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1 Introduction

A core purpose of modeling in economics is comparative statics: the effect of an exoge-
nous shock on an endogenous state (such as student performance, GDP, or prices).
Realistic economic models tend to be high dimensional, having many endogenous
states that interact in highly heterogeneous ways (a social network of students). A
key empirical challenge is that the comparative static of even a single state requires
complete knowledge of all model parameters (the entire network), as all states in
general respond to changes in one another (peer effects). This is often infeasible due
to data limitations (complete network data typically doesn’t exist, Bramoullé et al.,
2020). Moreover, even if one did have sufficient data, the functional form of the com-
parative static is extremely complex due to the interaction of all the states, obscuring
the economics and mechanisms, which is often of interest (highlighted, for example,
by Baqaee and Farhi, 2024; Bilbiie, 2018; Thisse, 2010).

In this paper, I develop a new tool to help solve these challenges. I derive sharp
upper and lower bounds on (the linearized) comparative statics. The bounds do
not require complete knowledge of all model parameters, instead depend only on a
set of low dimensional sufficient statistics (e.g. a student’s number of friends), the
knowledge of which is often more feasible. The functional form of this dependence is
also much simpler relative to the exact comparative static, permitting new theoretical
insights.! The trade-off of is that the comparative static is only partially identified
— a bound — with the width of the bound depending on the value of the sufficient
statistics, therefore its practical usefulness depends on the application. Nonetheless,
because I prove the bounds are sharp, if one were to only know the values of the
sufficient statistics, the bounds are the most one can say about the maximum and
minimum values the comparative static can take.

The comparative static bounds are valid in many high dimensional, canonical
models across economics (see table 1). The only substantive assumption imposed is
that the Jacobian (with respect to the endogenous states) is diagonally dominant, a

condition often invoked for sufficiency of equilibrium uniqueness and hence its preva-

L Although not focused on in this paper, another advantage of the bounds is that they are less
computationally costly to compute, as no matrix inversion of the Jacobian is required. This com-
putational limitation is becoming increasingly important as increasingly granular data are utilized,
such as in the calculation of Leontief inverses on massive firm-firm transaction datasets (Carvalho
et al., 2021; Fujiy et al., 2024).



lence. Diagonal dominance can be understood as the feedback in the system being
greater within a state than between states (Arrow and Hahn, 1971 pg 233: a prod-
uct is more sensitive to changes in its own price than the prices of all other products
combined). Notably, the number of states is not restricted, and neither is their hetero-
geneity beyond this assumption, thus permitting its application in high dimensional
models. I derive variations that exploit instead the spectral radius of a suitably trans-
formed Jacobian (coinciding with the adjacency matrix in social network models, of
which there is already much interest, Bramoullé et al. 2014; Golub 2025), or the sign-
pattern of the Jacobian, corresponding to the case of only positive feedback in the
system (such as Leontief input-output systems, Carvalho and Tahbaz-Salehi, 2019;
McKenzie, 1960).

The bounds help solve the aforementioned comparative static challenges because
they do not require a matrix inversion of the Jacobian, which, following from the im-
plicit function theorem, is a necessary step in the calculation of the ezact comparative
static. The inverse describes the total feedback reverberation of a shock across all
nodes (a Leontief inverse in production network models), and therefore depends on
all parameters of the model, and in an analytically complicated manner, leading to
the challenges. This is especially acute in high dimensional models as the Jacobian
matrix is very large and heterogeneous. I show that one can bound the inverse using
only partial information about the non-inverted Jacobian, hence, generating low di-
mensional sufficient statistics for, and circumventing the analytic complexity of, the
comparative statics.

I demonstrate how the bounds can be used to solve three difficult problems in
the literature, while showcasing very different styles of application. Two exploit the
bounds requiring less data, with the object of interest in the first being a structural
parameter of the model, and in the second being the comparative static itself. The
third exploits the relatively simpler functional form of the bounds.

1) A key challenge in the peer effect literature is that (point) identification of the
peer effects parameter typically requires observation of the entire social network, yet
this data is usually only partially available at best (Blume et al., 2015; Bramoullé et
al., 2020; Lewis and Chandrasekhar, 2011). In the workhorse linear-in-means model,
I show that my comparative static bounds can be inverted to provide a lower bound
on the peer effect parameter. This lower bound is useful because it can be identified

without any data on the social network beyond the number of friends each person



has, which is much more feasible to attain. Moreover, this does not require network
formation assumptions to predict the missing links, which is the solution often used in
the literature (see e.g. Breza et al., 2020). I demonstrate this using the Add Health
dataset and estimate a lower bound of 0.69, which is close to the estimated point
value of 0.78, with the latter using data on the entire social network.

2) Trade economists very regularly estimate the welfare gains from trade liberal-
izations — the comparative static of welfare with respect to trade costs — yet the
standard ex-ante sufficient statistic requires knowledge of the global network of inter-
national trade (Arkolakis et al., 2012). This data doesn’t exist going back more than
sixty years, limiting its application in economic history despite the clear interest in
doing so (Findlay and O’Rourke, 2007). I show, however, that an ex-ante sufficient
statistic for the bounds on the welfare change requires only the import share of GDP,
which is much more readily available. I calculate these bounds for the UK over the
past 800 years using data from the Bank of England. The bounds are very narrow,
being no wider than +2.5% of the midpoint for all years prior to 1800.

3) Price-cost passthrough is one of the oldest questions in economics (Marshall,
1890). Theoretically characterizing the magnitude has been limited to models of
symmetric firms in order to keep the relationship of price to cost tractable (Dixit,
1986; Weyl and Fabinger, 2013).% T show that my bounds generalize the established
condition (log-convexity of demand) for more than complete passthrough to general
asymmetric, many-firm models.

The outline of this paper is as follows. In section 2, I describe the general frame-
work and derive the comparative statics. In section 3, I review diagonal dominance
and present the bounds on the comparative statics. In section 4, I provide a step-by-
step guide to applying the bounds, and present the applications to problems in the

literature. In section 5, I conclude.

Literature. To my knowledge, no such general method exists to bounding both the
magnitude and sign of comparative statics in high dimensional models using low di-
mensional sufficient statistics. There is a large literature that has sought to determine

the sign (but not the magnitude) of comparative statics under the most general as-

2Highlighting the intractability of inverting a high dimensional Jacobian, Dixit (1986) writes
on pg 119 “...the matrix form is useful in clarifying why I did not think it worthwhile to examine
oligopoly with a general form of product heterogeneity. ...No structure could be imposed on its
inverse, and no meaningful results could emerge.”



sumptions, such as the traditional qualitative economics (Bassett et al., 1967; Hale
et al., 1999) or monotone comparative statics (Barthel and Sabarwal, 2018; Milgrom
and Shannon, 1994; Quah, 2007; Villas-Boas, 1997).> The appeal there, as in the
present paper, is that the implications about the comparative statics can be robust
to, or agnostic about, specific (quantitative) model assumptions.

The assumption of a diagonally dominant Jacobian has a long history in economics
(McKenzie, 1960), often being invoked to guarantee uniqueness or stability of equilib-
ria (Adao et al., 2023; Allen et al., 2020; Dixit, 1986; Gale and Nikaido, 1965; Hadar,
1965; Kolstad and Mathiesen, 1987) or for an invertible demand system (Berry et al.,
2013; Cheng, 1985). Diagonal dominance has also been used to characterize the sign
of comparative statics in specific frameworks, such as in competitive models (Arrow
and Hahn, 1971 theorem T.10.5), oligopoly models (Dixit, 1986), and trade models
(Allen et al., 2020; Jones et al., 1993).* My results significantly generalize the appli-
cation of diagonal dominance, being valid in any model for which diagonal dominance
is satisfied, and establishes bounds on the magnitude in addition to the sign of the
comparative static.

The paper contributes to the vast econometrics literature on partial identification
(for surveys, see Kline and Tamer, 2023; Tamer, 2010), particularly to those applica-
tions in network models (de Paula and Tang, 2012; de Paula et al., 2018; Miyauchi,
2016). I offer a new method for deriving bounds by exploiting diagonal dominance.
By allowing one to avoid inverting a matrix, my approach is related to the literature
on weak instruments in econometrics which, to avoid near-zero denominators, relies
on the properties of the problem before matrix inversion (see, for example, Horowitz,
2021 or classic works like Anderson and Rubin, 1949).

Low dimensional sufficient statistics have related applications in various strands
of the literature. Point identification of comparative statics on welfare using sufficient
statistics have been developed using Hulten’s theorem (Hulten, 1978, see Bagaee and
Rubbo, 2023 for a recent review) and in public finance (Chetty, 2009; Kleven, 2021).
Graphical reconstruction methods predict missing links in network models using more

readily available low dimensional variables, such as aggregated relational data in social

3The Le Chatelier’s principle ranks comparative static magnitudes in the short vs the long run
(Milgrom, 2006; Dekel et al., 2023).

4A wider literature has characterized comparative static signs using diagonal dominance in con-
junction with sign restrictions (Carvalho and Tahbaz-Salehi, 2019; Carvalho et al., 2021; McKenzie,
1960; Simon, 1989). I consider this special case in remark 5.



networks (Breza et al., 2020; McCormick and and Zheng, 2015; Sadler, 2025), and
balance sheet data in financial networks (Anand et al., 2018; Glasserman and Young,
2016).5 Sufficient conditions for equilibrium uniqueness using low dimensional sets of
parameters have been developed in the international trade and economic geography
literatures (Allen et al., 2020, 2024; Kucheryavyy et al., 2023).

The theory developed in this paper applies a result from the linear algebra litera-
ture in Ostrowski (1952), who provides bounds on the inverse of diagonally dominant
matrices. I innovate on this result by proving that the bounds are sharp, and deriving
its implications for comparative statics. The only other apparent usage in economics
of the bounds from Ostrowski (1952) is in my earlier work, Norris (2025). This is a
much more limited application of Ostrowski (1952) that does not exploit all of the

implications, and is only applied to a specific international trade model.

2 Model

Consider a system of ¢ € {1,..., N} = N nodes (e.g. agents, countries, products).
Each node has an endogenous state, y; € R (e.g. the price of product i), with the
system being subject to an exogenous shock, € R, (e.g. a demand shifter of one

6

of the products).® The state of all nodes are determined jointly by the following

equations of state

VieN: 0=f(y,x) (1)

where y = {y;},.\~ The function f; : R¥*!' — R is continuously differentiable,
and is typically derived from the equilibrium conditions in the underlying economic
model. For example, f; (y,z) could be the excess demand for product ¢, with y; the
price of product i, and z a demand shifter for some product. A solution to equation
(1) corresponds to an equilibrium, and I denote this by y* (z); the solution needn’t
be unique. I denote by V,; (“nabla”) the partial derivative of f; with respect to

endogenous state y;,
Vij = —F—= 2
! 5 (2)

SGaleotti et al. (2024) consider the case where one has noisy measures of the network.
6The notation is very general: = could instead represent an aggregate shock to all nodes, or be a
scalar parameterizing a shock to a subset of nodes.



and refer to this simply as the Jacobian throughout the paper. The dependence of V
on {y,x} is suppressed. Intuitively, the Jacobian describes the endogenous feedback
between nodes in the system (how the equation of state for node i responds to a
change in node j’s state). For example, if equation (1) is the system of reduced
excess demands in a pure exchange economy, then V;; is the cross price effect of
demand for product ¢ with respect to price j.

Comparative statics of the system are considered by taking an infinitesimal per-
turbation in = about a solution y* (z), and examining the resulting change in state y.
Only first order effects are considered in this paper. Applying the implicit function

theorem to equation (1), the infinitesimal change in the state is given by

Wi S vy, ®)

JEN

where af 2 is the partial derivative of f; with respect to the exogenous shock, z, with

its dependence on {y, z} suppressed. I refer to a—’;j as the vector of direct effects (equal
to the shift in demand in the case where f; is excess demand and x is a demand shifter
of product 7). Equation (3) assumes V is invertible, which is guaranteed under the
diagonal dominance assumption 1.

The comparative static % depends on the inverse of the Jacobian, V™. In-
tuitively, the matrix inverse shows up in the comparative static as it appropriately
aggregates all the endogenous feedback in the system from the shock. That is, the
effect of the shock x on the state in ¢ incorporates not only the direct effect of z on
yi, but also the indirect effect via the changes in states of all other nodes. States in
other nodes y;; respond to a change in state y;, and this in turn causes y; to change
again. This feedback between nodes is precisely what the Jacobian describes, and the
aggregation of all this feedback throughout the system is described by the inverse of
the Jacobian.”

Two challenges confronting comparative statics arise due to the presence of the

matrix inverse. First, a single element of the inverted Jacobian V~! depends on all

"This can be seen using the standard logic of the Neumann expansion, {V‘l}ij =

~\ 1 ~ ~
%j {(I V) } = %“Z;io {Vk}ij, where V,;; = —g: (1 —1I;;). The sum converges un-
ij

der assumption 1. See Carvalho and Tahbaz-Salehi (2019) for a discussion in the context of the
production network model.




N x N elements of the non-inverted Jacobian V. Consequently, complete identification
of the model’s parameters is typically required even if one is only interested in the
comparative static on a single state. Second, the functional form of this dependence
is analytically complicated, being highly non-linear in the parameters of the model
(note that V is often linear in the model parameters, for instance equaling the price
effects of demand in the aforementioned examples), thus obscuring the economics and
properties. In the next section, I derive bounds on the comparative static that do not

require inverting the Jacobian. Thus, potentially alleviating these two issues.

3 Theoretical Results

I review diagonal dominance in subsection 3.1. I present my main results on bounding

comparative statics in subsection 3.2 and variations in subsection 3.3.

3.1 Diagonal Dominance

The only additional assumption imposed on the Jacobian for the main results is
assumption 1: diagonal dominance (in section 3.3, I consider alternative forms of

diagonal dominance).® |z| denotes the absolute value of z € R.

Assumption 1. (Diagonal Dominance). At y*(z), the Jacobian is strictly column
diagonally dominant,
VieN: |Vil> > |V
JeEN\i

Formally, assumption 1 is referred to as strict column diagonal dominance (see e.g.
Horn and Johnson, 2012 definition 6.1.9.); I refer to it simply as diagonal dominance
for convenience. Note that assumption 1 is sufficient for V to be non-singular by the
Levy—Desplanques theorem (Horn and Johnson, 2012, theorem 6.1.10.a), and thus
V! in the comparative static, equation (3), is well-defined under assumption 1. Un-
der the model in section 2, diagonal dominance has the interpretation of the feedback
within a node, [V;|, being greater than the feedback between nodes, >\ [Viil-

For example, in the case where equation (1) is the system of excess demands in a

8There is an invariance in the system described by equation (1): one can rearrange the order of i
and the order of the arguments y; in f (y,x). Correspondingly, the order of the rows and columns
of the Jacobian can be rearranged without loss of generality. Assumption 1 can be applied to any
arrangement.



pure exchange economy, assumption 1 implies that the own price effect of demand is
greater than the sum of all cross-price effects of demand (all in absolute terms), for
each price (Arrow and Hahn, 1971 pg 233).

Diagonal dominance is often invoked in sufficient conditions for equilibrium unique-
ness or stability. Local uniqueness is implied because the Jacobian is invertible (Mas-
Colell et al., 1995, proposition 17.D.1). Local stability is implied if one also assumes
the diagonal elements are all positive, Vi : V;; > 0 (Hahn, 1982 theorem T.1.7¢). The
combination over a closed rectangular domain implies global uniqueness (Gale and
Nikaido, 1965 theorem 4). In table 1, I show that assumption 1 is satisfied in a range
of high dimensional, canonical models across economics under assumptions (column
three) that are also typically invoked for equilibrium uniqueness or stability (column
four). See appendix C for details on these models.

In presenting the bounds, I define the following object that describes the (inverse)

intensity of diagonal dominance in the matrix.’

Definition 1. (Inverse Diagonally Dominant (iDD) Degree). For any matriz V, the
iDD degree of node i € N is
g = e Vi (4)
Z Vil

and the maximal 1DD degree across all other nodes is

5,1‘ = 0 5
max 0; (5)

with V evaluated at y = y* (x).

Note that §; € [0,1) under diagonal dominance of V (assumption 1). When Vi :
0; = 0, then V is a diagonal matrix and is therefore maximally diagonally dominant.
As any ¢; increases up from 0, the intensity of diagonal dominance diminishes. Hence,
0; is an inverse measure of the degree of diagonal dominance.

