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1 Introduction

A core purpose of modeling in economics is comparative statics: the effect of an exoge-

nous shock on an endogenous state (such as student performance, GDP, or prices).

Realistic economic models tend to be high dimensional, having many endogenous

states that interact in highly heterogeneous ways (a social network of students). A

key empirical challenge is that the comparative static of even a single state requires

complete knowledge of all model parameters (the entire network), as all states in

general respond to changes in one another (peer effects). This is often infeasible due

to data limitations (complete network data typically doesn’t exist, Bramoullé et al.,

2020). Moreover, even if one did have sufficient data, the functional form of the com-

parative static is extremely complex due to the interaction of all the states, obscuring

the economics and mechanisms, which is often of interest (highlighted, for example,

by Baqaee and Farhi, 2024; Bilbiie, 2018; Thisse, 2010).

In this paper, I develop a new tool to help solve these challenges. I derive sharp

upper and lower bounds on (the linearized) comparative statics. The bounds do

not require complete knowledge of all model parameters, instead depend only on a

set of low dimensional sufficient statistics (e.g. a student’s number of friends), the

knowledge of which is often more feasible. The functional form of this dependence is

also much simpler relative to the exact comparative static, permitting new theoretical

insights.1 The trade-off of is that the comparative static is only partially identified

— a bound — with the width of the bound depending on the value of the sufficient

statistics, therefore its practical usefulness depends on the application. Nonetheless,

because I prove the bounds are sharp, if one were to only know the values of the

sufficient statistics, the bounds are the most one can say about the maximum and

minimum values the comparative static can take.

The comparative static bounds are valid in many high dimensional, canonical

models across economics (see table 1). The only substantive assumption imposed is

that the Jacobian (with respect to the endogenous states) is diagonally dominant, a

condition often invoked for sufficiency of equilibrium uniqueness and hence its preva-

1Although not focused on in this paper, another advantage of the bounds is that they are less
computationally costly to compute, as no matrix inversion of the Jacobian is required. This com-
putational limitation is becoming increasingly important as increasingly granular data are utilized,
such as in the calculation of Leontief inverses on massive firm-firm transaction datasets (Carvalho
et al., 2021; Fujiy et al., 2024).
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lence. Diagonal dominance can be understood as the feedback in the system being

greater within a state than between states (Arrow and Hahn, 1971 pg 233: a prod-

uct is more sensitive to changes in its own price than the prices of all other products

combined). Notably, the number of states is not restricted, and neither is their hetero-

geneity beyond this assumption, thus permitting its application in high dimensional

models. I derive variations that exploit instead the spectral radius of a suitably trans-

formed Jacobian (coinciding with the adjacency matrix in social network models, of

which there is already much interest, Bramoullé et al. 2014; Golub 2025), or the sign-

pattern of the Jacobian, corresponding to the case of only positive feedback in the

system (such as Leontief input-output systems, Carvalho and Tahbaz-Salehi, 2019;

McKenzie, 1960).

The bounds help solve the aforementioned comparative static challenges because

they do not require a matrix inversion of the Jacobian, which, following from the im-

plicit function theorem, is a necessary step in the calculation of the exact comparative

static. The inverse describes the total feedback reverberation of a shock across all

nodes (a Leontief inverse in production network models), and therefore depends on

all parameters of the model, and in an analytically complicated manner, leading to

the challenges. This is especially acute in high dimensional models as the Jacobian

matrix is very large and heterogeneous. I show that one can bound the inverse using

only partial information about the non-inverted Jacobian, hence, generating low di-

mensional sufficient statistics for, and circumventing the analytic complexity of, the

comparative statics.

I demonstrate how the bounds can be used to solve three difficult problems in

the literature, while showcasing very different styles of application. Two exploit the

bounds requiring less data, with the object of interest in the first being a structural

parameter of the model, and in the second being the comparative static itself. The

third exploits the relatively simpler functional form of the bounds.

1) A key challenge in the peer effect literature is that (point) identification of the

peer effects parameter typically requires observation of the entire social network, yet

this data is usually only partially available at best (Blume et al., 2015; Bramoullé et

al., 2020; Lewis and Chandrasekhar, 2011). In the workhorse linear-in-means model,

I show that my comparative static bounds can be inverted to provide a lower bound

on the peer effect parameter. This lower bound is useful because it can be identified

without any data on the social network beyond the number of friends each person
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has, which is much more feasible to attain. Moreover, this does not require network

formation assumptions to predict the missing links, which is the solution often used in

the literature (see e.g. Breza et al., 2020). I demonstrate this using the Add Health

dataset and estimate a lower bound of 0.69, which is close to the estimated point

value of 0.78, with the latter using data on the entire social network.

2) Trade economists very regularly estimate the welfare gains from trade liberal-

izations — the comparative static of welfare with respect to trade costs — yet the

standard ex-ante sufficient statistic requires knowledge of the global network of inter-

national trade (Arkolakis et al., 2012). This data doesn’t exist going back more than

sixty years, limiting its application in economic history despite the clear interest in

doing so (Findlay and O’Rourke, 2007). I show, however, that an ex-ante sufficient

statistic for the bounds on the welfare change requires only the import share of GDP,

which is much more readily available. I calculate these bounds for the UK over the

past 800 years using data from the Bank of England. The bounds are very narrow,

being no wider than ±2.5% of the midpoint for all years prior to 1800.

3) Price-cost passthrough is one of the oldest questions in economics (Marshall,

1890). Theoretically characterizing the magnitude has been limited to models of

symmetric firms in order to keep the relationship of price to cost tractable (Dixit,

1986; Weyl and Fabinger, 2013).2 I show that my bounds generalize the established

condition (log-convexity of demand) for more than complete passthrough to general

asymmetric, many-firm models.

The outline of this paper is as follows. In section 2, I describe the general frame-

work and derive the comparative statics. In section 3, I review diagonal dominance

and present the bounds on the comparative statics. In section 4, I provide a step-by-

step guide to applying the bounds, and present the applications to problems in the

literature. In section 5, I conclude.

Literature. To my knowledge, no such general method exists to bounding both the

magnitude and sign of comparative statics in high dimensional models using low di-

mensional sufficient statistics. There is a large literature that has sought to determine

the sign (but not the magnitude) of comparative statics under the most general as-

2Highlighting the intractability of inverting a high dimensional Jacobian, Dixit (1986) writes
on pg 119 “...the matrix form is useful in clarifying why I did not think it worthwhile to examine
oligopoly with a general form of product heterogeneity. ...No structure could be imposed on its
inverse, and no meaningful results could emerge.”
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sumptions, such as the traditional qualitative economics (Bassett et al., 1967; Hale

et al., 1999) or monotone comparative statics (Barthel and Sabarwal, 2018; Milgrom

and Shannon, 1994; Quah, 2007; Villas-Boas, 1997).3 The appeal there, as in the

present paper, is that the implications about the comparative statics can be robust

to, or agnostic about, specific (quantitative) model assumptions.

The assumption of a diagonally dominant Jacobian has a long history in economics

(McKenzie, 1960), often being invoked to guarantee uniqueness or stability of equilib-

ria (Adão et al., 2023; Allen et al., 2020; Dixit, 1986; Gale and Nikaido, 1965; Hadar,

1965; Kolstad and Mathiesen, 1987) or for an invertible demand system (Berry et al.,

2013; Cheng, 1985). Diagonal dominance has also been used to characterize the sign

of comparative statics in specific frameworks, such as in competitive models (Arrow

and Hahn, 1971 theorem T.10.5), oligopoly models (Dixit, 1986), and trade models

(Allen et al., 2020; Jones et al., 1993).4 My results significantly generalize the appli-

cation of diagonal dominance, being valid in any model for which diagonal dominance

is satisfied, and establishes bounds on the magnitude in addition to the sign of the

comparative static.

The paper contributes to the vast econometrics literature on partial identification

(for surveys, see Kline and Tamer, 2023; Tamer, 2010), particularly to those applica-

tions in network models (de Paula and Tang, 2012; de Paula et al., 2018; Miyauchi,

2016). I offer a new method for deriving bounds by exploiting diagonal dominance.

By allowing one to avoid inverting a matrix, my approach is related to the literature

on weak instruments in econometrics which, to avoid near-zero denominators, relies

on the properties of the problem before matrix inversion (see, for example, Horowitz,

2021 or classic works like Anderson and Rubin, 1949).

Low dimensional sufficient statistics have related applications in various strands

of the literature. Point identification of comparative statics on welfare using sufficient

statistics have been developed using Hulten’s theorem (Hulten, 1978, see Baqaee and

Rubbo, 2023 for a recent review) and in public finance (Chetty, 2009; Kleven, 2021).

Graphical reconstruction methods predict missing links in network models using more

readily available low dimensional variables, such as aggregated relational data in social

3The Le Chatelier’s principle ranks comparative static magnitudes in the short vs the long run
(Milgrom, 2006; Dekel et al., 2023).

4A wider literature has characterized comparative static signs using diagonal dominance in con-
junction with sign restrictions (Carvalho and Tahbaz-Salehi, 2019; Carvalho et al., 2021; McKenzie,
1960; Simon, 1989). I consider this special case in remark 5.
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networks (Breza et al., 2020; McCormick and and Zheng, 2015; Sadler, 2025), and

balance sheet data in financial networks (Anand et al., 2018; Glasserman and Young,

2016).5 Sufficient conditions for equilibrium uniqueness using low dimensional sets of

parameters have been developed in the international trade and economic geography

literatures (Allen et al., 2020, 2024; Kucheryavyy et al., 2023).

The theory developed in this paper applies a result from the linear algebra litera-

ture in Ostrowski (1952), who provides bounds on the inverse of diagonally dominant

matrices. I innovate on this result by proving that the bounds are sharp, and deriving

its implications for comparative statics. The only other apparent usage in economics

of the bounds from Ostrowski (1952) is in my earlier work, Norris (2025). This is a

much more limited application of Ostrowski (1952) that does not exploit all of the

implications, and is only applied to a specific international trade model.

2 Model

Consider a system of i ∈ {1, ..., N} ≡ N nodes (e.g. agents, countries, products).

Each node has an endogenous state, yi ∈ R (e.g. the price of product i), with the

system being subject to an exogenous shock, x ∈ R, (e.g. a demand shifter of one

of the products).6 The state of all nodes are determined jointly by the following

equations of state

∀i ∈ N : 0 = fi (y, x) (1)

where y = {yj}j∈N . The function fi : RN+1 → R is continuously differentiable,

and is typically derived from the equilibrium conditions in the underlying economic

model. For example, fi (y, x) could be the excess demand for product i, with yi the

price of product i, and x a demand shifter for some product. A solution to equation

(1) corresponds to an equilibrium, and I denote this by y∗ (x); the solution needn’t

be unique. I denote by ∇ij (“nabla”) the partial derivative of fi with respect to

endogenous state yj,

∇ij ≡
∂fi (y, x)

∂yj
(2)

5Galeotti et al. (2024) consider the case where one has noisy measures of the network.
6The notation is very general: x could instead represent an aggregate shock to all nodes, or be a

scalar parameterizing a shock to a subset of nodes.
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and refer to this simply as the Jacobian throughout the paper. The dependence of ∇
on {y, x} is suppressed. Intuitively, the Jacobian describes the endogenous feedback

between nodes in the system (how the equation of state for node i responds to a

change in node j’s state). For example, if equation (1) is the system of reduced

excess demands in a pure exchange economy, then ∇ij is the cross price effect of

demand for product i with respect to price j.

Comparative statics of the system are considered by taking an infinitesimal per-

turbation in x about a solution y∗ (x), and examining the resulting change in state y.

Only first order effects are considered in this paper. Applying the implicit function

theorem to equation (1), the infinitesimal change in the state is given by

∂yi
∂x

= −
∑
j∈N

{
∇−1

}
ij

∂fj
∂x

(3)

where
∂fj
∂x

is the partial derivative of fj with respect to the exogenous shock, x, with

its dependence on {y, x} suppressed. I refer to ∂fj
∂x

as the vector of direct effects (equal

to the shift in demand in the case where fi is excess demand and x is a demand shifter

of product i). Equation (3) assumes ∇ is invertible, which is guaranteed under the

diagonal dominance assumption 1.

The comparative static ∂yi
∂x

depends on the inverse of the Jacobian, ∇−1. In-

tuitively, the matrix inverse shows up in the comparative static as it appropriately

aggregates all the endogenous feedback in the system from the shock. That is, the

effect of the shock x on the state in i incorporates not only the direct effect of x on

yi, but also the indirect effect via the changes in states of all other nodes. States in

other nodes yj ̸=i respond to a change in state yi, and this in turn causes yi to change

again. This feedback between nodes is precisely what the Jacobian describes, and the

aggregation of all this feedback throughout the system is described by the inverse of

the Jacobian.7

Two challenges confronting comparative statics arise due to the presence of the

matrix inverse. First, a single element of the inverted Jacobian ∇−1 depends on all

7This can be seen using the standard logic of the Neumann expansion,
{
∇−1

}
ij

=

1
∇jj

{(
I − ∇̃

)−1
}

ij

= 1
∇jj

∑∞
k=0

{
∇̃k
}
ij
, where ∇̃ij ≡ −∇ij

∇ii
(1− Iij). The sum converges un-

der assumption 1. See Carvalho and Tahbaz-Salehi (2019) for a discussion in the context of the
production network model.
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N×N elements of the non-inverted Jacobian∇. Consequently, complete identification

of the model’s parameters is typically required even if one is only interested in the

comparative static on a single state. Second, the functional form of this dependence

is analytically complicated, being highly non-linear in the parameters of the model

(note that ∇ is often linear in the model parameters, for instance equaling the price

effects of demand in the aforementioned examples), thus obscuring the economics and

properties. In the next section, I derive bounds on the comparative static that do not

require inverting the Jacobian. Thus, potentially alleviating these two issues.

3 Theoretical Results

I review diagonal dominance in subsection 3.1. I present my main results on bounding

comparative statics in subsection 3.2 and variations in subsection 3.3.

3.1 Diagonal Dominance

The only additional assumption imposed on the Jacobian for the main results is

assumption 1: diagonal dominance (in section 3.3, I consider alternative forms of

diagonal dominance).8 |z| denotes the absolute value of z ∈ R.

Assumption 1. (Diagonal Dominance). At y∗ (x), the Jacobian is strictly column

diagonally dominant,

∀i ∈ N : |∇ii| >
∑
j∈N\i

|∇ji|

Formally, assumption 1 is referred to as strict column diagonal dominance (see e.g.

Horn and Johnson, 2012 definition 6.1.9.); I refer to it simply as diagonal dominance

for convenience. Note that assumption 1 is sufficient for ∇ to be non-singular by the

Levy–Desplanques theorem (Horn and Johnson, 2012, theorem 6.1.10.a), and thus

∇−1 in the comparative static, equation (3), is well-defined under assumption 1. Un-

der the model in section 2, diagonal dominance has the interpretation of the feedback

within a node, |∇ii|, being greater than the feedback between nodes,
∑

j∈N\i |∇ji|.
For example, in the case where equation (1) is the system of excess demands in a

8There is an invariance in the system described by equation (1): one can rearrange the order of i
and the order of the arguments yj in f (y, x). Correspondingly, the order of the rows and columns
of the Jacobian can be rearranged without loss of generality. Assumption 1 can be applied to any
arrangement.
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pure exchange economy, assumption 1 implies that the own price effect of demand is

greater than the sum of all cross-price effects of demand (all in absolute terms), for

each price (Arrow and Hahn, 1971 pg 233).

Diagonal dominance is often invoked in sufficient conditions for equilibrium unique-

ness or stability. Local uniqueness is implied because the Jacobian is invertible (Mas-

Colell et al., 1995, proposition 17.D.1). Local stability is implied if one also assumes

the diagonal elements are all positive, ∀i : ∇ii > 0 (Hahn, 1982 theorem T.1.7c). The

combination over a closed rectangular domain implies global uniqueness (Gale and

Nikaido, 1965 theorem 4). In table 1, I show that assumption 1 is satisfied in a range

of high dimensional, canonical models across economics under assumptions (column

three) that are also typically invoked for equilibrium uniqueness or stability (column

four). See appendix C for details on these models.

In presenting the bounds, I define the following object that describes the (inverse)

intensity of diagonal dominance in the matrix.9

Definition 1. (Inverse Diagonally Dominant (iDD) Degree). For any matrix ∇, the

iDD degree of node i ∈ N is

δi ≡
∑

j∈N\i |∇ji|
|∇ii|

(4)

and the maximal iDD degree across all other nodes is

δ−i ≡ max
j∈N\i

δj (5)

with ∇ evaluated at y = y∗ (x).

Note that δi ∈ [0, 1) under diagonal dominance of ∇ (assumption 1). When ∀i :
δi = 0, then ∇ is a diagonal matrix and is therefore maximally diagonally dominant.

As any δi increases up from 0, the intensity of diagonal dominance diminishes. Hence,

δi is an inverse measure of the degree of diagonal dominance.

Under the model in section 2, δi can be understood as summarizing the exposure

of other nodes to endogenous feedback from node i, relative to the feedback within

node i. If ∀i : δi = 0, the equation of state for a given i, fi, in equation (1) does not

directly depend on any endogenous state except the state in i, yi. This is true for the

9The iDD degree is inversely related to the diagonally dominant degree, |∇ii|−
∑

j∈N\i |∇ji|, from
the linear algebra literature (Liu et al., 2010; Zhao et al., 2013). When applied to a canonical network
model, the iDD degree is proportional to the (weighted) network degree centrality, see equation (18).
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equations of state for all i. Thus, under ∀i : δi = 0, there is no endogenous feedback

between any nodes in the system (essentially reducing to a one-node model for each

node). As δi increases, the feedback between nodes increases.

