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1 Introduction

The increasing availability of large datasets, both in terms of the number of vari-

ables and the number of observations, combined with the recent advancements

in the field of econometrics, statistics, and machine learning, have spurred the

interest in predictive models with many explanatory variables, both in finance

and economics.1 As not all predictors are necessarily relevant, decision makers

often pre-select the most important candidate explanatory variables by appeal-

ing to economic theories, existing empirical literature, and their own heuristic

arguments. Nevertheless, a decision maker is often still left with tens– if not

hundreds– of sensible predictors that may possibly provide useful information

about the future behavior of quantities of interest. However, the out-of-sample

performance of standard techniques, such as ordinary least squares, maximum

likelihood, or Bayesian inference with uninformative priors tends to deteriorate

as the dimensionality of the data increases, which is the well known curse of

dimensionality.2

Confronted with a large set of predictors, two main classes of models became

popular, even standard, within the regression framework. Sparse modeling focus

on the selection of a sub-set of variables with the highest predictive power out

of a large set of predictors, and discard those with the least relevance. LASSO-

type regularizations are by far the most used in both research and practice.

Regularized models take a large number of predictors and introduce penalization

to discipline the model space. Similarly, in the Bayesian literature, a prominent

example is the spike-and-slab prior proposed by George and McCulloch (1993),

which introduced variable selection through a data-augmentation approach. A

second class of models fall under the heading of dense modeling; this is based

on the assumption that, a priori, all variables could bring useful information for

1See, e.g., Elliott and Timmermann (2004), Timmermann (2004), Bai and Ng (2010),
Rapach, Strauss, and Zhou (2010), Billio, Casarin, Ravazzolo, and van Dijk (2013), Man-
zan (2015), Pettenuzzo and Ravazzolo (2016), Harvey, Liu, and Zhu (2016), Giannone, Lenza,
and Primiceri (2017), and McAlinn and West (2017), just to cite a few.

2Even with a moderate number of predictors the empirical investigation of all possible
model combinations could rapidly become infeasible. For instance, for a moderate size linear
regression with p = 30 regressors, investigating the whole set of possible features combinations
would require estimating 230 ⇡ 1.07 billion regression models.
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prediction, although the impact of some of these might be small. As a result, the

statistical features of a large set of predictors are assumed to be captured by a

much smaller set of common latent components, which could be either static or

dynamic. Factor analysis is a clear example of dense statistical modeling, which

is highly popular in applied macroeconomics (see, e.g., Stock and Watson 2002

and De Mol, Giannone, and Reichlin 2008 and the references therein).

Both these approaches entail either an implicit or explicit reduction of the

model space. The intention is to arbitrarily lower model complexity to balance

bias and variance, in order to potentially minimize predictive losses. For instance,

in LASSO-type shrinkage estimators, increasing the tuning parameter (i.e. in-

creasing shrinkage) leads to a higher bias, thus using cross-validation aims to

balance the bias-variance tradeo↵ by adjusting the tuning parameter. Similarly,

in factor models, the optimal number of latent common components is chosen

by using information criteria to reduce the variance by reducing the model di-

mensionality at the cost of increasing the bias (see, e.g., Bai and Ng 2002). In

addition, for economic and financial decision making, in particular, these dimen-

sion reduction techniques always lead to a decrease in consistent interpretability,

something that might be critical for policy makers, analysts, and investors.

In this paper, we propose a novel class of data-rich predictive synthesis tech-

niques and contribute to the literature on predictive modeling and decision mak-

ing with large datasets. We take a significantly di↵erent approach towards the

bias-variance tradeo↵ by breaking a large dimensional problem into a set of small

dimensional ones. More specifically, we retain all of the information available

and decouple a large predictive regression model into a set of smaller regressions

constructed by clustering the set of regressors into J di↵erent groups, each one

containing fewer regressors than the whole, according to their economic meaning

or some quantitative clustering. Rather than assuming a priori the existence of a

sparse structure or few latent common components, we retain all of the informa-

tion by estimating J di↵erent predictive densities– separately and sequentially–

one for each group of predictors, and recouple them dynamically to generate ag-

gregate predictive densities for the quantity of interest. By decoupling a large

predictive regression model into smaller, less complex regressions, we keep the

aggregate model variance low while sequentially learning and correcting for the
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misspecification bias that characterize each group. As this is the case, the re-

coupling step benefits from biased models, as long as the bias has a signal that

can be learned. This flips the bias-variance tradeo↵ around, exploiting the weak-

ness of low complexity models to an advantage in the recoupling step, therefore

improving the out-of-sample predictive performance.

Our methodology di↵ers from existing model combination schemes by uti-

lizing the theoretical foundations and recent developments in dynamic density

forecast with multiple models (see, e.g., McAlinn and West 2017). That is,

the decoupled models are e↵ectively treated as separate latent states that are

learned and calibrated using the Bayes theorem in an otherwise typical dynamic

linear modeling setup. Under this framework, the inter-dependencies between

the group-specific predictive densities, as well as biases within each group, can

be sequentially learned and corrected; information that is critical, though lost in

typical model combination techniques. Along this line, Clemen (1989), Makri-

dakis (1989), Diebold and Lopez (1996), and Stock and Watson (2004) pointed

out that individual forecasting models are likely to be subject to misspecification

bias of unknown form. Even in a stationary world, the data generating process

is likely to be far more complex than assumed by the best forecasting model and

it is unlikely that the same set of regressors dominates all others at all points

in time. As a result, sequentially learning the aggregate bias and exploiting the

latent inter-dependencies among group-specific predictions can be viewed as a

way to robustify the aggregate prediction against model misspecification and

measurement errors underlying the individual forecasts.

Unlike sparse modeling, we do not assume a priori that there is sparsity in the

set of predictors. As a matter of fact, using standard LASSO-type shrinkage will

implicitly impose a dogmatic prior that only a small subset of regressors is useful

for predictions and the rest is noise, i.e., sparsity is pre-assumed. Yet, there is no

guarantee that the Lasso estimator is smooth and asymptotically consistent to

the true sparsity pattern in the presence of highly correlated predictors and model

instability; two conditions that are often encountered in empirical applications

(see, e.g., Meinshausen, Yu et al. 2009).

We implement the proposed the methodology, which we call decouple-recouple

synthesis (DRS), and explore both its econometric underpinnings and economic
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gains on both a macroeconomic and a finance application. More specifically, in

the first application we test the performance of our decouple-recouple approach to

forecast the one- and three-month ahead annual inflation rate in the U.S. over the

period 1986/1 to 2015/12, a context of topical interest (see, e.g., Cogley and Sar-

gent 2005, Primiceri 2005, Stock and Watson 2007, Koop and Korobilis 2010, and

Nakajima and West 2013, among others). The set of monthly macroeconomic

predictors consists of an updated version of the Stock and Watson macroeco-

nomic panel available at the Federal Reserve Bank of St.Louis. Details on the

construction of the dataset can be found in McCracken and Ng (2016). The sec-

ond application relates to forecasting monthly year-on-year total excess returns

across di↵erent industries in the U.S. from 1970/1 to 2015/12, based on a large

set of both industry-specific and aggregate predictors. The predictors have been

chosen from previous academic studies and existing economic theory (see, e.g.,

Goyal and Welch 2008 and Rapach et al. 2010).

We compare forecasts against a set of mainstream model combination tech-

niques such as a standard Bayesian model averaging (BMA), in which the fore-

cast densities are mixed with respect to sequentially updated model probabilities

(see, e.g., Harrison and Stevens 1976, Sect 12.2 West and Harrison 1997 and Pet-

tenuzzo and Ravazzolo 2016), as well as against simpler, equal-weighted averages

of the model-specific forecast densities using linear pools, i.e., arithmetic means

of forecast densities, with some theoretical underpinnings (see, e.g., West 1984

and Diebold and Shin 2017). While some of these strategies might seem overly

simplistic, they have been shown to dominate some more complex aggregation

strategies in some contexts (Genre, Kenny, Meyler, and Timmermann, 2013).

In addition, we compare the forecasts from our setting with a state-of-the-art

LASSO-type regularization, PCA based latent factor modeling (see, e.g., Stock

and Watson 2002 and McCracken and Ng 2016), as well as the simple historical

average (HA), as suggested by Campbell and Thompson (2007) and Goyal and

Welch (2008). Finally, we compare our decouple-recouple predictive strategy

against the marginal predictive densities computed from the group-specific set

of predictors taken separately.

Forecasting accuracy is assessed in a statistical sense based on two di↵erent

out-of-sample performance metrics. We report as a main performance metric
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the Log Predictive Density Ratio (LPDR), at forecast horizon k and across time

indices t. In addition, although our main focus is on density forecasts, we also

report the Root Mean Squared Forecast Error (RMSFE), which captures the

forecast optimality for a mean squared utility. Irrespective of the performance

evaluation metric, our decouple-recouple model synthesis scheme emerges as the

best for forecasting the yearly total excess returns across di↵erent industries.

The di↵erences in the LPDRs are stark and clearly shows a performance gap in

favor of DRS.

As far as the out-of-sample economic performance is concerned, we run a

battery of tests based on a power-utility representative investor with moderate

risk aversion. The comparison is conducted for the unconstrained as well as

short-sales constrained investor at monthly horizons, for the entire sample. We

find that our DRS strategy results in a higher CER (relative to an investor

that uses the historical mean as forecast) of more than 150 basis points per

year, on average across sectors. Consistent with the predictive accuracy results,

we generally find that the DRS strategy produces higher CER improvements

than the competing specifications, both with and without short-sales portfolio

constraints. In addition, we show that DRS allows to reach a higher CER also

on a “per-period” basis, which suggests that there are economically important

gains for a power utility investor.

2 Decouple-Recouple Predictive Strategy

A decision maker D is interested in predicting some quantity y, in order to make

some informed decision based on a large set of predictors, which are all considered

relevant to D, but with varying degree. In the context of macroeconomics,

for example, this might be a policy maker interested in forecasting inflation

using multiple macroeconomic indicators, that a policy maker can or cannot

control. Similar interests are also relevant in finance, with, for example, portfolio

managers tasked with implementing optimal portfolio allocations on the basis of

expected future returns on risky assets. A canonical and relevant approach is to
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consider a basic linear regression;

yt = �0zt�1 + ✏t, ✏t ⇠ N(0, ⌫t), (1)

where zt is a p�dimensional vector of predictors, � is the p�dimensional vector

of betas, and ✏t is some observation noise, which is assumed here to be Gaussian

to fix ideas.

In many practically important applications, the dimension of predictors rel-

evant to make an informed decision is large, possibly too large to directly fit

something as simple as an ordinary linear regression. As a matter of fact, at

least a priori, all of these predictors could provide relevant information for D.

Under this setting, regularization or shrinkage would not be consistent with D’s

decision making process, as she has no dogmatic priors on the size of the model

space. Similarly, dimension reduction techniques such as principal component

analysis and factor models, e.g., Stock and Watson (2002) and Bernanke, Boivin,

and Eliasz (2005), while using all of the predictors available, reduces them to a

small preset number of latent factors that are hard to interpret or control, in the

sense of decision making.