Under the model in section 2, §; can be understood as summarizing the exposure
of other nodes to endogenous feedback from node ¢, relative to the feedback within
node ¢. If Vi : §; = 0, the equation of state for a given 7, f;, in equation (1) does not

directly depend on any endogenous state except the state in i, y;. This is true for the

9The iDD degree is inversely related to the diagonally dominant degree, |V ;| =2 e [Vjil, from
the linear algebra literature (Liu et al., 2010; Zhao et al., 2013). When applied to a canonical network
model, the iDD degree is proportional to the (weighted) network degree centrality, see equation (18).



equations of state for all 7. Thus, under Vi : §; = 0, there is no endogenous feedback
between any nodes in the system (essentially reducing to a one-node model for each
node). As ¢; increases, the feedback between nodes increases.

Drawing on a result from Ostrowski (1952), lemma 1 presents the bounds on and
signs of elements in the inverse of a diagonally dominant matrix. sgn(z) is the sign

operator, taking values —1,0,1if 2 < 0, 2 = 0, z > 0, respectively.

Lemma 1. (Bounds on Inverse Diagonally Dominant Matrices). Suppose V satisfies
assumption 1, then Vi € N',j € N\i

1 1 1 1 1
9%l € [[earses o 0
(v <o (v (7
sgn ({V7'}) =sgn (Vi) (8)

with V evaluated at y = y* (v). Conditional on {Viy, 0x}cps the bounds in equations
(6) and (7) are sharp.

Proof. Equations (6) and (8): Ostrowski (1952) equation (14). Equation (7): Os-
trowski (1952) equation (13). Ostrowski (1952) assumes strict row diagonal domi-
nance, whereas assumption 1 is strict column diagonal dominance. Thus, in applying
their bounds, one must replace the matrix with its transpose, notably in their equa-

tions (1) and (13). See appendix A.1 for proof of the bounds being sharp. O

The power of lemma 1 is that, despite matrix inverses depending on the entire
original matrix, and in a highly complicated manner for general N, the bounds and
sign depend only partially on the original matrix, and with a very simple form for all
N. Notably, they depend only on the diagonal elements, V;;, and the iDD degrees, 9;.
Moreover, conditional on assumption 1 and this information for all nodes, {V;, d;}, v,
the bounds in lemma 1 are sharp. This implies there exists a V with the values
{Vii, 6i},cp such that the bounds of equations (6) and (7) hold with equality. I

discuss this property in more detail after presenting theorem 1.

3.2 Comparative Statics Bounds

Using the results of lemma 1, I now present the bounds for the comparative statics in

theorem 1. In presenting the bounds, I use one more piece of notation for the absolute

10



sum of the direct effects on all nodes other than ¢

oL\ _ 5 [0

ox e ox

(9)

Theorem 1. (Comparative Static Bounds under Diagonal Dominance). Suppose V
satisfies assumption 1. If for i € N,

df;i
ox

Of i
ox

0 (10)

then the magnitude of the comparative static satisfies

Ofi| _ |0/ 3fz -ils
Dy 1 Oz ‘ ‘ 0 i ‘ - (11)
Vil 1+ 0;0_; ’ 1 —6;0_;
and its sign
3yz- afz
- _ g 1
sgn < ax> sgn (Vi) sgn ( ax> (12)

Otherwise, the comparative static satisfies

Ay, 1| —sen(Va) Of _ ’%‘ d_; —sgn(V 8f1 + ‘% —i

Ox
13
|vm| 1— 526—1 7 515—1 ( )
with both V and g—gj evaluated at y = y* (). Conditional on {V;;,0;}, %, ag; ,

the bounds in equations (11) and (13) are sharp.

Proof. See appendix A.2 for the derivation of equations (11), (12) and (13). See
appendix A.1 for proof that equations (11) and (13) are sharp. O

Under diagonal dominance of the Jacobian (assumption 1), theorem 1 gives upper
8%

and lower bounds on the the comparative static Z£. If equation (10) is also satisfied,
which implies the direct effect of the shock is greatest on node i (e.g. an exogenous
tax is levied mostly on product i), then the sign is also determined (note that the

interval in equation 13 includes zero when equation 10 isn’t satisfied).!® The power of

0The literature makes analogous restrictions to equation (10) on the direct effects when charac-
terizing the sign of comparative statics. For instance, “binary changes” in Arrow and Hahn (1971)
chapter 10 or equation (3) in Simon (1989).

11



theorem 1 is that, analogous to lemma 1, the bounds and sign depend on only a set
of low dimensional sufficient statistics, and are analytically much simpler than the

exact comparative static.

Low dimensional sufficient statistics. The following five objects are sufficient statis-
Oy .
oz *

cobian, V;, the associated iDD degree and the maximum across all other nodes,

tics for the bounds and sign of the corresponding diagonal element of the Ja-

0;,0_;, and the direct effect on that node and the sum of direct effects on all other

nodes, 24 o

ox
of

identifying the sufficient statistics is often substantially easier than identifying V, %.

. They are low dimensional because, in comparison, the exact value

%ZZ depends on all N2 + N elements of V, g—i. Importantly, as I show in section 4,

Ofi |9f-i
oz’ | Ox

the bounds in theorem 1 are sharp.!? This implies there exists V, % consistent with

11

I

Sharp bounds. Conditional on assumption 1 and the values { Vi, dx} o 5

this information such that the bounds of equations (11) and (13) hold with equality.
This is a useful property because it reveals the strongest possible logical conclusion
about the maximum and minimum values of the comparative static, implied by the
given information and model assumptions (notably, diagonal dominance). Another

way of saying this is, absent further information on V, g—£ — such as individual values

Of izs . . . .
of V, jzi or % — and without making stronger assumptions than assumption 1,
theorem 1 is the most one can say about the maximum and minimum values of %.13

Note that sharp does not necessarily mean narrow. The width of the bounds de-
pend on the values of the sufficient statistics, which in turn depend on the underlying
model and parameter values. I discuss the dependence of the width on the sufficient
statistics next. I show in section 4 that the width is sufficiently narrow to be useful
in a range of applications.

Form of the bounds. Figure 1 visualizes the bounds. The comparative static aagj is

on the y-axis, and §;0_; on the x-axis. Each series corresponds to a different value

UThe bounds in equation (11) and (13) are enumerated under knowledge of only

. o i
Viia(siaéfh%u (;x
12The interval is not proved to be sharp; it may contain non-feasible values (Manski, 2003 pg 12).
13If one knows more — e.g. some off-diagonal term V; ;z; — then narrower bounds may be
possible (Kline and Tamer, 2023 pg 130). Section 3.3 explores some alternative information sets and

assumptions, though bounds under an arbitrary information set is beyond the scope of this paper.

; the bounds are the same even if one also has knowledge of {Vjy, 5k}k€/\/\i'

12



of 671 ox / ’%

(multiply all lines by negative one for the case —sgn (V;;) sgn (8—’;) =—1).
Start with the special case where the shock only directly affects node i, Vk # i :

% / % = 0 given by the black-solid

line in the figure. This condition implies equation (10) holds, with the bounds on the

1 The bounds are shown in the case of —sgn (V;;)sgn (%) =1

% = 0, which corresponds to the case J_;

comparative static magnitude given by equation (11), and the sign given by equation
(12), which is positive. Moreover, assume either d; = 0, there is no feedback from
node 7 to all other nodes, or §_; = 0, there is no feedback from other nodes onto node

i. Then, the magnitude of the bounds from equation (11) imply point identification
Oui | _ ‘%‘
ox [Viil
black-solid line intersecting the y-axis. This is precisely equal to the case of a one-

of the comparative static magnitude, corresponding to the point on the

node model, where f; (y,z) = f; (y;,x). The comparative static equals the negative

of the direct effect %’; multiplied by the reciprocal of V;; (the matrix inverse reduces
to the reciprocal of the diagonal), capturing the within-node feedback on the state
from the direct effect. The comparative static sign is clearly given by equation (12).1?

As the feedback between node ¢ and the other nodes increases from zero, d;6_; > 0,

the comparative static bounds in equation (11) become

ofi
Wil . 15 1 1
‘%
Intuitively, a “window” around the no feedback case, ‘gﬂ , opens up, with a greater

width the greater the feedback, 9;0_;, is. Correspondingly, the upper and lower bounds
in figure 1 for the black-solid line diverge as §;0_; increase. The window reflects
the impact on the comparative static of the between-node feedback, enveloping the
impacts that would arise across all permissible configurations of feedback, given by
the set of V consistent with the sufficient statistics V;, d;,0_;. As the iDD degrees
increase, the set of permissible V expands, and the window widens. As a benchmark,
at the middle of its domain, 6;0_; = 0.5, the upper (lower) bound is one third above
(below) the midpoint of the bounds, as shown by the arrow on figure 1.

In the limit of §;0_; — 1, the permissible feedback can be so strong that the upper

14’%‘ # 0 is assumed in figure 1 for cleaner exposition. This is not required for theorem 1.
BIntuitively, if %J;" > 0, then, in response to an increase in z, y; will adjust to bring f; back down
to zero. This requires an increase in y;, and hence a positive comparative static, if V;; < 0.

13



bound on the magnitude approaches infinity (V is possibly singular if Vj : §; = 1).
That is, under assumption 1 the maximum amplification in the system arising from the

between-node feedback is unbounded. The lower bound, on the other hand, remains
|52 |

[Viil
limited to one half of the value of the no feedback case. Hence, the comparative static

finite, with a minimum of 0.5- at 9;0_; = 1. That is, the maximum attenuation is
sign relative to the no-feedback case cannot be overturned under diagonal dominance,
and thus continues to be determined by the same condition, equation (12).

If the shock also directly affects other nodes, §_; ‘ O/ ) ‘ 9Ji1 > 0, then the bounds

across all levels of feedback, 9;0_;, are wider. This reﬂects the additional impact on

the state in ¢ due to the changes in state of other nodes, arising due to these direct

effects. The red-dashed and blue-dotted line in figure 1 show this for ¢_; %’ / %

equal to 0.5 and 1 respectively. As long as the direct effects on other nodes are

not too strong, i.e. equation (10) holding, then this additional impact on y; is not

enough to cause a change in the sign of the comparative static. The turning point
3 8]07 8fz
is 0_; | ==

the direct effects on other nodes are increased beyond this point (roughly, the shock

= 1 as its lower bound is precisely zero for all values of §;0_;. As

is directly incident more on other nodes than it is on 7), violating equation (10), the

lower bound drops below zero. The green-dot-dash line in figure 1 demonstrates this
for 6_; 8f = 9fi

oz
the sign can no longer be determined without more information about V, g_f

= 1.5. The bounds in equation (13) are used for this case, and

3.3 Variants of the Comparative Static Bounds

Remark 1. Conditioning on More Information. Theorem 1 only uses partial knowl-

ofi
' Ox?

. In proposition 1 in the

edge of the vector of direct effects, { } ren Specifically the direct effect on ¢

0f—i
ox

appendix, I present the bounds conditional on knowledge of all the direct effects,
8fk

and the sum of the direct effects on all other nodes ‘

}ke - L apply this result in section C.1.

Remark 2. Conditioning on Less Information. Theorem 1 requires knowledge of the
maximal degree across of all other nodes, 6_;. In proposition 2 in the appendix, I
present the bounds without conditioning on this. I apply this result in section 4.2.

Remark 3. Row Diagonal Dominance. Assumption 1 is column diagonal dominance

14



of the Jacobian, V. Alternatively, one could assume V is row diagonally dominant:
this is equivalent to the transpose of V satisfying assumption 1. I present this result

in proposition 3 in the appendix. This result is applied in sections 4.1, 4.3 and C.7.

Remark 4. Generalized Diagonal Dominance. The solutions to the equations of
state, equation (1), are invariant up to a transformation, g; [f; (y,z)] = 0, for any
injective, continuously differentiable function g;. The Jacobian associated with these

transformed equations of state is ¢;V,;;, where ¢’ is the derivative of g. Assumption

ij>
1 applied to this transformed system is Vi € N @ |gi| [V > >0 95| Vil a
condition referred to as generalized diagonal dominance of V (Gao and Wang, 1992).
This provides extra scope for applying theorem 1: if V does not satisfy assumption
1, but there exists a g’ such that g;V;; does, then theorem 1 can still be applied with
Vij = ¢.V;; (also in definition 1) and % — gl’-%. This form of diagonal dominance
is considered in e.g. McKenzie (1960) pg 275 and Arrow and Hahn (1971) pg 233. 1
apply this in section C.2 (equation 103) and discuss this in section C.4 (footnote 38).

I present a notable application in proposition 4, where ¢} is equal to the Perron
eigenvector of a transformed version of the Jacobian. V is generalized diagonally
dominant if the transformed Jacobian is irreducible and has a spectral radius below
one. In models of network games (section C.5), this corresponds to the spectral radius

of the adjacency matrix, which is of independent interest (Golub, 2025).

Remark 5. Signed Diagonal Dominance. Theorem 1 does not make any assumption
on the sign of V. If in addition to assumption 1, one assumes all the diagonal elements
have the same sign, and all the off-diagonal elements have the opposite sign, with an
analogous assumption for the direct effects, then one gets narrower bounds. I present
this in proposition 5 in the appendix. This condition corresponds to only positive
feedback between nodes, with V (or —V, if the diagonal is negative) becoming an
M-matrix (Johnson, 1982; Horn and Johnson, 1991, chapter 2.5).
Two workhorse models this includes are Leontief input-output systems (e.g. McKen-

zie, 1960 theorem 4; Simon, 1989; Carvalho et al., 2021) and, with slight adjustment,
competitive models under gross substitutes (e.g. Arrow and Hahn, 1971 chapters 9-

10).1% In each, all diagonal elements of the Jacobian are positive, all off-diagonals are

16Gross substitutes satisfies the sign pattern, but is row, generalized diagonally dominant (see
Arrow and Hahn, 1971 pg 233-234), rather than column diagonally dominant (assumption 1). One
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nonpositive, and the Jacobian is diagonally dominant. These papers have correspond-
ingly characterized the sign of the comparative statics under these conditions. My
results build on this by characterizing the comparative static sign without restricting
the sign of the Jacobian V (theorem 1), and bounding the magnitude, with or without
restrictions on the Jacobian sign (proposition 5 and theorem 1, respectively).'”

I apply proposition 5 to the peer effect model under pure strategic complements
(section 4.1), the baseline production network model (section C.1), and the New

Keynesian model under no inferior income effects (section C.2).

4 Applications

I provide a step-by-step guide of applying the bounds in section 4.1, using the ubig-
uitous linear-in-means model as an example. In the remainder of section 4.1, and
in sections 4.2 and 4.3, I detail how the bounds can be used to solve three difficult
problems in the literature. In appendix section C, I derive the comparative static
bounds in all the models listed in table 1, demonstrating its broad applicability in
high dimensional models (many heterogeneous nodes with heterogeneous interactions)

across the economics discipline.

4.1 Step-by-Step Guide using the Linear-in-Means Model

The workhorse linear-in-means model is used in many settings analyzing how networks
shape economic outcomes or individual decision making (Bramoullé et al., 2016). A
prevalent application is on peer effects and will be the focus of this section, though

the results generalize. The linear-in-means model is'®

Y = Bx; + ¢ Z Gijy; (14)

JEN

where y; is the outcome of individual ¢ € N (e.g. the GPA of student i), z; is

an exogenous characteristic (e.g. student gender) and 5 € R the direct effect of

could derive an analogue of proposition 5 that applies to this form of signed diagonal dominance, by
combining the insights of propositions 3 (row), 4 (generalized) and 5 (signed).

17Arrow and Hahn (1971) theorem T.10.5 characterizes the comparative static sign under row,
generalized diagonal dominance, without gross substitutes.

8 Appendix C.5 provides more details, a microfoundation using network games, and includes
contextual peer effects.
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the characteristic on the outcome. G;; € [0,1] is the weighted adjacency matrix
whose magnitude indicates the strength of the interaction between agents ¢ and j.
The adjacency matrix is directed (G is not necessarily symmetric); row-normalized
Vi€ N @Y icnGiy = 1, s0 that 37\ Gijy; is an average;' and there is no self-
interaction Vi € N : Gy = 0 by convention. ¢ € R is the peer effect parameter: the
causal effect of ¢’s peers’ outcomes ZjEN Gijy; on i’s outcome y;. ¢ > (<)0 implies

strategic complements (substitutes).

Step 1: Map the notation. Define the comparative static of interest and identify the
nodes i, endogenous states y;, and exogenous shock(s) x.

Suppose we are interested in the comparative static of individual outcome y; with
respect to the individual characteristics ;. Then, the nodes are individuals ¢ € N,
the endogenous states are individual outcomes y;, and the exogenous shocks are in-

dividual characteristics ;. This is a case where we have N potential shocks.

Step 2: Equations of State. Derive equation (1).

A minor rearrangement of the linear-in-means model equation (14) gives

0=fi(y, @) =y — Br; — (/52 Gijyj (15)

JEN
Step 3: Jacobian and Direct Effects. Derive V (equation 2) and %.

