

Programme Specification (UG)

Awarding body / institution:	Queen Mary University of London				
Teaching institution:	Queen Mary University of London				
Name of final award and programme title:	BEng Electronic Engineering with Year Abroad				
Name of interim award(s):	CertHE, DipHE, BSc(Eng), BEng				
Duration of study / period of registration:	4 years				
QMUL programme code / UCAS code(s):	UBEF-QMELEF1 / H61Y				
QAA Benchmark Group:	Engineering				
FHEQ Level of Award :	Level 6				
Programme accredited by:	The Institution of Engineering and Technology - re-accreditation currently pending confirmation				
Date Programme Specification approved:					
Responsible School / Institute:	School of Electronic Engineering & Computer Science				
Schools / Institutes which will also be involv	ved in teaching part of the programme:				
N/A					

Collaborative institution(s) / organisation(s) involved in delivering the programme:

N/A

Programme outline

This programme covers digital and analogue electronic circuit design, programming, microprocessors and communication systems.

Emphasis is placed on systems and the design of digital and analogue circuits using advanced software tools. You may study very-large-scale integration (VLSI), communication systems and digital signal processing (DSP).

A design and build group project is taken in the second year and develops teamworking skills. The final individual project allows you to tackle a topic of your choice in greater depth.

This programme is accredited by the Institution of Engineering and Technology on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as an Incorporated Engineer and partly meeting the academic requirement for registration.

Aims of the programme

The accredited degrees form a group of programmes with the same broad aims and objectives; the difference being that they

address different technical flavours of the broad spectrum that is now Electronic Engineering.

Skill-based aims and objectives are, therefore, common across the family, but the instantiation of these objectives may make use of different technical aspects within the family.

Context-based aims and objectives describe the differences between the programmes and Level-based aims and objectives between the BEng and MEng degrees.

What will you be expected to achieve?

At the end of his/her degree, each student should be able to demonstrate the following abilities:

• the ability to recall factual knowledge and the ability to apply it in familiar and unfamiliar situations;

• the ability to apply scientific, mathematical and software 'tools' to a familiar or unfamiliar situation;

• the ability to use Information Technology as a key tool pervading all aspects of Electronic Engineering;

• the ability to understand practical issues concerning real systems (whether hardware or software);

• the ability to recognise insufficient existing knowledge and the ability to search for the necessary scientific, mathematical and software 'tools' relevant to that particular issue;

• the ability to work as part of a team;

the ability to manage time effectively;

• the ability to appreciate the financial background against which decisions are made in industry;

• the ability to show a certain level of reflection on the role of engineering in society;

and the following skills:

• the perceptive skills needed to understand information presented in the form of technical circuit-diagrams, flow-charts and high-level languages;

• the practical skills needed to implement a piece of hardware or software and to use laboratory test equipment;

• the analytical skills needed to verify the correct behaviour of a hardware or software system or component and to be able to identify faults;

the design skills needed to synthesise a design (in hardware and/or software) from a specification (including the choice of the best option from a range of alternatives), to implement the design and to evaluate the design against the original specification;
the written and oral communication skills needed to present information, in particular written information, effectively;

• the critical reasoning skills needed to appraise a particular topic

Context-based aims and objectives

• To combine a study of digital and analogue circuit design with software applications and microprocessors, and control and communications systems.

• To include the design of VLSI microelectronic chips and some Digital Signal Processing.

Please note that the following information is only applicable to students who commenced their Level 4 studies in 2017/18, or 2018/19

In each year of undergraduate study, students are required to study modules to the value of at least 10 credits, which align to one or more of the following themes:

- networking
- multi- and inter-disciplinarity
- international perspectives
- enterprising perspectives.

These modules will be identified through the Module Directory, and / or by your School or Institute as your studies progress.

Acad	demic Content:
A1	Theory, principles, concepts and methodologies fundamental to electronic engineering.
A2	Role of business processes in engineering, including the commerc

Disc	iplinary Skills - able to:
B1	Demonstrate the comprehension and higher level cognitive skills necessary to solve practical problems of constrained complexity using the fundamental concepts and physical principles that underpin electronic engineering in the key areas of circuits, systems, networks and algorithms.
B2	Demonstrate a level of software engineering and programming skills that are appropriate to electronic engineering.
В3	Demonstrate the ability to analyse and evaluate using the appropriate mathematical principles and techniques that underpin the analysis of electronic engineering systems.