Our decouple-recouple strategy3 exploits the fact that the potentially large

p�dimensional vector of predictors can be partitioned into smaller groups j =

1:J , modifying Eq. (1) to

yt = �0
1zt�1,1 + ...+ �0

j
zt�1,j + ...+ �0

J
zt�1,J + ✏t, ✏t ⇠ N(0, ⌫t). (2)

These groups can be partitioned based on some qualitative categories (e.g. group

of predictors related to the same economic phenomenon), or by some quantitative

measure (e.g. clustering based on similarities, correlation, etc.), though the

dimension of each partitioned group should be relatively small in order to obtain

3We note that the term “decouple/recouple” stems from emerging developments in multi-
variate analysis and graphical models, where a large cross-section of data are decoupled into
univariate models and recoupled via a post-process recovery of the dependence structure (see
Gruber and West 2016 and the recent developments in Gruber and West 2017; Chen, K.,
Banks, Haslinger, Thomas, and West 2017). While previous research focuses on making com-
plex multivariate models scalable, our approach does not directly recover some specific portion
of a model (full models are available but not useful), instead aims to improve forecasts and
understand the underlying structure through the subgroups.
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sensible estimates. The first step of our model combination strategy is to decouple

Eq. (2) into J smaller predictive models, such as,

yt = �0
j
zt�1,j + ✏tj, ✏tj ⇠ N(0, ⌫tj), (3)

for all j = 1:J , producing forecast distributions p(yt+k|Aj), where Aj denotes

each group of predictors and k denotes the forecast horizon, 1  k. Since Eq. (3)

is a linear projection of data from each group of explanatory variables, we can

consider, without loss of generality, that p(yt+k|Aj) is reflecting the group-specific

information regarding the future behavior of the quantity of interest. In the

second step, we recouple the densities p(yt+k|Aj) for j = 1:J in order to obtain a

forecast distribution p(yt+k|A) reflecting and incorporating all of the information

that arises from each group of predictors. In the most simple setting, p(yt+k|Aj)

can be recoupled via linear pooling (see, e.g., Geweke and Amisano 2011);

p (yt+k|A) =
JX

j=1

wjp(yt+k|Aj), (4)

where weights w1:J are often estimated based on past observations and predictive

performances (e.g. using w1:J proportional to the marginal likelihood). However,

while this linear combination structure is conceptually and practically appealing,

it does not capture the fact that we expect and understand that each p(yt+k|Aj)

to be biased and dependent with each other (i.e., groups of predictors could

be highly correlated). Arguably, each group-specific prediction p(yt+k|Aj) is

misspecified unless one of them is the data generating process, which is something

that we can hardly expect in economics or finance. In this respect, Geweke and

Amisano (2012) formally show that even when none of the constituent models

are true, linear pooling and BMA assign positive weights to several models.

The dependence between p(yt+k|Aj) and p(yt+k|Aq), for j 6= q, is also a cru-

cial aspect of model combination. The optimal combination of weights should be

chosen to minimize the expected loss of the combined forecast, which, by defini-

tion, reflects both the forecasting accuracy of each sub-model and the correlation

across forecasts. For instance, it is evident that the marginal predictive power

of macroeconomic variables related to the labor market is somewhat correlated
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with the explanatory power of output and income. In addition, correlations

across predictive densities are arguably latent and dynamic. For instance, the

spillover e↵ects interest rates, market liquidity, and aggregate financial variables

possibly changed before and after the great financial crisis of 2008/2009. Thus,

an e↵ective combination scheme must be able to sequentially learn and recover

the latent inter-dependencies between the groups/sub-models.

2.1 Time-Varying Predictive Synthesis

The baseline assumption is that a decision maker D aims to incorporate informa-

tion from J individual predictive models labeled Aj, (j = 1:J). The predictive

density from each group of predictors is considered to be a latent state, such that

p(yt|Aj) represents a distinct prior on state j = 1, ..., J . That is, eachAj provides

their own prior distribution about what they believe the outcome in the form

of a predictive distribution htj(xtj) = p(yt|Aj); the collection of which defines

the information set Ht = {ht1(xt1), . . . , htJ(xtJ)}. The di↵erence between this

approach and more general latent factor models, such as PCA, is that we allow

to anchor each latent state, using priors p(yt|Aj) at each time t, to a group that

D specifies. These latent states are then calibrated and learned using Bayesian

updating.

A formal prior-posterior updating scheme posits that, for a given prior p(yt),

and (prior) information set Ht provided by A1:J , we can update using the Bayes

theorem to obtain a posterior p(yt|Ht). Due to the complexity of Ht– a set

of J density functions with cross-sectional time-varying dependencies as well as

individual biases– the aggregate predictive density might be di�cult to define.

We build on the work of McAlinn and West 2017 (linking to past literature

on Bayesian pooling of expert opinion analysis by West and Crosse (1992) and

West (1992), which extend the basic theorem of Genest and Schervish (1985)),

that show that, under a specific consistency condition, D’s the time-varying

posterior density takes the form

p(yt|�t,Ht) =

Z
↵t(yt|xt,�t)

Y

j=1:J

htj(xtj)dxtj (5)
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where xt = xt,1:J is a J�dimensional latent state vector at time t, ↵t(yt|xt,�t)

is a conditional density function, which reflects how the decision maker believes

these latent states xt to be synthesized, and �t represents some time-varying

parameters learned and calibrated over ⌧ = 1, . . . , t. It is important to note

that the theory does not specify the form of ↵t(yt|xt,�t). In fact, McAlinn and

West (2017) show that many forecast combination methods, from linear combi-

nations (including BMA) to more recently developed density pooling methods

(e.g. Aastveit, Gerdrup, Jore, and Thorsrud, 2014; Kapetanios, Mitchell, Price,

and Fawcett, 2015; Pettenuzzo and Ravazzolo, 2016), are special cases of Eq.(5).

This general framework implies that xt is a realization of the inherent dy-

namic latent factors at time t and synthesis is achieved by recoupling these

separate latent predictive densities through the time-varying conditional distri-

bution ↵t(yt|xt,�t). Though the theory does not specify ↵t(yt|xt,�t), a natural

choice is to impose linear dynamics (see, e.g., McAlinn and West, 2017), such

that,

↵t(yt|xt,�t) = N(yt|F
0
t
✓t, vt), (6)

where F t = (1,x0
t
)0 and ✓t = (✓t0, ✓t1, ..., ✓tJ)0 represents a (J+1)�vector of time-

varying synthesis coe�cients. Observation noise is reflected in the innovation

variance term vt, and the time-varying parameters �t is defined as �t = (✓t, vt).

The evolution of these parameters needs to be specified to complete the model

specification. We follow existing literature in dynamic linear models and assume

that both ✓t and vt evolve as a random walk to allow for stochastic changes over

time as is tradition in the Bayesian time series literature (see West and Harrison

1997; Prado and West 2010). Thus, we consider

yt = F 0
t
✓t + ⌫t, ⌫t ⇠ N(0, vt), (7a)

✓t = ✓t�1 + !t, !t ⇠ N(0, vtW t), (7b)

where vtW t represents the innovations covariance for the dynamics of ✓t and

vt the residuals variance in predicting yt, which is based on past information

and the set of models’ predictive densities. The residual ⌫t and the evolution

innovation !s are independent over time and mutually independent for all t, s.

The dynamics of W t is imposed by a standard, single discount factor speci-
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fication as in West and Harrison (1997) (Ch.6.3) and Prado and West (2010)

(Ch.4.3). The residual variance vt follows a beta-gamma random-walk volatil-

ity model such that vt = vt�1�/�t, where � 2 (0, 1] is a discount parameter,

and �t ⇠ Beta (�nt/2, (1� �)nt/2) are innovations independent over time and

independent of vs,!r for all t, s, r, with nt = �nt�1 + 1, the degrees of freedom.

Figure 1 visually summarizes the main di↵erence between our approach and

a standard forecast combination scheme. Unlike existing model ensemble tech-

niques, we do not assume the forecasts to be independent, and sequentially re-

calibrate htj(xtj) = p(yt|Aj) as latent states, which are then e↵ectively trans-

ferred onto the time varying parameters �t = (✓t, vt). These parameters are

then used to compute the posterior forecast distribution.

2.2 Estimation Strategy

Estimation for the decouple step is straightforward and depends on the model

assumptions for each group-specific model. For instance, for a typical dynamic

linear regressions, we can compute each htj(xtj) = p(yt|Aj) using conjugate

Bayesian updating. As for the recouple step, some discussion is needed. In

particular, the joint posterior distribution of the latent states and the structural

parameters is not available in closed form. We implement a Markov Chain

Monte Carlo (MCMC) approach using an e�cient Gibbs sampling scheme. In

our framework, the latent states are represented by the predictive densities of the

models, Aj, j = 1, ..., J , and the synthesis parameters, �t. As a result, posterior

estimates provide insights into the nature of the biases and inter-dependencies

of those latent states.

More precisely, the MCMC algorithm involves a sequence of standard steps in

a customized two-component block Gibbs sampler: the first component simulates

from the conditional posterior distribution of the latent states given the data

and the second component simulates the synthesis parameters. The first step

is the “calibration” step, whereby we learn the biases and inter-dependencies

of the agent forecasts (latent states). In the second step, we “combine” the

models’ predictions by e↵ectively mapping the biases and inter-dependencies

of the latent states, htj(xtj), onto the parameters �t in a dynamic manner.
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The second step involves a standard implementation of the FFBS algorithm

central to MCMC in all conditionally normal dynamic linear models (Frühwirth-

Schnatter 1994; West and Harrison 1997, Sect 15.2; Prado and West 2010, Sect

4.5). In our sequential learning and forecasting context, the full MCMC analysis

is redone at each time point as time evolves and new data are observed. Standing

at time T , the historical information {y1:T ,H1:T} is available and initial prior

✓0 ⇠ N(m0,C0v0/s0) and 1/v0 ⇠ G(n0/2, n0s0/2), and discount factors (�, �)

are specified. At each iteration of the sampler we sequentially cycle through the

above steps.

Finally, posterior predictive distributions of quantities of interest are com-

puted as mixtures of the model-dependent marginal predictive densities synthe-

sized by ↵t(yt|xt,�t). Integration over the model space is performed using our

MCMC scheme, which provides consistent estimates of the latent states and pa-

rameters. A more detailed description of the algorithm and how forecasts are

generated can be found in Appendix A.

2.3 Simulation Study

To test and exemplify our proposed method in a controlled setting, we conduct

a simple simulation study that emulates conditions observed in economic data;

namely that all variables are correlated and that there are omitted variables, with

the true data generating process being unattainable. To do this, we simulate data

by the following data generating process:

y = �2z1 + 3z2 + 5z3 + ✏, ✏ ⇠ N(0, 0.01), (8a)

z1 =
1

3
z3 + ⌫1, ⌫1 ⇠ N

✓
0,

2

3

◆
, z2 =

1

5
z3 + ⌫2, ⌫2 ⇠ N

✓
0,

4

5

◆
, (8b)

z3 = ⌫3, ⌫3 ⇠ N(0, 0.01), (8c)

where only {y, z1, z2} are observed and z3 is omitted. Firstly, all covariates are

correlated. Secondly, since the key variable z3 is not observed, we have a serious

omitted variable that drives all the data observed. Because of this, all models

that can be constructed will be misspecified. Additionally, because z3 drives
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everything else, there is significant bias in all models generated.

