1i. (24)
Here the γ1i follow the CAR prior of Besag et al. (1991) with precision parameter 1/τ γ1
assigned a Ga(0.5,0.0005) prior. This is denoted as the SVC option.

The third formulation (model C) uses a sparsity inducing prior (SIP for short), as per:
log(ρi) = γ0 + γ1iX1i, (25)
γ1i ∼ N(Γ1, τ

2
γ1
λ2

1i),
τ γ1 ∼ C+(0, 1),
λ2

1i = η2
1i/φ

0.5
1i ,

φ1i ∼ Gamma(0.5, 0.5),
η1i ∼ N+(r1i, 1),
r1i ∼ BYM − CAR(ωr1),
ωr1 ∼ Ga(0.5, 0.0005),

with the r1i are zero-mean spatial effects following the CAR prior of Besag et al. (1991)
(BYM for the authors) - see equation (10) - and ωr1 = 1/τ r1 is the precision parameter.

In a second form of analysis of the simulated datasets, we allow, as in (7), for varying
intercepts using random effects. In the above options (HPE, SVC, SIP) the residuals follow
a scheme proposed by Besag et al. (1991, page 7) involving both a spatially correlated CAR
effect and an unstructured (iid) random error, with the latter mainly serving to account for
Poisson overdispersion, and the former representing spatially correlated but unobserved risk
factors. This scheme is known as the convolution prior (Rodrigues and Assunção, 2012).
Thus model A (HPE) becomes:

log(ρi) = γ0 + γ1X1i + si + ui, (26)
where the si have a Besag et al. (1991) CAR prior, with precision parameter ωs assigned a
Ga(0.5,0.0005) prior. The ui are iid random effects, with ui ∼ N(0, 1/ωu), and precision ωu
assigned a Ga(0.5,0.0005) prior. The model B (SVC) option becomes

log(ρi) = γ0 + γ1iX1i + si + ui, (27)
where both the γ1i and si follow the Besag et al. CAR (1991) prior, with precision parameters
assigned Ga(0.5,0.0005) priors. The model C (SIP) option becomes:

log(ρi) = γ0 + γ1iX1i + si + ui, (28)
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γ1i ∼ N(Γ1, τ
2
γ1λ

2
1i),

τ γ1 ∼ C+(0, 1),
λ2

1i = η2
1i/φ

0.5
1i ,

φ1i ∼ Gamma(0.5, 0.5),
η1i ∼ N+(r1i, 1),
r1i ∼ BYM − CAR(ωr1),
ωr1 ∼ Ga(0.5, 0.0005),
si ∼ BYM − CAR(ωs),
ωs ∼ Ga(0.5, 0.0005).

where r1i and si are zero-mean spatial effects following the Besag et al. (1991) CAR prior,
and the ui are iid random normal with mean 0.

Table 1 compares the performance of the three model formulations (HPE,SVC,SIP), with
coeffi cient estimation using spatially varying coeffi cient models (upper panel) and varying
coeffi cient plus spatial residuals and iid random effects (lower panel). Estimation uses rstan
(Carpenter et al., 2017; Morris et al., 2019), with two chains and 2000 iterations in estima-
tion of each model in each of the 100 simulations.

It can be seen that the SIP option performs relatively well on all evaluation criteria across
the board, with better parameter recovery, fewer poorly predicted disease counts, and better
fit as measured by LOO-IC criteria. The performance of the SVC and HPE models is much
improved when varying residuals are added. But for models for spatially varying effects
alone, as under (23)-(25), without the assistance of varying residuals or iid effects, the SIP
model clearly performs better. The SIP option retains the lower LOO-IC even when vary-
ing residuals are added to the models, but for the SIP option there is virtually no change
in performance between the varying coeffi cients option in (25) and the model with varying
residuals in (28). For example, the LOO-IC is very similar. Hence the sparsity inducing
prior, as applied only to regression coeffi cients, is competitive with more heavily parame-
terised model variants.