Attri	butes:
C1	Engage critically with knowledge, taking responsibility for own learning and personal and professional development.
C2	Demonstrate an appropriate level of expertise in the use of information technology.
C3	Manage time and prioritize tasks by working to strict deadlines while achieving clarity of communication, both with peers and with academic staff.

How will you learn?

Each non-project-based module involves lectures, problem solving coursework and practical sessions. Lectures are used to introduce principles and methods and also to illustrate how they can be applied in practice. Coursework allows students to develop their skills in problem solving and to gain practical experience. Practical sessions take the form of problem-solving exercise classes, or programming or hands-on laboratory sessions that use instruments and hardware and software tools. They allow the students to learn-by-doing, and thus complement the lectures. Practical sessions provide students with guidance and help while solving a problem.

Individual projects are undertaken throughout the year under the supervision of an academic member of staff with whom there are weekly consultancy meetings. These are used for students to report on their progress, discuss research and design issues and plan their future work. This develops and reinforces students' ability to communicate technical ideas clearly and effectively. The Projects Coordinator also runs a thread of taught sessions to support the project module.

How will you be assessed?

The assessment of taught modules normally consists of a combination of written examination and coursework.

Project modules are normally examined on the basis of a written report, a formal oral presentation, and, where applicable, a demonstration of any software and/or hardware developed.

How is the programme structured?

Please specify the structure of the programme diets for all variants of the programme (e.g. full-time, part-time - if applicable). The description should be sufficiently detailed to fully define the structure of the diet.

Year 1 Modules Semester1 ECS408U Electronic Engineering Mathematics I (15 credits) ECS412U Digital Circuit Design (15 credits) ECS429U Programming Fundamentals for Engineers (15 credits) ECS431U Engineering Skills and Practice (15 credits) Semester 2 ECS403U Communications and Networks (15 credits) ECS409U Analogue Electronic Systems (15 credits) ECS411U Signals and Information (15 credits) ECS423U Electronic Engineering Mathematics 2 (15 credits) Year 2 Modules Semester3 ECS502U Microprocessor Systems Design (15 credits) ECS517U Electronic Devices and Applications (15 credits) ECS528U Communication Systems (15 credits) ECS532U Power Systems Analysis (15 credits) (15 credits) Semester 4 ECS504U Electric and Magnetic Fields (15 credits) ECS514U Design and Build Project in Electronic Engineering (15 credits) ECS515U Signals and Systems Theory (15 credits) ECS527U Digital Systems Design (15 credits) (pre-requisite for ECS617U) Semester 5 and 6 ECS555U Year Abroad (120 credits) (Core) **Final Year Modules** Semester 7 ECS635U Project (30 credits) (Core) ECS642U Embedded Systems (15 credits) Compulsory for entry 2022/23, Elective for existing students* Plus two (2022-23 entry) three (pre 2022*) modules from: ECS601U Control Systems (15 credits) (pre requisite for ECS654U) ECS602U Digital Signal Processing (15 credits) ECS643U Power Electronics (15 credits) ECS644U Microwave and Millimetrewave Electronics (15 credits) Semester 8 ECS635U Project (cont) (30 credits) (Core) ECS617U Integrated Circuit Design (15 credits) (pre-requisite ECS527U) Compulsory for entry 2022/23, Elective for existing students* Plus two (2022-23 entry) three (pre 2022*) modules from: ECS649U Electrical Machines and Systems (15 credits) ECS654U Advanced Control Systems (15 credits) (pre requisite ECS601U) ECS660U Modelling and Performance (15 credits) ECS662U Electric and Hybrid Powertrain Transport (15 credits)