We consider forecasting 500 simulated data points and compare the eight

di↵erent strategies that are also considered in the empirical application. Notably,

the individual models are subset of all possible models with either {z1}, {z2}, or

{z1, z2} as regressors in a linear regression. We test a simplified version of our

proposed “decouple-recouple” predictive strategy, where the synthesis function

is a simple linear regression with non-informative priors (Je↵reys’ prior). This

yields a simpler setup for DRS in order to specifically consider and compare the

strengths of our strategy.

Testing predictive performance by measuring the Root Mean Squared one-

step ahead Forecast Error (RMSE) for di↵erent number of samples, we find

that DRS outperforms all other methods and strategies by at least 2%, which,

although small, is substantial and consistent across di↵erent data lengths. The

results indicate the strengths and superiority of DRS in a controlled setting that

emulates the conditions encountered in real economic data. Full descriptions and

results can be found in Appendix B.

3 Research Design

In a realistic setting, the data generating process is not necessarily time invari-

ant and e↵ects of variables change over time with shifts and shocks. To cope

with this, we introduce dynamics into the decoupled predictive densities to fully

exploit the flexibility of our predictive strategy. Specifically, for the decouple

step we use a dynamic linear model (DLM: West and Harrison, 1997; Prado and

West, 2010), for each group, j = 1:J ,

yt = �0
tj
zt�1,j + ✏tj, ✏tj ⇠ N(0, ⌫tj), (9a)

�
tj
= �

t�1,j + utj, utj ⇠ N(0, ⌫tjU tj), (9b)

where the coe�cients follow a random walk and the observation variance evolves

with discount stochastic volatility. Priors for each decoupled predictive regres-

sion are assumed fairly uninformative, such as �0j|v0j ⇠ N(m0j, (v0j/s0j)I)
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with m0j = 0
0 and 1/v0j ⇠ G(n0j/2, n0js0j/2) with n0j = 10, s0 = 0.01. For

the recouple step, we follow the synthesis function in Eq. (6), with the follow-

ing priors: ✓0n|v0n ⇠ N(m0n, (v0n/s0n)I) with m0 = (0,10/J)0 and 1/v0n ⇠

G(n0n/2, n0ns0n/2) with n0n = 10, s0n = 0.01. The discount factors are (�, �) =

(0.95, 0.99). The dynamic specification in Eq. (9) is attractive due to its parsi-

mony, ease to compute, and the smoothness it induces to the parameters.4

3.1 Competing Predictive Strategies

For both studies, we compare our framework against a variety of competing pre-

dictive strategies. First, we compare the aggregate predictive density from DRS

against the predictive densities from each group-specific predictive regressions

calculated from Eq.(9a)-(9b). That is, we test the benefits of the recoupling step

and the calibration of the aggregate model prediction upon learning the latent

biases and inter-dependencies.

Second, we compare our DRS strategy against a LASSO shrinkage regression,

where the coe�cients in Eq.(1) are estimated in an expanding window fashion

from a penalized least-squares regression, i.e.,

�̂
LASSO

= argmin
�

k y � �z k
2
2 +�

nX

i=1

| �i |

where the shrinkage parameter � is calibrated by leave-one-out cross-validation,

that is the model is trained and the shrinkage parameter is selected based on

the quasi-out-of-sample prediction accuracy. Although such an approach is com-

putationally expensive, it provides an accurate out-of-sample calibration of the

shrinkage parameter (see, e.g., Shao 1993).

A third competing predictive strategy relates to dynamic factor modeling

where factors are latent and extracted from the set of predictors. More precisely,

the factor model relates each yt to an underlying vector of q < n of random

4See, e.g., Jostova and Philipov (2005), Nardari and Scruggs (2007), Adrian and Fran-
zoni (2009), Pastor and Stambaugh (2009), Binsbergen, Jules, and Koijen (2010), Dangl and
Halling (2012), Pastor and Stambaugh (2012), and Bianchi, Guidolin, and Ravazzolo (2017b),
among others.
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variables f
t
, the latent common factors, via

yt = �0f
t
+ ✏t, ✏t ⇠ N(0, ⌫t),

zt = �f
t
+ ut, ut ⇠ N(0, ⌧),

where (i) the factors f
t
are independent with f

t
⇠ N(0, Iq), (ii) the ✏t are

independent and normally distributed with a discount-factor volatility dynamics,

(iii) ut ? f
s
8s, t, and (iv) � is the n⇥q matrix of factor loadings. We recursively

estimate the factor model by using an expanding window where the optimal

number of factors is selected using the Bayesian information criterion (BIC).

Also, we assume that the factor coe�cients on the latent factors are time-varying

and follow a dynamic linear model consistent with the dynamic specification in

Eq.(9). More precisely, at each time t we replace ztj with f
t
in Eq. (9a) and the

slope parameters have a random walk dynamics as in Eq. (9b). We note that for

both the LASSO regression and factor model, we have tested and compared the

expanding window to the moving window strategy, and found that the expanding

window strategy to perform better overall in the applications considered in this

paper.

The fourth competing strategy is dynamic Bayesian Model Averaging (BMA),

in which the forecast densities are mixed with respect to sequentially updated

model probabilities whereby the weights are restricted to be inside the unit circle

and the sum of the model weights is restricted to be equal to one (e.g. Harrison

and Stevens, 1976; West and Harrison, 1997, Sect 12.2), i.e.,

p (yt+k|A) =
JX

j=1

wjp(yt+k|Aj),
JX

j=1

wjt = 1, wjt � 0

where the restrictions on the weights wit are necessary and su�cient to assure

that p (yt+k|A) is a density function for all values of the weights and all arguments

of the group-specific predictive regressions (see, e.g., Geweke and Amisano 2011).

As often in the BMA literature, the weights wjt, j = 1, ..., J , are chosen based
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on the posterior model probabilities, i.e., wj = p(Aj|y1:t), where

p(Aj|y1:t) =
p(yt|Aj)p (Aj|y1:t�1)P
J

j=1 p(yt|Aj)p (Aj|y1:t�1)
,

Choice of weights in any forecast combination is widely regarded as a di�cult and

important question. Existing literature shows that, despite being theoretically

suboptimal, an equal weighting scheme generates a substantial outperformance

with respect to optimal weights based on log-score or in-sample calibration (see,

e.g., Timmermann 2004, Smith and Wallis 2009, and Diebold and Shin 2017).

For this reason, a fifth competing predictive strategy we used is linear pooling

of predictive densities with equal weights, that is each sub-model has the same

weight in the aggregate forecast, i.e., wj = 1/J .

Both the BMA and the equal-weight linear combination allow us to compare

the benefit of the predictive density calibration that is featured in the recoupling

step underlying our DRS strategy. Finally, we also compare DRS against the

prediction from the historical average for the financial application.

3.2 Out-of-Sample Performance Measures

Following standard practice in the forecasting literature, we evaluate the quality

of our predictive strategy against competing models based on both point and

density forecasts. In particular, we first compare predictive strategies based on

the Root Mean Squared Error (RMSE), i.e.,

RMSEs =

 
1

T � ⌧ � 1

T�1X

t=⌧

(yt+1 � E [yt+1|y1:t,Ms])
2

!1/2

where T�⌧�1 represents the out-of-sample period, E [yt+1|y1:t,Ms] the one-step

ahead point forecast conditional on information up to time t from the predictive

strategy Ms, and yt+1 is the realized returns.

Although informative, performance measures based on point forecasts only

give a partial assessment. Ideally, one also wants to compare the predictive

densities across strategies. As a matter of fact, performance measures based on
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predictive densities weigh and compare dispersion of forecast densities along with

location, and elaborate on raw RMSE measures; comparing both measurements,

i.e., point and density forecasts, gives a broader understanding of the predictive

abilities of the di↵erent strategies. That is, performance measures based on the

predictive density provide an assessment of a model ability to explain not only

the expected value, i.e., the equity premium, but also the overall distribution of

excess returns, naturally penalizing the size/complexity of di↵erent models. We

compare predictive strategies based on the log predictive density ratios (LPDR);

at horizon k and across time indices t, i.e.,

LPDRt =
tX

i=1

log{p(yi+k|y1:i,Ms)/p(yi+k|y1:i,M0)}, (10)

where p(yt+k|y1:t,Ms) is the predictive density computed at time t for the horizon

t + k under the model or model combination/aggregation strategy indexed by

Ms, compared against our forecasting framework labeled by M0. As used by

several authors recently (e.g. Nakajima and West, 2013; Aastveit, Ravazzolo,

and Van Dijk, 2016), LPDR measures provide a direct statistical assessment

of relative accuracy at multiple horizons that extend traditional 1-step focused

Bayes’ factors.

We also evaluate the economic significance within the context of the finance

application by considering the optimal portfolio choice of a representative in-

vestor with moderate risk aversion. An advantage of our Bayesian setting is that

we are not reduced to considering only mean-variance utility, but can use more

general constant relative risk aversion preferences (see, e.g., Pettenuzzo, Tim-

mermann, and Valkanov 2014). In particular, we construct a two asset portfolio

with a risk-free asset (rft ) and a risky asset (yt; industry returns) for each t,

by assuming the existence of a representative investor that needs to solve the

optimal asset allocation problem

!?

⌧
= argmax

w⌧

E [U (!⌧ , y⌧+1) |H⌧ ] , (11)

with H⌧ indicating all information available up to time ⌧ , and ⌧ = 1, ..., t. The
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investor is assumed to have power utility

U (!⌧ , y⌧+1) =

⇥
(1� !⌧ ) exp

�
rf
⌧

�
+ !⌧ exp

�
rf
⌧
+ y⌧+1

�⇤1��

1� �
, (12)

here, � is the investor’s coe�cient of relative risk aversion. The time ⌧ subscript

reflects the fact that the investor chooses the optimal portfolio allocation condi-

tional on her available information set at that time. Taking expectations with

respect to the predictive density in Eq. (5), we can rewrite the optimal portfolio

allocation as

!?

⌧
= argmax

!⌧

Z
U (!⌧ , y⌧+1) p(y⌧+1|H⌧ )dy⌧+1, (13)

As far as DRS is concerned, the integral in Eq. (13) can be approximated using

the draws from the predictive density in Eq. (5). The sequence of portfolio

weights !?

⌧
, ⌧ = 1, ..., t is used to compute the investor’s realized utility for each

model-combination scheme. Let Ŵ⌧+1 represent the realized wealth at time ⌧+1

as a function of the investment decision, we have

Ŵ⌧+1 =
⇥
(1� !?

⌧
) exp

�
rf
⌧

�
+ !?

⌧
exp

�
rf
⌧
+ y⌧+1

�⇤
, (14)

The certainty equivalent return (CER) for a given model is defined as the annu-

alized value that equates the average realized utility. We follow Pettenuzzo et al.