The Jacobian is equal to the derivative of the equations of state, equation (15), with

respect to the individual outcomes,
= = 1ij — 9Gi;

Feedback in this model, as described the Jacobian, corresponds to the strength of the
peer effects between individuals as determined by the peer effect ¢ parameter and the
adjacency matrix G;;. The direct effects are equal to the derivatives of the equations

of state with respect to the individual characteristics

ofi
8xj - _5[”

YFor convenience, I abstract from the possibility of isolated individuals (an individual that has
no peers). However, the presented bounds remain valid for isolated individuals.
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The comparative static, equation (3), in this model is

ayi_ - 0 f
3. =~ AV agy =AU 000, (16)

Step 4: Diagonal Dominance. Determine if and when V satisfies assumption 1.

The Jacobian V in this model satisfies assumption 1 in this model iff Vi € N/

Val > > |Vl

JEN\L
1> (9] g (17)

i.e. the product of the (magnitude of the) peer effect parameter |¢| and the network
in-degree ¢g; = Zje A\ Gji (a function of the number of individuals reporting that ¢
is their peer) has to be less than one. This is satisfied if the feedback in the system

due to peer effects is not too large, i.e. || or g; is sufficiently small.

Step 5: iDD Degree and Sum of Direct Effects on Other Nodes. Derive 0; (definition
1) and ‘%‘ (equation 9).
D jenni | Vii
b = J€|v\| =16l 3 Gji =16l (18)
w JeEN\i

The iDD degree for individual ¢ is equal to the absolute peer effect parameter |¢|
multiplied by their in-degree g;, reflecting the amount of feedback in the system.
Note that d; = |¢]| g; € [0, 1) under equation (17). The maximal iDD degree across all
other nodes is 6_; = max;jepnn; |¢] g; = |¢] g—i. The direct effects on other nodes is

=

kE/\f\z

Ofx

L

Of-i
0xj

= 3 18Iyl = 181 (1~ Iy)

keN\i
Step 6: Apply the Bounds from Theorem 1. Check for which nodes equation (10)

holds, and apply the bounds from equations (11), (12) and (13) accordingly.

Assume equation (17) holds so that assumption 1 is satisfied. For the comparative

18



statics, gih-? equation (10) of theorem 1 holds when j = i, as
J

Af-i
83@

:|5|20:5—i

afi

Thus, for j =1, %, bounds on the magnitude are given by equation (11)

1B ]
< L + $2gig—; 1 — ¢29¢g_i] (19)

Oy
0xi

and its sign by equation (12)

san (52 ) = —sen (Vapsen (52 ) == oo (-9) —san () (20)

For j # 4, 2% bounds are given by equation (13)

’ Oxj

Wi [—chﬁlg@- 98] g—i } (21)

oxj |1 —¢%gig—i' 1 — ¢%g;9-

but the sign is not determined (note that the bounds in equation 21 include zero).

Step 7: Variants on the Bounds. Consider the variants on theorem 1 given in section
3.3, especially if assumption 1 doesn’t hold.

Assumption 1 for this model, equation (17), is restrictive if there are particularly
central individuals in the network: ¢ such that many other individuals report them as
peers, leading to a high ¢g;. The row diagonal dominance variant (remark 3), however,

is much less restrictive.?’ Row diagonal dominance, equation (58), is satisfied if

Vil > > V4l

JeEN\i
1> [g)| (22)

using > jeni Gij =1 (the out-degree is equal to one) because G is row normalized.
Equation (22) is often invoked in linear-in-means models as it is sufficient for a unique

and stable equilibrium (see Bramoullé et al. 2016 section 5.4.1). Using proposition 3,

20Tn appendix C.5, I also apply the variant of remark 4.
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the iDD degree is Vi € N : §; = |¢| and the comparative static bounds are

(B 18] |2
1+¢2’1—¢2 ’ 81‘1

i
3xi

Dy

Vie N,jeN\i: oz,

< ¢]

(23)

with the comparative static sign continuing to be given by equation (20). If one further
assumes strategic complements, ¢ > 0, which is the more common case empirically
(e.g. in the broad class of settings with social multipliers, Glaeser et al. 2003, such as
in education, Calvé-Armengol et al. 2009), then the Jacobian becomes an M-matrix

(see remark 5) and the lower bound in equation (23) can be strengthened giving

. Dy
Y :
ieN ‘(%i

e o125 (21)

Step 8: Low Dimensional Sufficient Statistics, Sharpness and Width of the Bounds.

Theorem 1 implies that conditional on the low dimensional sufficient statistics, {V;;, d;, }

which correspond to the parameter set |¢|, {gj}j e » 3 in this model, the bounds on

Oyi
ox;

||, {9i}icn» B and nothing else, notably no knowledge of the adjacency matrix Gj;

in equations (19) and (21) are sharp. That is, if one only knew the values of

beyond the in-degrees {g;};.\» equations (19) and (21) are the most one can say

about the maximum and minimum values the comparative static, gi’;, can take.

If one conditions on a different information set, the associated sharp bounds will
also be different in general. This is illustrated by equation (23), which conditions on
||, B, the out-degrees (which all equal one) and the assumption given in equation
(22), as opposed to equation (19), which conditions on |¢|, 3, the in-degrees {g;},c\,
and the assumption given in equation (17).

The width of the bounds depend on the values of the low dimensional sufficient
statistics. Consider equation (23): these bounds are sharp for all values of the low
dimensional sufficient statistic |¢| < 1, however their width depends on the value
of |¢|, being wider when |¢| is larger. For example, the bounds are one third above

and below the midpoint when |¢| = v/0.5 =~ 0.71 (see figure 1 noting that §;0_; = \¢|2).

Step 9: Application of the Bounds. Use the bounds to aid in settings of incomplete

knowledge of model parameters, or characterization of comparative static properties.

20
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The advantage of the bounds is that, compared to the exact comparative static,
equation (16), they depend on fewer model parameters (notably ), and have a much
simpler functional form (avoiding the inversion a potentially large matrix, I — ¢G).

I show how this can be used when interest is in a structural parameter of the
model. In this case, the peer effect parameter, ¢, about which there is considerable
attention in the literature (see Bramoullé et al. 2020 for a recent survey).?!

A key challenge in this literature is that point identification of ¢ requires complete
knowledge of G in general, while one typically only partially observes G (Blume et
al., 2015; Lewis and Chandrasekhar, 2011). An increasingly large number of recent
papers have developed methods to restore point identification by imposing additional
assumptions on the data-generating process of G.?? I show that one can alternatively
use my bounds to partially identify ¢ given only partial knowledge of G, without
needing to resort to additional assumptions on GG. In particular, no bilateral network
data is required; the number of peers each individual has is sufficient.??

To proceed, assume ¢ € [0, 1) and invert the relationship in equation (24) to bound

9yi
ox;

which is identified from exogenous variation in an individual characteristic x.

¢ conditional on 3%. This is useful because we often more readily have information

Oy;
8:1‘7; )

Inverting the upper bound in equation (24) for a subset of individuals N7 C N yields

i€ N gbz,/l—'ﬁ/gif

f can then be substituted out using the lower bound in equation (24) for a different
subset of individuals N C N

on

%/a%

i €N, JEN,: CbZ\/l—

Because this bound holds for all 7, j within each subset, and because the comparative

21T discuss in section C.7 how one could analogously apply this method to identify the spatial lag
parameters in spatial econometric models.

22For example, by assuming sparsity (Blume et al., 2015), by parameterizing the network formation
process (Auerbach, 2022; Breza et al., 2020; Lewis and Chandrasekhar, 2011) in order to implement
graphical reconstruction, or by assuming that one observes many instances of the network (de Paula
et al., 2024; Lewbel et al., 2023).

23This is reminiscent of using aggregated relational data for identification without bilateral network
data, however those methods also require assumptions on the network formation process underlying
G (Breza et al., 2020; McCormick and and Zheng, 2015).
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statics all have the same sign (by equation 20), then equation (25) holds for averages

of the comparative statics within each subset of individuals. In particular,

b
>4 [1— | (26)
by
where by, is estimated from the following regression for k € {1, 2}
1 € Nk oy = bpry + €k, (27)

1.2* The intuition

assuming z; is exogenous, i.i.d. and mean zero, and € ; is the residua
for equation (26) is as follows. Two groups of individuals can have different compara-
tive statics, and therefore b, only because of heterogeneous exposure to peer effects,
arising from being in different positions in the network G (specifically, {(I —¢G)7! }“
in equation 16). My theory shows that the range of values that the comparative static
can take across any position in the network is determined by ¢ — equation (24).

Hence, one can infer how large ¢ must at least be in order to rationalize any observed
ba

by
2|, so choosing two subsets N, Ny that lead to

greater differences in the comparative statics will be more informative on ¢. Limited

difference in the comparative statics, , which is equation (26).

Equation (26) is decreasing in |2

information on G is sufficient for this choice. For example, using the number of peers
an individual ¢ has, n;, as the comparative static is likely quite different for individuals
with few vs many friends.?® Note that even an imperfect measure of n; (such as due
to censoring) is viable as the bounds are valid under any choice of subsets Ny, N.
This provides a method of partial identifying ¢ with very limited information on

GG, while point identification of ¢ requires complete knowledge of the entire bilateral

. . . . Yien, Blyizi] dys
24The regression coefficient identifies by = E;\’; G IN:IUEE YienE [Eke/\fk Wixkxz} =
ien, Bl

ﬁ doien, B [%} where 02 is the variance of z (exogenous stochastic G is permitted). The second

equality used that the solution y; of equation (14) is linear in @ and the third used that z; is i.i.d.

Oyi :|

25The dependence in the simple case where everyone is connected to each other within their subset

4
with equal intensity, and to no-one outside, is {(I — ¢G)—1}” = n:_ﬁ? .
i °

Because all g‘—zf have the same sign, then |by| = ﬁ Yien, E [
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network GG. The latter is usually implemented using the following regression

Yi = Pri+ ¢ Z Gijy; + € (28)

JjEN
with .\ Gijy; instrumented by 3\ Gijx; (Bramoullé et al., 2009). These terms
can be constructed, and therefore the estimation is feasible, only if G is fully known.

[ illustrate this using the Add Health dataset (https://addhealth.cpc.unc.
edu), which has been used abundantly for the analysis of peer effects (see Calvo-
Armengol et al. 2009 for early work). The data comes from surveys of adolescents
who were in grades 7-12 during the 1994-95 school year. Variables include student
characteristics, school performance, and partial data on friendship networks (identities
of the top ten friends). I consider y; to be student i’s GPA, and x; to be gender (equal
to one if female, zero otherwise). Thus, g is the direct effect of a student’s gender on
their GPA, and ¢ the causal effect on their GPA of their friends’ GPA.

The results are presented in table 2. In all columns I include a list of control
variables as in Bramoullé et al. (2009) (up to the limitations of the public-use sample).
I choose the subsets based on the number of friends reported by each student i, n;,
with NV :n; <4 and Ns : n; > 5. Columns (1) and (2) are the regressions in equation
(27) for each subset. This yields |bQ/61’ = 0.53, giving ¢ > 0.69 using equation (26).
For comparison, column (3) is the regression in equation (28) using the observable G,
giving a point estimate of ¢ = 0.78. Thus, the bound on ¢, which uses data on only
the number of friends, is quite close to the point estimate of ¢, which uses data on
the entire observable friendship network. Moreover, the latter may be biased as G
is only partially observed (censored without relationship intensity) while the bounds,

recall, are still valid, even though the implied n; may be mis-measured.

4.2 Gains from Trade Liberalizations

A primary question in the International Trade literature is what are the welfare
gains from reducing international trade costs? This is often operationalized using a
quantitative trade model to calculate the comparative static of country i (the nodes)
welfare W; (the endogenous state) to a change in trade costs 7 (the exogenous shock).
The seminal paper Arkolakis et al. (2012) proved that, in many standard trade models,

this can be calculated from knowledge of only the own-import share X;;/Y; before and
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after the trade cost shock, and the trade elasticity ¢ > 0 (often equal to one plus the

cross-country elasticity of substitution). Specifically,?®

olnr & Ot (29)

where X;; is the trade flow from country ¢ to j and Y; = ZjeN’ X;; is GDP. An impor-
tant limitation of equation (29) is that it is an ez-post sufficient statistic: knowledge
of X;;/Y; after the shock is required. One cannot in general simply use the observed
X;;/Y; after the trade cost T change because there may be confounding shocks (say,
from concurrent changes in productivity). One also cannot apply equation (29) to
counterfactual liberalizations as the own-import share after is not observable.?” That
is, equation (29) can only be applied to observable, exogenous changes in 7.

The alternative approach that does not require post-shock information — an ex-
ante sufficient statistic — instead requires knowledge of the full matrix of bilateral
trade flows before the shock {Xi;}; ycpr2 (Proposition 2 vs 1in Arkolakis et al., 2012).
Although this has the advantage of being applicable to endogenous or unobservable 7,
it is infeasible when the full trade flow matrix is not known because of data limitations.

I show that the ex-ante sufficient statistic requires only Xj;;/Y; before the shock
(and ¢) for the bounds on the welfare change, in the case where 7 is a proportional
increase in country i trade costs with the rest of the world.?® This is a significantly
reduced data requirement; moreover, with the bounds being sharp, this is the most
one can say about the welfare change without more data on the trade matrix. I require
an additional assumption, though, relative to the aforementioned ex-ante sufficient
statistic, of quasi-symmetric trade costs (symmetric up to an origin and destination
shifter), but this is a fairly common modeling restriction (Allen et al., 2020).

Under these assumptions, the ex-ante sufficient statistic for the point value of the

welfare change is (see appendix C.3 for the full details and derivation)

X..

aanz__ 1+2¢ X
a Y;

-1 .
oln7 ’ L+¢ Vo (1

26Equation (29) holds with arbitrary changes in 7, as noted in Arkolakis et al. (2012). I present
the differential form to allow cleaner comparison to my bounds, which hold only in differential form.

2"Except in the special case where the country is in autarky after the trade cost change. Then,
the change in welfare is equal to In (X;;/ Yi)l/ ? (see Arkolakis et al., 2012 corollary 1).

28See equation (121) in the online appendix for the general case.

6 Xy
1+0¢ Y,

> , Vig=1I;+ (30)
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As noted above, the full trade matrix {X;;} before the shock is required. The Jacobian
V in this model captures feedback between countries (the nodes) that arises due to
demand substitution: if prices fall in one country, other countries consume more from

them. This feedback is stronger if the trade elasticity ¢ is higher, and if countries

X. .
buy more from each other, 5.
T

Assumption 1 is satisfied and one can apply the results of proposition 2 (so that

knowledge of d_;, and therefore Vj € N'\i : “ , is not required, see remark 2)

oW, 2¢+1 1 1 ¢ 1—’%
T omT - b 25(1+6J1—6¢> % = 1+¢1+ 2 (3

T+¢ Y

The bounds on the Welfare change given in equation (31) only require knowledge of

7 before the shock; Z . after the shock is not needed (in contrast to equation 29),
and the full trade flow matrix is not needed (in contrast to equation 30).

I apply this in a prominent setting where the data limitation is binding: economic
history. Data on the full trade matrix is only available after 1962 (with the introduc-
tion of the Comtrade dataset), yet the gains from trade is still a question of interest
before this period (Federico and Tena, 1991; Findlay and O’Rourke, 2007). Nonethe-
less, we do have data on total imports, IM; = Zje A\ Xji, and GDP (and therefore
X;) for some countries much further back in time (Federico and Tena-Junguito, 2017;
Miiller et al., 2025). Thus, partial identification of 881111va using equation (31) is feasi-
ble, while point identification using equation (30) is impossible.

I calculate the bounds on mnw for the UK over the past 800 years using data
from the Bank of England (“A mlllenmum of macroeconomic data”, https://wuw.
bankofengland.co.uk/statistics/research-datasets). I set ¢ = 8 following
Jacks et al. (2011); Mitchener et al. (2022). Figure 2a presents the results. The
bounds are wider in more recent times, with a width of £15% relative to the mid-
point from the year 2000 onwards, and much narrower further back in time, being
less than £2.5% for all years before 1800. This is useful given it is precisely further
back in time when we do not have the bilateral trade data and so may want to rely
on the bounds for identification.

The reason why the bounds are wider in more recent times is because the value

of the iDD degree ¢; for i = UK is greater (figure 2b). §; is an increasing function of

IM; Xig
Yi =1- Y;

in recent times (figure 2b). The gains from trade depend on the exact pattern of

the import share, (see equation 31), and the latter has been increasing
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IM;
Y;

permissible patterns of bilateral trade flows, {X;;}, leading to a wider range of values

trade between countries. If a country has a larger import share , there are more

for the gains from trade. Hence, causing the bounds to be wider.