Drawing on a result from Ostrowski (1952), lemma 1 presents the bounds on and

signs of elements in the inverse of a diagonally dominant matrix. sgn(z) is the sign

operator, taking values −1, 0, 1 if z < 0, z = 0, z > 0, respectively.

Lemma 1. (Bounds on Inverse Diagonally Dominant Matrices). Suppose ∇ satisfies

assumption 1, then ∀i ∈ N , j ∈ N\i

∣∣{∇−1
}
ii

∣∣ ∈ [ 1

|∇ii|
1

1 + δiδ−i
,

1

|∇ii|
1

1− δiδ−i

]
(6)∣∣∣{∇−1

}
ij

∣∣∣ ≤ δj
∣∣{∇−1

}
ii

∣∣ (7)

sgn
({

∇−1
}
ii

)
= sgn (∇ii) (8)

with ∇ evaluated at y = y∗ (x). Conditional on {∇kk, δk}k∈N , the bounds in equations

(6) and (7) are sharp.

Proof. Equations (6) and (8): Ostrowski (1952) equation (14). Equation (7): Os-

trowski (1952) equation (13). Ostrowski (1952) assumes strict row diagonal domi-

nance, whereas assumption 1 is strict column diagonal dominance. Thus, in applying

their bounds, one must replace the matrix with its transpose, notably in their equa-

tions (1) and (13). See appendix A.1 for proof of the bounds being sharp.

The power of lemma 1 is that, despite matrix inverses depending on the entire

original matrix, and in a highly complicated manner for general N , the bounds and

sign depend only partially on the original matrix, and with a very simple form for all

N . Notably, they depend only on the diagonal elements, ∇ii, and the iDD degrees, δi.

Moreover, conditional on assumption 1 and this information for all nodes, {∇ii, δi}i∈N ,

the bounds in lemma 1 are sharp. This implies there exists a ∇ with the values

{∇ii, δi}i∈N such that the bounds of equations (6) and (7) hold with equality. I

discuss this property in more detail after presenting theorem 1.

3.2 Comparative Statics Bounds

Using the results of lemma 1, I now present the bounds for the comparative statics in

theorem 1. In presenting the bounds, I use one more piece of notation for the absolute
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sum of the direct effects on all nodes other than i∣∣∣∣∂f−i∂x

∣∣∣∣ ≡ ∑
j∈N\i

∣∣∣∣∂fj∂x
∣∣∣∣ (9)

Theorem 1. (Comparative Static Bounds under Diagonal Dominance). Suppose ∇
satisfies assumption 1. If for i ∈ N ,∣∣∣∣∂fi∂x

∣∣∣∣ ≥ ∣∣∣∣∂f−i∂x

∣∣∣∣ δ−i (10)

then the magnitude of the comparative static satisfies

∣∣∣∣∂yi∂x

∣∣∣∣ ∈ 1

|∇ii|

∣∣∂fi∂x ∣∣−
∣∣∣∂f−i∂x

∣∣∣ δ−i
1 + δiδ−i

,

∣∣∂fi
∂x

∣∣+ ∣∣∣∂f−i∂x

∣∣∣ δ−i
1− δiδ−i

 (11)

and its sign

sgn

(
∂yi
∂x

)
= −sgn (∇ii) sgn

(
∂fi
∂x

)
(12)

Otherwise, the comparative static satisfies

∂yi
∂x

∈ 1

|∇ii|

−sgn (∇ii)
∂fi
∂x

−
∣∣∣∂f−i∂x

∣∣∣ δ−i
1− δiδ−i

,
−sgn (∇ii)

∂fi
∂x

+
∣∣∣∂f−i∂x

∣∣∣ δ−i
1− δiδ−i

 (13)

with both ∇ and ∂f
∂x

evaluated at y = y∗ (x). Conditional on {∇jj, δj}j∈N , ∂fi
∂x
,
∣∣∣∂f−i∂x

∣∣∣,
the bounds in equations (11) and (13) are sharp.

Proof. See appendix A.2 for the derivation of equations (11), (12) and (13). See

appendix A.1 for proof that equations (11) and (13) are sharp.

Under diagonal dominance of the Jacobian (assumption 1), theorem 1 gives upper

and lower bounds on the the comparative static ∂yi
∂x

. If equation (10) is also satisfied,

which implies the direct effect of the shock is greatest on node i (e.g. an exogenous

tax is levied mostly on product i), then the sign is also determined (note that the

interval in equation 13 includes zero when equation 10 isn’t satisfied).10 The power of

10The literature makes analogous restrictions to equation (10) on the direct effects when charac-
terizing the sign of comparative statics. For instance, “binary changes” in Arrow and Hahn (1971)
chapter 10 or equation (3) in Simon (1989).
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theorem 1 is that, analogous to lemma 1, the bounds and sign depend on only a set

of low dimensional sufficient statistics, and are analytically much simpler than the

exact comparative static.

Low dimensional sufficient statistics. The following five objects are sufficient statis-

tics for the bounds and sign of ∂yi
∂x

: the corresponding diagonal element of the Ja-

cobian, ∇ii, the associated iDD degree and the maximum across all other nodes,

δi, δ−i, and the direct effect on that node and the sum of direct effects on all other

nodes, ∂fi
∂x
,
∣∣∣∂f−i∂x

∣∣∣. They are low dimensional because, in comparison, the exact value

of ∂yi
∂x

depends on all N2 +N elements of ∇, ∂f
∂x
. Importantly, as I show in section 4,

identifying the sufficient statistics is often substantially easier than identifying ∇, ∂f
∂x
.

Sharp bounds. Conditional on assumption 1 and the values {∇kk, δk}k∈N , ∂fi
∂x
,
∣∣∣∂f−i∂x

∣∣∣,11
the bounds in theorem 1 are sharp.12 This implies there exists ∇, ∂f

∂x
consistent with

this information such that the bounds of equations (11) and (13) hold with equality.

This is a useful property because it reveals the strongest possible logical conclusion

about the maximum and minimum values of the comparative static, implied by the

given information and model assumptions (notably, diagonal dominance). Another

way of saying this is, absent further information on ∇, ∂f
∂x

— such as individual values

of ∇i,j ̸=i or
∂fj ̸=i
∂x

— and without making stronger assumptions than assumption 1,

theorem 1 is the most one can say about the maximum and minimum values of ∂yi
∂x

.13

Note that sharp does not necessarily mean narrow. The width of the bounds de-

pend on the values of the sufficient statistics, which in turn depend on the underlying

model and parameter values. I discuss the dependence of the width on the sufficient

statistics next. I show in section 4 that the width is sufficiently narrow to be useful

in a range of applications.

Form of the bounds. Figure 1 visualizes the bounds. The comparative static ∂yi
∂x

is

on the y-axis, and δiδ−i on the x-axis. Each series corresponds to a different value

11The bounds in equation (11) and (13) are enumerated under knowledge of only

∇ii, δi, δ−i,
∂fi
∂x ,

∣∣∣∂f−i

∂x

∣∣∣; the bounds are the same even if one also has knowledge of {∇kk, δk}k∈N\i.
12The interval is not proved to be sharp; it may contain non-feasible values (Manski, 2003 pg 12).
13If one knows more — e.g. some off-diagonal term ∇i,j ̸=i — then narrower bounds may be

possible (Kline and Tamer, 2023 pg 130). Section 3.3 explores some alternative information sets and
assumptions, though bounds under an arbitrary information set is beyond the scope of this paper.
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of δ−i

∣∣∣∂f−i∂x

∣∣∣ / ∣∣∂fi∂x ∣∣.14 The bounds are shown in the case of −sgn (∇ii) sgn
(
∂fi
∂x

)
= 1

(multiply all lines by negative one for the case −sgn (∇ii) sgn
(
∂fi
∂x

)
= −1).

Start with the special case where the shock only directly affects node i, ∀k ̸= i :
∂fk
∂x

= 0, which corresponds to the case δ−i

∣∣∣∂f−i∂x

∣∣∣ / ∣∣∂fi∂x ∣∣ = 0 given by the black-solid

line in the figure. This condition implies equation (10) holds, with the bounds on the

comparative static magnitude given by equation (11), and the sign given by equation

(12), which is positive. Moreover, assume either δi = 0, there is no feedback from

node i to all other nodes, or δ−i = 0, there is no feedback from other nodes onto node

i. Then, the magnitude of the bounds from equation (11) imply point identification

of the comparative static magnitude,
∣∣∂yi
∂x

∣∣ = | ∂fi∂x |
|∇ii| , corresponding to the point on the

black-solid line intersecting the y-axis. This is precisely equal to the case of a one-

node model, where fi (y, x) = fi (yi, x). The comparative static equals the negative

of the direct effect ∂fi
∂x

multiplied by the reciprocal of ∇ii (the matrix inverse reduces

to the reciprocal of the diagonal), capturing the within-node feedback on the state

from the direct effect. The comparative static sign is clearly given by equation (12).15

As the feedback between node i and the other nodes increases from zero, δiδ−i > 0,

the comparative static bounds in equation (11) become∣∣∣∣∂yi∂x

∣∣∣∣ ∈
∣∣∂fi
∂x

∣∣
|∇ii|

[
1

1 + δiδ−i
,

1

1− δiδ−i

]

Intuitively, a “window” around the no feedback case,
| ∂fi∂x |
|∇ii| , opens up, with a greater

width the greater the feedback, δiδ−i, is. Correspondingly, the upper and lower bounds

in figure 1 for the black-solid line diverge as δiδ−i increase. The window reflects

the impact on the comparative static of the between-node feedback, enveloping the

impacts that would arise across all permissible configurations of feedback, given by

the set of ∇ consistent with the sufficient statistics ∇ii, δi, δ−i. As the iDD degrees

increase, the set of permissible ∇ expands, and the window widens. As a benchmark,

at the middle of its domain, δiδ−i = 0.5, the upper (lower) bound is one third above

(below) the midpoint of the bounds, as shown by the arrow on figure 1.

In the limit of δiδ−i → 1, the permissible feedback can be so strong that the upper

14
∣∣∣∂fi∂x

∣∣∣ ̸= 0 is assumed in figure 1 for cleaner exposition. This is not required for theorem 1.
15Intuitively, if ∂fi

∂x > 0, then, in response to an increase in x, yi will adjust to bring fi back down
to zero. This requires an increase in yi, and hence a positive comparative static, if ∇ii < 0.
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bound on the magnitude approaches infinity (∇ is possibly singular if ∀j : δj = 1).

That is, under assumption 1 the maximum amplification in the system arising from the

between-node feedback is unbounded. The lower bound, on the other hand, remains

finite, with a minimum of 0.5 · |
∂fi
∂x |

|∇ii| at δiδ−i = 1. That is, the maximum attenuation is

limited to one half of the value of the no feedback case. Hence, the comparative static

sign relative to the no-feedback case cannot be overturned under diagonal dominance,

and thus continues to be determined by the same condition, equation (12).

If the shock also directly affects other nodes, δ−i

∣∣∣∂f−i∂x

∣∣∣ / ∣∣∂fi∂x ∣∣ > 0, then the bounds

across all levels of feedback, δiδ−i, are wider. This reflects the additional impact on

the state in i due to the changes in state of other nodes, arising due to these direct

effects. The red-dashed and blue-dotted line in figure 1 show this for δ−i

∣∣∣∂f−i∂x

∣∣∣ / ∣∣∂fi∂x ∣∣
equal to 0.5 and 1 respectively. As long as the direct effects on other nodes are

not too strong, i.e. equation (10) holding, then this additional impact on yi is not

enough to cause a change in the sign of the comparative static. The turning point

is δ−i

∣∣∣∂f−i∂x

∣∣∣ / ∣∣∂fi∂x ∣∣ = 1 as its lower bound is precisely zero for all values of δiδ−i. As

the direct effects on other nodes are increased beyond this point (roughly, the shock

is directly incident more on other nodes than it is on i), violating equation (10), the

lower bound drops below zero. The green-dot-dash line in figure 1 demonstrates this

for δ−i

∣∣∣∂f−i∂x

∣∣∣ / ∣∣∂fi∂x ∣∣ = 1.5. The bounds in equation (13) are used for this case, and

the sign can no longer be determined without more information about ∇, ∂f
∂x
.

3.3 Variants of the Comparative Static Bounds

Remark 1. Conditioning on More Information. Theorem 1 only uses partial knowl-

edge of the vector of direct effects,
{
∂fk
∂x

}
k∈N , specifically the direct effect on i, ∂fi

∂x
,

and the sum of the direct effects on all other nodes
∣∣∣∂f−i∂x

∣∣∣. In proposition 1 in the

appendix, I present the bounds conditional on knowledge of all the direct effects,{
∂fk
∂x

}
k∈N . I apply this result in section C.1.

Remark 2. Conditioning on Less Information. Theorem 1 requires knowledge of the

maximal degree across of all other nodes, δ−i. In proposition 2 in the appendix, I

present the bounds without conditioning on this. I apply this result in section 4.2.

Remark 3. Row Diagonal Dominance. Assumption 1 is column diagonal dominance

14



of the Jacobian, ∇. Alternatively, one could assume ∇ is row diagonally dominant:

this is equivalent to the transpose of ∇ satisfying assumption 1. I present this result

in proposition 3 in the appendix. This result is applied in sections 4.1, 4.3 and C.7.

Remark 4. Generalized Diagonal Dominance. The solutions to the equations of

state, equation (1), are invariant up to a transformation, gi [fi (y, x)] = 0, for any

injective, continuously differentiable function gi. The Jacobian associated with these

transformed equations of state is g′i∇ij, where g
′ is the derivative of g. Assumption

1 applied to this transformed system is ∀i ∈ N : |g′i| |∇ii| >
∑

j∈N\i

∣∣g′j∣∣ |∇ji|, a

condition referred to as generalized diagonal dominance of ∇ (Gao and Wang, 1992).

This provides extra scope for applying theorem 1: if ∇ does not satisfy assumption

1, but there exists a g′ such that g′i∇ij does, then theorem 1 can still be applied with

∇ij → g′i∇ij (also in definition 1) and ∂fi
∂x

→ g′i
∂fi
∂x

. This form of diagonal dominance

is considered in e.g. McKenzie (1960) pg 275 and Arrow and Hahn (1971) pg 233. I

apply this in section C.2 (equation 103) and discuss this in section C.4 (footnote 38).

I present a notable application in proposition 4, where g′i is equal to the Perron

eigenvector of a transformed version of the Jacobian. ∇ is generalized diagonally

dominant if the transformed Jacobian is irreducible and has a spectral radius below

one. In models of network games (section C.5), this corresponds to the spectral radius

of the adjacency matrix, which is of independent interest (Golub, 2025).

Remark 5. Signed Diagonal Dominance. Theorem 1 does not make any assumption

on the sign of∇. If in addition to assumption 1, one assumes all the diagonal elements

have the same sign, and all the off-diagonal elements have the opposite sign, with an

analogous assumption for the direct effects, then one gets narrower bounds. I present

this in proposition 5 in the appendix. This condition corresponds to only positive

feedback between nodes, with ∇ (or −∇, if the diagonal is negative) becoming an

M-matrix (Johnson, 1982; Horn and Johnson, 1991, chapter 2.5).

Two workhorse models this includes are Leontief input-output systems (e.g. McKen-

zie, 1960 theorem 4; Simon, 1989; Carvalho et al., 2021) and, with slight adjustment,

competitive models under gross substitutes (e.g. Arrow and Hahn, 1971 chapters 9-

10).16 In each, all diagonal elements of the Jacobian are positive, all off-diagonals are

16Gross substitutes satisfies the sign pattern, but is row, generalized diagonally dominant (see
Arrow and Hahn, 1971 pg 233-234), rather than column diagonally dominant (assumption 1). One
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nonpositive, and the Jacobian is diagonally dominant. These papers have correspond-

ingly characterized the sign of the comparative statics under these conditions. My

results build on this by characterizing the comparative static sign without restricting

the sign of the Jacobian ∇ (theorem 1), and bounding the magnitude, with or without

restrictions on the Jacobian sign (proposition 5 and theorem 1, respectively).17

I apply proposition 5 to the peer effect model under pure strategic complements

(section 4.1), the baseline production network model (section C.1), and the New

Keynesian model under no inferior income effects (section C.2).

4 Applications

I provide a step-by-step guide of applying the bounds in section 4.1, using the ubiq-

uitous linear-in-means model as an example. In the remainder of section 4.1, and

in sections 4.2 and 4.3, I detail how the bounds can be used to solve three difficult

problems in the literature. In appendix section C, I derive the comparative static

bounds in all the models listed in table 1, demonstrating its broad applicability in

high dimensional models (many heterogeneous nodes with heterogeneous interactions)

across the economics discipline.

4.1 Step-by-Step Guide using the Linear-in-Means Model

The workhorse linear-in-means model is used in many settings analyzing how networks

shape economic outcomes or individual decision making (Bramoullé et al., 2016). A

prevalent application is on peer effects and will be the focus of this section, though

the results generalize. The linear-in-means model is18

yi = βxi + ϕ
∑
j∈N

Gijyj (14)

where yi is the outcome of individual i ∈ N (e.g. the GPA of student i), xi is

an exogenous characteristic (e.g. student gender) and β ∈ R the direct effect of

could derive an analogue of proposition 5 that applies to this form of signed diagonal dominance, by
combining the insights of propositions 3 (row), 4 (generalized) and 5 (signed).

17Arrow and Hahn (1971) theorem T.10.5 characterizes the comparative static sign under row,
generalized diagonal dominance, without gross substitutes.

18Appendix C.5 provides more details, a microfoundation using network games, and includes
contextual peer effects.
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the characteristic on the outcome. Gij ∈ [0, 1] is the weighted adjacency matrix

whose magnitude indicates the strength of the interaction between agents i and j.