(2014) and compare the the average realized utility of DRS Û⌧ to the average

realized utility of the model based on the alternative predicting scheme i, over

the forecast evaluation sample:

CERi =

"P
t

⌧=1 Û⌧,iP
t

⌧=1 Û⌧

# 1
1��

� 1, (15)

with the subscript i indicating a given model combination scheme, Û⌧,i = Ŵ 1��

⌧,i
/(1�

�), and Ŵ⌧,i the wealth generated by the competing model i at time ⌧ according

to Eq. (14). A negative CERi shows that model i generates a lower (certainty

equivalent) return than our predictive strategy.
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4 Empirical Results

4.1 Forecasting Aggregate Inflation in the U.S.

The first application concerns monthly forecasting of annual inflation in the U.S.,

a context of topical interest (Cogley and Sargent, 2005; Primiceri, 2005; Koop,

Leon-Gonzalez, and Strachan, 2009; Nakajima and West, 2013). We consider

a balanced panel of N = 128 monthly macroeconomic and financial variables

over the period 1986:01 to 2015:12. A detailed description of how variables

are collected and constructed is provided in McCracken and Ng (2016). These

variables are classified into eight main categories depending on their economic

meaning: Output and Income, Labor Market, Consumption and Orders, Orders

and Inventories, Money and Credit, Interest Rate and Exchange Rates, Prices,

and Stock Market.

The empirical application is conducted as shown in Figure 2; first, the decou-

pled models are analyzed in parallel over 1986:01-1993:06 as a training period,

simply estimating the DLM in Eq. (9) to the end of that period to estimate the

forecasts from each subgroup. This continues over 1993:07-2015:12, but with the

calibration of recouple strategies, which, at each quarter t during this period, is

run with the MCMC-based DRS analysis using data from 1993:07 up to time

t. We discard the forecast results from 1993:07-2000:12 as training data and

compare predictive performance from 2001:01-2015:12. The time frame includes

key periods that tests the robustness of the framework, such as the inflating and

bursting of the dot.com bubble, the building up of the Iraq war, the 9/11 ter-

rorist attacks, the sub-prime mortgage crisis and the subsequent great recession

of 2008–2009. We consider a 1-, 3-, and 12-step step ahead forecasts, in order to

reflect interests and demand in practice.

Panel A of Table 1 shows results aggregated over the testing sample. Our

decouple-recouple strategy improves the one-step ahead out-of-sample forecast-

ing accuracy relative to the group-specific models, LASSO, PCA, equal-weight

averaging, and BMA. The RMSE of DRS is about half of the one obtained by

LASSO-type shrinkage, a quarter compared to that of PCA, and significantly

lower than equal-weight linear pooling and Bayesian model averaging. In gen-
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eral, our decouple-recouple strategy exhibits improvements of 4% up to over

250% in comparison to the competing predictive strategies considered. For each

group-specific model, we note that the Labor Market achieve similarly good point

forecasts, which suggests that the labor market and price levels might be inter-

twined and dominate the aggregate predictive density. Also, past prices alone

provide a good performance, consistent with the conventional wisdom that a

simple AR(1) model often represent a tough benchmark to beat. Output and

Income, Orders and Inventories, and Money and Credit, also perform well, with

Output and Income outperforming Labor Market in terms of density forecasts.

Similarly, Panel B and panel C of Table 1 both show that DRS for the 3- and

12-step ahead forecasts reflect a critical benefit of using our model combination

scheme for multi-step ahead evaluation. As a whole, the results are relatively

similar to that of the 1-step ahead forecasts, with DRS outperforming all other

methods, though the order of performance is di↵erent for each horizon. Inter-

estingly, the LASSO sensibly deteriorates as the forecasting horizon increases

when it comes to predicting the overall ahead distribution of future inflation.

Similarly, both the equal weight and BMA show a significant -50% in terms of

density forecast accuracy. It is fair to notice though that the LASSO predictive

strategy is the only one that does not explicitly consider time varying volatility

of inflation, which is a significant limitation of the methodology, even though

stochastic volatility is something that has been shown to substantially a↵ect in-

flation forecasting (see, e.g., Clark 2011 and Chan 2017, among others). In terms

of equal-weight pooling and BMA, we observe that BMA does outperform equal

weight, though this is because the BMA weights degenerated quickly to Orders

and Inventories, which highlights the problematic nature of BMA, as it acts more

as a model selection device rather than a forecasting calibration procedure.

Appendix C shows the recursive one-step ahead out-of-sample performance

of DRS in terms of predictive density. The results make clear that the out-of-

sample performance of DRS with respect to the benchmarking model combina-

tion/shrinkage schemes tend to steadily increase throughout the sample.

Delving further into the dynamics of our decouple-recouple model combina-

tion scheme, Figure 3 highlights the first critical component of the recoupling

step, namely learning the latent inter-dependencies among and between the sub-
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groups. For the sake of interpretability Figure 3 reports a rescaled version of

the J-dimensional vector of posterior estimates ✓̂t =
⇣
✓̂1t, . . . , ✓̂Jt

⌘0
by using a

logistic transformation, i.e.,

✓̃jt =
exp

⇣
✓̂jt
⌘

P
J

j=1 exp
⇣
✓̂jt
⌘ , j = 1, . . . , J s.t. ✓̃jt 2 (0, 1),

JX

j=1

✓̃jt = 1. (16)

That is, each posterior estimates are rescaled to be inside the unit simplex, and

sum to one across groups of predictors. This allows to give a clearer inter-

pretability of the relative importance of these latent interdependencies through

time. The left panel shows the results for the one-step ahead forecast; we note

that prior to the dot.com bubble, Money and Credit, Output and Income, and

Order and Inventories have the largest weight although they quickly reduce their

weight throughout the rest of the testing period.

One large trend in coe�cients is with Labor Market, Prices, and Orders and

Inventories. After the dot.com crash, we see a large increase in weight assigned

to Labor Market, making it the group with the highest impact on the predictive

density for most of the period. A similar pattern also emerges with Interest and

Exchange Rates at the early stages of the great financial crisis, though to a lesser

extent. Yet, Labor Market does not always represent the group with the largest

weight towards the end of the sample. In the aftermath of the the dot.com crash

the marginal weight of Prices trends significantly upwards, crossing Labor Market

around the sub-prime mortgage crisis, making it by far the highest weighted

group and the end of the test period.

Compared to the results from the one-step ahead forecasts, the right panel of

Figure 3 shows that there are specific di↵erences in the dynamics of the latent

inter-dependencies when forecasting inflation on a longer horizon. More specif-

ically, we note a significant decrease in importance of Labor Market before and

after the great recession, and a marked increase of the relative importance of

Prices after the great financial crisis, with Labor Market still quite significant

towards the end of the sample. This is a stark contrast to the results of the

1-step ahead forecasts and reflects an interesting dynamic shift in importance

of each subgroup that highlights the flexible specification of DRS for multi-step
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ahead modeling.

Since the parameters of the recoupling step are considered to be latent states,

the conditional intercept of the recoupling scheme can be interpreted as the aggre-

gate bias, namely a free-roaming component, which is not directly pinned down

by any group of predictors. Specifically, the time variation in the conditional in-

tercept can be thought of as a reflection of unanticipated (by the group-specific

models, and as an extension, the group indicators) economic shocks, which then

a↵ect inflation forecasts with some lag.

Figure 4, the intercept in the synthesis model, clearly shows a sign switch in

the aftermath of the short recession in the early 2000s and the financial crisis

of 2008–2009. In addition, we note some specific di↵erences between the predic-

tive bias for the one-step ahead (solid light-blue line) and the three-step ahead

(dashed light-blue line) forecasts. These di↵erences are key to understand the

long-term dynamics of inflation. For one, compared to the one-step ahead con-

ditional intercept, the conditional intercept of the longer-run forecast is clearly

amplified. This is quite intuitive, as we expect forecast performance to deteri-

orate as the forecast horizon moves further away, and thus more reliant on the

free-roaming component of the latent states. Second, the bias of both forecasts

substantially change in the aftermath of both the mild recession in the US in the

early 2000s and the great financial crisis. The lag here should not look suspicious

as the persistent time variation of both the sub-model predictive densities and

the recoupling step imply some stickiness in the bias adjustment.

Further results, including retrospective analysis of the latent interdependen-

cies, can be found in Appendix .

4.2 Forecasting the Equity Premium for Di↵erent U.S.

Industries

We consider a large set of predictors to forecast monthly year-on-year excess

returns in the U.S. across di↵erent industries from 1970:01 to 2015:12. The choice

of the predictors is guided by previous academic studies and existing economic

theory with the goal of ensuring the comparability of our results with these
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studies (see, e.g., Lewellen 2004, Avramov 2004, Goyal and Welch 2008, Rapach

et al. 2010, and Dangl and Halling 2012, among others). We collect monthly data

on more than 63 pre-calculated financial ratios for all U.S. companies which can

be classified in eight main categories: Valuation, Profitability, Capitalization,

Financial Soundness, Solvency, Liquidity, E�ciency Ratios, and Other. Both

returns and predictors are aggregated at the industry level by constructing value-

weighted returns in excess of the risk-free rate and value-weighted averages of

the single-firm predictors. Industry aggregation is based on the four-digit SIC

codes of the existing firm at each time t. We use the ten industry classification

codes obtained from Kenneth French’s website.

Together with industry-specific predictors, we use additional 14 aggregate

explanatory variables, which are divided into two additional categories; aggre-

gate financials and macroeconomic variables. In particular, following Goyal and

Welch (2008) and Rapach et al. (2010), the aggregate financial predictors consist

of the monthly realized volatility of the value-weighted market portfolio (svar),

the ratio of 12-month moving sums of net issues divided by the total end-of-

year market capitalization (ntis), the default yield spread (dfy) calculated as the

di↵erence between BAA and AAA-rated corporate bond yields, and the term

spread (tms) calculated as the di↵erence between the long term yield on govern-

ment bonds and the Treasury-bill. Additionally, we consider the traded liquidity

factor (liq) of Pástor and Stambaugh (2003), and the year-on-year growth rate

of the amount of loans and leases in Bank credit for all commercial banks.

For the aggregate macroeconomic predictors, we utilize the inflation rate

(infl), measured as the monthly growth rate of the CPI All Urban Consumers

index, the real interest rate (rit) measured as the return on the treasury bill minus

inflation rate, the year-on-year growth rate of the initial claims for unemployment

(icu), the year-on-year growth rate of the new private housing units authorized

by building permits (house), the year-on-year growth of aggregate industrial

production (ip), the year-on-year growth of the manufacturers’ new orders (mno),

the M2 monetary aggregate growth (M2), and the year-on-year growth of the

consumer confidence index (conf) based on a survey of 5,000 US households.

The empirical application is conducted similar to the forecasting of U.S. in-

flation (see Figure 2). More precisely, first, the decoupled models are analyzed
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in parallel over 1970:01-1992:09 as a training period, simply estimating the DLM

in Eq. (9) to the end of that period to estimate the forecasts from each group

of predictors. This continues over 1993:07-2015:12, but with the calibration of

recouple strategies, which, at each time t during this period, is run with the

MCMC-based DRS analysis using data from 1993:07 up to time t. We discard

the forecast results from 1993:07-2000:12 as training data and compare predictive

performance from 2001:01-2015:12. The time frame includes key periods, such

as the early 2000s– marked by the passing of the Gramm-Leach-Bliley act, the

inflating and bursting of the dot.com bubble, the ensuing financial scandals such

as Enron and Worldcom and the 9/11 attacks– and the great financial crisis of

2008–2009, which has been previously led by the burst of the sub-prime mortgage

crisis (see, e.g., Bianchi, Guidolin, and Ravazzolo 2017a). Arguably, these peri-

ods exhibit sharp changes in financial markets, and more generally might lead

to substantial biases and time variation in the latent inter-dependencies among

relevant predictors.