4.3 Cost-Price Passthrough

There has been longstanding interest in the literature concerning the passthrough
of cost shocks to prices. This dates back to Marshall (1890) in the context of tax
incidence, with more recent work leveraging passthrough as a sufficient statistic for
various welfare analyses (Chetty, 2009). In imperfectly competitive settings, one prop-
erty that has been explored is when passthrough is more than complete, which implies
a number of qualitative properties (Anderson et al., 2001; Bagnoli and Bergstrom,
2005; Stern, 1987; Weyl and Fabinger, 2013). However, theoretical characterizations
are typically limited to symmetric models, as the dimensionality of the problem is
reduced, permitting a tractable analysis (see Dixit, 1986 pg 119). Under symmetric
imperfect competition and linear cost, passthrough exceeds unity iff demand is log-
convex (Bulow and Pfleiderer, 1983; Seade, 1985; Weyl and Fabinger, 2013). Using
the results of the current paper, I offer a generalization to asymmetric models.
Consider a Bertrand oligopoly with differentiated products. There are i € N firms
(the nodes) each producing one product with constant marginal cost, ¢; (exogenous
shocks), and with twice-continuously differentiable demand D; (p), where p = {p;},c

are the product prices (endogenous states). The log profits of firm i are

7 (p, ¢i) = In[(p; — ¢;) D; (p)]

and the firm chooses p; to maximize ; (p, ¢;), taking all other firms’ prices as given.

The passthrough to p; of a change in ¢; is given by (see appendix C.4 for details)

op; . i ci\? 9%In D; (p)
— ) a=G (1o G) £nsip) 9
dc; {V }”7 Vi pi " ( Pz‘) 0Inp;0lnp; (32)

Passthrough is greater than one, g’c’ L > 1,iff {V~'}, > 1. For models with many firms
(large N), {V~'},, is generally a very complicated object, thus determining under
what conditions it’s greater than one is challenging. The literature typically imposes
complete symmetry in demand and costs across all firms to make this tractable. The

results of section 3 allow one to proceed without resorting to symmetry.
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Recalling that log-convexity of demand is the relevant condition in the symmetric

case, a sufficient condition for demand to be log-convex in the general case is when

d 82 In Di (p)

the Hessian of log demand, dTnpoinp
v J

is row diagonally dominant with positive diag-
onal. Assuming the convexity isn’t too strong so that the equilibrium is stable, this
condition is also sufficient for V to be row diagonally dominant, hence one can use
the bounds from proposition 3 (see remark 3). The resulting lower bound is greater
than one, implying passthrough is always greater than unity under this condition.
Thus, log-convexity of demand is tightly related to more than complete passthrough

in asymmetric models, just like in symmetric models.

5 Conclusion

In this paper I revisit an old inquiry in economics: what can we deduce about com-
parative statics while making as few assumptions as possible? (Bassett et al., 1967;
Hale et al., 1999) I offer new results advancing the frontier in this subject. I exploit
the widely-used assumption of diagonal dominance of the Jacobian, and show this
implies novel bounds on comparative statics.

The value of this result is twofold. First, the bounds are identified using low
dimensional sufficient statistics. This permits one to still learn about the comparative
static in cases where full knowledge of the model parameters is infeasible. Because the
bounds are sharp, they are the most one can say about the maximum and minimum
values the comparative static can take, if the sufficient statistics are all that is known.
Moreover, if direct knowledge of the comparative statics is available instead, the
methodology can be inverted to bound structural parameters of the model.

Second, they are analytically simpler than the exact relationship. This potentially
allows for easier theoretical characterization of the comparative statics, offering new
insight into the underlying economic mechanisms. This provides an alternative to

resorting to restrictive, stylized, or low-dimensional versions of the model.
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Figure 1: Visualization of Theorem 1

o Assuming —sgn (Vﬁ%) —1
7
S\vElT i
- ““,,”ﬂ“ - 5 4;3?
i ppre st o TR
e —0
By'i . / A
] " i
Oz P +33% [ 1
r-’J-' __‘__,—'-""'-
A 15
v B SR
() e
0.4 0.6 0.8 1

0.2
0;0_;

Notes. The bounds on the comparative static from theorem 1 are displayed in the case of
—sgn (V;;) sgn (%%) = 1. Each series shows the upper and lower bounds (inclusive of the sign) on
24| /3. The arrow labels the width of

ofi| _
/‘ ox =0.

ox

Of—i
ox

the comparative static under different values of §_;
the bound relative to its midpoint at §;6_; = 0.5 for the case d_;

28



Figure 2: The Gains from Trade Liberalization in the UK over 800 Years
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Notes. In subfigure (a), the bounds are presented for the elasticity of UK welfare with respect to a
proportional reduction in trade costs with the rest of the world. In subfigure (b), the import share
of GDP and the iDD degree §; are presented. Data is from the Bank of England.
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Field/Model

Table 1: Diagonal Dominance in Economic Models

Reference

Sufficient Condition for Diagonal

Relevance of Sufficient

Dominance Condition to Model
& Production Networks Carvalho and Always —
% Tahbaz-Salehi (2019)
:
8 . Vs,t . MPCSt >0 .
= New Keynesian Auclert et al. (2024) MPC: marginal propensity to consume No Inferior Income
§ s,t: time periods Effects
> -1 = -1 1 quasi-symmetric
International Trade / Allen et al. (2020) ¢ <¢; d%malr/jdflastigity, ¥: supply e?;sticity Unique Interior
Economic Geography 7: trade cost matrix Equilibrium
&
g Industrial Organization: Milgrom and Roberts Demand € {CES, logit, linear Unique Nash
§ Oligopoly (1990) substitutes; restricted translog} Equilibrium
<]
@]
8 |p|p < 1, G irreducible
= | Game Theory: Network | Bramoullé et al. (2016) ¢: lgyzijﬁgsg; paramcter Unique Stable Nash
Games e s.pectral radius of |G| Equlhbrlum
n . . . p:1 |ﬂ5| <1 .
9 Time Series: Brockwell and Davis o : . feiont Unique Causal
£ ARMA (p,q) (2016) s o7 autoregressive coefficien Stationary Solution
5
g8 . . lp| <1 .
o | Spatial Econometrics LeSage et al. (2009) Stable Solution
=] p: spatial lag parameter

Notes. Summary of the models that I apply the theoretical results of this paper to (see appendix C for details). Cited is the main reference I
use for the model. A sufficient condition for diagonal dominance is presented, either for column (assumption 1), row (remark 3), or generalized
(remark 4) diagonal dominance. The last column shows an implication of the sufficient condition that has independent relevance to the model.



Table 2: Bounding Peer Effects without Bilateral Network Data

(1) (2) (3)
Own Gender 0.235"* 0.124"* 0.166"*
(0.051)  (0.043)  (0.034)

Peers GPA 0.778**
(0.101)
Observations 1129 1519 2156
Sample n<4 mn;>5H All
Estimator OLS OLS 1AY
First-stage F 42.6

Robust standard errors in parentheses.
*p<0.10, " p < 0.05, ** p < 0.01

Notes. The dependent variable is student GPA. The first row is the student’s gender (equal to one
if female, zero otherwise). The second row is an average of the student’s friends’ GPAs, which is
instrumented by an average of the student’s friends’ gender, age and school grade. Each specification
also controls for the student’s age, school grade, whether white, whether born in USA, whether lives
with mother, mother’s education, and whether father is present. Column (1) uses the sample of
students which report no greater than four friends; column (2) the sample which report at least five
friends; column (3) uses the full sample of students. Data is from Add Health.
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A Proofs of Main Results

A.1 Proof of the bounds being sharp in Lemma 1 and Theorem 1

Proof. The bounds are shown to be sharp if, conditional on assumption 1 and the
9/; for the-

information available ({ Vi, 0x },cp for lemma 1 and {Vik, 6 bpen > 5 %

orem 1), for each bound there exists a V and g—£ that satisfies the bound with equality.

I prove this using the following Jacobian

Vit Vio Vig -+ Viy
Vogr Voo 0 -+ 0
V = 0 0 Vs .-+ 0 (33)
: : : 0
0 0 0 0 Vuyn

i.e. non-zero elements in the second leading principal sub-matrix, the diagonal, and
the first row; all other elements are zero. Each non-zero element can be of arbitrary
magnitude, conditional on satisfying assumption 1 (i.e. |Va1| < |Vyy| and Vi # 1 :
|V1i| <|Viil), and be of arbitrary sign. The iDD degrees of this V are

1=1": ’h
5= v (34)
i>10 |3
For the direct effects, I utilize the case where
0
Vi 1,2} : =0 35
ig {2y o (3)
which implies the direct effect on all nodes other than i = 1 to be
f df2
=|== 36
’ ox ox (36)

It is sufficient to prove the bounds are sharp for + = 1 and with the maximal degree
across all other nodes being §_; = d5. The proof follows equivalently for all other
cases under a relabelling of indices in equations (33) and (35).

The only components of this V and ‘Z—i not conditioned on (i.e. are not part of the
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sufficient statistics) are sgn (Via),sgn (Va), and also sgn (%i;) in the case of Theo-

rem 1. I will show that values of these exist such that the bounds hold with equality.

Proof for Lemma 1. The inverse of the matrix of equation (33) is

Vaa _ Via Ve _ Viz Vo _Vin Va2
@ Vas ¢ Vss ¢ VNN ¢
_Vy Vi Vis Vo1 Vin Vo

o @ Vsz ¢ VNN ¢

-1 _ 1
V™ = 0 0 o 0 (37)
: 0
0 0 0 0 =
VNN

where ¢ = V11Vay — V13Va;. Manipulating the expression for the (1, 1) element

1 1

vl =
{ }11 Vil— g_’ig_;z
1 1
= (38)
vll 1-— sgn (%%) (516_1
— (V- 1 (39
11 |V11‘ 1— sgn <%%) 51571
22 V11

The first line used the definition of ¢; the second line used g—ig—;z = sgn <§—;; %) 010_1
from equation (34), and d, = J_1; the last line applied the modulus operator, and
used 0;0_1 < 1. By equation (39), we see that the matrix from equation (33) achieves
the upper bound in equation (6) for i« = 1 when sgn (V13Va;) = sgn (V11 Va), and
achieves the lower bound when sgn (V12Va;) = —sgn (V11 Va2).

Manipulating the expression for the (i = 1,j # 1) elements of equation (37)

. _ Vij Voo
1: vl ==
7 V7 Vi ¢
- ‘{V_l}u =9; }{v_l}u‘ (40)
where the second line applied the modulus operator and used d; = ‘% from equa-

tion (34) and % = {V~!'},, from equation (37). By equation (40), we see that the

matrix from equation (33) achieves the bound in equation (7) for i = 1 and Vj # 1.
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Proof for Theorem 1. The comparative static for + = 1 under this V and g—i is

1 1 df1 1 o 0
= Hvi }11‘ —seh ({V }11) f el ({V }12 8x) ‘%g 1{11 8£

oy 1y Oh 1y Ofs
?/__{ }11f }12f

|

_ [ _ (9f Vi Of of
= HV 1}11‘ _—sgn ({V 1}11) or ({V 1}11 V12 a;) ‘a;]
_ [ af Vi Of: of_
- }{V 1}11‘ _—Sgn (Vi) a_l + sgn (Vll VZ B 2) 04 81‘1 ]
1 —segn (Vi) % + sgn (V g” %’;) ‘af S
= (41)
|V11’ 1-— sgn (%%) 515_1

The first line used equation (35) in equation (3); the second line factored out [{V~1} ;]
and wrote in terms of the sign operator; the third line used & # 1 : sgn ({V~'},,) =

vl
sgn <_hﬁ) = sgn ( Vi {V 1}11> from equation (37), and }llk‘ _

S 0 from

equation (40); the fourth line used that dy = d_;, 8f2’ = )Bf 1‘ from equation (36),
and sgn ({V~1},,) = sgn (V1) from equation (8); the fifth line used equation (39).
Suppose equation (10) holds. Then, the modulus of equation (41) is given by

91

Voo Oz Ox

Vi1l 1 —sgn <V12 V21> 0101

1% - sen (SR |4

7
ox

(42)

By equation (42), we see that the Jacobian and direct effects of equations (33)
and (35) achieve the upper bound of equation (11) for ¢ = 1 when sgn (VlQ%) =
—sgn (V22 1) and sgn (Vay) = sgn <V11V12>, and the lower bound for ¢ = 1 when

sgn (V12 8f2) = sgn (V22 afl) and sgn (V1) = —sgn <V11V12)
Suppose equation (10) does not hold. Then, by equation (41), the Jacobian and
direct effects of equations (33) and (35) achieve the upper bound of equation (13) for

¢ = 1 when sgn (Vu%) sgn (V11 Vas) and sgn (Vay) = sgn <V11 Vi

bound for 7 = 1 when sgn (Vu 8f2) = —sgn (V11 Vay) and sgn (Vo) = sgn <V 1v12>
O

, and lower
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A.2 Proof of theorem 1

Proof. Start with rearranging equation (3) and taking absolute values,

ayz’ 1 afz
O + {V }n O

:Z{ ”83:

JEN\G
Z ‘{ fl}m afy

JEN\G

<HVLL S

JEN\©

< (v}, 6. | 2

IN

8fj

The second line used the triangle inequality; the third line applied equation (7). The

|

last line used Vj # ¢ : §; < d_; and equation (9). The last line is equivalent to

Yy

1 —1 af—z
e e - NN

ox

of_ af; _
Ol vy eyl

! 1 0fi Of-i -1 Ofi Of i
€ [ | s (91,) 28 = |50 s (9 1),) 9 0|50
(44)

The first line used the identity: |a + b| < |c| is equivalent to a € [=b —|c|, —b+ |c|]
for any real a, b, c. The second line factored out [{V~'},.].

Suppose equation (10) holds. The sign of both upper and lower bounds is deter-
mined by —sgn ({V~'},, %), which is equal to —sgn (V; %fl) by equation (8). Hence,
proving equation (12). Both bounds having equal sign implies the magnitude satisfies

€ {7l ||| o

Applying the lower (upper) bound of [{V~'},| from equation (6) to the lower (upper)

8 f_
Ox

/i

of_,
oz | T

“| Ox

)

' Y

} (15)

bound of equation (45) proves equation (11).

Suppose equation (10) does not hold. The lower (upper) bound of equation (44)
is always negative (positive), hence the comparative static sign is not determined.
Thus, for both the lower and upper bound in equation (44), we must use the upper

bound on [{V~'}.| from equation (6), which proves equation (13). O
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B Variants Details (Online Appendix)

B.1 Conditioning on More Information

The following proposition presents bounds conditional on knowledge of all the direct

8fk Ofi |0f—i
ox’ | Ox |’

effects, as opposed to only

}ke/\/’

Proposition 1. (Comparative Static Bounds using all Direct Effects). Suppose V
satisfies assumption 1. If fori € N

3fk

dfi
‘ Ji Z Ok (46)
keN\i
then, the magnitude of the comparative static satisfies
y; 1 8f1 Zke/\/\z 6k &% ‘ 6f1 + ZkEN\Z 5k ‘ (47)
’Vu‘ 1 + 51571 ’ 5161
and its sign
Dy _ ofi
sgn ( a:::) = —sgn (Vi) sgn ( &C) (48)

Otherwise, the comparative static satisfies

i c 1 |—sen(Vi ) ZkeN\z O | B | —sgn (Vi) % + 2 ke O %‘
(49)
with both V and 2L evaluated at y = y* (x). Conditional on {V;;,8; 91 , the
oz Jj N
j€

77 ox

bounds in equations (47) and (49) are sharp.

Proof. Beginning from equation (43), and applying the identity: |a + b| < |c| is equiv-
alent to a € [—=b — |¢|, —b+ |c|] for any real a, b, c,

81 1 61 —1 a] 1
e v L e Y 6| e v S 6 |2
JEN\ jeN\i
1 -1 8i 8 1
V) s (0910 2 S 6 | s (v ) P Y 5|0
jeN\i jeN\i
(50)
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The second line factored out [{V~1} .

zz|‘

Suppose equation (46) holds, then the sign
0fi

1 Oz

of both upper and lower bounds is determined by —sgn ({V‘l} ), which is equal

to —sgn (V“ 8f1) by equation (8). Hence, proving equation (12). Both bounds having

equal sign implies the magnitude satisfies

8fj afz

da |7

Ly gl

jeN\i

(51)

’ o

€ vl || 2

_Z(gj

JEN\I

Applying the lower (upper) bound of [{V~'},| from equation (6) of Lemma 1 to the
lower (upper) bound of equation (51) proves equation (47).