The adjacency matrix is directed (G is not necessarily symmetric); row-normalized

∀i ∈ N :
∑

j∈N Gij = 1, so that
∑

j∈N Gijyj is an average;19 and there is no self-

interaction ∀i ∈ N : Gii ≡ 0 by convention. ϕ ∈ R is the peer effect parameter: the

causal effect of i’s peers’ outcomes
∑

j∈N Gijyj on i’s outcome yi. ϕ > (<) 0 implies

strategic complements (substitutes).

Step 1: Map the notation. Define the comparative static of interest and identify the

nodes i, endogenous states yi, and exogenous shock(s) x.

Suppose we are interested in the comparative static of individual outcome yi with

respect to the individual characteristics xj. Then, the nodes are individuals i ∈ N ,

the endogenous states are individual outcomes yi, and the exogenous shocks are in-

dividual characteristics xj. This is a case where we have N potential shocks.

Step 2: Equations of State. Derive equation (1).

A minor rearrangement of the linear-in-means model equation (14) gives

0 = fi (y,x) ≡ yi − βxi − ϕ
∑
j∈N

Gijyj (15)

Step 3: Jacobian and Direct Effects. Derive ∇ (equation 2) and
∂fj
∂x

.

The Jacobian is equal to the derivative of the equations of state, equation (15), with

respect to the individual outcomes,

∇ij ≡
∂fi
∂yj

= Iij − ϕGij

Feedback in this model, as described the Jacobian, corresponds to the strength of the

peer effects between individuals as determined by the peer effect ϕ parameter and the

adjacency matrix Gij. The direct effects are equal to the derivatives of the equations

of state with respect to the individual characteristics

∂fi
∂xj

= −βIij

19For convenience, I abstract from the possibility of isolated individuals (an individual that has
no peers). However, the presented bounds remain valid for isolated individuals.
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The comparative static, equation (3), in this model is

∂yi
∂xj

= −
∑
k∈N

{
∇−1

}
ik

∂fk
∂xj

= β
{
(I − ϕG)−1}

ij
(16)

Step 4: Diagonal Dominance. Determine if and when ∇ satisfies assumption 1.

The Jacobian ∇ in this model satisfies assumption 1 in this model iff ∀i ∈ N

|∇ii| >
∑
j∈N\i

|∇ji|

1 > |ϕ| gi (17)

i.e. the product of the (magnitude of the) peer effect parameter |ϕ| and the network

in-degree gi ≡
∑

j∈N\iGji (a function of the number of individuals reporting that i

is their peer) has to be less than one. This is satisfied if the feedback in the system

due to peer effects is not too large, i.e. |ϕ| or gi is sufficiently small.

Step 5: iDD Degree and Sum of Direct Effects on Other Nodes. Derive δi (definition

1) and
∣∣∣∂f−i∂x

∣∣∣ (equation 9).

δi ≡
∑

j∈N\i |∇ji|
|∇ii|

= |ϕ|
∑
j∈N\i

Gji = |ϕ| gi (18)

The iDD degree for individual i is equal to the absolute peer effect parameter |ϕ|
multiplied by their in-degree gi, reflecting the amount of feedback in the system.

Note that δi = |ϕ| gi ∈ [0, 1) under equation (17). The maximal iDD degree across all

other nodes is δ−i = maxj∈N\i |ϕ| gj ≡ |ϕ| g−i. The direct effects on other nodes is∣∣∣∣∂f−i∂xj

∣∣∣∣ ≡ ∑
k∈N\i

∣∣∣∣∂fk∂xj

∣∣∣∣ = ∑
k∈N\i

|βIkj| = |β| (1− Iij)

Step 6: Apply the Bounds from Theorem 1. Check for which nodes equation (10)

holds, and apply the bounds from equations (11), (12) and (13) accordingly.

Assume equation (17) holds so that assumption 1 is satisfied. For the comparative
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statics, ∂yi
∂xj

, equation (10) of theorem 1 holds when j = i, as

∣∣∣∣∂fi∂xi

∣∣∣∣ = |β| ≥ 0 = δ−i

∣∣∣∣∂f−i∂xi

∣∣∣∣
Thus, for j = i, ∂yi

∂xi
, bounds on the magnitude are given by equation (11)∣∣∣∣∂yi∂xi

∣∣∣∣ ∈ [ |β|
1 + ϕ2gig−i

,
|β|

1− ϕ2gig−i

]
(19)

and its sign by equation (12)

sgn

(
∂yi
∂xi

)
= −sgn (∇ii) sgn

(
∂fi
∂xi

)
= − · 1 · sgn (−β) = sgn (β) (20)

For j ̸= i, ∂yi
∂xj

, bounds are given by equation (13)

∂yi
∂xj

∈
[
− |ϕβ| g−i
1− ϕ2gig−i

,
|ϕβ| g−i

1− ϕ2gig−i

]
(21)

but the sign is not determined (note that the bounds in equation 21 include zero).

Step 7: Variants on the Bounds. Consider the variants on theorem 1 given in section

3.3, especially if assumption 1 doesn’t hold.

Assumption 1 for this model, equation (17), is restrictive if there are particularly

central individuals in the network: i such that many other individuals report them as

peers, leading to a high gi. The row diagonal dominance variant (remark 3), however,

is much less restrictive.20 Row diagonal dominance, equation (58), is satisfied if

|∇ii| >
∑
j∈N\i

|∇ij|

1 > |ϕ| (22)

using
∑

j∈N\iGij = 1 (the out-degree is equal to one) because G is row normalized.

Equation (22) is often invoked in linear-in-means models as it is sufficient for a unique

and stable equilibrium (see Bramoullé et al. 2016 section 5.4.1). Using proposition 3,

20In appendix C.5, I also apply the variant of remark 4.
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the iDD degree is ∀i ∈ N : δi = |ϕ| and the comparative static bounds are

∀i ∈ N , j ∈ N\i :
∣∣∣∣∂yi∂xi

∣∣∣∣ ∈ [ |β|
1 + ϕ2

,
|β|

1− ϕ2

]
,

∣∣∣∣∂yj∂xi

∣∣∣∣ ≤ |ϕ|
∣∣∣∣∂yi∂xi

∣∣∣∣ (23)

with the comparative static sign continuing to be given by equation (20). If one further

assumes strategic complements, ϕ ≥ 0, which is the more common case empirically

(e.g. in the broad class of settings with social multipliers, Glaeser et al. 2003, such as

in education, Calvó-Armengol et al. 2009), then the Jacobian becomes an M-matrix

(see remark 5) and the lower bound in equation (23) can be strengthened giving

∀i ∈ N :

∣∣∣∣∂yi∂xi

∣∣∣∣ ∈ [|β| , |β|
1− ϕ2

]
(24)

Step 8: Low Dimensional Sufficient Statistics, Sharpness and Width of the Bounds.

Theorem 1 implies that conditional on the low dimensional sufficient statistics, {∇jj, δj, }j∈N
∂fi
∂x
,
∣∣∣∂f−i∂x

∣∣∣,
which correspond to the parameter set |ϕ| , {gj}j∈N , β in this model, the bounds on
∂yi
∂xj

in equations (19) and (21) are sharp. That is, if one only knew the values of

|ϕ| , {gi}i∈N , β and nothing else, notably no knowledge of the adjacency matrix Gij

beyond the in-degrees {gi}i∈N , equations (19) and (21) are the most one can say

about the maximum and minimum values the comparative static, ∂yi
∂xj

, can take.

If one conditions on a different information set, the associated sharp bounds will

also be different in general. This is illustrated by equation (23), which conditions on

|ϕ| , β, the out-degrees (which all equal one) and the assumption given in equation

(22), as opposed to equation (19), which conditions on |ϕ| , β, the in-degrees {gi}i∈N ,

and the assumption given in equation (17).

The width of the bounds depend on the values of the low dimensional sufficient

statistics. Consider equation (23): these bounds are sharp for all values of the low

dimensional sufficient statistic |ϕ| < 1, however their width depends on the value

of |ϕ|, being wider when |ϕ| is larger. For example, the bounds are one third above

and below the midpoint when |ϕ| =
√
0.5 ≈ 0.71 (see figure 1 noting that δiδ−i = |ϕ|2).

Step 9: Application of the Bounds. Use the bounds to aid in settings of incomplete

knowledge of model parameters, or characterization of comparative static properties.
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The advantage of the bounds is that, compared to the exact comparative static,

equation (16), they depend on fewer model parameters (notably G), and have a much

simpler functional form (avoiding the inversion a potentially large matrix, I − ϕG).

I show how this can be used when interest is in a structural parameter of the

model. In this case, the peer effect parameter, ϕ, about which there is considerable

attention in the literature (see Bramoullé et al. 2020 for a recent survey).21

A key challenge in this literature is that point identification of ϕ requires complete

knowledge of G in general, while one typically only partially observes G (Blume et

al., 2015; Lewis and Chandrasekhar, 2011). An increasingly large number of recent

papers have developed methods to restore point identification by imposing additional

assumptions on the data-generating process of G.22 I show that one can alternatively

use my bounds to partially identify ϕ given only partial knowledge of G, without

needing to resort to additional assumptions on G. In particular, no bilateral network

data is required; the number of peers each individual has is sufficient.23

To proceed, assume ϕ ∈ [0, 1) and invert the relationship in equation (24) to bound

ϕ conditional on ∂yi
∂xi

. This is useful because we often more readily have information

on ∂yi
∂xi

, which is identified from exogenous variation in an individual characteristic x.

Inverting the upper bound in equation (24) for a subset of individuals N1 ⊂ N yields

i ∈ N1 : ϕ ≥

√
1−

∣∣∣∣β/∂yi∂xi

∣∣∣∣
β can then be substituted out using the lower bound in equation (24) for a different

subset of individuals N2 ⊂ N

i ∈ N1, j ∈ N2 : ϕ ≥

√
1−

∣∣∣∣∂yj∂xj

/∂yi
∂xi

∣∣∣∣ (25)

Because this bound holds for all i, j within each subset, and because the comparative

21I discuss in section C.7 how one could analogously apply this method to identify the spatial lag
parameters in spatial econometric models.

22For example, by assuming sparsity (Blume et al., 2015), by parameterizing the network formation
process (Auerbach, 2022; Breza et al., 2020; Lewis and Chandrasekhar, 2011) in order to implement
graphical reconstruction, or by assuming that one observes many instances of the network (de Paula
et al., 2024; Lewbel et al., 2023).

23This is reminiscent of using aggregated relational data for identification without bilateral network
data, however those methods also require assumptions on the network formation process underlying
G (Breza et al., 2020; McCormick and and Zheng, 2015).
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statics all have the same sign (by equation 20), then equation (25) holds for averages

of the comparative statics within each subset of individuals. In particular,

ϕ ≥

√
1−

∣∣∣∣b2b1
∣∣∣∣ (26)

where bk is estimated from the following regression for k ∈ {1, 2}

i ∈ Nk : yi = bkxi + εk,i (27)

assuming xi is exogenous, i.i.d. and mean zero, and εk,i is the residual.
24 The intuition

for equation (26) is as follows. Two groups of individuals can have different compara-

tive statics, and therefore bk, only because of heterogeneous exposure to peer effects,

arising from being in different positions in the network G (specifically,
{
(I − ϕG)−1}

ii

in equation 16). My theory shows that the range of values that the comparative static

can take across any position in the network is determined by ϕ — equation (24).

Hence, one can infer how large ϕ must at least be in order to rationalize any observed

difference in the comparative statics,
∣∣∣ b2b1 ∣∣∣, which is equation (26).

Equation (26) is decreasing in
∣∣∣ b2b1 ∣∣∣, so choosing two subsets N1,N2 that lead to

greater differences in the comparative statics will be more informative on ϕ. Limited

information on G is sufficient for this choice. For example, using the number of peers

an individual i has, ni, as the comparative static is likely quite different for individuals

with few vs many friends.25 Note that even an imperfect measure of ni (such as due

to censoring) is viable as the bounds are valid under any choice of subsets N1,N2.

This provides a method of partial identifying ϕ with very limited information on

G, while point identification of ϕ requires complete knowledge of the entire bilateral

24The regression coefficient identifies bk =
∑

i∈Nk
E[yixi]∑

i∈Nk
E[x2

i ]
= 1

|Nk|σ2
x

∑
i∈N E

[∑
k∈Nk

∂yi

∂xk
xkxi

]
=

1
|Nk|

∑
i∈Nk

E
[
∂yi

∂xi

]
where σ2

x is the variance of x (exogenous stochastic G is permitted). The second

equality used that the solution yi of equation (14) is linear in x and the third used that xi is i.i.d.

Because all ∂yi

∂xi
have the same sign, then |bk| = 1

|Nk|
∑

i∈Nk
E
[∣∣∣ ∂yi

∂xi

∣∣∣].
25The dependence in the simple case where everyone is connected to each other within their subset

with equal intensity, and to no-one outside, is
{
(I − ϕG)

−1
}
ii
=

ni+
ϕ

1−ϕ

ni+ϕ .
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network G. The latter is usually implemented using the following regression

yi = βxi + ϕ
∑
j∈N

Gijyj + ε̃i (28)

with
∑

j∈N Gijyj instrumented by
∑

j∈N Gijxj (Bramoullé et al., 2009). These terms

can be constructed, and therefore the estimation is feasible, only if G is fully known.

I illustrate this using the Add Health dataset (https://addhealth.cpc.unc.

edu), which has been used abundantly for the analysis of peer effects (see Calvó-

Armengol et al. 2009 for early work). The data comes from surveys of adolescents

who were in grades 7-12 during the 1994-95 school year. Variables include student

characteristics, school performance, and partial data on friendship networks (identities

of the top ten friends). I consider yi to be student i’s GPA, and xi to be gender (equal

to one if female, zero otherwise). Thus, β is the direct effect of a student’s gender on

their GPA, and ϕ the causal effect on their GPA of their friends’ GPA.

The results are presented in table 2. In all columns I include a list of control

variables as in Bramoullé et al. (2009) (up to the limitations of the public-use sample).

I choose the subsets based on the number of friends reported by each student i, ni,

with N1 : ni ≤ 4 and N2 : ni ≥ 5. Columns (1) and (2) are the regressions in equation

(27) for each subset. This yields
∣∣b2/b1∣∣ = 0.53, giving ϕ ≥ 0.69 using equation (26).

For comparison, column (3) is the regression in equation (28) using the observable G,

giving a point estimate of ϕ = 0.78. Thus, the bound on ϕ, which uses data on only

the number of friends, is quite close to the point estimate of ϕ, which uses data on

the entire observable friendship network. Moreover, the latter may be biased as G

is only partially observed (censored without relationship intensity) while the bounds,

recall, are still valid, even though the implied ni may be mis-measured.

4.2 Gains from Trade Liberalizations

A primary question in the International Trade literature is what are the welfare

gains from reducing international trade costs? This is often operationalized using a

quantitative trade model to calculate the comparative static of country i (the nodes)

welfareWi (the endogenous state) to a change in trade costs τ (the exogenous shock).

The seminal paper Arkolakis et al. (2012) proved that, in many standard trade models,

this can be calculated from knowledge of only the own-import share Xii/Yi before and
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after the trade cost shock, and the trade elasticity ϕ > 0 (often equal to one plus the

cross-country elasticity of substitution). Specifically,26

∂ lnWi

∂ ln τ
= −1

ϕ

∂ ln (Xii/Yi)

∂ ln τ
(29)

where Xij is the trade flow from country i to j and Yi ≡
∑

j∈N Xij is GDP. An impor-

tant limitation of equation (29) is that it is an ex-post sufficient statistic: knowledge

of Xii/Yi after the shock is required. One cannot in general simply use the observed

Xii/Yi after the trade cost τ change because there may be confounding shocks (say,

from concurrent changes in productivity). One also cannot apply equation (29) to

counterfactual liberalizations as the own-import share after is not observable.27 That

is, equation (29) can only be applied to observable, exogenous changes in τ .

The alternative approach that does not require post-shock information — an ex-

ante sufficient statistic — instead requires knowledge of the full matrix of bilateral

trade flows before the shock {Xij}{i,j}∈N 2 (proposition 2 vs 1 in Arkolakis et al., 2012).

Although this has the advantage of being applicable to endogenous or unobservable τ ,

it is infeasible when the full trade flow matrix is not known because of data limitations.

I show that the ex-ante sufficient statistic requires only Xii/Yi before the shock

(and ϕ) for the bounds on the welfare change, in the case where τ is a proportional

increase in country i trade costs with the rest of the world.28 This is a significantly

reduced data requirement; moreover, with the bounds being sharp, this is the most

one can say about the welfare change without more data on the trade matrix. I require

an additional assumption, though, relative to the aforementioned ex-ante sufficient

statistic, of quasi-symmetric trade costs (symmetric up to an origin and destination

shifter), but this is a fairly common modeling restriction (Allen et al., 2020).

Under these assumptions, the ex-ante sufficient statistic for the point value of the

welfare change is (see appendix C.3 for the full details and derivation)

∂ lnWi

∂ ln τ
= −2

1 + 2ϕ

1 + ϕ

{
∇−1

}
ii

(
1− Xii

Yi

)
, ∇ij = Iij +

ϕ

1 + ϕ

Xij

Yi
(30)

26Equation (29) holds with arbitrary changes in τ , as noted in Arkolakis et al. (2012). I present
the differential form to allow cleaner comparison to my bounds, which hold only in differential form.

27Except in the special case where the country is in autarky after the trade cost change. Then,

the change in welfare is equal to ln (Xii/Yi)
1/ϕ

(see Arkolakis et al., 2012 corollary 1).
28See equation (121) in the online appendix for the general case.
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As noted above, the full trade matrix {Xij} before the shock is required. The Jacobian
∇ in this model captures feedback between countries (the nodes) that arises due to

demand substitution: if prices fall in one country, other countries consume more from

them. This feedback is stronger if the trade elasticity ϕ is higher, and if countries

buy more from each other,
Xij
Yi

.