Panel A of Table 2 shows that our decouple-recouple strategy improves the

out-of-sample forecasting accuracy relative to the group-specific models, LASSO,

PCA, equal-weight averaging, and BMA. Consistent with previous literature, the

recursively computed equal-weighted linear-pooling is a challenging benchmark

to beat by a large margin (see, e.g., Diebold and Shin 2017). The performance

gap between Equal Weight and DRS is not as significant compared to others

across industries. The out-of-sample performance of the LASSO and PCA are

worse than other competing model combination schemes as well as the historical

average (HA). These results hold for all the ten industries under investigation.

The outperformance of DRS is quite luminous related to the log predictive

density ratios. In fact, as seen in Panel B of Table 2, none of the alternative

specifications come close to DRS when it comes to predicting one-step ahead.

With the only partial exception of the Energy sector, DRS strongly outperforms

both the competing model combination/shrinkage schemes and the group-specific

predictive densities.

Two comments are in order. First, while both the equal-weight linear pool-

ing and the sequential BMA tend to outperform the group-specific predictive

regressions, the LASSO strongly underperforms when it comes to predicting the
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density of future excess returns. This result is consistent with the recent evidence

in Diebold and Shin (2017). They show that simple average combination schemes

are highly competitive with respect to standard LASSO shrinkage algorithm. In

particular, they show that good out-of-sample performances are hard to achieve

in real-time forecasting exercise, due to the intrinsic di�culty of small-sample

real-time cross-validation of the LASSO tuning parameter.

Delving further into the dynamics of our DRS predictions, Figure 5 shows the

posterior mean estimates of the latent interdependencies among predictive densi-

ties which have been rescaled by using a logistic transformation as in Eq.(16). For

the ease of exposition we report the results for a handful of industries, namely

Consumer Durable, Consumer Non-Durable, Manufacturing and Other. The

posterior estimates for the other industries are available upon request.

Although the interpretation of the dynamics of the latent inter-dependencies

is not always clean, some interesting picture emerge. First, there is a substantial

time variation in the inter-dependencies among predictive densities. In particu-

lar, abrupt changes in the relative e↵ects of groups of predictors can be identified

around the great financial crisis, especially for the Manufacturing and Other in-

dustries. This is likely not due to idiosyncratic volatility e↵ects, as we explicitly

take into account time varying volatility for the unexpected returns for each of

the group-specific regressions (see Eq. 9). Second, the “weight” of aggregate

financials on the aggregate predictive density tend to increase over time for all

industries with a rather stable upward trend. Third, the fact that we impose

a random-walk dynamics to the latent interdependencies does not prevent the

predictive synthesis to be stable over time. Indeed, the posterior estimates of �t

for Consumer Non-Durables are rather stable throughout the evaluation sample.

Fourth, the role of Value and Financial Soundness is highly significant in pre-

dictive stock returns, with substantial fluctuations and di↵erences around the

great financial crisis of 2008–2009. Financial Soundness indicators involve vari-

ables such as cash flow over total debt, short-term debt over total debt, current

liabilities over total liabilities, long-term debt over book equity, and long-term

debt over total liabilities, among others. These variables arguably capture a

company’s risk level in the medium-to-long term as evaluated in relation to the

company’s debt level, and therefore collectively capture the ability of a com-
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pany to manage its outstanding debt e↵ectively to keep its operations. Quite

understandably, the interplay between debt (especially medium term debt) and

market value increasingly a↵ect risk premia, and therefore the predicted value

of future excess returns in a significant manner.

The time variation in the latent inter-dependencies is reflected in the aggre-

gate dynamic bias, which is sequentially corrected within our decouple-recouple

dynamic predictive framework. Figure 6 shows the dynamics of the calibrated

bias across di↵erent industries. The figure makes clear that there is a substantial

change in the aggregate bias in the aftermath of both the dot.com bubble and

the great financial crisis. Which is to say, the aggregate predictive density that

is synthesized from each class of predictors is significantly recalibrated around

periods of market turmoil. Finally, one comment is in order. It should be clear

that our goal in this paper is not to over-throw other results from the empirical

finance literature with respect to the correlation among predictors and/or the

misspecification of others modeling frameworks, but to deal with two crucial as-

pects of in dynamic forecasting of the equity premium: (1) capture the dynamic

interplay between di↵erent, economically motivated, predictive densities, and (2)

sequentially learn and correct for eventual models’ misspecification.

4.2.1 Economic Significance. We now investigate the economic gains ob-

tained by using our DRS strategy as opposed to one of the competing predictive

strategies. In particular, we take the perspective often used in returns pre-

dictability studies of a representative investor with power utility and moderate

risk aversion, i.e., � = 5 (see, e.g., Barberis 2000, Johannes, Korteweg, and Pol-

son 2014, Pettenuzzo et al. 2014, and Pettenuzzo and Ravazzolo 2016). Panel

A of Table 3 shows the results for portfolios with unconstrained weights, which

means short sales are allowed to maximize the portfolio returns. In particular,

we report the CER of a competing strategy relative to the benchmark DRS as

obtained from Eq.(15).

The economic performance of our decouple-recouple strategy is rather stark in

contrast to both group-specific forecasts and the competing dimension reduction

and forecasts combination schemes. The realized CER from DRS is substantially

larger than any of the other model specifications across di↵erent industries. Not
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surprisingly, given that the statistical accuracy of a simple recursive historical

mean model is not remarkable, the HA model leads to a very low CER. The re-

sults show that there is substantial economic evidence of returns predictability:

a representative investor using our predictive strategy could have earned consis-

tently positive utility gains across di↵erent U.S. industries relative to an investor

using the historical mean. Interestingly, the equally-weighted linear pooling and

Bayesian model averaging turn out to be both strong competitors, although still

generate lower CERs.

Panel B of Table 3 shows that the performance gap in favor of DRS is con-

firmed under the restriction that the portfolio weights have to be positive, i.e.,

long-only strategy. Our predictive strategy generates a larger performance than

BMA and equal-weight linear pooling. Notably, both the performance of other

benchmark strategies such as the LASSO and dynamic PCA substantially im-

prove by imposing no-short sales constraints.

In addition to the full sample evaluation above, we also study how the dif-

ferent models perform in real time. Specifically, we first calculate the CERi⌧ at

each time ⌧ as

CERi⌧ =

"
Û⌧,i

Û⌧

# 1
1��

� 1, (17)

Similarly to Eq (15), a negative CERi⌧ can be interpreted as evidence that

model i generates a lower (certainty equivalent) return at time ⌧ than our DRS

strategy. Panel A of Table 4 shows the average, annualized, single-period CER for

an unconstrained investor. The results show that the out-of-sample performance

is robustly in favor of the DRS model-combination scheme. As for the whole-

sample results reported in Table 3, the equal-weighted linear pooling turns out

to be a challenging benchmark to beat. Yet, DRS generates constantly higher

average CERs throughout the sample.

Panel B shows the results for a short-sales constrained investor. Although the

gap between DRS and the competing forecast combination schemes is substan-

tially reduced, DRS robustly generates higher performances in the order of 10

to 40 basis points, depending on the industry and the competing strategy. As a
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whole, Tables 3-4 suggest that by sequentially learning latent interdependencies

and biases improve the out-of-sample economic performance within the context

of a typical portfolio allocation example.

5 Conclusion

In this paper, we propose a framework for predictive modeling when the decision

maker is confronted with a large number of predictors. Our new approach retains

all of the information available by first decoupling a large predictive model into a

set of smaller predictive regressions, which are constructed by similarity among

classes of predictors, then recoupling them by treating each of the subgroup

of predictors as latent states; latent states, which are learned and calibrated

via Bayesian updating, to understand the latent inter-dependencies and biases.

These inter-dependencies and biases are then e↵ectively mapped onto a latent

dynamic factor model, in order to provide the decision maker with a dynamically

updated forecast of the quantity of interest.

This is a drastically di↵erent approach from the literature where there were

mainly two strands of development; shrinking the set of active regressors by im-

posing regularization and sparsity, e.g., LASSO and ridge regression, or assuming

a small set of factors can summarize the whole information in an unsupervised

manner, e.g., PCA and factor models.

We implement and evaluate the proposed methodology on both a macroe-

conomic and a finance application. We compare forecasts from our framework

against a variety of standard sparse and dense modeling benchmarks used in fi-

nance and macroeconomics within a linear regression context. Irrespective of the

performance evaluation metric, our decouple-recouple model synthesis scheme

emerges as the best for forecasting both the annual inflation rate for the U.S.

economy as well as the equity premium for di↵erent industries in the U.S.
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Table 1. Out-of-sample forecast performance: Forecasting inflation.

This table reports the out-of-sample comparison of our decouple-recouple framework against
each individual model, LASSO, PCA, equal weight average of models, and BMA for inflation
forecasting. Performance comparison is based on the Root Mean Squared Error (RMSE), and
the Log Predictive Density Ratio (LPDR) as in Eq. (10). The testing period is 2001/1-2015/12,
monthly.

Panel A: Forecasting 1-Step Ahead Inflation
Group-Specific Models LASSO PCA EW BMA DRS

Output &

Income

Labor

Market
Consump.

Orders &

Invent.

Money

& Credit

Int. Rate &

Ex. Rates
Prices

Stock

Market

RMSE 0.2488 0.2247 0.7339 0.2721 0.2624 0.4258 0.2223 0.5027 0.3348 0.9329 0.2945 0.2721 0.2051

(%) -7.35% -7.37% -122.06% -8.73% -15.75% -40.56% -6.83% -59.59% -63.24% -354.85% -43.59% -32.68% -

LPDR -40.48 -42.05 -233.09 -59.15 -56.34 -134.18 -20.00 -171.21 -3785.15 -285.41 -88.81 -60.40 -

Panel B: Forecasting 3-Step Ahead Inflation
Group-Specific Models LASSO PCA EW BMA DRS

Output &

Income

Labor

Market
Consump.

Orders &

Invent.

Money

& Credit

Int. Rate &

Ex. Rates
Prices

Stock

Market

RMSE 0.3594 0.3595 0.7435 0.3640 0.3875 0.4706 0.3577 0.5343 0.3991 0.9223 0.3777 0.3640 0.3348

(%) -21.32% -9.57% -257.86% -32.68% -27.95% -107.66% -8.39% -145.14% -19.21% -175.45% -12.87% -8.73% -

LPDR -78.65 -225.75 -156.59 -61.96 -122.27 -77.76 -101.55 -101.82 -3804.35 -203.12 -41.00 -78.54 -

Panel C: Forecasting 12-Step Ahead Inflation
Group-Specific Models LASSO PCA EW BMA DRS

Output &

Income

Labor

Market
Consump.

Orders &

Invent.