Suppose equation (46) does not hold. The lower (upper) bound of equation (50)
is always negative (positive), and hence the sign of the comparative static is not
determined. Thus, for both the lower and upper bound in equation (50), we must use
the upper bound on |[{V~'}, | from equation (6), which proves equation (49).

The bounds are proved to be sharp analogously to in section A.1. Consider the

Jacobian from equation (33) and choose §_; = d2. The i = 1 comparative static is

1 1 0fi 1y Ofi 13, 0f;
[t 0, )

keN\1

8y1

1 -1 0 1 1 1ka k -1 1ka k
{T Ml |~ (9 ) S+ 3 s (49 25 ) [t e

i v Vig 0z ) [{V~1}, Oz
_ dfi1 Vi Ofk Ofr
= HV 1}11| —sgn(Vu)a_x—F Z sgn <V11V Dz Ok o1
i keNM\1
1 —sgn (Vn) -+ D pean S8 (Vllgii %ﬁ) O |afk | (52)
Vi1l 1 —sgn (g—;gg—ﬁ) 0101

The first line factored out |{V~'} ;| from equation (3); the second line used k #

1:sgn({V1},,) =sgn (—g—;}’z%) = sgn (‘g_ii {V*1}11> from equation (37), and

1
Ez 1}}1’“ ‘ = ) from equation (40); the third line used sgn ({V~'},,) = sgn (V1) from

equation (8); the fourth line used equation (39).
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Suppose equation (10) holds. Then, the absolute of equation (52) is given by

Vik O )
B ‘ |+ D ke S81 (vllvki a@) O | fk‘ (53)
‘V11| 1 —sgn <V12 V21> 0104

Oy
ox

Conditional on {V”, o;, 2L the comparative static achieves the upper bound of

v Ox }iEN’
equation (47) for i = 1 when Vk # 1 : sgn (Vix) = sgn (vnvkkafk) and sgn (Vgy) =

sgn < Vi ), and the lower bound when Vk # 1 : sgn (V) = —sgn (ankk%—;) and

V11Va2

sgn (Va1) = —sgn <V1V11v222>-
Suppose equation (10) does not hold. Then, by equation (52), conditional on

{Vii, 0, %}i - the comparative static achieves the upper bound of equation (49)
for i = 1, when Vk # 1 : sgn (Vyx) = sgn (ankk%) and sgn (Vo) = sgn <%),
and the lower bound when Vk # 1 : sgn (Vi) = —sgn (ankk%) and sgn (Va1) =
sgn (VZ%QQ) ’ —~

B.2 Conditioning on Less Information

The following proposition presents bounds without conditioning on knowledge of J_;.

Proposition 2. (Comparative Static Bounds without §_;). Suppose V satisfies as-
sumption 1. Then, if fori € N,

Ofi Of—i
> 4
Oor |~ | Ox (54)
the magnitude of the comparative static satisfies
of; df—i a ; af_-
and its sign
sgn <%> = —sgn (V;;) sgn (?;) (56)
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Otherwise, the comparative static satisfies

afi of—i ofi Of—i
oy, 1 [ s (Vi) g~ ) | —son (Vi) G + ’% -
S )
with V, g—£ evaluated at' y = y* (x). Conditional on V;;, ;, %, 85; , the bounds are

sharp.

Proof. Equations (55) and (57) are implied by setting d_; = 1 in equations (11) and
(12), respectively. The bounds become open because only d_; < 1 is permitted under
assumption 1. Equation (56) is implied for the same reason equation (12) is implied
in theorem 1.

The bounds are proved sharp by using the same proof as for theorem 1 in section
A.1, except by choosing d; = 1, which we are now free to choose because only 4, is

being conditioned on. O

B.3 Row Diagonal Dominance

The following proposition presents bounds using row diagonal dominance (equation
58) as opposed to column diagonal dominance (assumption 1). Note that the iDD
degree (equation 63) is now calculated using the row sum rather than the column

.. Of_,
sum, a stronger condition on ‘ gxl

is required (equation 59), and the effect of the

shock on other nodes is characterized (62).

Proposition 3. (Comparative Static Bounds under Row Diagonal Dominance) Sup-

pose V satisfies

VieN: |Vil> > |Vl (58)
JEN\I
If forie N
of |
'8x =0 (59)
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then,

, ofi ofi
% 1 Ox 7 Ox (60)
y; . df;i
sgn <%> = —sgn (V;;) sgn ((%) (61)
and for Vj € N'\i
dy; y;
2| <. 2
or | — %; ox (62)
where > V|
5 = e LA AU (63)
Vil

with both V and % evaluated at y = y* (z). Conditional on {V;;,0;}, 5 86];1, equa-
tions (60) and (62) are sharp.

Proof. Lemma 1 applies to V satisfying row diagonal dominance, equation (58) with
the only two differences: ; is calculated using the row sum, equation (63), and

equation (7) is replaced by

v

1, (64
Turning to the comparative statics. Applying equation (59) in equation (3)

(‘3,%

- vy, % 3 (65)

Xz

as equation (59) implies Vj € M\i : 8f Z = (. The comparative static sign is

Ay _1y Ofi ofi
sgn (8_yx) = —sgn ({V l}ii a—“i) = —sgn (V”a—i)

where the second equality used (8). Thus proving equation (61). The magnitude of
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the comparative static

Yy _ af;
]t o
© Vil | 1+6:0-,71— 5¢5—i]

where the second line used equation (6). Thus proving equation (60). Consider the

effect on j # i

%__{Vfl} afl

Ox it
'% - ‘{v_l}ji%
<9; {V_l}u‘%
o

where the third line used equation (64), and the last line used equation (66). Thus
proving equation (62)

Equations (60) and (62) being sharp follow from equations (6) and (7) being sharp

Ofi
ox

the information set in this proposition. O]

in lemma 1, respectively, as the only difference is a multiple of | , which is part of

B.4 Generalized Diagonal Dominance: Sub-Unity Spectral Radius

The following proposition presents an example of generalized diagonal dominance

using the spectral radius of a transformed Jacobian, given by

i=j 0

i F ]

(67)

Vi

Denote by p the spectral radius of A, and by v; a left-eigenvector of A with eigenvalue
equal in magnitude to p. Set g, = v;. If A isirreducible and p < 1, then ¢V, satisfies
assumption 1. Proposition 4 proves this and derives the implied comparative static

bounds, in terms of p and v;. Note that this result conditions on more information,
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specifically all of the direct effects, as in proposition 1.

Proposition 4. (Comparative Static Bounds under Sub-Unity Spectral Radius). Sup-
pose A is irreducible and p < 1. If fori e N

dfi Uk
ox o pkzﬁ v_Z

A fw

e (68)

then, the magnitude of the comparative static satisfies

af; v |0 afi v
1 ‘B_J; _kaeN\z‘v_I: %‘ 81; +p2keN\iv_§
Vil 14 p? ’ 1—p?

Ofk

Dy
ox

and its sign

8yz- afz
sgn < 8x> = —sgn (Vi) sgn ( ax> (70)
Otherwise, the comparative static satisfies
of; v, |0 of; v |9
Oy 1 [—sen (V) 52— p 2w b 50| —s8n (Vi) 5+ 0 ke ot |52
Ox |v”| 1—p2 ’ 1—[)2
(71)

Where p > 0, and {v;},c, are unique and strictly positive, and both V and g—£ are
evaluated at y = y* (x).

Proof. Trreducibility of A and p < 1 is not sufficient for V;; to satisfy assumption 1,
thus we cannot directly apply theorem 1 (or proposition 1). However, it is sufficient for
@ij = v;V,; to satisfy assumption 1 (implying V is generalized diagonally dominant,
see remark 4). Thus, we can rewrite the comparative statics in terms of V and apply
proposition 1.

To prove that V satisfies assumption 1, I rely on the Perron-Frobenius theorem
(Horn and Johnson, 2012 theorem 8.4.4), which applies to A because A is nonnegative
and irreducible. The theorem implies that p is strictly positive, that it is an eigenvalue

of A, and its associated left-eigenvector {v;},.,, is unique and has all elements strictly
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positive, Vi : v; > 0. Utilizing this,

’@ii — Z ‘@ji = |0iVi| — Z v Vil
i i
= 0; Vil = >0 [Vl
i
Vil
= |Vl | vi — Uj
; Vil
= |V”‘ (’Ui — Z’UjAji>
j
= |Vilvi (1= p)

>0

The first line used the definition of @ij = v;V,;; the second line used that Vi : v; > 0;
the fourth line used the definition of A, equation (67); the fifth line used that p is
eigenvalue of A with eigenvector {v;},.,; and the last line used that p < 1. Thus,
V is strictly column diagonally dominant and therefore satisfies assumption 1. The
iDD degree of V, which I denote by 9, is

_ 2|0Vl
"Uz‘vii‘

Vil
Zj?fi Yj Vi

The first line used the definition of the iDD degree, definition 1; the second line used
the definition of @ij = v;V,;; the third line used that Vi : v; > 0; the forth line
the definition of A, equation (67); the fifth line used that p is eigenvalue of A with

53



eigenvector {v;},. 5. Next, I rewrite the comparative statics in terms of v

0y; 0
y_ Z{v l}zka_gc

keN
R Of
= ik Ox
where I used % = U af L Now, we apply proposition 1 with sz and aj;{“ in place of

V,; and %. Flrst, equatlon (46) becomes

8fz af
> > o
keN\i
dfi vk | Of
— | = 72
\ py | (72
k#i
Equation (47) becomes
N Ke) 8fz
‘ 8yz c 1 o ZkEN\’L 5k O + ZkGN\z 5k
of; ) of; d
_ 1 h — P2 henni o G| G+ 0 X openn = | 5]
|Viil 14 p? ’ 1—p2
where in the second line I used V” = v;Vy; and 8f’“ = vk%. The sign of the

comparative static, equation (48) remains the same, because

i\ _ = o/
sgn (%> = —sgn (V”> sgn (8x>

= —sgn (v;Vy;) sgn (Uz%)
= —sgn (Vi) sgn (afi)

ox

o4



given Vi : v; > 0. Equation (49) becomes

8yi 1 —Sel <@”> zkEN\z 5k —sgn <@“> -+ ZkGN\z 5k
or g, — 50 ’ — 0,0
1 [ —sgn (Vi) % =P ke o %‘ —sgn (Vi) 3 Be T P2 ke o di‘
|Vl 1 —p? ’ 1 —p?
]

B.5 Signed Diagonal Dominance

The following proposition presents bounds that also condition on the sign on the
elements of V, f For V| all diagonal elements have the same sign, and each of the
off-diagonal elements have a sign that is not equal to that of the diagonal elements
(so either the opposite sign, or zero). For %, all 7 # i have the same sign, which
is different to j = i. These are equations (73) and (74) in the following proposition.
Note that proposition 5 only applies in the case where equation (46) holds.

Proposition 5. (Comparative Static Bounds under Signed Diagonal Dominance). Sup-

pose assumption 1 holds, and equation (46) holds for i € N'. Also suppose

Vk,j#k: s =-sgn(Vi) # sgn (Vi) (73)
. B df;
Vi #i: sz—sgn( )#S (833) (74)

holds for some sy € {—1,1},s0 € {—1,1}. Then,

| 1 ||of: ofi| |3
Ox Vil || 0 Z ,5k ‘ Ox |"1— 06—, %)
keN\i
and 9 of
Yiy _ - i
sgn <8x) = —sgn (V;;) sgn (8&:) (76)

with both V and % evaluated at y = y* (x).

Proof. Equation (73), combined with V being diagonally dominant (assumption 1),
implies $;V is an M-matrix (Horn and Johnson, 1991, chapter 2.5), which has the
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following two properties

Vi s {V'} > sllv“ (77)
Vi,j#i: s {V"~ 1}” > (78)
To prove these, rewrite the Jacobian as
Vij = (Iij — Aij) Vi (79)
where A;; = gaj (1—-1;;) > 0. Equation (79) follows by noting that Vi,j # i :

v—ij < 0 due to equation (73). Diagonal dominance of V implies the spectral radius
77

of A, denoted p, is less than 1: p < max; ) . |A;;| = max; Zl#]

first inequality follows using the Gerschgorin Circle theorem, and the last inequality

< 1, where the

follows from diagonal dominance of V. Thus, one can apply the Neumann expansion
(I—A)"=I+A+A%+...  which is valid under p < 1 (Johnson, 1982), implying

AVARNAYS
o =

vi: {(I-A)7"},
Vijj#i: {(I—-A)7'}.,

which follows by noting that Vi, j : A;; > 0. Using these facts in the matrix inverse

of equation (79) implies equations (77) because

. - 1 - 1
Vi: s {V 1}2.2- = 1V {([_A) 1}1'1' =z $1Vi

and (78) because

1
51Vii

Vij#i: si{V'}, = {T-4)7"},>0

noting that s;V;; > 0. Turning to the comparative static, rewrite equation (3) as

dy; - 8]‘} (V13 %f i
- = { 1 }ZZ — l £ (80)
z 2 L

*)
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The term (x) can be bounded as follows

(VY 5 =
1+Z{v1 ESEe 1= ) a| |l (81)
keN\ine— % Oz keN\i Ox
>0 <o h A

where Vk € N\i : {{vig““ > 0 from equations (77), (78); Vk € N\i : 3

equation (74). The lower bound used equation (7), and is positive by equatlon (46).

Taking the absolute value of equation (80) and using equation (81)

6]2 3fk 3fz

eVl |gp| |1 22 %

keN\i

‘ 0y 1 (82)

[{V~'},;] can be bounded below using equation (77) and above using equation (6)

1 1
Vi: |{Vv! 83
Inserting the lower (upper) bound into the lower (upper) bound of equation (82)

proves equation (75). Equation (76) holds by proposition 1 as both assumption 1 and
equation (46) hold. O
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C Model Details (Online Appendix)

Detail of the models listed in table 1.

C.1 Production Network

Consider the workhorse production network from Carvalho and Tahbaz-Salehi (2019),
section 2.1. This model is not only highly tractable and thus useful for expositional
purposes, but it also highly relevant, underlying many macroeconomic frameworks in
the recent literature, as attention has begun to focus on the macroeconomic implica-
tions of production networks.?”

Nodes in this framework correspond to firms, and interactions between nodes
are described the by the supply chain network. For the comparative static on firm
production, I show that assumption 1, and the additional conditions required for
proposition 5, are always satisfied. The bounds for the comparative statics with
respect to a government expenditure shock, a firm-level fiscal multiplier, depend only
the expenditure share on intermediate inputs by firms, and the share of expenditure
on each firm by households. Notably, no supply chain data is required for the bounds,
which is potentially quite powerful, because such data in simply unavailable in most
settings (Pichler et al., 2023). The bounds reveal a highly succinct necessary condition
for the fiscal multiplier on a firm to be greater than one: the expenditure share on
intermediate goods by the firm is greater than the share of household expenditure on
that firm.