Assumption 1 is satisfied and one can apply the results of proposition 2 (so that

knowledge of δ−i, and therefore ∀j ∈ N\i : Xjj
Yj

, is not required, see remark 2)

−∂ lnWi

∂ ln τ
∈ 2ϕ+ 1

ϕ
2δi

(
1

1 + δi
,

1

1− δi

)
, δi =

ϕ

1 + ϕ

1− Xii
Yi

1 + ϕ
1+ϕ

Xii
Yi

(31)

The bounds on the welfare change given in equation (31) only require knowledge of
Xii
Yi

before the shock; Xii
Yi

after the shock is not needed (in contrast to equation 29),

and the full trade flow matrix is not needed (in contrast to equation 30).

I apply this in a prominent setting where the data limitation is binding: economic

history. Data on the full trade matrix is only available after 1962 (with the introduc-

tion of the Comtrade dataset), yet the gains from trade is still a question of interest

before this period (Federico and Tena, 1991; Findlay and O’Rourke, 2007). Nonethe-

less, we do have data on total imports, IMi ≡
∑

j∈N\iXji, and GDP (and therefore

Xii) for some countries much further back in time (Federico and Tena-Junguito, 2017;

Müller et al., 2025). Thus, partial identification of ∂ lnWi

∂ ln τ
using equation (31) is feasi-

ble, while point identification using equation (30) is impossible.

I calculate the bounds on ∂ lnWi

∂ ln τ
for the UK over the past 800 years using data

from the Bank of England (“A millennium of macroeconomic data”, https://www.

bankofengland.co.uk/statistics/research-datasets). I set ϕ = 8 following

Jacks et al. (2011); Mitchener et al. (2022). Figure 2a presents the results. The

bounds are wider in more recent times, with a width of ±15% relative to the mid-

point from the year 2000 onwards, and much narrower further back in time, being

less than ±2.5% for all years before 1800. This is useful given it is precisely further

back in time when we do not have the bilateral trade data and so may want to rely

on the bounds for identification.

The reason why the bounds are wider in more recent times is because the value

of the iDD degree δi for i = UK is greater (figure 2b). δi is an increasing function of

the import share, IMi

Yi
= 1− Xii

Yi
(see equation 31), and the latter has been increasing

in recent times (figure 2b). The gains from trade depend on the exact pattern of
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trade between countries. If a country has a larger import share IMi

Yi
, there are more

permissible patterns of bilateral trade flows, {Xij}, leading to a wider range of values

for the gains from trade. Hence, causing the bounds to be wider.

4.3 Cost-Price Passthrough

There has been longstanding interest in the literature concerning the passthrough

of cost shocks to prices. This dates back to Marshall (1890) in the context of tax

incidence, with more recent work leveraging passthrough as a sufficient statistic for

various welfare analyses (Chetty, 2009). In imperfectly competitive settings, one prop-

erty that has been explored is when passthrough is more than complete, which implies

a number of qualitative properties (Anderson et al., 2001; Bagnoli and Bergstrom,

2005; Stern, 1987; Weyl and Fabinger, 2013). However, theoretical characterizations

are typically limited to symmetric models, as the dimensionality of the problem is

reduced, permitting a tractable analysis (see Dixit, 1986 pg 119). Under symmetric

imperfect competition and linear cost, passthrough exceeds unity iff demand is log-

convex (Bulow and Pfleiderer, 1983; Seade, 1985; Weyl and Fabinger, 2013). Using

the results of the current paper, I offer a generalization to asymmetric models.

Consider a Bertrand oligopoly with differentiated products. There are i ∈ N firms

(the nodes) each producing one product with constant marginal cost, ci (exogenous

shocks), and with twice-continuously differentiable demandDi (p), where p = {pi}i∈N
are the product prices (endogenous states). The log profits of firm i are

πi (p, ci) = ln [(pi − ci)Di (p)]

and the firm chooses pi to maximize πi (p, ci), taking all other firms’ prices as given.

The passthrough to pi of a change in ci is given by (see appendix C.4 for details)

∂pi
∂ci

=
{
∇−1

}
ii
, ∇ij =

ci
pi
Iij −

(
1− ci

pi

)2
∂2 lnDi (p)

∂ ln pi∂ ln pj
(32)

Passthrough is greater than one, ∂pi
∂ci

> 1, iff {∇−1}ii > 1. For models with many firms

(large N), {∇−1}ii is generally a very complicated object, thus determining under

what conditions it’s greater than one is challenging. The literature typically imposes

complete symmetry in demand and costs across all firms to make this tractable. The

results of section 3 allow one to proceed without resorting to symmetry.
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Recalling that log-convexity of demand is the relevant condition in the symmetric

case, a sufficient condition for demand to be log-convex in the general case is when

the Hessian of log demand, ∂2 lnDi(p)
∂ ln pi∂ ln pj

, is row diagonally dominant with positive diag-

onal. Assuming the convexity isn’t too strong so that the equilibrium is stable, this

condition is also sufficient for ∇ to be row diagonally dominant, hence one can use

the bounds from proposition 3 (see remark 3). The resulting lower bound is greater

than one, implying passthrough is always greater than unity under this condition.

Thus, log-convexity of demand is tightly related to more than complete passthrough

in asymmetric models, just like in symmetric models.

5 Conclusion

In this paper I revisit an old inquiry in economics: what can we deduce about com-

parative statics while making as few assumptions as possible? (Bassett et al., 1967;

Hale et al., 1999) I offer new results advancing the frontier in this subject. I exploit

the widely-used assumption of diagonal dominance of the Jacobian, and show this

implies novel bounds on comparative statics.

The value of this result is twofold. First, the bounds are identified using low

dimensional sufficient statistics. This permits one to still learn about the comparative

static in cases where full knowledge of the model parameters is infeasible. Because the

bounds are sharp, they are the most one can say about the maximum and minimum

values the comparative static can take, if the sufficient statistics are all that is known.

Moreover, if direct knowledge of the comparative statics is available instead, the

methodology can be inverted to bound structural parameters of the model.

Second, they are analytically simpler than the exact relationship. This potentially

allows for easier theoretical characterization of the comparative statics, offering new

insight into the underlying economic mechanisms. This provides an alternative to

resorting to restrictive, stylized, or low-dimensional versions of the model.
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Figure 1: Visualization of Theorem 1

Notes. The bounds on the comparative static from theorem 1 are displayed in the case of

−sgn (∇ii) sgn
(

∂fi
∂x

)
= 1. Each series shows the upper and lower bounds (inclusive of the sign) on

the comparative static under different values of δ−i

∣∣∣∂f−i

∂x

∣∣∣ / ∣∣∣∂fi∂x

∣∣∣. The arrow labels the width of

the bound relative to its midpoint at δiδ−i = 0.5 for the case δ−i

∣∣∣∂f−i

∂x

∣∣∣ / ∣∣∣∂fi∂x

∣∣∣ = 0.
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Figure 2: The Gains from Trade Liberalization in the UK over 800 Years

(a) Gains from Trade Liberalization

(b) Import share of GDP and the iDD degree, δi

Notes. In subfigure (a), the bounds are presented for the elasticity of UK welfare with respect to a
proportional reduction in trade costs with the rest of the world. In subfigure (b), the import share
of GDP and the iDD degree δi are presented. Data is from the Bank of England.

29



Table 1: Diagonal Dominance in Economic Models

Field/Model Reference Sufficient Condition for Diagonal
Dominance

Relevance of Sufficient
Condition to Model

M
ac
ro
ec
on

om
ic
s Production Networks Carvalho and

Tahbaz-Salehi (2019)
Always —

New Keynesian Auclert et al. (2024)
∀s, t : MPCst > 0

MPC: marginal propensity to consume
s, t: time periods

No Inferior Income
Effects

International Trade /
Economic Geography

Allen et al. (2020)
ϕ ≷ −1

2
, ψ ≷ −1

2
, τ quasi-symmetric

ϕ: demand elasticity, ψ: supply elasticity
τ : trade cost matrix

Unique Interior
Equilibrium

M
ic
ro
ec
on

om
ic
s

Industrial Organization:
Oligopoly

Milgrom and Roberts
(1990)

Demand ∈ {CES, logit, linear
substitutes; restricted translog}

Unique Nash
Equilibrium

Game Theory: Network
Games

Bramoullé et al. (2016)
|ϕ|µ < 1, G irreducible
ϕ: payoff impact parameter

G: adjacency matrix
µ: spectral radius of |G|

Unique Stable Nash
Equilibrium

E
co
n
om

et
ri
cs Time Series:

ARMA(p,q)
Brockwell and Davis

(2016)

∑p
s=1 |βs| < 1

βs: sth autoregressive coefficient
Unique Causal

Stationary Solution

Spatial Econometrics LeSage et al. (2009)
|ρ| < 1

ρ: spatial lag parameter
Stable Solution

Notes. Summary of the models that I apply the theoretical results of this paper to (see appendix C for details). Cited is the main reference I
use for the model. A sufficient condition for diagonal dominance is presented, either for column (assumption 1), row (remark 3), or generalized
(remark 4) diagonal dominance. The last column shows an implication of the sufficient condition that has independent relevance to the model.
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Table 2: Bounding Peer Effects without Bilateral Network Data

(1) (2) (3)
Own Gender 0.235∗∗∗ 0.124∗∗∗ 0.166∗∗∗

(0.051) (0.043) (0.034)

Peers GPA 0.778∗∗∗

(0.101)
Observations 1129 1519 2156
Sample ni ≤ 4 ni ≥ 5 All
Estimator OLS OLS IV
First-stage F 42.6

Robust standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes. The dependent variable is student GPA. The first row is the student’s gender (equal to one
if female, zero otherwise). The second row is an average of the student’s friends’ GPAs, which is
instrumented by an average of the student’s friends’ gender, age and school grade. Each specification
also controls for the student’s age, school grade, whether white, whether born in USA, whether lives
with mother, mother’s education, and whether father is present. Column (1) uses the sample of
students which report no greater than four friends; column (2) the sample which report at least five
friends; column (3) uses the full sample of students. Data is from Add Health.
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A Proofs of Main Results

A.1 Proof of the bounds being sharp in Lemma 1 and Theorem 1

Proof. The bounds are shown to be sharp if, conditional on assumption 1 and the

information available ({∇kk, δk}k∈N for lemma 1 and {∇kk, δk}k∈N , ∂fi
∂x
,
∣∣∣∂f−i∂x

∣∣∣ for the-
orem 1), for each bound there exists a∇ and ∂f

∂x
that satisfies the bound with equality.

I prove this using the following Jacobian

∇ =



∇11 ∇12 ∇13 · · · ∇1N

∇21 ∇22 0 · · · 0

0 0 ∇33 · · · 0
...

...
...

. . . 0

0 0 0 0 ∇NN


(33)

i.e. non-zero elements in the second leading principal sub-matrix, the diagonal, and

the first row; all other elements are zero. Each non-zero element can be of arbitrary

magnitude, conditional on satisfying assumption 1 (i.e. |∇21| ≤ |∇11| and ∀i ̸= 1 :

|∇1i| ≤ |∇ii|), and be of arbitrary sign. The iDD degrees of this ∇ are

δi =

i = 1 :
∣∣∣∇21

∇11

∣∣∣
i > 1 :

∣∣∣∇1i

∇ii

∣∣∣ (34)

For the direct effects, I utilize the case where

∀i ̸∈ {1, 2} :
∂fi
∂x

= 0 (35)

which implies the direct effect on all nodes other than i = 1 to be∣∣∣∣∂f−1

∂x

∣∣∣∣ = ∣∣∣∣∂f2∂x

∣∣∣∣ (36)

It is sufficient to prove the bounds are sharp for i = 1 and with the maximal degree

across all other nodes being δ−1 = δ2. The proof follows equivalently for all other

cases under a relabelling of indices in equations (33) and (35).

The only components of this ∇ and ∂f
∂x

not conditioned on (i.e. are not part of the
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sufficient statistics) are sgn (∇12) , sgn (∇21), and also sgn
(
∂f2
∂x

)
in the case of Theo-

rem 1. I will show that values of these exist such that the bounds hold with equality.

Proof for Lemma 1. The inverse of the matrix of equation (33) is

∇−1 =



∇22

ϕ
−∇12

∇22

∇22

ϕ
−∇13

∇33

∇22

ϕ
· · · − ∇1N

∇NN
∇22

ϕ

−∇21

ϕ
∇11

ϕ
∇13

∇33

∇21

ϕ
· · · ∇1N

∇NN
∇21

ϕ

0 0 1
∇33

· · · 0
...

...
...

. . . 0

0 0 0 0 1
∇NN


(37)

where ϕ ≡ ∇11∇22 −∇12∇21. Manipulating the expression for the (1, 1) element

{
∇−1

}
11

=
1

∇11

1

1− ∇21

∇11

∇12

∇22

=
1

∇11

1

1− sgn
(

∇12

∇22

∇21

∇11

)
δ1δ−1

(38)

=⇒
∣∣{∇−1

}
11

∣∣ = 1

|∇11|
1

1− sgn
(

∇12

∇22

∇21

∇11

)
δ1δ−1

(39)

The first line used the definition of ϕ; the second line used ∇21

∇11

∇12

∇22
= sgn

(
∇12

∇22

∇21

∇11

)
δ1δ−1

from equation (34), and δ2 = δ−1; the last line applied the modulus operator, and

used δ1δ−1 < 1. By equation (39), we see that the matrix from equation (33) achieves

the upper bound in equation (6) for i = 1 when sgn (∇12∇21) = sgn (∇11∇22), and

achieves the lower bound when sgn (∇12∇21) = −sgn (∇11∇22).

Manipulating the expression for the (i = 1, j ̸= 1) elements of equation (37)

j ̸= 1 :
{
∇−1

}
1j
= −∇1j

∇jj

∇22

ϕ

=⇒
∣∣∣{∇−1

}
1j

∣∣∣ = δj
∣∣{∇−1

}
11

∣∣ (40)

where the second line applied the modulus operator and used δj =
∣∣∣∇1j

∇jj

∣∣∣ from equa-

tion (34) and ∇22

ϕ
= {∇−1}11 from equation (37). By equation (40), we see that the

matrix from equation (33) achieves the bound in equation (7) for i = 1 and ∀j ̸= 1.
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Proof for Theorem 1. The comparative static for i = 1 under this ∇ and ∂f
∂x

is

∂y1
∂x

= −
{
∇−1

}
11

∂f1
∂x

−
{
∇−1

}
12

∂f2
∂x

=
∣∣{∇−1

}
11

∣∣ [−sgn
({

∇−1
}
11

) ∂f1
∂x

− sgn

({
∇−1

}
12

∂f2
∂x

) ∣∣∣∣{∇−1}12
{∇−1}11

∂f2
∂x

∣∣∣∣]
=
∣∣{∇−1

}
11

∣∣ [−sgn
({

∇−1
}
11

) ∂f1
∂x

+ sgn

({
∇−1

}
11

∇12

∇22

∂f2
∂x

)
δ2

∣∣∣∣∂f2∂x

∣∣∣∣]
=
∣∣{∇−1

}
11

∣∣ [−sgn (∇11)
∂f1
∂x

+ sgn

(
∇11

∇12

∇22

∂f2
∂x

)
δ−1

∣∣∣∣∂f−1

∂x

∣∣∣∣]

=
1

|∇11|

−sgn (∇11)
∂f1
∂x

+ sgn
(
∇11

∇12

∇22

∂f2
∂x

) ∣∣∣∂f−1

∂x

∣∣∣ δ−1

1− sgn
(

∇12

∇22

∇21

∇11

)
δ1δ−1

(41)

The first line used equation (35) in equation (3); the second line factored out |{∇−1}11|
and wrote in terms of the sign operator; the third line used k ̸= 1 : sgn ({∇−1}1k) =

sgn
(
−∇1k

∇kk
∇22

ϕ

)
= sgn

(
−∇1k

∇kk
{∇−1}11

)
from equation (37), and

∣∣∣∣{∇−1}
1k

{∇−1}11

∣∣∣∣ = δk from

equation (40); the fourth line used that δ2 = δ−1,
∣∣∂f2
∂x

∣∣ = ∣∣∣∂f−1

∂x

∣∣∣ from equation (36),

and sgn ({∇−1}11) = sgn (∇11) from equation (8); the fifth line used equation (39).

Suppose equation (10) holds. Then, the modulus of equation (41) is given by

∣∣∣∣∂y1∂x

∣∣∣∣ = 1

|∇11|

∣∣∂f1
∂x

∣∣− sgn
(

∇12

∇22

∂f2
∂x

∂f1
∂x

) ∣∣∣∂f−1

∂x

∣∣∣ δ−1

1− sgn
(

∇12

∇22

∇21

∇11

)
δ1δ−1

(42)

By equation (42), we see that the Jacobian and direct effects of equations (33)

and (35) achieve the upper bound of equation (11) for i = 1 when sgn
(
∇12

∂f2
∂x

)
=

−sgn
(
∇22

∂f1
∂x

)
and sgn (∇21) = sgn

(
∇11

∇12

∇22

)
, and the lower bound for i = 1 when

sgn
(
∇12

∂f2
∂x

)
= sgn

(
∇22

∂f1
∂x

)
and sgn (∇21) = −sgn

(
∇11

∇12

∇22

)
.