Money

& Credit

Int. Rate &

Ex. Rates
Prices

Stock

Market

RMSE 0.5685 0.5969 0.7672 0.5679 0.6280 0.6307 0.6289 0.6075 0.6373 0.8815 0.5653 0.6280 0.4187

(%) -35.78% -42.57% -83.26% -35.64% -50.00% -50.64% -50.21% -45.10% -52.23% -110.56% -35.01% -50.00% -

LPDR -325.32 -941.58 -238.38 -363.58 -531.34 -248.71 -632.56 -181.60 -4112.97 -201.17 -649.90 -264.78 -
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Figure 1. Outline of the Methodology

This figure visually presents our strategy compared to standard combination strategies. Here,
the cloud above is considered the data generating process, dotted ovals are the data generating
processes of the agents’ forecasts, the dotted lines are the agents’ projections, and the solid
circles are the observed agents’ forecasts. In our predictive synthesis framework (left panel),
the agent-specific predictive densities are calibrated based on latent inter-dependencies and
biases (where the overlapping areas of dotted ovals are inter-dependencies and areas o↵ the
cloud are biases) and are combined using the synthesis function. Opposed to this, a standard
model combination scheme (right panel) ignores the latent inter-dependencies and biases and
minimizes a function of the observed agents’ forecasts.

(a) Our Framework (b) Standard Combination

Figure 2. Timeline of the Inflation Forecasting Exercise

This figure visually presents the timeline of the inflation forecasting exercise by separating the
train sample, the train and combine and the evaluation sample.

37



Figure 3. Posterior Means of Rescaled Latent Inter-Dependencies for the U.S.
Inflation Forecasting

This figure shows the latent interdependencies across groups of predictive densities– measured
through the predictive coe�cients– used in the recoupling step for both the one- and three-
month ahead forecasting exercise. For the sake of interpretability we report the rescaled
coe�cients which are normalized by using a logistic transformation.

(a) 1-step ahead (b) 3-step ahead

Figure 4. Out-of-Sample Dynamic Predictive Bias for U.S. Inflation Forecasting

This figure shows the dynamics of the out-of-sample predictive bias obtained as the time-
varying intercept from the recoupling step of the DRS strategy. The sample evaluation period
is 01:2001 to 12:2015.
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Figure 5. Posterior Means of Rescaled Latent Inter-Dependencies for the U.S.
Industry Equity Premium

This figure shows the one-step ahead latent interdependencies across groups of predictive
densities– measured through the predictive coe�cients– used in the recoupling step. For the
ease of exposition we report the results for four representative industries, namely, Consumer
Durables, Consumer non-Durables, Manufacturing, Shops, Utils and Other. Industry aggre-
gation is based on the four-digit SIC codes of the existing firm at each time t following the
industry classification from Kenneth French’s website. The sample period is 01:1970-12:2015,
monthly.

(a) Consumer Durable (b) Cons. Non-Durable

(c) Manufacturing (d) Other

(e) Utils (f) Shops
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Figure 6. Out-of-Sample Dynamic Predictive Bias for the U.S. Industry Equity
Premium

This figure shows the dynamics of the out-of-sample predictive bias obtained as the time-
varying intercept from the recoupling step of the DRS strategy. The figure reports the results
across all industries. The sample period is 01:2001-12:2015, monthly. The objective function is
the one-step ahead density forecast of stock excess returns across di↵erent industries. Industry
classification is based on 4-digit SIC codes.
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Outline

This Appendix provides additional details regarding our methodology, the

estimation strategy, some test based on a simulated dataset, as well as some

additional out-of-sample empirical results. Note that all notations and model

definitions are similar to those in the main article.

A MCMC Algorithm

In this section we provide details of the Markov Chain Monte Carlo (MCMC)

algorithm implemented to estimate the BPS recouple step. This involves a se-

quence of standard steps in a customized two-component block Gibbs sampler:

the first component learns and simulates from the joint posterior predictive

densities of the subgroup models; this the “learning” step. The second step

samples the predictive synthesis parameters, that is we “synthesize” the mod-

els’ predictions in the first step to obtain a single predictive density using the

information provided by the subgroup models. The latter involves the FFBS

algorithm central to MCMC in all conditionally normal DLMs ( Frühwirth-

Schnatter 1994; West and Harrison 1997, Sect 15.2; Prado and West 2010,

Sect 4.5).

In our sequential learning and forecasting context, the full MCMC analysis

is performed in an extending window manner, re-analyzing the data set as

time and data accumilates. We detail MCMC steps for a specific time t here,

based on all data up until that time point.

A.1 Initialization:

First, initialize by setting F t = (1, xt1, ..., xtJ)0 for each t = 1:T at some chosen

initial values of the latent states. Initial values can be chosen arbitrarily,

though following McAlinn and West (2017) we recommend sampling from the

priors, i.e., from the forecast distributions, xtj ⇠ htj(xtj) independently for all
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t = 1:T and j = 1:J .

Following initialization, the MCMC iterates repeatedly to resample two

coupled sets of conditional posteriors to generate the draws from the target

posterior p(x1:T ,�1:T |y1:T ,H1:T ). These two conditional posteriors and algo-

rithmic details of their simulation are as follows.

A.2 Sampling the synthesis parameters �1:T

Conditional on any values of the latent agent states, we have a conditionally

normal DLM with known predictors. The conjugate DLM form,

yt = F
0
t✓t + ⌫t, ⌫t ⇠ N(0, vt),

✓t = ✓t�1 + !t, !t ⇠ N(0, vtW t),

has known elements F t,W t and specified initial prior at t = 0. The implied

conditional posterior for �1:T then does not depend on H1:T , reducing to

p(�1:T |x1:T , y1:T ). Standard Forward-Filtering Backward-Sampling algorithm

can be applied to e�ciently sample these parameters, modified to incorporate

the discount stochastic volatility components for vt (e.g. Frühwirth-Schnatter

1994; West and Harrison 1997, Sect 15.2; Prado and West 2010, Sect 4.5).

A.2.1 Forward filtering:

One step filtering updates are computed, in sequence, as follows:

1. Time t� 1 posterior:

✓t�1|vt�1,x1:t�1, y1:t�1 ⇠ N(mt�1,Ct�1vt�1/st�1),

v
�1
t�1|x1:t�1, y1:t�1 ⇠ G(nt�1/2, nt�1st�1/2),

with point estimates mt�1 of ✓t�1 and st�1 of vt�1.
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2. Update to time t prior:

✓t|vt,x1:t�1, y1:t�1 ⇠ N(mt�1,Rtvt/st�1) with Rt = Ct�1/�,

v
�1
t |x1:t�1, y1:t�1 ⇠ G(�nt�1/2, �nt�1st�1/2),

with (unchanged) point estimates mt�1 of ✓t and st�1 of vt, but with

increased uncertainty relative to the time t�1 posteriors, where the level

of increased uncertainty is defined by the discount factors.

3. 1-step predictive distribution: yt|x1:t, y1:t�1 ⇠ T�nt�1(ft, qt) where

ft = F
0
tmt�1 and qt = F

0
tRtF t + st�1.

4. Filtering update to time t posterior:

✓t|vt,x1:t, y1:t ⇠ N(mt,Ctvt/st),

v
�1
t |x1:t, y1:t ⇠ G(nt/2, ntst/2),

with defining parameters as follows:

i. For ✓t|vt : mt = mt�1 +Atet and Ct = rt(Rt � qtAtA
0
t),

ii. For vt : nt = �nt�1 + 1 and st = rtst�1,

based on 1-step forecast error et = yt � ft, the state adaptive coe�cient

vector (a.k.a. “Kalman gain”) At = RtF t/qt, and volatility estimate

ratio rt = (�nt�1 + e
2
t/qt)/nt.

A.2.2 Backward sampling:

Having run the forward filtering analysis up to time T, the backward sampling

proceeds as follows.

a. At time T : Simulate�T = (✓T , vT ) from the final normal/inverse gamma

posterior p(�T |x1:T , y1:T ) as follows. First, draw v
�1
T fromG(nT/2, nT sT/2),

and then draw ✓T from N(mT ,CTvT/sT ).
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b. Recurse back over times t = T � 1, T � 2, . . . , 0 : At time t, sample

�t = (✓t, vt) as follows:

i. Simulate the volatility vt via v
�1
t = �v

�1
t+1 + �t where �t is an inde-

pendent draw from �t ⇠ G((1� �)nt/2, ntst/2),

ii. Simulate the state ✓t from the conditional normal posterior p(✓t|✓t+1, vt,x1:T , y1:T )

with mean vector mt + �(✓t+1 �mt) and variance matrix Ct(1 �

�)(vt/st).

A.3 Sampling the latent states x1:T

Conditional on the sampled values from the first step, the MCMC iterate com-

pletes with resampling of the posterior joint latent states from p(x1:t|�1:t, y1:t,H1:t).

We note that xt are conditionally independent over time t in this conditional

distribution, with time t conditionals

p(xt|�t, yt,Ht) / N(yt|F
0
t✓t, vt)

Y

j=1:J

htj(xtj) where F t = (1, xt1, xt2, ..., xtJ)
0
.

(A.1)

Since htj(xtj) has a density of Tntj(htj, Htj), we can express this as a scale

mixture of Normal, N(htj, Htj), withH t = diag(Ht1/�t1, Ht2/�t2, ..., HtJ/�tJ),

where �tj are independent over t, j with gamma distributions, �tj ⇠ G(ntj/2, ntj/2).

The posterior distribution for each xt is then sampled, given �tj, from

p(xt|�t, yt,Ht) = N(ht + btct,H t � btb
0
tgt) (A.2)

where ct = yt� ✓t0�h
0
t✓t,1:J , gt = vt+✓

0
t,1:Jqt✓t,1:J , and bt = qt✓t,1:J/gt. Here,

given the previous values of �tj, we haveH t = diag(Ht1/�t1, Ht2/�t2, ..., HtJ/�tJ)

Then, conditional on these new samples of xt, updated samples of the la-

tent scales are drawn from the implied set of conditional gamma posteriors

�tj|xtj ⇠ G((ntj + 1)/2, (ntj + dtj)/2) where dtj = (xtj � htj)2/Htj, indepen-

dently for each t, j. This is easily computed and then sampled independently

for each 1:T to provide resimulated agent states over 1:T.

5



A.4 Forecasting

In terms of forecasting, at time t, we generate predictive distributions of the

object of interest as follows: (i) For each sampled �t from the posterior

MCMC above, draw vt+1 from its stochastic dynamics, and then ✓t+1 con-

ditional on ✓t, vt+1 from Eq.(7b)– this gives a draw �t+1 = {✓t+1, vt+1} from

p(�t+1|y1:t,H1:t); (ii) draw xt+1 via independent sampling from ht+1,j(xt+1,j),

(j = 1:J); (iii) conditional on the parameters and latent states draw yt+1 from

Eq.(7a). Repeating, this generates a random sample from the 1-step ahead

synthesized forecast distribution for time t+ 1.

Forecasting over multiple horizons is often of equal or greater importance

than 1-step ahead forecasting. However, forecasting over longer horizons is

typically more di�cult than over shorter horizons, since predictors that are

e↵ective in the short term might not be e↵ective in the long term. Our model-

ing framework provides a natural and flexible procedure to recouple subgroups

over multiple horizons.