Real Data Application: Diabetes and Poverty in New York Counties

A real data application involves binomial data yi ∼ Bin(Ni, πi) on diabetes related deaths yi
(International Classification of Diseases, ICD10 E10-E14) in populations Ni of 62 New York
counties for the period 2013-17 (see Figure 1). The predictor is the 2015 county percent-
age poverty rate. Two models are compared to explain diabetes mortality rate variations
between counties. The first is an SVC model with

logit(πi) = γ0 + γ1iX1i + si + ui, (29)
where γ1i and si follow zero-mean CAR priors as per Besag et al. (1991), and the ui are
random normal iid. The second uses the sparsity inducing prior with

logit(πi) = γ0 + γ1iX1i + si + ui, (30)
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γ1i ∼ N(Γ1, τ
2
1λ

2
1i),

τ 1 ∼ C+(0, 1),
λ2

1i = η2
1i/φ

0.5
1i ,

φ1i ∼ Gamma(0.5, 0.5),
η1i ∼ N+(r1i, 1),
r1i ∼ BYM − CAR(ωr),
ωr ∼ Ga(0.5, 0.0005),
si ∼ BYM − CAR(ωs),
ωs ∼ Ga(0.5, 0.0005),
ui ∼ N(0, 1/ωu),
ωu ∼ Ga(0.5, 0.0005).

Both modesl show a generally positive association between poverty and diabetes mortal-
ity over the 62 counties. The New York state-wide parameter Γ1 has posterior mean (95%
CRI) of 3.24 (1.80, 4.90) under the SIP model, and 2.87 (1.16, 4.75) under the SVC model.
However, there is considerable variation in county specific coeffi cients γ1i.

Table 2 shows the estimated coeffi cients γ1i under the SIP and SVC models in according
to descending order of the estimated λ2

1i in the SIP model. The λ
2
1i are highest for coun-

ties where the outcome-predictor pattern is unusual compared to the regression for typical
counties (e.g. a high diabetes rate coupled with a relatively low poverty, given the overall
positive relationship between the disease and risk factor). Diabetes death rates in Table 2
are the ratios yi/Ni times 100,000. The respective LOO-IC for the SVC and SIP models are
559 and 554.

Distinct predictor-outcome profiles are associated with spatial discontinuites in the pattern
of the γ1i, corresponding to areas with high λ

2
1i. Unusual predictor-outcome profiles can be

assessed by comparing county poverty and mortality to the state wide averages: the aver-
age poverty percentage across all counties is 14.5%, and the average mortality rate is 24.5
per 100,000. The highest λ2

1i is for Tompkins county, where poverty is considerably above
average, but despite the excess poverty, diabetes mortality is below average. The regression
coeffi cient for Tompkins under the SIP model is accordingly shrunk towards zero, with poste-
rior mean for γ1i of 0.94, as compared to a posterior mean under the SVC model of 2.67. The
second highest λ2

1i is for Monroe county with around average poverty, but below average dia-
betes mortality. The third and fourth highest λ2

1i (for Herkimer and Genesee counties) have
below average poverty, but much above diabetes mortality. Accordingly posterior means for
γ1i are adjusted upward under the SIP model to reflect the observed diabetes levels in these
counties. The LOO-IC casewise values, the individual area contributions to the LOO-IC
(Vehtari et al., 2017), for the five counties with highest λ2

1i are all lower under the SIP model.

By contrast, low values of λ2
1i apply to "typical" counties (in terms of the predictor-outcome

relationship), and for these counties γ1i values tend to be shrunk towards the global value
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Γ1 under the SIP prior. For example, the counties with the lowest five λ
2
1i have posterior

mean γ1i under the SIP prior between 3.17 and 3.38, and the standard deviation of these
five means is 0.08. By contrast, the SVC model has mean γ1i varying from 2.73 to 3.03
for these counties, and their standard deviation is 0.11. Figure 2 shows how λ2

1i values are
spatially clustered, while Figures 3 and 4 show the contrasting pattern in the posterior mean
γ1i under the SVC and SIP models.

Conclusion

Impacts of risk factors on spatial variations in disease may be important for policy pur-
poses. For example, assume that the overall relationship between a disease and certain risk
factor, such as poverty, is positive: high levels of poverty are associated with higher disease
levels. In some areas, however, there may be high disease risk but relatively low poverty.
Such areas may be disadvantaged if interventions are based simply on poverty rates.