Academic Year of Study FT - Year 1

Module Title	Module Code	Credits	Level	Module Selection Status	Academic Year of Study	Semester
Programming Fundamentals for Engineers	ECS429U	15	4	Compulsory	1	Semester 1
Electronic Engineering Mathematics I	ECS408U	15	4	Compulsory	1	Semester 1
Digital Circuit Design	ECS412U	15	4	Compulsory	1	Semester 1
Engineering Skills and Practice	ECS431U	15	4	Compulsory	1	Semester 1
Communications and Networks	ECS403U	15	4	Compulsory	1	Semester 2
Analogue Electronic Systems	ECS409U	15	4	Compulsory	1	Semester 2
Signals and Information	ECS411U	15	4	Compulsory	1	Semester 2
Electronic Engineering Mathematics 2	ECS423U	15	4	Compulsory	1	Semester 2

Academic Year of Study FT - Year 2

Module Title	Module Code	Credits	Level	Module Selection Status	Academic Year of Study	Semester
Power Systems Analysis	ECS532U	15	5	Compulsory	2	Semester 1
Microprocessor Systems Design	ECS502U	15	5	Compulsory	2	Semester 1
Electronic Devices and Applications	ECS517U	15	5	Compulsory	2	Semester 1
Communication Systems	ECS528U	15	5	Compulsory	2	Semester 1
Electric and Magnetic Fields	ECS504U	15	5	Compulsory	2	Semester 2
Design and Build Project in Electronic Engineering	ECS514U	15	5	Compulsory	2	Semester 2

Module Title	Module Code	Credits	Level	Module Selection Status	Academic Year of Study	Semester
Signals and Systems Theory	ECS515U	15	5	Compulsory	2	Semester 2
Digital Systems Design	ECS527U	15	4	Core	2	Semester 2

Academic Year of Study FT - Year 4

Module Title	Module Code	Credits	Level	Module Selection Status	Academic Year of Study	Semester
Project	ECS635U	30	6	Core	4	Semesters 1 & 2
Power Electronics	ECS643U	15	6	Elective	4	Semester 1
Control Systems	ECS601U	15	6	Elective	4	Semester 1
Digital Signal Processing	ECS602U	15	6	Elective	4	Semester 1
Embedded Systems	ECS642U	15	6	Compulsory	4	Semester 1
Microwave and Millimetrewave Electronics	ECS645U	15	6	Elective	4	Semester 1
Electrical Machines and Systems	ECS649U	15	6	Elective	4	Semester 2
Integrated Circuit Design	ECS617U	15	6	Compulsory	4	Semester 2
Electric and Hybrid Powertrain Transport	ECS6XXU	15	6	Elective	4	Semester 2
Advanced Control Systems	ECS654U	15	6	Elective	4	Semester 2
Modelling and Performance	ECS660U	15	6	Elective	4	Semester 2

Academic Year of Study FT - Year 3

Module Title	Module Code	Credits	Level	Module Selection Status	Academic Year of Study	Semester
Year Abroad	ECS555U	120	5	Core	3	Semesters 1 & 2

What are the entry requirements?

Further information about the entry requirements for this programme can be found at:

http://www.eecs.qmul.ac.uk/undergraduates/entry-requirements/

How will the quality of the programme be managed and enhanced? How do we listen to and act on your feedback?

EECS has a Teaching and Learning Committee (TLC) structure which enables programmes to be both managed and enhanced.

The Structure allows for subject level teaching groups and programme coordinators to regularly evaluate the content and delivery of each programme. Feedback from module evaluations and SSLC meetings are fed into these groups and this provides an opportunity for student feedback to be incorporated into the programmes.

Additionally, programme coordinators work with the Director of Education to ensure each programme is current and can be delivered effectively.

The Student-Staff Liaison Committee provides a formal means of communication and discussion between the School and its students. The committee consists of student representatives from each cohort, together with appropriate representation from School staff. It is designed to respond to the needs of students, as well as act as a forum for discussing programme and module developments. Student-Staff Liaison Committees meet four times a year, twice in each teaching semester.

Each semester, students are invited to complete a web-based module questionnaire for each of their taught modules, and the results are fed back through the SSLC meetings. The results are also made available on the student intranet, as are the minutes of the SSLC meetings. Any actions necessary are taken forward by the relevant Senior Tutor, who chairs the SSLC, and general issues are discussed and actioned through the School's Student Experience Learning Teaching And Assessment (SETLA) Committee.