In general, there are two ways to forecast over multiple horizons, through

traditional DLM updating or through customized synthesis. The former, direct

approach follows traditional DLM updating and forecasting via simulation as

for 1-step ahead, where the synthesis parameters are simulated forward from

time t to t+k. The latter, customized synthesis involves a trivial modification,

in which the model at time t � 1 for predicting yt is modified so that the

k-step ahead forecast densities made at time t � k, i.e., ht�k,j(xtj) replace

htj(xtj). While the former is theoretically correct, it does not address how

e↵ective predictors (and therefore subgroups) can drastically change over time

as it relies wholly on the model as fitted, even though one might be mainly

interested in forecasting several steps ahead. McAlinn and West (2017) find

that, compared to the direct approach, the customized synthesis approach

significantly improves multi-step ahead forecasts, since the dynamic model

parameters, {✓t, vt}, are now explicitly geared to the k-step horizon.
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B Simulation Study

We consider a simple– yet relevant– simulation study to illustrate and high-

light our proposed methodology and its implications for real data applications.

This simulation study allows to isolate the gains coming from the combination

and re-calibration steps as opposed to the inherent dynamics of the synthesis

function, since the data generating process impose stationarity.

To construct a meaningful simulation study, the data generating process

must contain certain characteristics that represent conditions often observed

empirically. The first characteristic is that all covariates need to be correlated,

since most covariates in financial applications are– to a varying degree– cor-

related. Intuitively, this is a characteristic that is coherent with observation,

though not always taken into account or explicitly considered. In terms of

dimension reduction techniques, LASSO-type shrinkage methods fail with in-

consistent model selection when covariates are highly correlated (Zhao and Yu,

2006). On the other hand, PCA methods perform well when the correlation is

high, due to its ability to extract the underlying latent correlation structure,

though underperforms when the correlation is mild and change over time.

The second characteristic is that there are omitted variables and the true

data generating process is unattainable, i.e., all models are wrong. This is

indeed a critical feature, as we cannot realistically expect any model to be

fully specified in economic or financial studies. Additionally, the omitted vari-

able might be the key component in understanding the data process. For

example, if we are interested in modeling/forecasting the economy, we might

consider a latent variable, such as the economic activity, that, while realizes

itself through observed variables, e.g., unemployment, is not observed. Thus, a

critical component of a modeling technique would necessarily have to account

for the biases induced by the omitted variables. These two characteristics

build the main components of our simulation study.
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We simulate data by the following data generating process:

y = �2z1 + 3z2 + 5z3 + ✏, ✏ ⇠ N(0, 0.01), (B.3a)

z1 =
1

3
z3 + ⌫1, ⌫1 ⇠ N

✓
0,

2

3

◆
, (B.3b)

z2 =
1

5
z3 + ⌫2, ⌫2 ⇠ N

✓
0,

4

5

◆
, (B.3c)

z3 = ⌫3, ⌫3 ⇠ N(0, 0.01), (B.3d)

where only {y, z1, z2} are observed and z3 is omitted. We note that, due to

{z1, z2} being generated from z3, they are both correlated, though not to an

extreme degree to be unrealistic. Since {z1, z2} are the only two variables

observed, we satisfy the aforementioned first characteristic. Secondly, since

{y, z1, z2} are all generated by z3, and z3 is not observed, we have a serious

omitted variable that drives all the data observed. Because of this, all models

that can be constructed will be misspecified (possible models are z1 or z2 only,

or both {z1, z2}). Additionally, because z3 drives everything else, there is

significant bias in all models generated (i.e. models have high bias and small

variance).

We generate N = 510 samples, use the first ten to fit the initial model,

and forecast 500 data points. We consider eight di↵erent strategies that are

also considered in the empirical application. A more detailed description of

these models will be provided in Section 3 below. The first three models are

subset of the possible models with either {z1}, {z2}, or {z1, z2} are considered

as regressors and the models are estimated using ordinary least squares. We

also consider a penalized LASSO-type regression and a PCA regression, where

in the first step the latent principle component factors are extracted and used

as covariates in a linear regression.

Further, we construct two model combination strategies combining two

models generated from linear regressions with only {z1} or {z2}, i.e., p(y|Aj) =

�̂zj + ✏j for j = 1, 2, where each �̂j is the ordinary least squares estimate.

The first model combination scheme is a simple average of the two models,
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also known as equal weight averaging. It is important to note that, since

we only have two covariates, the equal weight averaging is equivalent to the

complete subset regression of Elliott et al. (2013). We also consider Bayesian

model averaging (BMA), where the weights are determined by the marginal

likelihood of the predictive density.

Finally, we compare the seven competing strategies against a simplified,

namely time invariant, version of our proposed “decouple-recouple” predictive

strategy. Here, the latent states are, as with the two forecast combination

schemes, the forecasts from the two linear regressions with {z1} or {z2}, but the

synthesis function is time invariant instead of the dynamic specification. This

yields a simpler setup for DRS by removing the dynamics from the equation

and following suit with the model and strategies compared. Here, the synthesis

parameters are estimated using a simple Bayesian linear regression with non-

informative priors (Je↵reys’ prior).

We test the predictive performance by measuring the Root Mean Squared

one-step ahead Forecast Error (RMSE) for the first n = 10, 50, 100, 250, 500,

as well as for the last l = 400, 300, 200, 100 data points to emulate a extending

window analysis. Table B.1 shows the results from the simulation study, with

Panel A being the result of the first n samples and Panel B being the result of

the last l samples. Looking at Panel A, we see that, with very small samples,

DRS significantly improves over the other methods with an improvement of

approximately 60%.

As the sample increases, we see the improvements of DRS shrink, finally

settling around 1%. Overall, the gains are small, but is clearly persistent,

showing how DRS is able to improve forecasts by learning biases and inter-

dependencies and incorporating the information to improve forecasts. Com-

paratively, we note that LASSO does the worst of the models and strategies

considered, while PCA does the best, which is what we expect, since z1 and

z2 are substantially correlated. Equal weight averaging and BMA also fail

and the RMSE does not improve on both models, and in fact its predictive

performance is roughly the average of the two models. The full model, inter-
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estingly, does worse than the model combination strategies, suggesting that

model combination is a legitimate strategy when the covariates are correlated

and variables are omitted.

Panel B emulates a setting where a researcher decides to use the first num-

ber of samples as a learning period and focuses on sampling the last l in an

extending window fashion, a setting familiar in time series analysis. Here, the

results are more pronounced, with DRS improving over the other methods

by nearly 2% for all l considered. Overall, the simulation study validates the

predictive properties of our predictive strategy in a controlled setting; where

the study is set up to emulate data often observed in economics and finance,

albeit simplified.

C Further Empirical Results

This Section reports further empirical results for both applications. In par-

ticular, we report the out-of-sample recursive Log Predictive Density Ratios

(LPDR) as calculated by Eq.(9) in the main text. As far as the application

on forecasting the equity premium across industries is concerned, we also re-

port a recursive measure of CER which complement the full sample estimates

reported in Table 3 and 4 in the main text.

C.1 Forecasting the Aggregate U.S. Inflation

Delving further into the dynamics of the LDPR, Figure C.1 shows the one-step

ahead out-of-sample performance of DRS in terms of predictive density. The

figure makes clear that the out-of-sample performance of DRS with respect to

the benchmarking model combination/shrinkage schemes tend to steadily in-

crease throughout the sample. Interestingly, the LASSO sensibly deteriorates

when it comes to predicting the overall one-step ahead distribution of future

inflation. Similarly, both the equal weight and BMA show a significant -50%

in terms of density forecast accuracy. Consistent with the results in Table (1)
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in the main text, both Labor Market and Prices on their own outperform the

competing combination/shrinkage schemes, except for DRS. Output and In-

come, Orders and Inventories, and Money and Credit, also perform well, with

Output and Income outperforming Labor Market in terms of density forecasts.

On the other hand, we note that Consumption, Interest Rate and Exchange

Rates, and the Stock Market, perform the worst compared to the rest by a large

margin. LASSO fails poorly in this exercise due to the persistence of the data,

and erratic, inconsistent regularization the LASSO estimator imposes. Also, it

is fair to notice that the LASSO predictive strategy is the only one that does

not explicitly consider time varying volatility of inflation, which is a significant

limitation of the methodology, even though stochastic volatility is something

that has been shown to substantially a↵ect inflation forecasting (see, e.g.,

Clark 2011 and Chan 2017, among others). In terms of equal-weight pooling

and BMA, we observe that BMA does outperform equal weight, though this

is because the BMA weights degenerated quickly to Orders and Inventories,

which highlights the problematic nature of BMA, as it acts more as a model

selection device rather than a forecasting calibration procedure.

C.2 Retrospective Analysis of Aggregate U.S. Inflation

While the main scope of the paper is on forecasting and basic interpretability

from the synthesis weights, using BPS within the DRS framework allows for

further analysis into the biases and inter-dependencies of the subgroups: a

topic covered here. Note that all analyses in this section is retrospective, that

is, the results are given using all of the data in the period examined (i.e. the

results are not forward-looking, but looking back from the end of the analysis).

We first analyze the posterior latent correlation between the subgroups by

simply taking the posterior MCMC samples and computing the correlation.

Here, we report three snapshots within the time period examined; 12:2003

(Figure C.2), a period before the crisis, 12:2008 (Figure C.3), during the great

financial crisis, and 12:2014 (Figure C.4), after the crisis. The three peri-
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ods represent starkly di↵erent economic conditions that exemplify how BPS

captures the time varying inter-dependency.

Looking at Figure C.2, a period of relative stability, we do not see strong

levels of correlation between the subgroups, apart from some mild negative cor-

relation between Labor Market, and Interest Rate and Exchange Rates and

Prices, as well as some positive correlations. Moving to Figure C.3, during the

crisis, the positive correlations between subgroups lessens overall and a strong

negative correlation between Prices and Labor Market as well as Money and

Credit appear, alongside positive correlation between Prices and Consumption

and Orders and Inventories. The lessening of the positive correlations amongst

subgroups suggests a dissipation of predictive information, meaning that de-

pendence among predictability has been mostly lost during the crisis. This is

expected during a crisis, as most models tend to deteriorate. On the other

hand, the emergence of Prices, and its dependence with some of the other se-

ries is notable. This result echoes the dependence patterns seen in the forward

looking synthesis weights in Figure 3, where the increase in the information

provided from Prices coincides with the decrease in subgroups such as Labor

Market. Finally, post-crisis (Figure C.4), we see another pattern emerge, where

some positive correlation emerging from the Labor Market, while the strong

correlations around Prices are still persistent. In contrast to previous periods,

Stock Market looses almost all of its dependence with the other subgroups,

which highlights the disjoint of the stock market to the overall economy after

the crisis.

We further our retrospective analysis by considering the empirical R2 be-

tween the latent subgroups. The empirical R2 is defined as the variance of

one subgroup explained by all of the other subgroups (Figure C.5) or by an-

other subgroup (paired: Figure C.6). This measure provides an alternative

view of dependencies from the correlation in Figure C.2-C.4, as it provides a

broader dependence structure of a subgroup and another (group or individual)

subgroup, as well as an easier exposition of the dependence over time.