There are ¢ € N firms, each with production function

_ gl Aji
¢ = Gl H €

JEN

where ¢; is output, [; is labor, and xj are intermediate inputs purchased from firm j.
{Aﬁ}ie NojeN is the input-output matrix: the share of firm i total expenditure spent
on goods from firm j. Following the typical convention in the literature, I assume
Vi € N A; = 0 (the firm doesn’t buy from itself). >, ;A = a; € (0,1) is

2For example. see Acemoglu et al. (2012, 2016); Baqaee (2018) for the macro amplification
of micro shocks; Afrouzi and Bhattarai (2023); Ghassibe (2021); Rubbo (2023) for applications in
monetary economics; Flynn et al. (2023) for fiscal multipliers; and Baqaee and Farhi (2021); Bonadio
et al. (2021) for applications to covid 2019. For early applications see Long and Plosser (1983).
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the expenditure share on intermediate inputs, with 1 — «; the labor share. (; =
(1 — ;)" [Licn (A;;)~™" is a normalization constant. The firms takes prices
{p; }j v and the wage w = 1 (the numeraire) as given, due to perfect competition.
There is a representative household who supplies labor to all the firms, consumes
their goods according to a Cobb-Douglas utility function, and pays taxes T' to the
government. Demand from the household for good ¢ is therefore ¢; = p%ﬂi (w—T),
where 3; € [0, 1] is the share of household expenditure on good i, and ).\, f; = 1.
The government exogenously demands g¢; of the goods from firm ¢. The total

demand facing firm ¢ is therefore

¢ =c+g+ Z Ty (84)
JEN

The government balances its budget, T = ..\ pig;- Consider the comparative
static of the endogenous firm output ¢; with respect to the exogenous government
expenditure g; — a firm-level fiscal multiplier. Then, we can use the equilibrium
conditions to derive the following equations of state for the endogenous states {¢;},;

given exogenous shocks { gi}ie N30

0=fi(a,8)=aq—5 <1_Zgj> —gi— Y Aig (85)

JEN JEN
The Jacobian and direct effects of this model are

ofi

Vz’k = [zk - A’ika ag
J

= —Ii; + B (86)

The comparative static, equation (3), is

P D L LB SRSV WIS ARy

69 J keN keN

where (I — A)~" is the Leontief Inverse (see Carvalho and Tahbaz-Salehi, 2019 equa-

30The firms’ first order conditions imply the equilibrium price is p; = w = 1 and the equilibrium
intermediate good expenditure share is x;; = A;;g;. Inserting these, along with household demand,
and the government budget balance, into equation (84), yields equation (85).
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tion 5). The Jacobian V is always diagonally dominant (assumption 1) in this model

JjeEN\I JEN\I

Thus, theorem 1 applies to this model. The iDD degree (definition 1) is

0 = M = oy, 0_; = max o= o
|Vu‘| JEN\L
and equal to the expenditure share on intermediate inputs, ;. The sum of the direct

effects on all other nodes is

s
ki 09,

Jj=1 Zk;ﬁiﬁkzl_ﬁi
JFE 1= B+ gy Pe =21 =) — B

‘ ofi| _
dg;

The direct effects 24 satisfy equation (10) for j = i, as

0g;
of_i dfi
(S,i = 0_; 1 - i) < 1— i =
9g; =i B ’ ’891
Thus, for 7 =1, gg?, bounds on the magnitude are given by equation (11)
O [(1=)(1-a) (1=8)(1+as) 59
0gi I+ oy I — ooy
and the sign is given by equation (12)
sgn (5’;) = —sgn (V;;) sgn (ai) =—-1--1=1
For j +# i, g—g? the bounds are given by equation (13)
g i — (2—20;— Bi)a pi+(2—20;—0;i)a;
_QE{B ( B; — Bi)a 75 + ( B —Bi)a (89)
8gj 1-— a0 1— (710w,

Consider the bounds for j = i in equation (88). Theorem 1 implies these bounds

Ofi |0f=i
ox’ | Ox

in this model. That is, if one only knew the values of {a;}, ., ; and nothing else,

are sharp conditional on {V;,d;, },

, which corresponds to {Oéj}je o B
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specifically no knowledge of the input-output matrix {A;;}, N jeani Peyond {aiticn

or {B;}jean,» equation (83) is the most one can say about the maximum and minimum

9gi
dg;”

If one conditions on more information, one can say more about the comparative

values of the comparative static,

static. For instance, applying proposition 1 (see remark 1)

’3%‘ c {1 — Bi — Zk;ﬁi apBr 1— 8+ Zk;ﬁi O‘kﬁk:| (90)

8gi 1-— (6716 1-— ;e _;

945 [_5J‘ — Longtiy 6P — i (L= Bi) =B+ Dngqigy B+ i (1 — 5%')]

i

1-— ;0 1- ;g

Consider again the bounds for j = 4, this time using equation (90). Proposition 1
ofj
? Oz

to {a;, Bj}je  in this model. That is, more information is conditioned on than for

implies these bounds are sharp conditional on {ij, 0, } , which corresponds
JEN

the bounds in equation (88), and the result is that the bounds in equation (90) are
narrower (note that >, ; axf < (1 - 8;) a)

Alternatively, one can apply proposition 5, by using the fact that trade flows are
nonnegative, Vi, j # ¢ : A;; > 0. This implies that the off-diagonal elements of the
Jacobian are all nonpositive, Vi,j # i : V;; = —A;; <0, while the diagonal elements
are positive Vi : V;; = 1 — A;; = 1 > 0.3 Analogously, note that the direct effect

matrix gf !
Y

: satisfies the opposite sign pattern, Vi,j # i : g_i;i =—-14+43 <0, gz;; =
B; > 0. Thus, V;; and gg? satisfy the additional conditions required for proposition
J

5, specifically equations (73) and (74). The bounds for j = i in this case are

0g;
0g;

1-8,
’ 1— (0710w,

Comparing equation (91) to (88), it is immediate that the bound range in (91) is
narrower, again due to the proposition conditioning on a greater set of information.

The power of the bounds, from either theorem 1 or propositions 1 or 5, can
be understood by comparing them to the exact comparative static, equation (87).

First, they are identified with less information. As already highlighted, the bounds

31The off-diagonal elements of V being all negative, while the diagonal elements all positive,
translates into the feedback in this model being entirely positive: an increase in g; causes g¢; to
increase, for any ¢,j. In terms of the economics, when firm j increases their output ¢; 1, they buy
more goods from firm ¢ according to the input share A;;, and thus firm ¢ output increases, ¢; 1. This
is the only source of feedback in this model.
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require no knowledge of the input-output matrix A beyond {a;},.,,, whereas the
exact comparative static requires full knowledge of A. Second, they are much simpler
analytically. In particular, the bounds do not require a matrix inversion of I — A,
unlike in the exact comparative static.

Not requiring knowledge of the full input-output matrix A is potentially quite
powerful, because such data in simply unavailable in most settings (Pichler et al.,
2023). The results of this paper provide a way to learn about the comparative statics
in production networks without needing to observe the full supply chain network.
In particular, one only needs knowledge of the low dimensional sufficient statistics,
corresponding in this model to the total expenditure share on intermediate inputs
by each firm, «; and the expenditure share by households on each firm, g;. These
are firm level variables, rather than firm-firm level (e.g. input-output data), and are
therefore more readily available.

Not having a matrix inversion in the expression significantly increases tractability.
This allows one to derive new theoretical insights about the propagation of shocks in
production networks, which the literature has gone some way already in characterizing

(see e.g. Acemoglu et al., 2016; Carvalho et al., 2021). For example, a novel necessary

condition for the firm-level fiscal multiplier to be greater than one, gg? > 1, can be

simply derived from using the upper bound in equation (91)3?
a; > B (92)

This result implies that in a production network with any input-output matrix,
{Aitie Njenyis the fiscal multiplier on firm 4, g—gj, can be greater than one only if the
firm’s expenditure share on intermediate inputs, «;, is greater than the expenditure
share by households on the firm, ;. Discerning this property from the comparative

static exact expression, equation (87), is less straightforward, if possible at all.

C.2 New Keynesian

A classic question in macroeconomics is what is the size of the fiscal multiplier
(Ramey, 2019): the change in GDP given an increase in government spending. Par-

ticular attention has been given to when is this greater than one, as this corresponds

32Proof: % >1 = 18 S 1 — wa; > B = a > B;. The last implication used

i l—aja_y
a_; < 1, in the spirit of remark 2.
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to the case where private expenditure is not crowded out by the public expenditure
(Christiano et al., 2011). Utilizing the recently influential intertemporal Keynesian
cross framework of Auclert et al. (2024), I show how the results of this paper can
provide insight on this question.

Nodes in this framework correspond to time periods, and interactions between
nodes are described by the matrix of intertemporal marginal propensities to consume
(MPC): the spending in each period from an income shock in some period. For the
comparative statics (or more precisely, the impulse response) of GDP on government
expenditure — the fiscal multiplier — assumption 1 is satisfied under the condition
that all MPCs are strictly positive.>®> Focusing on the impact fiscal multiplier, the
effect on GDP today from deficit-financed spending today, proposition 5 can be ap-
plied to give a lower bound. This bound is potentially useful as it requires only a
fraction of the intertemporal MPCs to enumerate — an object that little is known
about empirically — while the exact value of the fiscal multiplier requires knowledge
of the entire MPC matrix. Moreover, the bound produces sufficient conditions for the
multiplier to be greater than one.

The equations of state in this framework derive from the market clearing equations
at each time period i € N/

Y,=C (Y -T)+G; (93)

where Y; is GDP (the endogenous state), G; is government expenditure (the exogenous
shock), and 7} is taxation. C; (+) is private consumption in period 4, which is a function
of after-tax income in all time periods Y — T, as agents are able to save and borrow.
In Auclert et al. (2024), the model underlying equation (93) is infinite horizon and
therefore the domain of i is {0, 1,...,00}. However the results of the current paper
require a finite domain, therefore I consider a truncation, i € N = {0,..., N}, for
some large N. This is mostly innocuous in practical terms, as Auclert et al. (2024)
also truncate when numerically solving the model.

A key object in characterizing the effect of fiscal policy is the intertemporal

- — 0C;
i = oy,

tion in period ¢ due to an income increase in period j. The government can save and

marginal propensity to consume, M; This describes the change in consump-

33 As long as the model can be mapped into the form given in section 2, the results also apply to
impulse responses.
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borrow and therefore its fiscal policy is subject to a lifetime budget constraint

G, T;
- = . 94
Z (1 "_T)l ZGZ.N’ (1 +T)Z ( )

1eEN

where r > 0 is the interest rate. 1 will focus on the comparative static corresponding

to the impact fiscal multiplier, g—gg: the change in GDP today, dYy, due to the gov-

ernment spending today, dGoy > 0 (with dG; = 0 for @ > 0), that is deficit-financed
through an arbitrary tax schedule in the future, {d7;}, .
If one assumes: 1) Vi,j : M;; > 0, and 2) there exists an n > 1 such that

dY,, > dT,,, the results in this paper imply (proof provided at the end of this section)

Yy > 1- ZjeN\{O,n} 5j5§'p

aGo - 1-— MOO (95)

where

S

. (147)7dT;
J Yieno (L+7) " dT

is the taxation share coming from period j (in present value terms) and

(96)

1 M,
(14 7r)"7 1= M,

5i=1-

is the iDD degree in this model. Assumption 1) implies that all intertemporal MPCs
are strictly positive. This rules out inferior income effects, which isn’t very restric-
tive given this is the MPC for aggregate consumption, and assumes there is some
transmission of income between all periods. This assumption is satisfied in all the
applications considered in Auclert et al. (2024) (see their footnote A-14). Assump-
tion 2) implies there is a time period where the GDP response is greater than the
taxation levied in this period. This would likely by true if we set n = 1 while having
most of the taxation during periods 7 > 1. Or if we only tax up to period n — 1 for
some n > 1, as then the restriction reduces to dY,, > 0, and we know GDP impulse
responses from fiscal spending shocks are usually nonnegative empirically (see e.g.
Ramey and Zubairy 2018).

The lower bound of the impact multiplier given by equation (95) can be intuitively

1
1—Moo

spending in period zero implies output will increase by one over one minus the static

understood as follows. The component is the “static” Keynesian cross analogue:
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MPC, My,. However, the static Keynesian cross ignores the impact of the future
taxation on today’s output. The term —3 i o) d;5] is a sufficient statistic for a
bound on this, reflecting the reduction in output today due to the negative income
effect of taxation in the future. The iDD degree §; is bounding the effect from each
future period 7, and this is weighted by the taxation share in each period, s;fp.

The iDD degree ¢; is smaller, and so the lower bound on the impact multiplier
higher, if M;; or M,,; are greater, as this corresponds to more of the negative income
effect of the tax in period j being offset by consumption reduction in period j or n,
respectively, as opposed to reducing consumption and therefore output, Yy, now.

A key feature of the lower bound of the impact multiplier in equation (95) is that
it requires substantially less information to enumerate than the point value of the
impact multiplier. To illustrate the potential value of this, suppose the government
spending is financed entirely by taxation in period 1, d77 = (1 + r) dGy, and choose
n = 2. Then, the bound becomes

) S 1—0d; Mo,

0Gy = T= Moy (1+7) (1= Moo) (1 — Myy) &7)

Only three elements of the MPC matrix are required to enumerate the bound, Mgy, M11, Moy,
while the entire N x N matrix is required for the point value. As Auclert et al. (2024)
explain, we have very little empirical evidence on most of the elements of MPC ma-
trix (typically limited to the first few elements of the first column, M; ), and those
authors resort to using a structural model to fill in the gaps. The bound dramatically
reduces this burden.

To demonstrate, suppose one assumes temporal symmetry such that My, = My
and My = M;o,>* which facilitates calibration to empirical estimates as these elements
are known: My, = 0.51, M1y = 0.18 (Fagereng et al., 2021), and set r = 0.05. The
multiplier lower bound implied by equation (97) is then 0.71. This magnitude is
non-trivial, and implies that the point value of the impact multiplier is fairly large
regardless of, for instance, the structural model one might use to set the remaining
elements of the MPC matrix.

The requirement of less information also allows one to derive sufficient conditions

on the static MPC, My, such that the multiplier is greater one, 3450 > 1. Equation

341f this symmetry holds for all elements of the matrix, M is a Toeplitz matrix, which is approxi-
mately the case (quasi-Toeplitz) for many modern macroeconomic models (Auclert et al., 2023).
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(97) immediately reveals a sufficient condition for this: Mgy > d;. Intuitively, the
positive income effect on GDP today from the static MPC, My, is sufficiently greater
than the negative income effect on GDP today from taxation tomorrow, §; (recalling
that the iDD degree bounds this). Moreover, if one continues with assuming the
aforementioned temporal symmetry, and sets My = 0.18,7 = 0.05, then the lower
bound on the static MPC such that the fiscal multiplier is greater than one is Myg >
1 - \/% = 0.59. This is very close to the empirical value of 0.51, implying that
above-unity impact fiscal multipliers would be guaranteed in this framework if static

MPCs are only slightly higher than those estimated.

Proof. Of Equation (95). Equation (93) forms the basis of the equations of state
corresponding to equation (1). However, a simplification in the comparative static
bounds can be achieved by not directly using this, instead by considering it first in

differential form. Totally differentiating equation (93) gives

ieN: 0=dY;— ) M;(dY; —dTy) — dG;

jeEN
= (dY; — dT)) = Y My; (dY; — dTy) — (dG; — dT)) (98)
JEN
=Y (I = M), (dY; — dT}) — (dG; — dTy) (99)

JEN

Solving for dY; cannot proceed directly because I — M is singular; equivalently, the
solutions dY; to equation (99) are underdetermined. This is because M obeys the

following in order to satisfy lifetime budget constraints

1
eN: 100
J ; —i—r 1+7") (100)

Because I — M is singular, there exists an eigenvector v of I — M with eigenvalue

zero. This means we can rewrite equation (99) without loss of generality as follows

PEN: 0=) (I-M);(dY; —dT; - av;) — (dG; — dT)) (101)
JEN

for any constant a € R, which reflects the indeterminacy. Essentially, the level of the
solutions dY; is not determined. The model only determines the relative values dY7,

and these are solved for by setting dY; —d7; —av; = 0 for one j, and using only N —1
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of the i equations from equation (101). I set dY,, —dT,, — av, = 0 and drop the i = n

equation, giving

ieN\n: 0= Z (I — M), (de—de—(dYn—dTn)%) — (dG; — dTy)
FJEN\n "
(102)
noting that v, > 0 (v is also an eigenvector of M with eigenvalue 1, and because
M > 0, then v > 0 by the Perron Theorem). The Jacobian of equation (102) is

{I — M}, je\n- This matrix does not satisfy assumption 1 in general, however it is

i

generalized diagonally dominant (remark 4): multiply each i equation by (14 )~

N (I—M)u< v;\ dG; —dT;
eN\n: 0=df(Y,Gy) = — 2 (dy; — dT; — (dY,, — dT, _J>_Z—¢
i N Frao) = 3 T (@i ) - ay

Edf’j
(103)

Impose some tax policy T; = T; (Gy) that satisfies budget balance equation (94)

T.
Go= S — (104)
1€EN\O (1+T)

recalling that Vi > 0 : G; = 0. Then, equation (103) is the (differential of the)
equations of state in the form I'll apply my bounds to, with ?J the endogenous state,

and Gq the exogenous shock. The Jacobian of this system is given by

J

which satisfies assumption 1 because

ie N\n: Z Vil = Z (1"‘7")7ij'

JEN\{in} jEN\{in}
= (1+r) 7 My — (L+7)" My — (1+7)" My
JEN
— (147" =+ My — (1 +7)" My,
= |Vl = (L +7)"" My,
< |Vl (106)
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where line three used equation (100), line four used V;; = (1 + T)_i (1 — M) >0 by
equation (100) and M > 0, and the last line used M > 0. The iDD degrees are given
by

> jeniiny | Viil
Vil
B > jenfimy (1FT) ~ Mj;
)T (- My)
e ()T My = (L 7) T M — (1 4+7) " My
(147" (1 — M)

()T () M = (L) M
(1+7)" My

(1) (1 - M)

where the second line used V;; > 0; the fourth line used equation (100). The direct

effects are given by®

of, 1 dG;—dT,
0Gy dGo (1 + T)i
dr,
_ _]Z de
(1+7r)
= —(1+7) Lo+ 5] (107)
r)isT . r)~I 1
The last line follows because SG = Qs Z’Sg\O(H L (1+r)" s, which used
0

the definition of s{ equation (96) in the first equality, and that } Ao (L+ ) dTy =
dGy by the budget balance equation (104) in the second equality. Thus, the lower

35Note that the dT;, term in equation (103) is part of dY and therefore is not part of the direct
effect.
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bound on the impact multiplier is derived by

dYo  d(¥ —Tp)

dG, ~ dG,
A - To) —d(, T
= dG,
dYy
_ 1
Teh (108)
1 dfo af;
> -0 5 109
Vool \ 9G ]EZN\O G, (109)
> 1 [ Yo (110)
— 1= My ]8]
JEN\O

where the first line used Ty = 0 by assumption; the second line used dY,, > dT,, by as-
sumption; the third line used the definition of Yj. The fourth line applied proposition
5 to % based on equations of state equation (103), noting that both sign condi-
tions, equatlons (73) and (74), are satisfied with s; = 1,s9 = —1. The sign of the

comparative static is determined because equation (46) is satisfied, > ;.\, d; g—&

0 ZzEN\O ;i =0_0<1= ’ Ofo ) implying a positive comparative static —sgn (V;;) sgn <8f° > =
—sgn (1 — M) sgn (—1) = 1. The lower bound from equation (75) then implies equa-
tion (109). The last line, equation (110) follows using equations (105) and (107). [

C.3 International Trade and Economic Geography

Consider the framework in Allen et al. (2020) that encapsulates many of the workhorse
models in the international trade and economic geography literature. Notably it is a
strict generalization of Arkolakis et al. (2012) under their CES demand assumption
R3’, which corresponds to the case where the scale elasticity (introduced below) is
1 = 0 (see footnote 12 in Arkolakis et al. 2012).

