Dr Amaranta Membrillo Solis

Lecturer in Mathematical Data Science
Email: i.a.membrillosolis@qmul.ac.ukRoom Number: MB-G25Website: https://amarantamembrillosolis.wordpress.comTwitter: @iamarantams
Research
Research Interests:
My research interests encompass several areas in topology and geometry, including algebraic topology, differential geometry, metric geometry, and geometric and topological data analysis. In particular, I'm interested in the following topics:
- Geometric and topological data analysis of soft materials
- Persistence theory
- Topology of moduli spaces of Riemannian orbifolds
- Spectral and metric geometry of singular spaces
- Unstable homotopy theory of mapping spaces
Publications
- Che, M., Galaz-García, F., Guijarro, L., & Membrillo Solis, I. A. (in press). Metric geometry of the spaces of persistence diagrams. Journal of Applied and Computational Topology.
- Gittins, K., Gordon, C., Khalile, M., Membrillo Solis, I., Rossetti, J. P., Sandoval, M., & Stanhope, E. Do the Hodge spectra distinguish orbifolds from manifolds? Part 2. Michigan Mathematical Journal. To appear.
- Gittins, K., Gordon, C., M., Membrillo Solis, I., Sandoval, M., & Stanhope, E. (2024). Do the Hodge spectra distinguish orbifolds from manifolds? Part 1. Michigan Mathematical Journal, 74(3), 571-598.
- Che, M., Galaz-García, F., Guijarro, L., Membrillo Solis, I., & Valiunas, M. (2024). Basic metric geometry of the bottleneck distance. Proceedings of the American Mathematical Society.
- Madeleine, T., Podoliak, N., Buchnev, O., Membrillo Solis, I., Orlova, T., van Rossem, M., Kaczmarek, M., D’Alessandro, G. and Brodzki, J. (2023). Topological learning for the classification of disorder: an application to the design of metasurfaces. ACS nano.
- Membrillo Solis, I., Orlova, T., Bednarska, K., Lesiak, P., WoliĆski, T. R., D’Alessandro, G., Brodzki, J. & Kaczmarek, M. (2022). Tracking the time evolution of soft matter systems via topological structural heterogeneity. Communications Materials, 3(1), 1.
- Kishimoto, D., Membrillo-Solis, I., & Theriault, S. (2021). The homotopy types of SO (4)-gauge groups. European Journal of Mathematics, 7(3), 1245-1252.
- Membrillo-Solis, I., & Theriault, S. (2021). The homotopy types of U (n)-gauge groups over lens spaces. Boletín de la Sociedad Matemática Mexicana, 27, 1-12.
- Membrillo-Solis, I. (2019). Homotopy types of gauge groups related to S3-bundles over S4. Topology and its Applications, 255, 56-85.