The grouped empirical R2 (Figure C.5) provides a metric to measure how
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di↵erent a subgroup is from the other groups. Thus, the higher the R2, the

more similar it is to the rest. A general pattern is that post crises (namely

the dot.com bubble and the great financial crisis), there is an overall increase

in R2, which is expected as groups tend to “herd” together when uncertainty

increases. A particularly interesting result is the connection between Inter-

est Rate and Exchange Rates and Stock Market. In the post-dot.com bubble

period, the patterns of R2 between the two subgroups are disjoint, with the

former following the other subgroups closely. This could be seen as a sign of a

bubble, as the information provided by the stock market clearly cannot be ex-

plained by the other aspects of the economy (compared to the bond/currency

market). However, before and after the great financial crisis, we see an al-

most identical trajectory between the two, indicating a shift in the relation of

bonds/currency and stocks before and after the crisis, where the stock market

is more “in-line” with the others.

To get a better picture of joint dependencies of subgroups, we use the paired

empirical R2 (Figure C.6). Here, instead of going over all of the combinations,

we focus on two key subgroups; Labor Market and Prices. For Labor Market,

Prices and Output and Income are the two dominant subgroups of dependency.

The dependencies of the two interweave, with switches occurring around the

two crises. Prices, on the other hand, is primarily dependent on the Labor

Market, with Money and Credit creeping up at the end of the analysis.

C.3 Forecasting the Equity Premium for Di↵erent U.S.

Industries

Figure C.7 shows the whole out-of-sample path of density forecasting accuracy

across modeling specifications. For the ease of exposition, we report the results

for Consumer Durable, Consumer Non-Durable, Manufacturing, Telecomm,

HiTech, and Other industries. The results for the remaining industries are

quantitatively similar and available upon request. Top-left panel shows the

out-of-sample path for the Consumer Durable sector. The DRS compares

13



favorably against alternative predictive strategies. Similar results appear in

other sectors.

As a whole, Figure C.7 shows clear evidence of how the competing model

combination/shrinkage schemes possibly fails to rapidly adapt to structural

changes. Although the performance, pre-crisis, is good, it is notable that there

is a large loss in predictive performance after the great recession in 2008/2009.

DRS consistently shows a performance robust to shifts and shocks and stays

in the best group of forecasts throughout the testing sample.

The out-of-sample performance of the LASSO sensibly deteriorates when

it comes to predicting the overall one-step ahead distribution of excess re-

turns. The equal-weight linear-pooling turns out to out-perform the compet-

ing combination schemes but DRS, as well as the group-specific predictive

regressions. Arguably, the strong outperformance of DRS is due to its ability

to quickly adjust to di↵erent market phases and structural changes in the la-

tent inter-dependencies across groups of predictors. In addition, unlike others,

the LASSO-type predictive strategy does not explicitly take into considera-

tion stochastic volatility in the predictive regression, which possibly explains

the substantial and persistent underperformance in the aftermath of the great

financial crisis, a period of abrupt market fluctuations.

To parallel the results above, we also inspect the economic performance

over time by reporting the cumulative sum of the CERs:

CCERit =
tX

⌧=1

log (1 + CERi⌧ ) , (C.4)

where CERit is calculated as in Eq.(15) in the main text. Figure C.8 shows

the out-of-sample cumulative CER for the Consumer durable, Consumer non-

durable, Telecomm, Health, Shops and Other industrial sectors. Except for

a few nuances, e.g., the pre-crisis period for Telecomm and Other, the DRS

combination scheme constantly outperforms the other predictive strategies.

Interestingly, although initially generating a good CER, the LASSO failed
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to adjust to the abrupt underlying changes in the predictability of industry

returns around the crisis. Despite the initial cumulative CER being slightly in

favor of the LASSO vis-a-vis DRS, such good performance disappears around

the great financial crisis and in the aftermath of the consequent aggregate

financial turmoil. As a result, DRS generates a substantially higher cumulative

CER by the end of the forecasting sample, showing much stronger real-time

performance.

Results are virtually the same by considering an investor with short-sales

constraints. Figure C.9 shows the out-of-sample cumulative CER for the Con-

sumer durable, Consumer non-durable, Telecomm, Health, Shops and Other

industrial sectors, but now imposing that the vector of portfolio weights should

be positive and sum to one, that is, no-short sale constraints are imposed.

The picture that emerges is similar to the above. Except for a transitory

period during the great financial crisis for the Health sector, the DRS strategy

significantly outperforms all competing specifications. As before, by impos-

ing no-short constraints the gap between DRS the competing specifications is

substantially reduced, thought the gains are persistent.
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Table B.1. Simulation Study: Out-of-Sample Forecasting Performance

This table reports the out-of-sample comparison of our decouple-recouple framework against
each individual model, full model, LASSO, PCA, equal weight average of models, and BMA,
for simulated data. Performance comparison is based on the Root Mean Squared Error
(RMSE).

Panel A: Forecasting 1-Step Ahead Simulation Data (based on first n
samples)

n z1 z2 {z1, z2} LASSO PCA EW BMA DRS

10 2.8768 2.8820 2.8830 2.7988 2.8613 2.8793 2.8793 1.7923

-60.51% -60.80% -60.85% -56.16% -59.64% -60.65% -60.65% -

50 2.8538 2.8618 2.8578 2.8557 2.8464 2.8577 2.8575 2.7568

-3.52% -3.81% -3.66% -3.58% -3.25% -3.66% -3.65% -

100 2.9091 2.9121 2.9114 2.8993 2.9020 2.9106 2.9105 2.8977

-0.39% -0.50% -0.47% -0.06% -0.15% -0.44% -0.44% -

250 2.8564 2.8583 2.8577 2.8606 2.8532 2.8573 2.8573 2.8475

-0.31% -0.38% -0.36% -0.46% -0.20% -0.35% -0.34% -

500 2.7506 2.7520 2.7516 2.7526 2.7494 2.7513 2.7513 2.7197

-1.14% -1.19% -1.17% -1.21% -1.09% -1.16% -1.16% -

Panel B: Forecasting 1-Step Ahead Simulation Data (based on last l
samples)

l z1 z2 {z1, z2} LASSO PCA EW BMA DRS

400 2.6926 2.6934 2.6931 2.6973 2.6931 2.6930 2.6930 2.6573

-1.33% -1.36% -1.35% -1.51% -1.35% -1.34% -1.34% -

300 2.6269 2.6278 2.6272 2.6237 2.6281 2.6274 2.6273 2.5852

-1.62% -1.65% -1.63% -1.49% -1.66% -1.63% -1.63% -

200 2.6772 2.6779 2.6777 2.6797 2.6777 2.6776 2.6776 2.6183

-2.25% -2.27% -2.27% -2.34% -2.27% -2.26% -2.26% -

100 2.6186 2.6191 2.6188 2.6214 2.6182 2.6189 2.6189 2.5717

-1.83% -1.85% -1.83% -1.93% -1.81% -1.84% -1.84% -
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Figure C.1. Out-of-sample LPDR for Forecasting U.S. Inflation

This figure shows the dynamics of the out-of-sample Log Predictive Density Ratio (LPDR)
as in Eq.(9) obtained for each of the group-specific predictors, by taking the results from a
set of competing model combination/shrinkage schemes, e.g., Equal Weight, and Bayesian
Model Averaging (BMA). LASSO not included due to scaling. The sample period is 01:2001-
12:2015, monthly. The objective function is the one-step ahead density forecast of annual
inflation.

Figure C.2. US inflation rate forecasting: Retrospective posterior correla-
tions of latent agent factors at 12:2003.
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Figure C.3. US inflation rate forecasting: Retrospective posterior correla-
tions of latent agent factors at 12:2008.

Figure C.4. US inflation rate forecasting: Retrospective posterior correla-
tions of latent agent factors at 12:2014.
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Figure C.5. US inflation rate forecasting: Retrospective latent dependencies

This figure shows the retrospective latent inter-dependencies across groups of predictive
densities used in the recoupling step. The latent dependencies are measured using the MC-
empirical R2, i.e., variation explained of one model given the other models. These latent
components are sequentially computed at each of the t = 1:180 months.
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Figure C.6. US inflation rate forecasting: Retrospective latent dependencies
(paired)

This figure shows the retrospective paired latent inter-dependencies across groups of predic-
tive densities used in the recoupling step. The latent dependencies are measured using the
paired MC-empirical R2, i.e., variation explained of one model given another model, for La-
bor Market (top) and Prices (bottom). These latent components are sequentially computed
at each of the t = 1:180 months.
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Figure C.7. Out-of-sample LPDR for Forecasting the Equity Premium for
Di↵erent Industries in the U.S.

This figure shows the dynamics of the out-of-sample Log Predictive Density Ratio (LPDR)
as in Eq.(7) obtained for each of the group-specific predictors, by taking the historical
average of the stock returns (HA), and the results from a set of competing model combina-
tion/shrinkage schemes, e.g., LASSO, Equal Weight, and Bayesian Model Averaging (BMA).
For the ease of exposition we report the results for four representative industries, namely,
Consumer Durables, Consumer Non-Durables, Telecomm, Health, Shops, and Other. In-
dustry aggregation is based on the four-digit SIC codes of the existing firm at each time t
following the industry classification from Kenneth French’s website.

(a) Consumer Durable (b) Cons. Non-Durable

(c) Telecomm (d) Other

(e) Health (f) Shops21



Figure C.8. Out-of-Sample Cumulative CER without Constraints

This figure shows the dynamics of the out-of-sample Cumulative Certainty Equivalent Re-
turn (CER) for an unconstrained as in Eq. (C.4) obtained for each of the group-specific
predictors, by taking the historical average of the stock returns (HA), and the results from
a set of competing model combination/shrinkage schemes, e.g., LASSO, Equal Weight, and
Bayesian Model Averaging (BMA). For the ease of exposition we report the results for four
representative industries, namely, Consumer Durables, Consumer Non-Durables, Telecomm,
Health, Shops, and Other. Industry aggregation is based on the four-digit SIC codes of the
existing firm at each time t following the industry classification from Kenneth French’s
website.

(a) Consumer Durable (b) Cons. Non-Durable

(c) Telecomm (d) Other

(e) Health (f) Shops
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Figure C.9. Out-of-sample Cumulative CER with Short-Sale Constraints

This figure shows the dynamics of the out-of-sample Cumulative Certainty Equivalent Re-
turn (CER) for a short-sale constrained investor as in Eq. (C.4) obtained for each of the
group-specific predictors, by taking the historical average of the stock returns (HA), and
the results from a set of competing model combination/shrinkage schemes, e.g., LASSO,
Equal Weight, and Bayesian Model Averaging (BMA). For the ease of exposition we re-
port the results for four representative industries, namely, Consumer Durables, Consumer
Non-Durables, Telecomm, Health, Shops, and Other. Industry aggregation is based on the
four-digit SIC codes of the existing firm at each time t following the industry classification
from Kenneth French’s website.

(a) Consumer Durable (b) Cons. Non-Durable

(c) Telecomm (d) Other

(e) Health (f) Shops23
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