Nodes in this framework correspond to locations and interactions between nodes
are described by the bilateral trade flows between locations, along with the demand
and supply elasticities. For comparative statics on production prices, I show assump-
tion 1 is satisfied under precisely one of the conditions the authors give for equilibrium

uniqueness: the demand and supply elasticities are each greater than —%, and trade
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costs are quasi-symmetric. The bounds for the comparative statics (proposition 2) of
either price or the real wage with respect to trade costs depend only on the demand
and supply elasticities, the own trade share, and the trade share with the correspond-
ing location directly impacted by the trade cost shock. I draw a parallel of these
sufficient statistics to the Arkolakis et al. (2012) welfare formula.

There are i € N,j € N locations, in which an aggregate good is traded across
locations subject to iceberg trade frictions, 7,; > 0. Consumers have CES preferences,

implying demand from consumers in location j for products produced in location 7 is

S\ TP
Xij = (%) E;, where p; is the production price for products produced in location

7, Pj_¢ =D ien T pl ~® the consumer price index in j, E; is total expenditure by

consumers in 7, and ¢ € R is the demand elasticity. Quantity supplied by location ¢
is given by Q; = KG; (%)w, where ) € R is the supply elasticity, ¢; is productivity,
and k > 0 is a (possibly endogenous) scalar. The output market clears and trade is
balanced up to an exogenous deficit.

A notable case considered by the authors is the one of balanced trade and quasi-

symmetric trade costs,
. . A_B~
VieN,jeN: 1;=1"17T; (111)

where 74 > 0,78 > 0 and 7;; = Tj; > 0. Under this assumption, the production price
solves the following set of equations (see section A2.3 of Allen et al., 2020) for all
ieN

P

Lt lEvte TAN -9 o5 w 6
0= fi;(Inp,InT) = kp, ’7'LB [ —ZHT” P O (7T ) pj¢
N ~ i J/ ]GN _y g
=Y; T

(112)

where Y; = p;Q; is dollar output. These form the equations of state of the current
paper, equation (1), with the (log of) production price, In p;, as the endogenous state
and the (symmetric component of the) trade costs, In7;;, as the exogenous shock.

Using proposition 2, I derive the bounds for the comparative statics

alnle mﬁlnﬁj

Olupi _ =S v, Ok (113)
keN
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for any i € N, € N, j € N. The Jacobian is

Afi (p,T) 1+w+¢< ¢~ )
1= omp, O e—0 T Ty (114)
and the direct effects matrix
ofi _0fi(p,T) _ T of=i | _ e
Olnfy; — Olnwy 20Xl Olnfy| 2191 Z Xl (115)

leN\i

Hat algebra has been used to write both expressions in terms of observable objects
(Y, X) rather than unobservable objects (7,¢) — see Allen et al. (2020) for details,
and see Dekle et al. (2008) for the seminal paper on this. A sufficient condition for

the Jacobian to satisfy assumption 1 is
{¢ > —0.5, » > —0.5} or {¢p < —0.5, ¥ < —0.5} (116)

Allen et al. (2020) theorem 1.iii shows that equation (116) with quasi-symmetric trade
costs is sufficient for the model to have a unique interior equilibrium. To see that

equation (116) implies column diagonal dominance of the Jacobian, assumption 1,36

1+t | = A - -9 )
|Vz’i|_;|vij|_‘¢ b — {(1 '1—|—¢+¢)YZ+<1+¢+¢+’1+¢+¢)X”}

>0

where I used that % < 1 under equation (116). This last fact can be confirmed

by showing |1+ ¢ + | —|¢ — | > 0. If ¢ > —0.5,7) > —0.5, then

o2 1+o+¢ -0+ =1+29>0
p<t 1+o+¢+¢—1=1+20>0

1T+¢+9¢[—lo—9|=

36 Allen et al., 2020 prove the Jacobian is row diagonally dominant under ¢ > 0 and ¢ > 0 in
lemma 5.
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and if ¢ < —0.5,¢ < —0.5, then

p>¢ —(1+o+9)—o+9p=-1-20>0
o<t —(1+o+¢Y)+d—9p=-1-2¢>0

T+o+y[—lo—9]=

The iDD degree in this model is given by

5,‘ o | 1o

L+ 0+ 0|1+ 2

Thus, assuming the condition in equation (116), we can apply proposition 2

X..
01n p; v 1 1
11
Olnp; af; I1+¢y+¢

- _ ) - ‘) = - r 7 11

sgn (811172]-) sgn (V) - sgn ((911&7'25) sgn( — (118)
X
, Oln p; 20, Oy

l : 11

where [ used that |V;;| = ‘¢1+w+¢‘ Y; (1 + 1+¢+¢ # ) P Y , and that equation
(54) is satisfied only for the comparatives statics, gl Pe | with l = ¢ because

=2|o| | Xijlu — Z XLk
keN\i

£ —2]¢] X, <0

‘ afi

Oln 7~_lj

| ot
Oln 7~_lj

The comparative static bounds in equations (117) and (119) are enumerated with

knowledge of only the demand elasticity ¢, the supply elasticity v, the own-trade

share for ¢ )é, and the level of trade between the two countries directly affected by
the trade cost, [, j, relative to output in 7, %

I can use the above bounds on prices to also bound welfare. For a range of

canonical international trade models isomorphic to the Universal Gravity framework,

1+
the change in welfare of a worker in location i is W; = B; <%> , with B; an
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exogenous scalar (Allen et al. 2020 table 1). The change in welfare with respect to a

trade cost shock, 7;;, is then

oln W, 81n% 2¢0+1 0lnp;
=) g, = ) T B,

(120)

Oln %ij

dln 2L
where the second equality used 53 :l = 2;’:; g 11;‘7’_? L from Allen et al. (2020). Using the
ij ij

bounds and sign for Z2EL from equations (117) and (118) gives

Oln 7;;
'alnw,- ‘<1+¢)(2¢+1)’2@)§g< 11 )
—| = ~ ) (121)
AW\ 1+ ¢ +¢(1+9) (20 +1)
Sg”(alnﬁj)_sgn< -6 o—9 ) (122)

In section 4.2, I consider a proportional increase in trade costs with the rest of the

world Vj # i : dIn7;; = dIn7. The change in welfare in i is

oln7T 0ln T
JE 7
= (1+v) P
(b—i/} jeN\ialnTi]’

— (1) 2] > v} O

_ ik %
o—9 JEN\ikEN Oln Tij

> VT 20Xk1n

¢ N 1/) JEN\i,keN

The second line used equation (120); the third line used equation (113); and the
fourth line used equation (115). In deriving equation (30) in the main text, I further
set 1» = 0, which corresponds to the case of Arkolakis et al. (2012),

(9an@ .
OlnT

—220+1){V} (Yi-Xu), Vi=01+09) (Yilij + %Xﬁ)
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and use a transformed version of V;; — = v Vij for notational convenience, giving

1+¢>
equation (30). The bounds in equation (31) are derived by

Oln W, _ Z o0ln W,

OlnT ‘ O0ln 7
JE 7
:Sgn<1+¢+¢>) 1+¢ 2¢+1 %, Z X” <1 15’1 15)
;eN\zl_ Y; To L0
1+¢+¢ 1+w 2¢+ )25' 1 1
‘\N1+4+6"1-0;
2p+1 1 — i
Stk -l
B 1+6,"1—90; 1+ ¢ 1+ {548

where the second line used equations (121) and (122); and the last line set ¢ = 0
(corresponding to Arkolakis et al. 2012). Equation (31) follows by imposing ¢ > 0.

C.4 Industrial Organization: Oligopoly

Consider a canonical Bertrand oligopoly model with differentiated products from
the Industrial Organization literature (Milgrom and Roberts, 1990). This field of
study has attracted renewed attention due to the rising importance of market power
and oligopolistic industries (De Loecker et al., 2020; Azar and Vives, 2021). My
results hold particular use for emerging research permitting rich heterogeneity, often
by exploiting a network-style approach (Bimpikis et al., 2019; Galeotti et al., 2024;
Pellegrino, 2025).

Nodes in this framework correspond to products, and interactions between nodes
are described by the Hessian of demand between products, and the mark-up. For
the comparative statics on output prices, row diagonal dominance (remark 3) is im-
plied by workhorse demand structures, such as CES, logit, linear (with products
assumed substitutes), and translog (with products assumed substitutes plus an ad-
ditional restriction on the parameters).>” Milgrom and Roberts (1990) demonstrates

this property and proves its sufficiency for equilibrium uniqueness. My results imply

37Diagonal dominance has been shown to be relevant in other market structures too. The frame-
work in Dixit (1986) nests Bertrand, Cournot, market-share and competitive markets structures,
and they appeal to diagonal dominance for stability of the equilibrium. Pellegrino (2025) consider
Bertrand with a generalized hedonic-linear demand system; one can verify that their (inverse) de-
mand satisfies diagonal dominance.
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that this condition is also sufficient to bound the comparative statics. I use these to
characterize price-cost passthrough in a general asymmetric oligopoly, extending the
analysis of symmetric models in the literature (Weyl and Fabinger, 2013).

There are ¢ € N firms each producing one good with constant unit costs, ¢;, and
with demand D; (p), where p = {p;},. are the endogenous product prices. D; (p) is

assumed to be twice-continuously differentiable. The log profits of firm i are

i (p, i) = In[(pi — ¢;) D; (p)]

and the firm chooses p; to maximize ; (p, ¢;), taking all other firms’ prices as given.

The optimal price solves the first-order condition

on; 1 0ln D; (p)
0lnp; l_z%+ 0lnp; (123)
=f;(npnc)

Equation (123) corresponds to the equations of state in my framework, equation (1),
with In p the endogenous state variable, and In ¢ the exogenous shock. The Jacobian,

accordingly, is,

df; (Inp,Inc) o 9*In D; (p)
i = =— : I 124
Vi Olnp; (1_ﬂ>2 j+3lnpz-81npj (124)
Di
The second order condition is
627Ti
— \7.. 12
0> Il p? Vii (125)

which implies the diagonal of the Jacobian is negative. The direct effect matrix is

Ci

fi _ 9fi(lnp,Inc) o
Olne; Jlnc; - (1_ﬁ>

pi

3 1ij

The pass-through to p; of a change in ¢; is given by

Ip; . -1 c‘i
dc; {V }u (1_17%)2
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1- 2%
In equation (32) in the main text, I use a transformed version of V;; — ( pl) Vij
for notational convenience. In deriving the bounds on this comparative statlc, I use
proposition 3. The direct effects are only non-zero for the node shocked, Vi,j #

% = 0, as required by equation (59), and the Jacobian is row diagonally

i
dominant, as required by equation (58), across many standard demand structures for
D; (p), as explained by Milgrom and Roberts (1990) pg 1271. Specifically: CES and
logit; linear under substitutes; translog under substitutes and an additional parameter
restriction.®®

For example, CES demand is D;(p) = yp. !/ >.; D}, where 1 —r > 0 is the

elasticity substitution, and y = ). p;D; (p) is total expenditure. The Hessian of

0?1n D; (p) _ TgpiDi piD; I..
Olnp;0lnp; Y Y K

demand is

thus

D p;D; i D i D
> IVl = Zﬁp_h e (1 = >

JaN iaN y oy Y Y

o i D iLi
< b 2—|—T2py (1_1) )_‘Vz’i’

hence row diagonal dominance, equation (58), is always satisfied.

An alternative sufficient condition for row diagonal dominance is the case consid-

ered in the main text. Assume the Hessian of log demand is row diagonally dominant,

0?In D; ( 0?In D; (
' : 12
vieN '81np181np2 jz lﬁlnpzalnp] (126)
and the diagonal of the Hessian is positive
9?In D; (p)
' D 12
Vie N Ol pdTnp, >0 (127)

which implies demand is log-convex (as the Hessian of log-demand is positive semidef-

inite). For the equilibrium to be stable under these assumptions, one must restrict

38Logit requires taking the equations of state to be 0 = p , as opposed to 0 = This is an

application of remark 4, with ¢} = pi

31np
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the level of convexity. A sufficient condition is®’

9 (1 B 1%>2 — Jlnp;0lnp;

(128)

i.e. limiting how positive the diagonal of the Hessian can be. Together, equations

(126), (127), and (128) are sufficient for row diagonal dominance of the Jacobian

m 9°In D; (p) 0?1In D; (
Vil = 2 1Vl = =2 sl + Gr G| alnpalnp
JENYE (1 - p_> e N\ 10D
> w I.. 0’InD; (p) | | 9°InD; (p)
(1 — ﬁ)2 Y 0lnpdlnp; 0lnp;0lnp;
pi
. n 821n D; (p)

(1 _ ﬁ>2 E O0lnp;01n p;

pi

>0

The second line used equation (126), the third line used equations (127) and (128),
and the fourth line used equation (128).
Turning to the comparative static bounds. For the general case, the bounds for

j =1 from proposition 3 are

Op; c (1*%)2 1 1 5 — Zje/\/\i Vil
de; Vil [148:0-" 1—06:0-;] o |Vl

(129)

noting that the iDD degree is constructed using the row sum as we are using proposi-

tion 3. In the main text, I am interested in the lower bound, which can be manipulated

39 An equilibrium in this model is considered stable if the Jacobian is negative semidefinite (see
Dixit, 1986 pg 117), which is implied by equation (125) and diagonal dominance of V (the latter
being implied by equations 126, 127, and 128)
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further using §_; < 1

Opi _ (-5)" 1

_ ()
Zje,/\/’ Y]

i
Py

T en?
_ (-3)
b 92 In Dy ( 921n Dy (p)
- (l_c )2 + alnglalnpl + Z]EN\Z m
Py .
bi
(-3)
R (130)
by 921n Di(p) 82 In Dy (p)
(1_ﬁ>2 dtapdlnp; Zae/\f\z dlnp;0lnp,

Pi

where the second line used the definition of ¢; from equation (129); the third line
used the definition of the Jacobian from equation (124); and the fourth line used the
second-order condition equation (125).

The bounds under the case considered in the main text become

i
Py

2
op; G
b > S ( pl) > 1
8Ci D; 02 th p) ‘l‘ 02 lnD p)
(1_ﬁ>2 OInp;0lnp; d1np;0lnp;

Pq

where the first inequality imposed equation (126) in equation (130), and the second
inequality used equation (127). Thus, pass-through is greater than unity.

C.5 Network Games

Consider a broad class of games played on networks (Galeotti et al., 2010). These
game theoretic models capture a wide variety of economic settings, such as peer effects,
public goods and technology adoption. I consider the workhorse simultaneous-move

game with unconstrained actions and linear best replies, as reviewed in chapter five
of Bramoullé et al. (2016).
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Nodes in this framework correspond to players, which may be interpreted as, for
example, students or firms, depending on the application. Interactions are described
by the network adjacency matrix (describing, for example, a social network), and the
peer effect parameter (which modulates the strength and sign of the interactions).
For the comparative static of a player’s effort, I show that the Jacobian satisfies gen-
eralized diagonal dominance (remark 4), row diagonal dominance (remark 3) and a
variant on signed diagonal dominance (remark 5) under assumptions that are regu-
larly appealed to in the literature concerning equilibrium uniqueness, learning, and
strategic complementarities. The bounds on the comparative static of a player’s effort
with respect to their own private benefit is identified solely from summary statistics of
the adjacency matrix, such as the spectral radius, eigenvector centralities, or network
degrees, which all have independent interest in the literature. As I show, these results
are particularly useful for identifying the peer effect parameter in settings of incom-
plete network data, which is the empirically typical case (Lewis and Chandrasekhar,
2011).