The School's Teaching and Learning Committee (TLC) advises the Director of Education on all matters relating to the delivery of taught programmes at school level including monitoring the application of relevant QM policies and reviewing all proposals for module and programme approval and amendment before submission to Taught Programmes Board. Student views are incorporated in this Committee's work in a number of ways, including through student membership and consideration of student surveys and module questionnaires.

The School participates in the College's Annual Programme Review process, which supports strategic planning and operational issues for all undergraduate and taught postgraduate programmes. The APR includes consideration of the School's Taught Programmes Action Plan, which records progress on learning and teaching related actions on a rolling basis. Students' views are considered in the APR process through analysis of the NSS and module questionnaires, among other data.

What academic support is available?

All students are assigned an academic adviser during induction week. The adviser's role is to guide advisees in their academic development including module selection and to provide first-line pastoral support.

In addition, the School has a Senior Tutor for undergraduate students who provides second-line guidance and pastoral support as well as advising staff on related matters.

The School also has a Student Support Officer who is the first point of contact regarding all matters.

Every member of Teaching Staff holds 2 open office hours per week during term time.

How inclusive is the programme for all students, including those with disabilities?

Queen Mary has a central Disability and Dyslexia Service (DDS) that offers support for all students with disabilities, specific learning difficulties and mental health issues. The DDS supports all Queen Mary students: full-time, part-time, undergraduate, postgraduate, UK and international at all campuses and all sites.

Students can access advice, guidance and support in the following areas:

- Finding out if you have a specific learning difficulty like dyslexia
- Applying for funding through the Disabled Students' Allowance (DSA)
- Arranging DSA assessments of need
- Special arrangements in examinations
- Accessing loaned equipment (e.g. digital recorders)
- Specialist one-to-one "study skills" tuition
- Ensuring access to course materials in alternative formats (e.g. Braille)
- Providing educational support workers (e.g. note-takers, readers, library assistants)
- Mentoring support for students with mental health issues and conditions on the autistic spectrum.

Programme-specific rules and facts

Further information on the Academic Regulations can be found at http://www.arcs.qmul.ac.uk/policy

In addition to this the programme does have special regulations (further details are available in the Academic Regulations): 1. There is a requirement for students to achieve a minimum mark of 30.0 in every module, and to pass the project outright (in addition to the standard award rules) in order to achieve the intended, accredited, award.

2. The exit award and the field of study of the exit award will be dictated by the specific modules passed and failed by a student.

Links with employers, placement opportunities and transferable skills

The School has a wide range of industrial contacts secured through research projects and consultancy, our Industrial Experience programme and our Industrial Advisory Panel.

The Industrial Advisory Panel works to ensure that our programmes are state-of-the-art and match the changing requirements of this fast-moving industry. The Panel includes representatives from a variety of Computer Science oriented companies ranging from SMEs to major blue-chips. These include: Microsoft Research, IBM, The National Physical Laboratory, National Instruments, PA Consulting, Rohde and Schwarz, O2, Cisco Systems, ARM, Selex and BAE Systems.

Recent graduates have found employment as IT consultants, specialist engineers, web developers, systems analysts, software designers and network engineers in a wide variety of industries and sectors. A number of students also go on to undertake PhDs in electronic engineering and computer science. Merril Lynch, Microsoft, Nokia, Barclays Capital, Logica,, Credit Suisse, KPMG, Transport for London, Sky and Selex ES are among the organizations that have recently employed graduates of EECS programmes.

Transferable skills are developed through a variety of means, including embedding of QM Graduate Attributes in taught modules and the project, together with the opportunity to participate in extra-curricular activities, e.g. the School's E++ Society, the School's Annual Programming Competition and external competitions with support from the School.

Programme Specification Approval

Person completing Programme Specification:	Joan Hunter
Person responsible for management of programme:	Kamyar Mehran
Date Programme Specification produced / amended by School / Institute Learning and Teaching Committee:	12 January 2022
Date Programme Specification approved by Taught Programmes Board:	