In terms of implications for spatial models and disease mapping, spatially varying coeffi -
cient models with a single global shrinkage parameter may be insuffi ciently adaptive to such
unusual patterning in outcome-risk factor associations. By contrast, an adaptive global-
local shrinkage mechanism, as part of a sparsity inducing prior, has the potential to identify
distinctive predictor-outcome associations not apparent under the usual spatially varying co-
effi cients methodology. This paper has developed a methodology for small areas, applicable
using rstan, that implements an adaptive procedure for such situations.
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Models with Spatially Varying 

Coefficients Only
20% 33%

Model

% of Simulations with mean 
recovered

% of Simulations with mean 
recovered

HPE 54 50

SVC 92 93

SIP 99 98

Average Number of 

Observations (from 62) with 

Tail Predictive p‐values 

Average Number of 

Observations (from 62) with 

Tail Predictive p‐values 

HPE 16.0 11.9

SVC 3.3 3.4

SIP 1.3 1.0

Leave One Out Information 

Criterion (LOO‐IC)

Leave One Out Information 

Criterion (LOO‐IC)

HPE 429.6 434.6

SVC 333.1 336.7

SIP 328.7 331.2

Varying Coefficients and 

Intercepts
20% 33%

Model

% of Simulations with mean 
recovered

% of Simulations with mean 
recovered

HPE 96 96

SVC 95 95

SIP 99 97
Average Number of 

Observations (from 62) with 

Tail Predictive p‐values 

Average Number of 

Observations (from 62) with 

Tail Predictive p‐values 

HPE 1.4 1.0

SVC 1.6 1.2

SIP 0.7 0.7

Leave One Out Information 

Criterion (LOO‐IC)

Leave One Out Information 

Criterion (LOO‐IC)

HPE 334.3 337.8

SVC 331.9 335.3

SIP 328.7 331.4

Table 1 Performance Evaluation on Simulated Data
Contamination Rate

Contamination Rate



County Name
County ID

yi,Diabetes 

Deaths

Mortality rate 

(per 100 

Thousand)

Poverty Rate 

(Percent)
1i

SVC 

estimate of 



SIP 

estimate of 



yrep,i (SVC 

model)

yrep,i (SIP 

model)