Player i € N choses effort ; € R to maximize a linear-quadratic utility function

u; = priy; — %%2 +7 Z Giyicy + ¢ Z Gijyiy;
JEN JEN

G;; € R is a signed, directed and weighted adjacency matrix, whose magnitude indi-
cates the strength of the interaction between agents ¢ and j. I assume Vi : Gy; = 0 as
standard (there is no interaction with oneself). x; € R is an exogenous characteris-
tic of individual 7. The utility value of exerting effort exhibits diminishing marginal
utility and depends directly on i’s own characteristic x; with coefficient 5 € R, on its
peers’ characteristics, » N Gi;x;, with coefficient v € R, and on it’s peers’ actions,
Zje v Gijyi, with coefficient ¢ € R. The last term gives rise to strategic interactions
between players when maximizing utility. ¢ scales the magnitude of the strategic
interactions, and will be referred to as the peer effect parameter (also known as the
payoff impact parameter). ¢ and j’s actions are strategic complements when ¢G;; > 0,
and strategic substitutes when ¢G;; < 0.

The first order condition of max,, u; yields player ¢’s best reply

JEN JEN
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The second and third terms correspond to contextual and endogenous peer effects, in
the language of Manski (1993). The Nash equilibrium is the y such that all players’
best replies are satisfied, and these form the basis of the equations of state, equation

(1). Consider the comparative static of effort with respect to the individual character-

9yi
? Oz

of equation (131) as follows

o (g a
it 5ti= ) Gy (‘%W%) ! (BW) g

JEN

istic . In order to facilitate application of the bounds, first make a transformation

and consider y; = y; + %xz as the endogenous state, with x; the exogenous shock. The

equations of state are then

0=fi(@e)=5i—0) Gl — (/3 + %) i (132)

JEN

The corresponding Jacobian and direct effects are

\V afi _ Iij _ ¢Gij7 % ——— (54_ 1) ]ij

=5 oz, ;

The reason for the aforementioned transformation is that the direct effect matrix gj:
J
of this system satisfies equation (59), a necessary condition for proposition 3.1 The

comparative static of interest, gi’?, is related to this transformed system by

J
yi 9y v
= — =1 133
aﬂlj aﬂlj (b J ( )
- gl gl

={(I —¢G)" ..<6+—)——Ii- 134
{ ) }z] ¢ (/J) J ( )

where the first line used y; = y; — %xi, and the second line used equation (3) for
the system given in equation (132). The comparative static bounds will be applied
gg;, which will be used to bound gTy; through equation (133).

Diagonal dominance is satisfied under conditions typically invoked for equilibrium

directly to

uniqueness. As outlined in Bramoullé et al. (2016) section 5.4.1 (see also Bramoullé

40Whereas the direct effect matrix of the untransformed system would be —31;; — v jen Gijs
which does not satisfy equation (59) in general.
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et al. 2014), a Nash equilibrium exists and is unique if I — ¢G is invertible, and
is asymptotically stable if the spectral radius of ¢G is less than one. A sufficient
condition for both of these is |¢| u < 1, where p is the spectral radius of |G|.*! If one
also assumes G is irreducible, which is equivalent to the often invoked assumption of
the network being is strongly connected,*? in addition to |¢| u < 1, then the conditions
required for proposition 4 are satisfied (see remark 4).%3 The proposition gives the
following bounds for the comparative statics, shown for the case where (8 +% > 0 (the

bracketed term in equation 135 is flipped when [ + % <0)

T A S T
VZGN a—xl ]_—|—¢21u27 1—¢2u2 —5 (135)
Vie N,jeN\i: ‘axj v (136)

where {v;} is the eigenvector of |G| with eigenvalue p. The bracketed term in equation
(135), and the expression in equation (136), use the bounds and sign from equations
(69), (70) and (71), applied to 8~;, noting that equation (68) is satisfied for j = 4. The

ox
bounds only depend on low dimensional summary statistics of the adjacency matrix

G, which have independent interest in the literature: the spectral radius p (Ballester
et al., 2006; Bramoullé et al., 2014) and the eigenvectors v;, which correspond to the
eigenvector centralities of each node (Golub and Jackson, 2010).

I next consider a number of special cases. Suppose that G > 0 (element-wise
non-negativity) and G is row-normalized, Vi € N : 3, G = 1 (assume no i is
isolated).* This is the linear-in-means model. Here, the spectral radius equals one,

= 1. The Jacobian also becomes row diagonally dominant with §; = |¢|, and the

41 The spectral radius of |¢G| is always weakly greater than of G by Horn and Johnson (2012)
theorem 8.1.18. Under pure strategic complements, Vi, j : ¢G;; > 0, the two spectral radii are equal
because ¢G = |pG]|.

42 A network is strongly connected if any node in the network has a directed path to any other
node (Bramoullé et al., 2016, page 523). This assumption is very common in the network literature,
especially when considering learning dynamics, existence of a consensus, and eigenvector centralities
(Bramoullé et al., 2016, section 19.3.2).

43Proposition 4 uses the matrix A from equation (67), which in the present model is A;; = [¢G;;],
with p = |¢| u. Note that |G| is irreducible iff G is irreducible.

41t’s straightforward to include isolated individuals. The iDD degree for an isolated individual is
zero. The bounds in equations (137) and (138) are still valid but no longer sharp. The sharp bounds

dy; dy;
|52 < Il |32 + 7.

for isolated ¢ and non-isolated j are gz? =8, Sg? =0
i J
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bounds from proposition 3 can be applied to gi’?, noting that gi? satisfies equation

(59)

Oy | BHS BTy
VZEN. a_;CZ 1+¢2,1_¢2 —a (137)
vieNjeMi: || <242 (138)
’ 8:1:‘1 - aai ¢

where again the case [ + % > 0 is shown (and again the bracketed term in equation
137 is flipped when § + 3 < 0). If we further assume ¢ > 0 (strategic complements),
then the lower bound in equation (137) can be strengthened by noting that V satisfies
equation (73), one of the conditions for proposition 5. This implies that V also satisfies
equation (77), and therefore Vi : {V~1},, > 1, thus®

oy (s27) 2 [Er 10eEE
o |<p ip+3<0

where the first equality follows from equation (134). If one assumes sgn (5) = sgn ()
(direct and contextual effects have the same sign), then the comparative static for

7 =1 satisfies

, yi 18] + ¢l yi
Vie N : ‘3371‘ € [|B| Sy | sgn 90.) = sgn (B) (139)
where the upper bound used % < ‘fj—j; — % = %, with the inequality follow-

ing from applying equation (137) under both cases § + % = 0. Equation (24) in the
main text is derived by setting v = 0 in equation (139).
If one also assumes |y| < |8] (contextual effects are weaker than direct effects),

which is likely the typical prior as the effect of a shock tends to decay with distance,

Oyi
8901- :

Just like in the main text in section 4.1, use the upper bound for a subset individuals

equation (139) can be inverted to bound ¢ in terms of the comparative statics,

45Proposition 5 cannot be applied completely because V does not satisfy (column) diagonal dom-
inance assumption 1), but instead row diagonal dominance equation (58). One, however, can derive
an analogue to proposition 5 that applies to a row diagonally dominant V that obeys the sign
equation (73).
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N1 C N, which gives

i
8272'

1+¢>

R
el ekl ol e

iENli ‘ |B|—

And substitute 8 out using the lower bound in equation (139) for a different subset
of individuals Ny C N

ayj / Dy

L eNL,FjEN,: ¢o>1
! LJ 2 - aIJ 81’1

Which can be identified using

6>1-— |2
1

(140)

where by, by are estimated from regression equation (27) as in the main text. The
difference between the bound here and in the main text is that equation (26) requires
the stronger assumption v = 0, while equation (140) requires the weaker assumption

|v| < |8]. Accordingly, the lower bound under v = 0 is weakly greater than under

vl < 18I,
the lower bound under |fy\ < |B] is 0.47, as opposed to 0.69 under v = 0. Intuitively,

f . Using the estimate of |b2/61’ = 0.53 from table 2,

ba
by

the lower bound on ¢ is less when allowing for contextual effects because some of the

3y1

observed effect on y; from z;, Ja-s Ay be driven by the contextual effects v, and not

by the endogenous peer effect ¢.

C.6 Time Series

Consider the ARMA (p, q) model, a widely used econometric framework for time series
(Brockwell and Davis, 2016). The nodes in this framework correspond to time periods,
and interactions between nodes are described by the autoregressive lag coefficients.
For the comparative statics of the dependent variable in the econometric model, I
show assumption 1 is satisfied if the sum (in absolute terms) of all the autoregressive
coefficients is less than one. This assumption guarantees existence and uniqueness
of a stationary and causal solution. The bounds on the comparative static (theorem
1) with respect to the j lag of the independent variable in the econometric model
depends only on the absolute sum of all the autoregressive coefficients, and the ;5

lag coefficient.
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Let i € NV represents time over N periods, and {y;},., be a ARMA(p, q) process
defined by the model

p q
ieN: Yi — Z 55%‘—5 =T+ Z esxi—s (141)
s=1 s=0
where {;},. is a white noise process (definition 3.1.1 in Brockwell and Davis (2016)).

B, is the effect of y with a lag of s periods, and 6, the effect of x with a lag of s periods.

The equations of state in this model corresponds to

p q
Z‘EN: fz (yam):yi_26syi—s_xi_zgsmi—s
s=1 s=1

The Jacobian is

77777

Vij=1ILij = Piej - 1[i —p < j <] (142)
The direct effects matrix is % =—1;—0,_;-1[i—q<j<i], with
‘af—i _ ) 2 16l j=i
0; T4 en gnilfsl G710

The Jacobian V satisfies assumption 1 iff

p
D 1Bl <1 (143)
s=1
Proof. Assumption 1 is satisfied iif

Vil =Y IVl >0 (144)
i

Under the Jacobian of this model,

’ij|—Z|Vz’j‘ :1_Z‘Iij_ﬁi7j‘1[i—p§j < |
i#j i#j

=1- Z |Bs|
s=1
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where the first line used equation (142) and the second line a manipulation of the
indices. Thus, equation (144) holds iff Y °_, |5, < 1. O

The condition in equation (143) is sufficient for existence and uniqueness of a

causal, stationary solution {y;},.,, for this model as N — oco.

Proof. By Brockwell and Davis (2016) pg 75, a stationary solution exists and is unique
iff
p
1= B2 #0 (145)
s=1

for all |z| = 1 where z € C. The stationary solution is causal (y; only depends on z;
for j <) if equation (145) holds for all |z] < 1 where z € € (Brockwell and Davis,
2016 pg 75). A sufficient condition for equation (145) is

p
Re {Z Bszs} # 1
s=1
This holds under equation (143) because
p p
Re {Z 6525} <) 8=
s=1 s=1
p
< ST IA 1
s=1
p
<> 1B
s=1

<1

where the second line used the triangle inequality, the third used |z| < 1 and the last
line used equation (143) . Thus (143) is sufficient for the existence and uniqueness of

a causal stationary solution. O]

In what follows I will consider only nodes i < N — max {p, ¢} to avoid having to
complicate the notation to include boundary cases. However, the results naturally

apply to these nodes too.
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The iDD degree (definition 1) is

p
6i=> |8
s=1

Under equation (143), theorem 1 can be used to imply bounds on the comparative

static of y; with respect to x;. Suppose Y ?_, 10s] <1, then

1-370 1105 25:12\55\ 145701105 25:12\/35|
Ay +H(ZPol8))T T 1=(2hl18)
€
ox; 0= (14 a1, qpal0s]) 01 18s] 0t (14 o1, agpnal0s]) 84185 it
1= (327_,181) ’ 1=(327_,181)

AAAAA

where j € [i — ¢,i]. Note that the sign of 373’; is positive for j = i while it’s unde-
termined for j # . The bounds are identified from knowledge of only the sums of
all the coefficients on y, > 7_, |3, and the z coefficient corresponding to the shock
0i—;, and the sum of the remainder, >, ;05 Knowledge of all the coefficients

individually is not required.

C.7 Spatial Econometrics

Consider the standard spatial autoregressive model, a workhorse framework in spa-
tial econometrics (LeSage et al., 2009, section 3.1.1). The nodes in this framework
correspond to locations, and the interactions between nodes are described by the
spatial weight matrix and the spatial lag parameter. For the comparative statics of
the dependent variable in the econometric model, I show row diagonal dominance
(remark 3) is satisfied if the spatial lag parameter is less than one in absolute value.
This condition is assumed almost without exception in the literature. The bounds
on the comparative static with respect to the independent variable in any location is
identified from the spatial lag parameter and the coefficient on the exogenous local
characteristic alone; notably, the spatial weight matrix is not needed to calculate the
bounds. I show how this can be used to partially identify the spatial lag parameter
under incomplete or misspecification of the spatial weight matrix, which helps rem-

edy a key critique against the spatial econometric literature (Gibbons and Overman,
2012).
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The spatial autogressive model is

i =pY Wiy + B+ e (146)
JEN

where i € N represents locations, y and z are some endogenous and exogenous loca-
tion characteristics, respectively. W;; > 0 is the spatial weight matrix, representing
how strongly connected locations 7 and j are, often parameterized to be inversely
related to distance between the two locations. p € R is the spatial lag (or spatial
autoregressive) parameter, modulating the overall magnitude and sign of the spatial
interdependence. 3 is the direct effect of x; on y;, holding the indirect effect through
> jen Wijy; fixed. g; is the residual.

Typically in these models, the spatial weight matrix is constructed to have no
interaction within a location, Vi € N : W;; = 0, and all row sums equal to one,
Vie N : Zje]\/ Wi; = 1. The term Zje/\/ Wi;y; then represents a spatially weighted
average of y neighboring 7. Under this restriction, the parameter p is almost always
assumed to have modulus less than one (Ord, 1975; Kelejian and Robinson, 1995;
LeSage et al., 2009; Gibbons and Overman, 2012)

ol <1 (147)

This assumption implies the model has a “stable” solution (Fingleton, 1999). That
is, the variance of the system is finite even if the matrix has cycles or if N — oo.
It also ensures the model is well-defined as I — pW is invertible. The prevalence
of this assumption, however, is perhaps more rooted in computational convenience,

facilitating maximum likelihood estimation. The equations of state in this model are

0=fi(y,x) Eyi—PZVVijyj—ﬁxi—&
JEN

The Jacobian is
Vij = Lij — pWy;

and the direct effects matrix is gﬂ{; = —pL;, 80];—] = B (1 —1;;). Equation (147),

along with the fact that all row sums of (nonnegative) W equal one, implies that the
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Jacobian is row diagonally dominant,

VieN: D |Vil=> lp| Wiy <Y Wy=1=|Vy

JEN JEN JEN
And because the only non-zero direct effect is on j = i, equation (59) is satisfied and

we can apply proposition 3 to bound the comparative static. The iDD degree under

row diagonal dominance is

ngj\/ Vi _ ng/\/ |p| Wij -

51' - -

The resulting bounds are

Ay g s
14
al'ie |:1+p2’1—p2:| ( 8)
and 5 5 Pr
A Yil ~ Yi| o 1P
itis [5al <l < 12 (149)

Where the sign is determined for the j = i comparative static because equation (10)
is satisfied. Note that the second inequality in equation (149) used the upper bound
of equation (148).

The bounds are enumerated from knowledge of 3, p only; no knowledge of the
spatial weight matrix, W, is required. This is a potentially useful insight, as a diffi-
culty in spatial autoregressive models is characterizing the implications of different p
for the distribution of y, which is generally challenging due its interaction with the
spatial weight matrix, W (Conley, 2016 pg 7).

A key critique of the spatial econometric literature is that identification of p de-
pends pivotally of the specification of the spatial weight matrix W being correct (e.g.
the assumed functional form of its dependence on distance), which is typically hard
to justify (Gibbons and Overman, 2012). My bounds can be used to partially identify
p even if W is misspecified, thus alleviating this critique.

Restricting p € [0,1), one can apply the same strategy as in step 9 of section 4.1,
as the spatial econometric model equation (146) is isomorphic to the linear-in-means
model equation (14). One would use the regression in equation (27) for two subsets
of locations that differ in their position in the spatial weight matrix. For instance,

a measure correlated with centrality in W (such as trade openness or market access,
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depending on the empirical setting) would suffice. The result is a lower bound on p

(analogue to equation 26) that does not require correct or full specification of W.
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