Suppose equation (10) does not hold. Then, by equation (41), the Jacobian and

direct effects of equations (33) and (35) achieve the upper bound of equation (13) for

i = 1 when sgn
(
∇12

∂f2
∂x

)
= sgn (∇11∇22) and sgn (∇21) = sgn

(
∇11

∇12

∇22

)
, and lower

bound for i = 1 when sgn
(
∇12

∂f2
∂x

)
= −sgn (∇11∇22) and sgn (∇21) = sgn

(
∇11

∇12

∇22

)
.
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A.2 Proof of theorem 1

Proof. Start with rearranging equation (3) and taking absolute values,

∣∣∣∣∂yi∂x
+
{
∇−1

}
ii

∂fi
∂x

∣∣∣∣ =
∣∣∣∣∣∣
∑
j∈N\i

{
∇−1

}
ij

∂fj
∂x

∣∣∣∣∣∣
≤
∑
j∈N\i

∣∣∣{∇−1
}
ij

∣∣∣ ∣∣∣∣∂fj∂x
∣∣∣∣

≤
∣∣{∇−1

}
ii

∣∣ ∑
j∈N\i

δj

∣∣∣∣∂fj∂x
∣∣∣∣ (43)

≤
∣∣{∇−1

}
ii

∣∣ δ−i ∣∣∣∣∂f−i∂x

∣∣∣∣
The second line used the triangle inequality; the third line applied equation (7). The

last line used ∀j ̸= i : δj ≤ δ−i and equation (9). The last line is equivalent to

∂yi
∂x

∈
[
−
{
∇−1

}
ii

∂fi
∂x

−
∣∣{∇−1

}
ii

∣∣ δ−i ∣∣∣∣∂f−i∂x

∣∣∣∣ ,−{∇−1
}
ii

∂fi
∂x

+
∣∣{∇−1

}
ii

∣∣ δ−i ∣∣∣∣∂f−i∂x

∣∣∣∣]
∈
∣∣{∇−1

}
ii

∣∣ [−sgn
({

∇−1
}
ii

) ∂fi
∂x

− δ−i

∣∣∣∣∂f−i∂x

∣∣∣∣ ,−sgn
({

∇−1
}
ii

) ∂fi
∂x

+ δ−i

∣∣∣∣∂f−i∂x

∣∣∣∣]
(44)

The first line used the identity: |a+ b| < |c| is equivalent to a ∈ [−b− |c| ,−b+ |c|]
for any real a, b, c. The second line factored out |{∇−1}ii|.

Suppose equation (10) holds. The sign of both upper and lower bounds is deter-

mined by −sgn
(
{∇−1}ii

∂fi
∂x

)
, which is equal to −sgn

(
∇ii

∂fi
∂x

)
by equation (8). Hence,

proving equation (12). Both bounds having equal sign implies the magnitude satisfies∣∣∣∣∂yi∂x

∣∣∣∣ ∈ ∣∣{∇−1
}
ii

∣∣ [∣∣∣∣∂fi∂x

∣∣∣∣− δ−i

∣∣∣∣∂f−i∂x

∣∣∣∣ , ∣∣∣∣∂fi∂x

∣∣∣∣+ δ−i

∣∣∣∣∂f−i∂x

∣∣∣∣] (45)

Applying the lower (upper) bound of |{∇−1}ii| from equation (6) to the lower (upper)

bound of equation (45) proves equation (11).

Suppose equation (10) does not hold. The lower (upper) bound of equation (44)

is always negative (positive), hence the comparative static sign is not determined.

Thus, for both the lower and upper bound in equation (44), we must use the upper

bound on |{∇−1}ii| from equation (6), which proves equation (13).
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B Variants Details (Online Appendix)

B.1 Conditioning on More Information

The following proposition presents bounds conditional on knowledge of all the direct

effects,
{
∂fk
∂x

}
k∈N , as opposed to only ∂fi

∂x
,
∣∣∣∂f−i∂x

∣∣∣.
Proposition 1. (Comparative Static Bounds using all Direct Effects). Suppose ∇
satisfies assumption 1. If for i ∈ N∣∣∣∣∂fi∂x

∣∣∣∣ > ∑
k∈N\i

δk

∣∣∣∣∂fk∂x
∣∣∣∣ (46)

then, the magnitude of the comparative static satisfies∣∣∣∣∂yi∂x

∣∣∣∣ ∈ 1

|∇ii|

[∣∣∂fi
∂x

∣∣−∑k∈N\i δk
∣∣∂fk
∂x

∣∣
1 + δiδ−i

,

∣∣∂fi
∂x

∣∣+∑k∈N\i δk
∣∣∂fk
∂x

∣∣
1− δiδi

]
(47)

and its sign

sgn

(
∂yi
∂x

)
= −sgn (∇ii) sgn

(
∂fi
∂x

)
(48)

Otherwise, the comparative static satisfies

∂yi
∂x

∈ 1

|∇ii|

[
−sgn (∇ii)

∂fi
∂x

−
∑

k∈N\i δk
∣∣∂fk
∂x

∣∣
1− δiδ−i

,
−sgn (∇ii)

∂fi
∂x

+
∑

k∈N\i δk
∣∣∂fk
∂x

∣∣
1− δiδ−i

]
(49)

with both ∇ and ∂f
∂x

evaluated at y = y∗ (x). Conditional on
{
∇jj, δj,

∂fj
∂x

}
j∈N

, the

bounds in equations (47) and (49) are sharp.

Proof. Beginning from equation (43), and applying the identity: |a+ b| < |c| is equiv-
alent to a ∈ [−b− |c| ,−b+ |c|] for any real a, b, c,

∂yi
∂x

∈

−{∇−1
}
ii

∂fi
∂x

−
∣∣{∇−1

}
ii

∣∣ ∑
j∈N\i

δj

∣∣∣∣∂fj∂x
∣∣∣∣ ,−{∇−1

}
ii

∂fi
∂x

+
∣∣{∇−1

}
ii

∣∣ ∑
j∈N\i

δj

∣∣∣∣∂fj∂x
∣∣∣∣


∈
∣∣{∇−1

}
ii

∣∣ −sgn
({

∇−1
}
ii

) ∂fi
∂x

−
∑
j∈N\i

δj

∣∣∣∣∂fj∂x
∣∣∣∣ ,−sgn

({
∇−1

}
ii

) ∂fi
∂x

+
∑
j∈N\i

δj

∣∣∣∣∂fj∂x
∣∣∣∣


(50)
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The second line factored out |{∇−1}ii|. Suppose equation (46) holds, then the sign

of both upper and lower bounds is determined by −sgn
(
{∇−1}ii

∂fi
∂x

)
, which is equal

to −sgn
(
∇ii

∂fi
∂x

)
by equation (8). Hence, proving equation (12). Both bounds having

equal sign implies the magnitude satisfies

∣∣∣∣∂yi∂x

∣∣∣∣ ∈ ∣∣{∇−1
}
ii

∣∣ ∣∣∣∣∂fi∂x

∣∣∣∣− ∑
j∈N\i

δj

∣∣∣∣∂fj∂x
∣∣∣∣ , ∣∣∣∣∂fi∂x

∣∣∣∣+ ∑
j∈N\i

δj

∣∣∣∣∂fj∂x
∣∣∣∣
 (51)

Applying the lower (upper) bound of |{∇−1}ii| from equation (6) of Lemma 1 to the

lower (upper) bound of equation (51) proves equation (47).

Suppose equation (46) does not hold. The lower (upper) bound of equation (50)

is always negative (positive), and hence the sign of the comparative static is not

determined. Thus, for both the lower and upper bound in equation (50), we must use

the upper bound on |{∇−1}ii| from equation (6), which proves equation (49).

The bounds are proved to be sharp analogously to in section A.1. Consider the

Jacobian from equation (33) and choose δ−1 = δ2. The i = 1 comparative static is

∂y1
∂x

=
∣∣{∇−1

}
11

∣∣ −sgn
({

∇−1
}
11

) ∂f1
∂x

−
∑
k∈N\1

sgn

({
∇−1

}
1k

∂fk
∂x

) ∣∣∣∣{∇−1}1k
{∇−1}11

∂fk
∂x

∣∣∣∣


=
∣∣{∇−1

}
11

∣∣ −sgn
({

∇−1
}
11

) ∂f1
∂x

+
∑
k∈N\1

sgn

({
∇−1

}
11

∇1k

∇kk

∂fk
∂x

) ∣∣∣∣{∇−1}1k
{∇−1}11

∂fk
∂x

∣∣∣∣


=
∣∣{∇−1

}
11

∣∣ −sgn (∇11)
∂f1
∂x

+
∑
k∈N\1

sgn

(
∇11

∇1k

∇kk

∂fk
∂x

)
δk

∣∣∣∣∂fk∂x
∣∣∣∣


=
1

|∇11|

−sgn (∇11)
∂f1
∂x

+
∑

k∈N\1 sgn
(
∇11

∇1k

∇kk
∂fk
∂x

)
δk
∣∣∂fk
∂x

∣∣
1− sgn

(
∇12

∇22

∇21

∇11

)
δ1δ−1

(52)

The first line factored out |{∇−1}11| from equation (3); the second line used k ̸=
1 : sgn ({∇−1}1k) = sgn

(
−∇1k

∇kk
∇22

ϕ

)
= sgn

(
−∇1k

∇kk
{∇−1}11

)
from equation (37), and∣∣∣∣{∇−1}

1k

{∇−1}11

∣∣∣∣ = δk from equation (40); the third line used sgn ({∇−1}11) = sgn (∇11) from

equation (8); the fourth line used equation (39).
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Suppose equation (10) holds. Then, the absolute of equation (52) is given by

∣∣∣∣∂y1∂x

∣∣∣∣ = 1

|∇11|

∣∣∂f1
∂x

∣∣+∑k∈N\1 sgn
(
∇11

∇1k

∇kk
∂fk
∂x

)
δk
∣∣∂fk
∂x

∣∣
1− sgn

(
∇12

∇22

∇21

∇11

)
δ1δ−1

(53)

Conditional on
{
∇ii, δi,

∂fi
∂x

}
i∈N , the comparative static achieves the upper bound of

equation (47) for i = 1 when ∀k ̸= 1 : sgn (∇1k) = sgn
(
∇11∇kk

∂fk
∂x

)
and sgn (∇21) =

sgn
(

∇12

∇11∇22

)
, and the lower bound when ∀k ̸= 1 : sgn (∇1k) = −sgn

(
∇11∇kk

∂fk
∂x

)
and

sgn (∇21) = −sgn
(

∇12

∇11∇22

)
.

Suppose equation (10) does not hold. Then, by equation (52), conditional on{
∇ii, δi,

∂fi
∂x

}
i∈N , the comparative static achieves the upper bound of equation (49)

for i = 1, when ∀k ̸= 1 : sgn (∇1k) = sgn
(
∇11∇kk

∂fk
∂x

)
and sgn (∇21) = sgn

(
∇12

∇11∇22

)
,

and the lower bound when ∀k ̸= 1 : sgn (∇1k) = −sgn
(
∇11∇kk

∂fk
∂x

)
and sgn (∇21) =

sgn
(

∇12

∇11∇22

)
.

B.2 Conditioning on Less Information

The following proposition presents bounds without conditioning on knowledge of δ−i.

Proposition 2. (Comparative Static Bounds without δ−i). Suppose ∇ satisfies as-

sumption 1. Then, if for i ∈ N , ∣∣∣∣∂fi∂x

∣∣∣∣ ≥ ∣∣∣∣∂f−i∂x

∣∣∣∣ (54)

the magnitude of the comparative static satisfies

∣∣∣∣∂yi∂x

∣∣∣∣ ∈ 1

|∇ii|

∣∣∂fi∂x ∣∣−
∣∣∣∂f−i∂x

∣∣∣
1 + δi

,

∣∣∂fi
∂x

∣∣+ ∣∣∣∂f−i∂x

∣∣∣
1− δi

 (55)

and its sign

sgn

(
∂yi
∂x

)
= −sgn (∇ii) sgn

(
∂fi
∂x

)
(56)
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Otherwise, the comparative static satisfies

∂yi
∂x

∈ 1

|∇ii|

−sgn (∇ii)
∂fi
∂x

−
∣∣∣∂f−i∂x

∣∣∣
1− δi

,
−sgn (∇ii)

∂fi
∂x

+
∣∣∣∂f−i∂x

∣∣∣
1− δi

 (57)

with ∇, ∂f
∂x

evaluated at y = y∗ (x). Conditional on ∇ii, δi,
∂fi
∂x
,
∣∣∣∂f−i∂x

∣∣∣, the bounds are

sharp.

Proof. Equations (55) and (57) are implied by setting δ−i = 1 in equations (11) and

(12), respectively. The bounds become open because only δ−i < 1 is permitted under

assumption 1. Equation (56) is implied for the same reason equation (12) is implied

in theorem 1.

The bounds are proved sharp by using the same proof as for theorem 1 in section

A.1, except by choosing δ2 = 1, which we are now free to choose because only δ1 is

being conditioned on.

B.3 Row Diagonal Dominance

The following proposition presents bounds using row diagonal dominance (equation

58) as opposed to column diagonal dominance (assumption 1). Note that the iDD

degree (equation 63) is now calculated using the row sum rather than the column

sum, a stronger condition on
∣∣∣∂f−i∂x

∣∣∣ is required (equation 59), and the effect of the

shock on other nodes is characterized (62).

Proposition 3. (Comparative Static Bounds under Row Diagonal Dominance) Sup-

pose ∇ satisfies

∀i ∈ N : |∇ii| >
∑
j∈N\i

|∇ij| (58)

If for i ∈ N ∣∣∣∣∂f−i∂x

∣∣∣∣ = 0 (59)
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then, ∣∣∣∣∂yi∂x

∣∣∣∣ ∈ 1

|∇ii|

[ ∣∣∂fi
∂x

∣∣
1 + δiδ−i

,

∣∣∂fi
∂x

∣∣
1− δiδ−i

]
(60)

sgn

(
∂yi
∂x

)
= −sgn (∇ii) sgn

(
∂fi
∂x

)
(61)

and for ∀j ∈ N\i ∣∣∣∣∂yj∂x
∣∣∣∣ ≤ δj

∣∣∣∣∂yi∂x

∣∣∣∣ (62)

where

δi ≡
∑

j∈N\i |∇ij|
|∇ii|

(63)

with both ∇ and ∂f
∂x

evaluated at y = y∗ (x). Conditional on {∇jj, δj}j∈N , ∂fi
∂x

, equa-

tions (60) and (62) are sharp.

Proof. Lemma 1 applies to ∇ satisfying row diagonal dominance, equation (58) with

the only two differences: δi is calculated using the row sum, equation (63), and

equation (7) is replaced by ∣∣∣{∇−1
}
ji

∣∣∣ ≤ δj
∣∣{∇−1

}
ii

∣∣ (64)

Turning to the comparative statics. Applying equation (59) in equation (3)

∂yi
∂x

= −
{
∇−1

}
ii

∂fi
∂x

(65)

as equation (59) implies ∀j ∈ N\i : ∂fj
∂x

= 0. The comparative static sign is

sgn

(
∂yi
∂x

)
= −sgn

({
∇−1

}
ii

∂fi
∂x

)
= −sgn

(
∇ii

∂fi
∂x

)
where the second equality used (8). Thus proving equation (61). The magnitude of
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the comparative static ∣∣∣∣∂yi∂x

∣∣∣∣ = ∣∣{∇−1
}
ii

∣∣ ∣∣∣∣∂fi∂x

∣∣∣∣ (66)

∈ 1

|∇ii|

[ ∣∣∂fi
∂x

∣∣
1 + δiδ−i

,

∣∣∂fi
∂x

∣∣
1− δiδ−i

]

where the second line used equation (6). Thus proving equation (60). Consider the

effect on j ̸= i

∂yj
∂x

= −
{
∇−1

}
ji

∂fi
∂x∣∣∣∣∂yj∂x

∣∣∣∣ = ∣∣∣∣{∇−1
}
ji

∂fi
∂x

∣∣∣∣
≤ δj

∣∣∣∣{∇−1
}
ii

∂fi
∂x

∣∣∣∣
= δj

∣∣∣∣∂yi∂x

∣∣∣∣
where the third line used equation (64), and the last line used equation (66). Thus

proving equation (62)

Equations (60) and (62) being sharp follow from equations (6) and (7) being sharp

in lemma 1, respectively, as the only difference is a multiple of
∣∣∂fi
∂x

∣∣, which is part of

the information set in this proposition.

B.4 Generalized Diagonal Dominance: Sub-Unity Spectral Radius

The following proposition presents an example of generalized diagonal dominance

using the spectral radius of a transformed Jacobian, given by

Aij ≡

i = j 0

i ̸= j
∣∣∣∇ij∇jj

∣∣∣ (67)

Denote by ρ the spectral radius of A, and by vi a left-eigenvector of A with eigenvalue

equal in magnitude to ρ. Set g′i = vi. If A is irreducible and ρ < 1, then g′i∇ij satisfies

assumption 1. Proposition 4 proves this and derives the implied comparative static

bounds, in terms of ρ and vi. Note that this result conditions on more information,
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specifically all of the direct effects, as in proposition 1.

Proposition 4. (Comparative Static Bounds under Sub-Unity Spectral Radius). Sup-

pose A is irreducible and ρ < 1. If for i ∈ N∣∣∣∣∂fi∂x

∣∣∣∣ > ρ
∑
k ̸=i

vk
vi

∣∣∣∣∂fk∂x
∣∣∣∣ (68)

then, the magnitude of the comparative static satisfies∣∣∣∣∂yi∂x

∣∣∣∣ ∈ 1

|∇ii|

[∣∣∂fi
∂x

∣∣− ρ
∑

k∈N\i
vk
vi

∣∣∂fk
∂x

∣∣
1 + ρ2

,

∣∣∂fi
∂x

∣∣+ ρ
∑

k∈N\i
vk
vi

∣∣∂fk
∂x

∣∣
1− ρ2

]
(69)

and its sign

sgn

(
∂yi
∂x

)
= −sgn (∇ii) sgn

(
∂fi
∂x

)
(70)

Otherwise, the comparative static satisfies

∂yi
∂x

∈ 1

|∇ii|

[
−sgn (∇ii)

∂fi
∂x

− ρ
∑

k∈N\i
vk
vi

∣∣∂fk
∂x

∣∣
1− ρ2

,
−sgn (∇ii)

∂fi
∂x

+ ρ
∑

k∈N\i
vk
vi

∣∣∂fk
∂x

∣∣
1− ρ2

]
(71)

Where ρ > 0, and {vi}i∈N are unique and strictly positive, and both ∇ and ∂f
∂x

are

evaluated at y = y∗ (x).