Piecewise 

LOO, SVC 

model

Piecewise 

LOO, SIP 

model
Tompkins  55 71 13.6 20.1 12.4 2.67 0.94 82.7 75.9 11.9 9.8

Monroe  28 605 16.2 14.8 8.2 2.74 1.88 614.4 612.7 11.4 10.5

Herkimer  22 108 34.2 12.7 4.2 3.04 4.07 101.4 100.1 10.3 10.1

Genesee  19 110 37.4 13.4 4.1 3.04 3.93 102.2 103.7 10.9 10.4

Albany  1 270 17.5 12.6 3.6 2.81 2.94 275.8 275.3 10.1 9.5

Livingston  26 55 17.1 13.2 3.4 2.84 2.72 61.6 62.1 9.2 9.6

Rockland  44 223 13.7 14 3.3 2.60 2.89 228.2 227.3 9.3 9.9

Hamilton  21 * * 11.1 3.3 2.96 3.04 5.1 5.2 4.4 4.5

Chemung  8 78 17.9 14.9 3.3 2.76 2.90 82.0 82.7 8.3 8.9

Otsego  39 120 39.5 16.8 3.2 3.02 3.77 112.3 113.2 11.3 10.1

Clinton  10 95 23.4 17.5 3.2 2.87 3.02 98.6 100.0 8.0 8.8

Niagara  32 368 34.6 15.5 3.1 3.03 3.44 363.2 363.1 10.1 10.1

Essex  16 72 37.5 12.2 3.1 3.08 3.78 65.0 64.4 9.4 10.4

Wyoming  61 62 30.2 13.3 2.8 3.02 3.44 60.0 60.1 7.5 7.2

Delaware  13 75 32.6 16.9 2.8 2.94 3.56 71.1 70.3 8.3 8.3

Wayne  59 134 29.3 12.2 2.7 2.95 3.54 128.8 128.6 9.9 9.3

Allegany  2 100 42.1 16.8 2.7 3.05 3.66 93.1 93.2 9.8 9.8

Orleans  37 44 21.1 14.2 2.5 2.87 3.03 46.7 47.3 7.0 7.9

Saratoga  46 188 16.6 6.4 2.4 2.93 3.02 192.8 193.7 9.5 9.4

Schenectady  47 196 25.3 12 2.4 2.95 3.35 193.2 191.4 9.0 9.3

Lewis  25 43 31.9 14 2.3 2.96 3.47 39.4 39.5 7.4 7.8

New York  31 1404 17.1 17.6 2.3 2.68 3.09 1406.7 1398.5 11.2 12.4

Seneca  50 40 22.9 14.1 2.2 2.85 3.21 40.1 41.4 6.7 6.5

Warren  57 103 31.8 11.3 2.2 3.07 3.46 98.1 98.0 9.0 9.0

Westchester  60 697 14.3 10.1 2.2 2.64 3.22 698.2 699.4 10.5 10.7

Suffolk  52 1090 14.6 7.8 2.1 2.67 3.24 1090.4 1096.4 11.3 11.9

Jefferson  23 108 18.5 14.1 2.1 2.80 3.05 112.7 114.7 8.7 9.0

Cayuga  6 70 17.9 12.7 2.1 2.79 3.00 73.6 74.7 7.9 8.2

Greene  20 48 20.1 16.4 2.1 2.82 3.12 51.2 52.0 7.4 7.4

Ontario  35 112 20.4 9.6 2.0 2.88 3.23 112.2 111.8 8.4 7.9

Putnam  40 69 13.9 6 2.0 2.70 3.19 70.7 68.8 7.6 7.7

Schuyler  49 27 29.6 12.5 2.0 2.88 3.38 23.4 23.0 7.2 7.3

Columbia  11 65 21.1 13.6 2.0 2.84 3.18 66.0 67.0 7.4 7.2

Tioga  54 57 23.1 11.7 2.0 2.85 3.31 55.4 55.8 7.5 7.0

Yates  62 31 24.7 13.6 2.0 2.89 3.25 30.5 30.1 6.2 6.2

Richmond  43 571 24.0 14.2 1.9 2.89 3.40 568.9 569.2 10.4 10.3

Washington  58 97 31.2 13.3 1.9 3.03 3.38 93.8 91.5 8.4 8.5

St. Lawrence  45 140 25.3 18.5 1.9 2.88 3.15 142.6 142.9 8.1 8.7

Nassau  30 918 13.5 6.1 1.9 2.65 3.30 919.6 920.7 10.9 10.5

Sullivan  53 102 27.0 18.1 1.9 2.86 3.35 100.4 100.2 8.0 8.1

Oneida  33 351 30.2 18 1.9 2.93 3.26 349.2 350.5 10.5 9.3

Oswego  38 156 26.0 17.4 1.8 2.86 3.21 156.4 154.7 8.8 8.3

Orange  36 331 17.5 12.1 1.8 2.75 3.18 332.3 332.3 9.5 9.7

Chautauqua  7 174 26.6 17.2 1.8 2.92 3.13 176.3 178.6 8.9 8.8

Franklin  17 81 31.7 18.3 1.8 2.95 3.29 79.7 79.6 8.0 7.5

Steuben  51 130 26.6 15.4 1.8 2.90 3.28 129.2 129.0 8.5 8.4

Montgomery  29 94 37.9 18.4 1.8 3.00 3.44 89.3 90.8 9.2 8.8

Dutchess  14 249 16.8 10.4 1.8 2.76 3.13 251.1 254.0 9.2 9.5

Madison  27 73 20.3 12.9 1.8 2.86 3.12 75.1 74.4 7.9 7.5

Ulster  56 218 24.2 14 1.7 2.87 3.35 216.2 214.0 9.0 9.0

Bronx  3 1777 24.5 30.3 1.7 2.71 3.04 1780.7 1778.3 11.7 11.4

Rensselaer  42 193 24.1 12 1.7 2.94 3.30 191.6 190.6 9.1 9.0

Fulton  18 74 27.4 17.9 1.7 2.93 3.17 75.0 76.1 7.6 7.7

Broome  4 287 29.3 17.7 1.7 2.90 3.32 284.7 283.1 9.8 9.4

Cortland  12 55 22.7 16.2 1.7 2.82 3.17 56.0 56.5 7.1 6.9

Onondaga  34 505 21.6 14.6 1.7 2.83 3.12 506.6 507.0 10.1 9.8

Erie  15 1354 29.4 15.6 1.7 2.98 3.23 1351.6 1354.3 11.3 11.1

Schoharie  48 33 21.0 13.7 1.6 2.88 3.18 34.8 35.4 6.6 6.3

Chenango  9 54 22.1 14.3 1.6 2.87 3.17 55.3 55.8 7.1 6.9

Cattaraugus  5 148 37.9 18 1.6 3.03 3.38 144.4 142.8 9.0 9.1

Queens  41 2090 17.9 13.9 1.5 2.73 3.27 2090.8 2089.2 12.2 11.4

Kings  24 3221 24.5 22.3 1.5 2.78 3.24 3220.2 3223.9 12.2 12.2

Table 2 Model Estimates Compared, Diabetes Mortality in New York Counties

* Count under 10



Figure 1 Counties in New York State 