Proof. Irreducibility of A and ρ < 1 is not sufficient for ∇ij to satisfy assumption 1,

thus we cannot directly apply theorem 1 (or proposition 1). However, it is sufficient for

∇̃ij ≡ vi∇ij to satisfy assumption 1 (implying ∇ is generalized diagonally dominant,

see remark 4). Thus, we can rewrite the comparative statics in terms of ∇̃ and apply

proposition 1.

To prove that ∇̃ satisfies assumption 1, I rely on the Perron-Frobenius theorem

(Horn and Johnson, 2012 theorem 8.4.4), which applies to A because A is nonnegative

and irreducible. The theorem implies that ρ is strictly positive, that it is an eigenvalue

of A, and its associated left-eigenvector {vi}i∈N is unique and has all elements strictly
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positive, ∀i : vi > 0. Utilizing this,∣∣∣∇̃ii

∣∣∣−∑
j ̸=i

∣∣∣∇̃ji

∣∣∣ = |vi∇ii| −
∑
j ̸=i

|vj∇ji|

= vi |∇ii| −
∑
j ̸=i

vj |∇ji|

= |∇ii|

(
vi −

∑
j ̸=i

vj
|∇ji|
|∇ii|

)

= |∇ii|

(
vi −

∑
j

vjAji

)
= |∇ii| vi (1− ρ)

> 0

The first line used the definition of ∇̃ij ≡ vi∇ij; the second line used that ∀i : vi > 0;

the fourth line used the definition of A, equation (67); the fifth line used that ρ is

eigenvalue of A with eigenvector {vi}i∈N ; and the last line used that ρ < 1. Thus,

∇̃ is strictly column diagonally dominant and therefore satisfies assumption 1. The

iDD degree of ∇̃, which I denote by δ̃, is

δ̃i ≡

∑
j ̸=i

∣∣∣∇̃ji

∣∣∣∣∣∣∇̃ii

∣∣∣
=

∑
j ̸=i |vj∇ji|
|vi∇ii|

=

∑
j ̸=i vj

|∇ji|
|∇ii|

vi

=

∑
j vjAji

vi

=
viρ

vi

= ρ

The first line used the definition of the iDD degree, definition 1; the second line used

the definition of ∇̃ij ≡ vi∇ij; the third line used that ∀i : vi > 0; the forth line

the definition of A, equation (67); the fifth line used that ρ is eigenvalue of A with

53



eigenvector {vi}i∈N . Next, I rewrite the comparative statics in terms of ∇̃

∂yi
∂x

= −
∑
k∈N

{
∇−1

}
ik

∂fk
∂x

= −
∑
k∈N

{
∇̃−1

}
ik

∂f̃k
∂x

where I used ∂f̃k
∂x

≡ vk
∂fk
∂x

. Now, we apply proposition 1 with ∇̃ij and
∂f̃k
∂x

in place of

∇ij and
∂fk
∂x

. First, equation (46) becomes∣∣∣∣∣∂f̃i∂x

∣∣∣∣∣ > ∑
k∈N\i

δ̃k

∣∣∣∣∣∂f̃k∂x
∣∣∣∣∣

⇐⇒
∣∣∣∣∂fi∂x

∣∣∣∣ > ρ
∑
k ̸=i

vk
vi

∣∣∣∣∂fk∂x
∣∣∣∣ (72)

Equation (47) becomes

∣∣∣∣∂yi∂x

∣∣∣∣ ∈ 1∣∣∣∇̃ii

∣∣∣

∣∣∣∂f̃i∂x ∣∣∣−∑k∈N\i δ̃k

∣∣∣∂f̃k∂x ∣∣∣
1 + δ̃iδ̃−i

,

∣∣∣∂f̃i∂x ∣∣∣+∑k∈N\i δ̃k

∣∣∣∂f̃k∂x ∣∣∣
1− δ̃iδ̃−i


=

1

|∇ii|

[∣∣∂fi
∂x

∣∣− ρ
∑

k∈N\i
vk
vi

∣∣∂fk
∂x

∣∣
1 + ρ2

,

∣∣∂fi
∂x

∣∣+ ρ
∑

k∈N\i
vk
vi

∣∣∂fk
∂x

∣∣
1− ρ2

]

where in the second line I used ∇̃ij ≡ vi∇ij and ∂f̃k
∂x

≡ vk
∂fk
∂x

. The sign of the

comparative static, equation (48) remains the same, because

sgn

(
∂yi
∂x

)
= −sgn

(
∇̃ii

)
sgn

(
∂f̃i
∂x

)

= −sgn (vi∇ii) sgn

(
vi
∂fi
∂x

)
= −sgn (∇ii) sgn

(
∂fi
∂x

)
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given ∀i : vi > 0. Equation (49) becomes

∂yi
∂x

∈ 1∣∣∣∇̃ii

∣∣∣
−sgn

(
∇̃ii

)
∂f̃i
∂x

−
∑

k∈N\i δ̃k

∣∣∣∂f̃k∂x ∣∣∣
1− δ̃iδ̃−i

,
−sgn

(
∇̃ii

)
∂f̃i
∂x

+
∑

k∈N\i δ̃k

∣∣∣∂f̃k∂x ∣∣∣
1− δ̃iδ̃−i


=

1

|∇ii|

[
−sgn (∇ii)

∂fi
∂x

− ρ
∑

k∈N\i
vk
vi

∣∣∂fk
∂x

∣∣
1− ρ2

,
−sgn (∇ii)

∂fi
∂x

+ ρ
∑

k∈N\i
vk
vi

∣∣∂fk
∂x

∣∣
1− ρ2

]

B.5 Signed Diagonal Dominance

The following proposition presents bounds that also condition on the sign on the

elements of ∇, ∂f
∂x
. For ∇, all diagonal elements have the same sign, and each of the

off-diagonal elements have a sign that is not equal to that of the diagonal elements

(so either the opposite sign, or zero). For
∂fj
∂x

, all j ̸= i have the same sign, which

is different to j = i. These are equations (73) and (74) in the following proposition.

Note that proposition 5 only applies in the case where equation (46) holds.

Proposition 5. (Comparative Static Bounds under Signed Diagonal Dominance). Sup-

pose assumption 1 holds, and equation (46) holds for i ∈ N . Also suppose

∀k, j ̸= k : s1 = sgn (∇kk) ̸= sgn (∇kj) (73)

∀j ̸= i : s2 = sgn

(
∂fi
∂x

)
̸= sgn

(
∂fj
∂x

)
(74)

holds for some s1 ∈ {−1, 1} , s2 ∈ {−1, 1}. Then,

∣∣∣∣∂yi∂x

∣∣∣∣ ∈ 1

|∇ii|

∣∣∣∣∂fi∂x

∣∣∣∣− ∑
k∈N\i

δk

∣∣∣∣∂fk∂x
∣∣∣∣ ,

∣∣∂fi
∂x

∣∣
1− δiδ−i

 (75)

and

sgn

(
∂yi
∂x

)
= −sgn (∇ii) sgn

(
∂fi
∂x

)
(76)

with both ∇ and ∂f
∂x

evaluated at y = y∗ (x).

Proof. Equation (73), combined with ∇ being diagonally dominant (assumption 1),

implies s1∇ is an M-matrix (Horn and Johnson, 1991, chapter 2.5), which has the
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following two properties

∀i : s1
{
∇−1

}
ii
≥ 1

s1∇ii

(77)

∀i, j ̸= i : s1
{
∇−1

}
ij
≥ 0 (78)

To prove these, rewrite the Jacobian as

∇ij ≡ (Iij − Aij)∇jj (79)

where Aij ≡
∣∣∣∇ij∇jj

∣∣∣ (1− Iij) ≥ 0. Equation (79) follows by noting that ∀i, j ̸= i :
∇ij
∇jj ≤ 0 due to equation (73). Diagonal dominance of ∇ implies the spectral radius

of A, denoted ρ, is less than 1: ρ ≤ maxj
∑

i |Aij| = maxj
∑

i̸=j

∣∣∣∇ij∇jj

∣∣∣ < 1, where the

first inequality follows using the Gerschgorin Circle theorem, and the last inequality

follows from diagonal dominance of ∇. Thus, one can apply the Neumann expansion

(I − A)−1 = I +A+A2 + · · · , which is valid under ρ < 1 (Johnson, 1982), implying

∀i :
{
(I − A)−1}

ii
≥ 1

∀i, j ̸= i :
{
(I − A)−1}

ji
≥ 0

which follows by noting that ∀i, j : Aij ≥ 0. Using these facts in the matrix inverse

of equation (79) implies equations (77) because

∀i : s1
{
∇−1

}
ii
=

1

s1∇ii

{
(I − A)−1}

ii
≥ 1

s1∇ii

and (78) because

∀i, j ̸= i : s1
{
∇−1

}
ij
=

1

s1∇ii

{
(I − A)−1}

ij
≥ 0

noting that s1∇ii > 0. Turning to the comparative static, rewrite equation (3) as

∂yi
∂x

= −
{
∇−1

}
ii

∂fi
∂x

1 +
∑
k∈N\i

{∇−1}ik
{∇−1}ii

∂fk
∂x
∂fi
∂x


︸ ︷︷ ︸

(∗)

(80)
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The term (∗) can be bounded as follows

1 +
∑
k∈N\i

{∇−1}ik
{∇−1}ii︸ ︷︷ ︸

≥0

∂fk
∂x
∂fi
∂x︸︷︷︸
≤0

∈

1−
∑
k∈N\i

δk

∣∣∣∣∣ ∂fk∂x∂fi
∂x

∣∣∣∣∣︸ ︷︷ ︸
≥0

, 1

 (81)

where ∀k ∈ N\i : {
∇−1}

ik

{∇−1}ii
≥ 0 from equations (77), (78); ∀k ∈ N\i :

∂fk
∂x
∂fi
∂x

≤ 0 from

equation (74). The lower bound used equation (7), and is positive by equation (46).

Taking the absolute value of equation (80) and using equation (81)

∣∣∣∣∂yi∂xi

∣∣∣∣ ∈ ∣∣{∇−1
}
ii

∣∣ ∣∣∣∣∂fi∂x

∣∣∣∣
1− ∑

k∈N\i

δk

∣∣∣∣∂fk∂x /∂fi∂x

∣∣∣∣ , 1
 (82)

|{∇−1}ii| can be bounded below using equation (77) and above using equation (6)

∀i :
∣∣{∇−1

}
ii

∣∣ ∈ [ 1

|∇ii|
,

1

|∇ii|
1

1− δiδ−i

]
(83)

Inserting the lower (upper) bound into the lower (upper) bound of equation (82)

proves equation (75). Equation (76) holds by proposition 1 as both assumption 1 and

equation (46) hold.

57



C Model Details (Online Appendix)

Detail of the models listed in table 1.

C.1 Production Network

Consider the workhorse production network from Carvalho and Tahbaz-Salehi (2019),

section 2.1. This model is not only highly tractable and thus useful for expositional

purposes, but it also highly relevant, underlying many macroeconomic frameworks in

the recent literature, as attention has begun to focus on the macroeconomic implica-

tions of production networks.29

Nodes in this framework correspond to firms, and interactions between nodes

are described the by the supply chain network. For the comparative static on firm

production, I show that assumption 1, and the additional conditions required for

proposition 5, are always satisfied. The bounds for the comparative statics with

respect to a government expenditure shock, a firm-level fiscal multiplier, depend only

the expenditure share on intermediate inputs by firms, and the share of expenditure

on each firm by households. Notably, no supply chain data is required for the bounds,

which is potentially quite powerful, because such data in simply unavailable in most

settings (Pichler et al., 2023). The bounds reveal a highly succinct necessary condition

for the fiscal multiplier on a firm to be greater than one: the expenditure share on

intermediate goods by the firm is greater than the share of household expenditure on

that firm.

There are i ∈ N firms, each with production function

qi = ζil
1−αi
i

∏
j∈N

x
Aji
ji

where qi is output, li is labor, and xji are intermediate inputs purchased from firm j.

{Aji}i∈N ,j∈N is the input-output matrix: the share of firm i total expenditure spent

on goods from firm j. Following the typical convention in the literature, I assume

∀i ∈ N : Aii = 0 (the firm doesn’t buy from itself).
∑

j∈N\iAji ≡ αi ∈ (0, 1) is

29For example. see Acemoglu et al. (2012, 2016); Baqaee (2018) for the macro amplification
of micro shocks; Afrouzi and Bhattarai (2023); Ghassibe (2021); Rubbo (2023) for applications in
monetary economics; Flynn et al. (2023) for fiscal multipliers; and Baqaee and Farhi (2021); Bonadio
et al. (2021) for applications to covid 2019. For early applications see Long and Plosser (1983).
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the expenditure share on intermediate inputs, with 1 − αi the labor share. ζi ≡
(1− αi)

−(1−αi)∏
j∈N (Aji)

−Aji is a normalization constant. The firms takes prices

{pj}j∈N and the wage w ≡ 1 (the numeraire) as given, due to perfect competition.

There is a representative household who supplies labor to all the firms, consumes

their goods according to a Cobb-Douglas utility function, and pays taxes T to the

government. Demand from the household for good i is therefore ci =
1
pi
βi (w − T ),

where βi ∈ [0, 1] is the share of household expenditure on good i, and
∑

i∈N βi = 1.

The government exogenously demands gi of the goods from firm i. The total

demand facing firm i is therefore

qi = ci + gi +
∑
j∈N

xij (84)

The government balances its budget, T =
∑

i∈N pigi. Consider the comparative

static of the endogenous firm output qi with respect to the exogenous government

expenditure gj — a firm-level fiscal multiplier. Then, we can use the equilibrium

conditions to derive the following equations of state for the endogenous states {qi}i∈N ,

given exogenous shocks {gi}i∈N 30

0 = fi (q,g) = qi − βi

(
1−

∑
j∈N

gj

)
− gi −

∑
j∈N

Aijqj (85)

The Jacobian and direct effects of this model are

∇ik = Iik − Aik,
∂fk
∂gj

= −Ikj + βk (86)

The comparative static, equation (3), is

∂qi
∂gj

= −
∑
k∈N

{
∇−1

}
ik

∂fk
∂gj

=
∑
k∈N

{
(I − A)−1}

ik
(Ikj − βk) (87)

where (I − A)−1 is the Leontief Inverse (see Carvalho and Tahbaz-Salehi, 2019 equa-

30The firms’ first order conditions imply the equilibrium price is pi = w ≡ 1 and the equilibrium
intermediate good expenditure share is xji = Ajiqi. Inserting these, along with household demand,
and the government budget balance, into equation (84), yields equation (85).
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tion 5). The Jacobian ∇ is always diagonally dominant (assumption 1) in this model∑
j∈N\i

|∇ji| =
∑
j∈N\i

Aji = αi < 1 = |∇ii|

Thus, theorem 1 applies to this model. The iDD degree (definition 1) is

δi ≡
∑

j∈N\i |∇ji|
|∇ii|

= αi, δ−i = max
j∈N\i

αj ≡ α−i

and equal to the expenditure share on intermediate inputs, αi. The sum of the direct

effects on all other nodes is

∣∣∣∣∂f−i∂gj

∣∣∣∣ ≡∑
k ̸=i

∣∣∣∣∂fk∂gj

∣∣∣∣ =
j = i

∑
k ̸=i βk = 1− βi

j ̸= i 1− βj +
∑

k ̸∈{i,j} βk = 2 (1− βj)− βi

The direct effects ∂fi
∂gj

satisfy equation (10) for j = i, as

δ−i

∣∣∣∣∂f−i∂gi

∣∣∣∣ = α−i (1− βi) < 1− βi =

∣∣∣∣∂fi∂gi

∣∣∣∣
Thus, for j = i, ∂qi

∂gi
, bounds on the magnitude are given by equation (11)

∂qi
∂gi

∈
[
(1− βi) (1− α−i)

1 + αiα−i
,
(1− βi) (1 + α−i)

1− αiα−i

]
(88)

and the sign is given by equation (12)

sgn

(
∂qi
∂gi

)
= −sgn (∇ii) sgn

(
∂fi
∂gi

)
= − · 1 · −1 = 1

For j ̸= i, ∂qi
∂gj

the bounds are given by equation (13)

∂qi
∂gj

∈
[
βi − (2− 2βj − βi)α−i

1− αiα−i
,
βi + (2− 2βj − βi)α−i

1− αiα−i

]
(89)

Consider the bounds for j = i in equation (88). Theorem 1 implies these bounds

are sharp conditional on {∇jj, δj, }j∈N , ∂fi
∂x
,
∣∣∣∂f−i∂x

∣∣∣, which corresponds to {αj}j∈N , βi

in this model. That is, if one only knew the values of {αj}j∈N , βi and nothing else,
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specifically no knowledge of the input-output matrix {Aij}i∈N ,j∈N\i beyond {αi}i∈N
or {βj}j∈N\i, equation (88) is the most one can say about the maximum and minimum

values of the comparative static, ∂qi
∂gi

.

If one conditions on more information, one can say more about the comparative

static. For instance, applying proposition 1 (see remark 1)∣∣∣∣∂qi∂gi

∣∣∣∣ ∈ [1− βi −
∑

k ̸=i αkβk

1− αiα−i
,
1− βi +

∑
k ̸=i αkβk

1− αiα−i

]
(90)

∂qj
∂gi

∈

[
−βj −

∑
k ̸∈{i,j} αkβk − αi (1− βi)

1− αiα−i
,
−βj +

∑
k ̸∈{i,j} αkβk + αi (1− βi)

1− αiα−i

]

Consider again the bounds for j = i, this time using equation (90). Proposition 1

implies these bounds are sharp conditional on
{
∇jj, δj,

∂fj
∂x

}
j∈N

, which corresponds

to {αj, βj}j∈N in this model. That is, more information is conditioned on than for

the bounds in equation (88), and the result is that the bounds in equation (90) are

narrower (note that
∑

k ̸=i αkβk ≤ (1− βi)α−i)

Alternatively, one can apply proposition 5, by using the fact that trade flows are

nonnegative, ∀i, j ̸= i : Aij ≥ 0. This implies that the off-diagonal elements of the

Jacobian are all nonpositive, ∀i, j ̸= i : ∇ij = −Aij ≤ 0, while the diagonal elements

are positive ∀i : ∇ii = 1 − Aii = 1 > 0.31 Analogously, note that the direct effect

matrix ∂fi
∂gj

satisfies the opposite sign pattern, ∀i, j ̸= i : ∂fi
∂gi

= −1 + βi < 0, ∂fi
∂gj

=

βi ≥ 0. Thus, ∇ij and
∂fi
∂gj

satisfy the additional conditions required for proposition

5, specifically equations (73) and (74). The bounds for j = i in this case are

∂qi
∂gi

∈
[
(1− βi) (1− α−i) ,

1− βi
1− αiα−i

]
(91)

Comparing equation (91) to (88), it is immediate that the bound range in (91) is

narrower, again due to the proposition conditioning on a greater set of information.

The power of the bounds, from either theorem 1 or propositions 1 or 5, can

be understood by comparing them to the exact comparative static, equation (87).

First, they are identified with less information. As already highlighted, the bounds

31The off-diagonal elements of ∇ being all negative, while the diagonal elements all positive,
translates into the feedback in this model being entirely positive: an increase in qj causes qi to
increase, for any i, j. In terms of the economics, when firm j increases their output qj ↑, they buy
more goods from firm i according to the input share Aij , and thus firm i output increases, qi ↑. This
is the only source of feedback in this model.
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require no knowledge of the input-output matrix A beyond {αi}i∈N , whereas the

exact comparative static requires full knowledge of A. Second, they are much simpler

analytically. In particular, the bounds do not require a matrix inversion of I − A,

unlike in the exact comparative static.

Not requiring knowledge of the full input-output matrix A is potentially quite

powerful, because such data in simply unavailable in most settings (Pichler et al.,

2023). The results of this paper provide a way to learn about the comparative statics

in production networks without needing to observe the full supply chain network.

In particular, one only needs knowledge of the low dimensional sufficient statistics,

corresponding in this model to the total expenditure share on intermediate inputs

by each firm, αi and the expenditure share by households on each firm, βi. These

are firm level variables, rather than firm-firm level (e.g. input-output data), and are

therefore more readily available.

Not having a matrix inversion in the expression significantly increases tractability.

This allows one to derive new theoretical insights about the propagation of shocks in

production networks, which the literature has gone some way already in characterizing

(see e.g. Acemoglu et al., 2016; Carvalho et al., 2021). For example, a novel necessary

condition for the firm-level fiscal multiplier to be greater than one, ∂qi
∂gi

> 1, can be

simply derived from using the upper bound in equation (91)32

αi > βi (92)

This result implies that in a production network with any input-output matrix,

{Aij}i∈N ,j∈N\i, the fiscal multiplier on firm i, ∂qi
∂gi

, can be greater than one only if the

firm’s expenditure share on intermediate inputs, αi, is greater than the expenditure

share by households on the firm, βi. Discerning this property from the comparative

static exact expression, equation (87), is less straightforward, if possible at all.

C.2 New Keynesian

A classic question in macroeconomics is what is the size of the fiscal multiplier

(Ramey, 2019): the change in GDP given an increase in government spending. Par-

ticular attention has been given to when is this greater than one, as this corresponds

32Proof: ∂qi
∂gi

> 1 =⇒ 1−βi

1−αiα−i
> 1 =⇒ αiα−i > βi =⇒ αi > βi. The last implication used

α−i < 1, in the spirit of remark 2.
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to the case where private expenditure is not crowded out by the public expenditure

(Christiano et al., 2011). Utilizing the recently influential intertemporal Keynesian

cross framework of Auclert et al. (2024), I show how the results of this paper can

provide insight on this question.

Nodes in this framework correspond to time periods, and interactions between

nodes are described by the matrix of intertemporal marginal propensities to consume

(MPC): the spending in each period from an income shock in some period. For the

comparative statics (or more precisely, the impulse response) of GDP on government

expenditure — the fiscal multiplier — assumption 1 is satisfied under the condition

that all MPCs are strictly positive.33 Focusing on the impact fiscal multiplier, the

effect on GDP today from deficit-financed spending today, proposition 5 can be ap-

plied to give a lower bound. This bound is potentially useful as it requires only a

fraction of the intertemporal MPCs to enumerate — an object that little is known

about empirically — while the exact value of the fiscal multiplier requires knowledge

of the entire MPC matrix. Moreover, the bound produces sufficient conditions for the

multiplier to be greater than one.

The equations of state in this framework derive from the market clearing equations

at each time period i ∈ N
Yi = Ci (Y − T ) +Gi (93)

where Yi is GDP (the endogenous state), Gi is government expenditure (the exogenous

shock), and Ti is taxation. Ci (·) is private consumption in period i, which is a function

of after-tax income in all time periods Y −T , as agents are able to save and borrow.

In Auclert et al. (2024), the model underlying equation (93) is infinite horizon and

therefore the domain of i is {0, 1, ...,∞}. However the results of the current paper

require a finite domain, therefore I consider a truncation, i ∈ N = {0, ..., N}, for
some large N . This is mostly innocuous in practical terms, as Auclert et al. (2024)

also truncate when numerically solving the model.

A key object in characterizing the effect of fiscal policy is the intertemporal

marginal propensity to consume, Mij ≡ ∂Ci
∂Yj

. This describes the change in consump-

tion in period i due to an income increase in period j. The government can save and

33As long as the model can be mapped into the form given in section 2, the results also apply to
impulse responses.
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borrow and therefore its fiscal policy is subject to a lifetime budget constraint

∑
i∈N

Gi

(1 + r)i
=
∑
i∈N

Ti

(1 + r)i
(94)

where r ≥ 0 is the interest rate. I will focus on the comparative static corresponding

to the impact fiscal multiplier, ∂Y0
∂G0

: the change in GDP today, dY0, due to the gov-

ernment spending today, dG0 > 0 (with dGi = 0 for i > 0), that is deficit-financed

through an arbitrary tax schedule in the future, {dTi}i>0.

If one assumes: 1) ∀i, j : Mij > 0, and 2) there exists an n ≥ 1 such that

dYn ≥ dTn, the results in this paper imply (proof provided at the end of this section)

∂Y0
∂G0

≥
1−

∑
j∈N\{0,n} δjs

T
j

1−M00

(95)

where

sTj ≡ (1 + r)−j dTj∑
j∈N\0 (1 + r)−i dTi

(96)

is the taxation share coming from period j (in present value terms) and

δj = 1− 1

(1 + r)n−j
Mnj

1−Mjj

is the iDD degree in this model. Assumption 1) implies that all intertemporal MPCs

are strictly positive. This rules out inferior income effects, which isn’t very restric-

tive given this is the MPC for aggregate consumption, and assumes there is some

transmission of income between all periods. This assumption is satisfied in all the

applications considered in Auclert et al. (2024) (see their footnote A-14). Assump-

tion 2) implies there is a time period where the GDP response is greater than the

taxation levied in this period. This would likely by true if we set n = 1 while having

most of the taxation during periods j > 1. Or if we only tax up to period n − 1 for

some n > 1, as then the restriction reduces to dYn ≥ 0, and we know GDP impulse

responses from fiscal spending shocks are usually nonnegative empirically (see e.g.

Ramey and Zubairy 2018).

The lower bound of the impact multiplier given by equation (95) can be intuitively

understood as follows. The 1
1−M00

component is the“static”Keynesian cross analogue:

spending in period zero implies output will increase by one over one minus the static
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MPC, M00. However, the static Keynesian cross ignores the impact of the future

taxation on today’s output. The term −
∑

j∈N\{0,n} δjs
T
j is a sufficient statistic for a

bound on this, reflecting the reduction in output today due to the negative income

effect of taxation in the future. The iDD degree δj is bounding the effect from each

future period j, and this is weighted by the taxation share in each period, sTj .

The iDD degree δj is smaller, and so the lower bound on the impact multiplier

higher, if Mjj or Mnj are greater, as this corresponds to more of the negative income

effect of the tax in period j being offset by consumption reduction in period j or n,

respectively, as opposed to reducing consumption and therefore output, Y0, now.

A key feature of the lower bound of the impact multiplier in equation (95) is that

it requires substantially less information to enumerate than the point value of the

impact multiplier. To illustrate the potential value of this, suppose the government

spending is financed entirely by taxation in period 1, dT1 = (1 + r) dG0, and choose

n = 2. Then, the bound becomes

∂Y0
∂G0

≥ 1− δ1
1−M00

=
M21

(1 + r) (1−M00) (1−M11)
(97)

Only three elements of the MPCmatrix are required to enumerate the bound,M00,M11,M21,

while the entire N×N matrix is required for the point value. As Auclert et al. (2024)

explain, we have very little empirical evidence on most of the elements of MPC ma-

trix (typically limited to the first few elements of the first column, Mi,0), and those

authors resort to using a structural model to fill in the gaps. The bound dramatically

reduces this burden.

To demonstrate, suppose one assumes temporal symmetry such that M11 = M00

andM21 =M10,
34 which facilitates calibration to empirical estimates as these elements

are known: M00 = 0.51,M10 = 0.18 (Fagereng et al., 2021), and set r = 0.05. The

multiplier lower bound implied by equation (97) is then 0.71. This magnitude is

non-trivial, and implies that the point value of the impact multiplier is fairly large

regardless of, for instance, the structural model one might use to set the remaining

elements of the MPC matrix.

The requirement of less information also allows one to derive sufficient conditions

on the static MPC, M00, such that the multiplier is greater one, ∂Y0
∂G0

≥ 1. Equation

34If this symmetry holds for all elements of the matrix, M is a Toeplitz matrix, which is approxi-
mately the case (quasi-Toeplitz) for many modern macroeconomic models (Auclert et al., 2023).
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(97) immediately reveals a sufficient condition for this: M00 ≥ δ1. Intuitively, the

positive income effect on GDP today from the static MPC,M00, is sufficiently greater

than the negative income effect on GDP today from taxation tomorrow, δ1 (recalling

that the iDD degree bounds this). Moreover, if one continues with assuming the

aforementioned temporal symmetry, and sets M10 = 0.18, r = 0.05, then the lower

bound on the static MPC such that the fiscal multiplier is greater than one is M00 ≥
1 −

√
M10

1+r
= 0.59. This is very close to the empirical value of 0.51, implying that

above-unity impact fiscal multipliers would be guaranteed in this framework if static

MPCs are only slightly higher than those estimated.

Proof. Of Equation (95). Equation (93) forms the basis of the equations of state

corresponding to equation (1). However, a simplification in the comparative static

bounds can be achieved by not directly using this, instead by considering it first in

differential form. Totally differentiating equation (93) gives

i ∈ N : 0 = dYi −
∑
j∈N

Mij (dYj − dTj)− dGi

= (dYi − dTi)−
∑
j∈N

Mij (dYj − dTj)− (dGi − dTi) (98)

=
∑
j∈N

(I −M)ij (dYj − dTj)− (dGi − dTi) (99)

Solving for dYj cannot proceed directly because I −M is singular; equivalently, the

solutions dYj to equation (99) are underdetermined. This is because M obeys the

following in order to satisfy lifetime budget constraints

j ∈ N :
∑
i∈N

Mij

(1 + r)i
=

1

(1 + r)j
(100)

Because I −M is singular, there exists an eigenvector v of I −M with eigenvalue

zero. This means we can rewrite equation (99) without loss of generality as follows

i ∈ N : 0 =
∑
j∈N

(I −M)ij (dYj − dTj − avj)− (dGi − dTi) (101)

for any constant a ∈ R, which reflects the indeterminacy. Essentially, the level of the

solutions dYj is not determined. The model only determines the relative values dYj,

and these are solved for by setting dYj−dTj−avj = 0 for one j, and using only N−1
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of the i equations from equation (101). I set dYn− dTn− avn = 0 and drop the i = n

equation, giving

i ∈ N\n : 0 =
∑
j∈N\n

(I −M)ij

(
dYj − dTj − (dYn − dTn)

vj
vn

)
− (dGi − dTi)

(102)

noting that vn > 0 (v is also an eigenvector of M with eigenvalue 1, and because

M > 0, then v > 0 by the Perron Theorem). The Jacobian of equation (102) is

{I −M}i,j∈N\n. This matrix does not satisfy assumption 1 in general, however it is

generalized diagonally dominant (remark 4): multiply each i equation by (1 + r)−i

i ∈ N\n : 0 = df
(
Ỹ , G0

)
≡
∑
j∈N\n

(I −M)ij

(1 + r)i

(
dYj − dTj − (dYn − dTn)

vj
vn

)
︸ ︷︷ ︸

≡dỸj

−dGi − dTi

(1 + r)i

(103)

Impose some tax policy Ti = Ti (G0) that satisfies budget balance equation (94)

G0 =
∑
i∈N\0

Ti

(1 + r)i
(104)

recalling that ∀i > 0 : Gi = 0. Then, equation (103) is the (differential of the)

equations of state in the form I’ll apply my bounds to, with Ỹj the endogenous state,

and G0 the exogenous shock. The Jacobian of this system is given by

i ∈ N\n, j ∈ N\n : ∇ij ≡
∂fi

∂Ỹj
= (1 + r)−i (Iij −Mij) (105)

which satisfies assumption 1 because

i ∈ N\n :
∑

j∈N\{i,n}

|∇ji| =
∑

j∈N\{i,n}

(1 + r)−jMji

=
∑
j∈N

(1 + r)−jMji − (1 + r)−iMii − (1 + r)−nMni

= (1 + r)−i − (1 + r)−iMii − (1 + r)−nMni

= |∇ii| − (1 + r)−nMni

< |∇ii| (106)
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where line three used equation (100), line four used ∇ii = (1 + r)−i (1−Mii) ≥ 0 by

equation (100) and M > 0, and the last line used M > 0. The iDD degrees are given

by

i ∈ N\n : δi =

∑
j∈N\{i,n} |∇ji|

|∇ii|

=

∑
j∈N\{i,n} (1 + r)−jMji

(1 + r)−i (1−Mii)

=

∑
j∈N (1 + r)−jMji − (1 + r)−iMii − (1 + r)−nMni

(1 + r)−i (1−Mii)

=
(1 + r)−i − (1 + r)−iMii − (1 + r)−nMni

(1 + r)−i (1−Mii)

= 1− (1 + r)−nMni

(1 + r)−i (1−Mii)

where the second line used ∇ii ≥ 0; the fourth line used equation (100). The direct

effects are given by35

∂fi
∂G0

= − 1

dG0

dGi − dTi

(1 + r)i

= −
Ii0 − dTi

dG0

(1 + r)i

= − (1 + r)i Ii0 + sTi (107)

The last line follows because dTi
dG0

=
(1+r)isTi

∑
j∈N\0(1+r)

−jdTj

dG0
= (1 + r)i sTi , which used

the definition of sTi equation (96) in the first equality, and that
∑

j∈N\0 (1 + r)−j dTj =

dG0 by the budget balance equation (104) in the second equality. Thus, the lower

35Note that the dTn term in equation (103) is part of dỸ and therefore is not part of the direct
effect.
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bound on the impact multiplier is derived by

dY0
dG0

=
d (Y0 − T0)

dG0

≥
d (Y0 − T0)− d (Yn − Tn)

vj
vn

dG0

=
dỸ0
dG0

(108)

≥ 1

|∇00|

 ∂f0
∂G0

−
∑
j∈N\0

δj

∣∣∣∣ ∂fj∂G0

∣∣∣∣
 (109)

≥ 1

1−M00

1−
∑
j∈N\0

δjs
T
j

 (110)

where the first line used T0 = 0 by assumption; the second line used dYn ≥ dTn by as-

sumption; the third line used the definition of Ỹ0. The fourth line applied proposition

5 to dỸ0
dG0

based on equations of state equation (103), noting that both sign condi-

tions, equations (73) and (74), are satisfied with s1 = 1, s2 = −1. The sign of the

comparative static is determined because equation (46) is satisfied,
∑

i∈N\0 δi

∣∣∣ ∂fi∂G0

∣∣∣ ≤
δ−0

∑
i∈N\0 s

T
i = δ−0 < 1 =

∣∣∣ ∂f0∂G0

∣∣∣, implying a positive comparative static−sgn (∇ii) sgn
(
∂f0
∂G0

)
=

−sgn (1−M00) sgn (−1) = 1. The lower bound from equation (75) then implies equa-

tion (109). The last line, equation (110) follows using equations (105) and (107).

C.3 International Trade and Economic Geography

Consider the framework in Allen et al. (2020) that encapsulates many of the workhorse

models in the international trade and economic geography literature. Notably it is a

strict generalization of Arkolakis et al. (2012) under their CES demand assumption

R3’, which corresponds to the case where the scale elasticity (introduced below) is

ψ = 0 (see footnote 12 in Arkolakis et al. 2012).

Nodes in this framework correspond to locations and interactions between nodes

are described by the bilateral trade flows between locations, along with the demand

and supply elasticities. For comparative statics on production prices, I show assump-

tion 1 is satisfied under precisely one of the conditions the authors give for equilibrium

uniqueness: the demand and supply elasticities are each greater than −1
2
, and trade

69



costs are quasi-symmetric. The bounds for the comparative statics (proposition 2) of

either price or the real wage with respect to trade costs depend only on the demand

and supply elasticities, the own trade share, and the trade share with the correspond-

ing location directly impacted by the trade cost shock. I draw a parallel of these

sufficient statistics to the Arkolakis et al. (2012) welfare formula.

There are i ∈ N , j ∈ N locations, in which an aggregate good is traded across

locations subject to iceberg trade frictions, τij > 0. Consumers have CES preferences,

implying demand from consumers in location j for products produced in location i is

Xij =
(
piτij
Pj

)−ϕ
Ej, where pi is the production price for products produced in location

i, P−ϕ
j =

∑
i∈N τ−ϕij p

−ϕ
i the consumer price index in j, Ej is total expenditure by

consumers in j, and ϕ ∈ R is the demand elasticity. Quantity supplied by location i

is given by Qi = κci

(
pi
Pi

)ψ
, where ψ ∈ R is the supply elasticity, ci is productivity,

and κ > 0 is a (possibly endogenous) scalar. The output market clears and trade is

balanced up to an exogenous deficit.

A notable case considered by the authors is the one of balanced trade and quasi-

symmetric trade costs,

∀i ∈ N , j ∈ N : τij = τAi τ
B
j τ̃ij (111)

where τAi > 0, τBi > 0 and τ̃ij = τ̃ji > 0. Under this assumption, the production price

solves the following set of equations (see section A2.3 of Allen et al., 2020) for all

i ∈ N

0 = fi (lnp, ln τ̃ ) ≡ κp
1+ψ+ψ 1+ψ+ϕ

ϕ−ψ
i

(
τAi
τBi

) ψϕ
ϕ−ψ

c
ϕ

ψ−ϕ
i︸ ︷︷ ︸

=Yi

−
∑
j∈N

κτ̃−ϕij p
−ϕ
i

(
τAi τ

A
j

)−ϕ
p−ϕj︸ ︷︷ ︸

=Xij

(112)

where Yi ≡ piQi is dollar output. These form the equations of state of the current

paper, equation (1), with the (log of) production price, ln pi, as the endogenous state

and the (symmetric component of the) trade costs, ln τ̃ij, as the exogenous shock.

Using proposition 2, I derive the bounds for the comparative statics

∂ ln pi
∂ ln τ̃lj

= −
∑
k∈N

{
∇−1

}
ik

∂fk
∂ ln τ̃lj

(113)
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for any i ∈ N , l ∈ N , j ∈ N . The Jacobian is

∇ij ≡
∂fi (p, τ̃ )

∂ ln pj
= ϕ

1 + ψ + ϕ

ϕ− ψ

(
YiIij +

ϕ− ψ

1 + ψ + ϕ
Xij

)
(114)

and the direct effects matrix

∂fi
∂ ln τ̃kj

≡ ∂fi (p, τ̃ )

∂ ln τ̃kj
= 2ϕXijIki,

∣∣∣∣ ∂f−i∂ ln τ̃kj

∣∣∣∣ = 2 |ϕ|
∑
l∈N\i

XljIki (115)

Hat algebra has been used to write both expressions in terms of observable objects

(Y,X) rather than unobservable objects (τ, c) — see Allen et al. (2020) for details,

and see Dekle et al. (2008) for the seminal paper on this. A sufficient condition for

the Jacobian to satisfy assumption 1 is

{ϕ > −0.5, ψ > −0.5} or {ϕ < −0.5, ψ < −0.5} (116)

Allen et al. (2020) theorem 1.iii shows that equation (116) with quasi-symmetric trade

costs is sufficient for the model to have a unique interior equilibrium. To see that

equation (116) implies column diagonal dominance of the Jacobian, assumption 1,36

|∇ii| −
∑
i̸=j

|∇ij| =
∣∣∣∣ϕ1 + ψ + ϕ

ϕ− ψ

∣∣∣∣ [(1− ∣∣∣∣ ϕ− ψ

1 + ψ + ϕ

∣∣∣∣)Yi + ( ϕ− ψ

1 + ψ + ϕ
+

∣∣∣∣ ϕ− ψ

1 + ψ + ϕ

∣∣∣∣)Xii

]
> 0

where I used that
∣∣∣ ϕ−ψ
1+ψ+ϕ

∣∣∣ < 1 under equation (116). This last fact can be confirmed

by showing |1 + ϕ+ ψ| − |ϕ− ψ| > 0. If ϕ > −0.5, ψ > −0.5, then

|1 + ϕ+ ψ| − |ϕ− ψ| =

ϕ ≥ ψ 1 + ϕ+ ψ − ϕ+ ψ = 1 + 2ψ > 0

ϕ < ψ 1 + ϕ+ ψ + ϕ− ψ = 1 + 2ϕ > 0

36Allen et al., 2020 prove the Jacobian is row diagonally dominant under ϕ > 0 and ψ > 0 in
lemma 5.

71



and if ϕ < −0.5, ψ < −0.5, then

|1 + ϕ+ ψ| − |ϕ− ψ| =

ϕ ≥ ψ − (1 + ϕ+ ψ)− ϕ+ ψ = −1− 2ϕ > 0

ϕ < ψ − (1 + ϕ+ ψ) + ϕ− ψ = −1− 2ψ > 0

The iDD degree in this model is given by

δi =

∣∣∣∣ ϕ− ψ

1 + ψ + ϕ

∣∣∣∣ 1− Xii
Yi

1 + ϕ−ψ
1+ψ+ϕ

Xii
Yi

Thus, assuming the condition in equation (116), we can apply proposition 2

∣∣∣∣ ∂ ln pi∂ ln τ̃ij

∣∣∣∣ ∈ 2δi
Xij
Yi

1− Xii
Yi

(
1

1 + δi
,

1

1− δi

)
(117)

sgn

(
∂ ln pi
∂ ln τ̃ij

)
= −sgn (∇ii) · sgn

(
∂fi

∂ ln τ̃ij

)
= sgn

(
1 + ψ + ϕ

ψ − ϕ

)
(118)

l ̸= i :

∣∣∣∣ ∂ ln pi∂ ln τ̃lj

∣∣∣∣ < 2δi

1− Xii
Yi

δl
Xlj
Yi

1− δi
(119)

where I used that |∇ii| =
∣∣∣ϕ1+ψ+ϕ

ϕ−ψ

∣∣∣Yi (1 + ϕ−ψ
1+ψ+ϕ

Xii
Yi

)
= |ϕ|Yi

1−Xii
Yi

δi
, and that equation

(54) is satisfied only for the comparatives statics, ∂ ln pi
∂ ln τ̃lj

, with l = i because

∣∣∣∣ ∂fi
∂ ln τ̃lj

∣∣∣∣− ∣∣∣∣ ∂f−i∂ ln τ̃lj

∣∣∣∣ = 2 |ϕ|

XijIli −
∑
k∈N\i

XkjIlk


=

l = i 2 |ϕ|Xij ≥ 0

l ̸= i −2 |ϕ|Xlj ≤ 0

The comparative static bounds in equations (117) and (119) are enumerated with

knowledge of only the demand elasticity ϕ, the supply elasticity ψ, the own-trade

share for i Xii
Yi
, and the level of trade between the two countries directly affected by

the trade cost, l, j, relative to output in i,
Xlj
Yi
.

I can use the above bounds on prices to also bound welfare. For a range of

canonical international trade models isomorphic to the Universal Gravity framework,

the change in welfare of a worker in location i is Wi = Bi

(
pi
Pi

)1+ψ
, with Bi an
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exogenous scalar (Allen et al. 2020 table 1). The change in welfare with respect to a

trade cost shock, τ̃ij, is then

∂ lnWi

∂ ln τ̃ij
= (1 + ψ)

∂ ln pi
Pi

∂ ln τ̃ij
= (1 + ψ)

2ϕ+ 1

ϕ− ψ

∂ ln pi
∂ ln τ̃ij

(120)

where the second equality used
∂ ln

pi
Pi

∂ ln τ̃ij
= 2ϕ+1

ϕ−ψ
∂ ln pi
∂ ln τij

from Allen et al. (2020). Using the

bounds and sign for ∂ ln pi
∂ ln τ̃ij

from equations (117) and (118) gives

∣∣∣∣∂ lnWi

∂ ln τ̃ij

∣∣∣∣ = ∣∣∣∣(1 + ψ) (2ϕ+ 1)

ϕ− ψ

∣∣∣∣ 2δi XijYi1− Xii
Yi

(
1

1 + δi
,

1

1− δi

)
(121)

sgn

(
∂ lnWi

∂ ln τ̃ij

)
= sgn

(
1 + ψ + ϕ

ψ − ϕ

(1 + ψ) (2ϕ+ 1)

ϕ− ψ

)
(122)

In section 4.2, I consider a proportional increase in trade costs with the rest of the

world ∀j ̸= i : d ln τ̃ij = d ln τ . The change in welfare in i is

∂ lnWi

∂ ln τ
=
∑
j∈N\i

∂ lnWi

∂ ln τ̃ij

= (1 + ψ)
2ϕ+ 1

ϕ− ψ

∑
j∈N\i

∂ ln pi
∂ ln τ̃ij

= − (1 + ψ)
2ϕ+ 1

ϕ− ψ

∑
j∈N\i,k∈N

{
∇−1

}
ik

∂fk
∂ ln τ̃ij

= − (1 + ψ)
2ϕ+ 1

ϕ− ψ

∑
j∈N\i,k∈N

{
∇−1

}
ik
2ϕXkjIik

= − (1 + ψ)
2ϕ+ 1

ϕ− ψ

∑
j∈N\i

{
∇−1

}
ii
2ϕXij

= − (1 + ψ)
2ϕ+ 1

ϕ− ψ

{
∇−1

}
ii
2ϕ (Yi −Xii)

The second line used equation (120); the third line used equation (113); and the

fourth line used equation (115). In deriving equation (30) in the main text, I further

set ψ = 0, which corresponds to the case of Arkolakis et al. (2012),

∂ lnWi

∂ ln τ
= −2 (2ϕ+ 1)

{
∇−1

}
ii
(Yi −Xii) , ∇ij = (1 + ϕ)

(
YiIij +

ϕ

1 + ϕ
Xij

)

73



and use a transformed version of ∇ij → 1
(1+ϕ)Yi

∇ij for notational convenience, giving

equation (30). The bounds in equation (31) are derived by

∂ lnWi

∂ ln τ
=
∑
j∈N\i

∂ lnWi

∂ ln τ̃ij

= sgn

(
1 + ψ + ϕ

ψ − ϕ

)
(1 + ψ) (2ϕ+ 1)

ϕ− ψ
2δi

∑
j∈N\i

Xij
Yi

1− Xii
Yi

(
1

1 + δi
,

1

1− δi

)

= sgn

(
1 + ψ + ϕ

ψ − ϕ

)
(1 + ψ) (2ϕ+ 1)

ϕ− ψ
2δi

(
1

1 + δi
,

1

1− δi

)
= −2ϕ+ 1

|ϕ|
2δi

(
1

1 + δi
,

1

1− δi

)
, δi =

∣∣∣∣ ϕ

1 + ϕ

∣∣∣∣ 1− Xii
Yi

1 + ϕ
1+ϕ

Xii
Yi

where the second line used equations (121) and (122); and the last line set ψ = 0

(corresponding to Arkolakis et al. 2012). Equation (31) follows by imposing ϕ > 0.

C.4 Industrial Organization: Oligopoly

Consider a canonical Bertrand oligopoly model with differentiated products from

the Industrial Organization literature (Milgrom and Roberts, 1990). This field of

study has attracted renewed attention due to the rising importance of market power

and oligopolistic industries (De Loecker et al., 2020; Azar and Vives, 2021). My

results hold particular use for emerging research permitting rich heterogeneity, often

by exploiting a network-style approach (Bimpikis et al., 2019; Galeotti et al., 2024;

Pellegrino, 2025).

Nodes in this framework correspond to products, and interactions between nodes

are described by the Hessian of demand between products, and the mark-up. For

the comparative statics on output prices, row diagonal dominance (remark 3) is im-

plied by workhorse demand structures, such as CES, logit, linear (with products

assumed substitutes), and translog (with products assumed substitutes plus an ad-

ditional restriction on the parameters).37 Milgrom and Roberts (1990) demonstrates

this property and proves its sufficiency for equilibrium uniqueness. My results imply

37Diagonal dominance has been shown to be relevant in other market structures too. The frame-
work in Dixit (1986) nests Bertrand, Cournot, market-share and competitive markets structures,
and they appeal to diagonal dominance for stability of the equilibrium. Pellegrino (2025) consider
Bertrand with a generalized hedonic-linear demand system; one can verify that their (inverse) de-
mand satisfies diagonal dominance.
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that this condition is also sufficient to bound the comparative statics. I use these to

characterize price-cost passthrough in a general asymmetric oligopoly, extending the

analysis of symmetric models in the literature (Weyl and Fabinger, 2013).

There are i ∈ N firms each producing one good with constant unit costs, ci, and

with demand Di (p), where p = {pi}i∈N are the endogenous product prices. Di (p) is

assumed to be twice-continuously differentiable. The log profits of firm i are

πi (p, ci) = ln [(pi − ci)Di (p)]

and the firm chooses pi to maximize πi (p, ci), taking all other firms’ prices as given.

The optimal price solves the first-order condition

∂πi
∂ ln pi

=
1

1− ci
pi

+
∂ lnDi (p)

∂ ln pi︸ ︷︷ ︸
≡fi(lnp,ln c)

= 0 (123)

Equation (123) corresponds to the equations of state in my framework, equation (1),

with lnp the endogenous state variable, and ln c the exogenous shock. The Jacobian,

accordingly, is,

∇ij ≡
∂fi (lnp, ln c)

∂ ln pj
= −

ci
pi(

1− ci
pi

)2 Iij + ∂2 lnDi (p)

∂ ln pi∂ ln pj
(124)

The second order condition is

0 >
∂2πi
∂ ln p2i

= ∇ii (125)

which implies the diagonal of the Jacobian is negative. The direct effect matrix is

∂fi
∂ ln cj

≡ ∂fi (lnp, ln c)

∂ ln cj
=

ci
pi(

1− ci
pi

)2 Iij
The pass-through to pi of a change in ci is given by

∂pi
∂ci

=
{
∇−1

}
ii

ci
pi(

1− ci
pi

)2
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In equation (32) in the main text, I use a transformed version of ∇ij →
(
1− ci

pi

)2

ci
pi

∇ij

for notational convenience. In deriving the bounds on this comparative static, I use

proposition 3. The direct effects are only non-zero for the node shocked, ∀i, j ̸=
i : ∂fi

∂ ln cj
= 0, as required by equation (59), and the Jacobian is row diagonally

dominant, as required by equation (58), across many standard demand structures for

Di (p), as explained by Milgrom and Roberts (1990) pg 1271. Specifically: CES and

logit; linear under substitutes; translog under substitutes and an additional parameter

restriction.38

For example, CES demand is Di (p) = ypr−1
n /

∑
j p

r
j , where 1 − r ≥ 0 is the

elasticity substitution, and y =
∑

i piDi (p) is total expenditure. The Hessian of

demand is
∂2 lnDi (p)

∂ ln pi∂ ln pj
= r2

piDi

y

(
pjDj

y
− Iij

)
thus ∑

j ̸∈N

|∇ij| =
∑
j ̸∈N

r2
piDi

y

pjDj

y
= r2

piDi

y

(
1− piDi

y

)

<

ci
pi(

1− ci
pi

)2 + r2
piDi

y

(
1− piDi

y

)
= |∇ii|

hence row diagonal dominance, equation (58), is always satisfied.

An alternative sufficient condition for row diagonal dominance is the case consid-

ered in the main text. Assume the Hessian of log demand is row diagonally dominant,

∀i ∈ N :

∣∣∣∣ ∂2 lnDi (p)

∂ ln pi∂ ln pi

∣∣∣∣ > ∑
j∈N\i

∣∣∣∣ ∂2 lnDi (p)

∂ ln pi∂ ln pj

∣∣∣∣ (126)

and the diagonal of the Hessian is positive

∀i ∈ N :
∂2 lnDi (p)

∂ ln pi∂ ln pi
> 0 (127)

which implies demand is log-convex (as the Hessian of log-demand is positive semidef-

inite). For the equilibrium to be stable under these assumptions, one must restrict

38Logit requires taking the equations of state to be 0 = ∂πi

∂pi
, as opposed to 0 = ∂πi

∂ ln pi
. This is an

application of remark 4, with g′i =
1
pi
.
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the level of convexity. A sufficient condition is39

ci
pi

2
(
1− ci

pi

)2 ≥ ∂2 lnDi (p)

∂ ln pi∂ ln pi
(128)

i.e. limiting how positive the diagonal of the Hessian can be. Together, equations

(126), (127), and (128) are sufficient for row diagonal dominance of the Jacobian

|∇ii| −
∑
j∈N\i

|∇ij| =

∣∣∣∣∣∣∣−
ci
pi(

1− ci
pi

)2 Iij + ∂2 lnDi (p)

∂ ln pi∂ ln pi

∣∣∣∣∣∣∣−
∑
j∈N\i

∣∣∣∣ ∂2 lnDi (p)

∂ ln pi∂ ln pj

∣∣∣∣
>

∣∣∣∣∣∣∣−
ci
pi(

1− ci
pi

)2 Iij + ∂2 lnDi (p)

∂ ln pi∂ ln pi

∣∣∣∣∣∣∣−
∣∣∣∣ ∂2 lnDi (p)

∂ ln pi∂ ln pi

∣∣∣∣
>

ci
pi(

1− ci
pi

)2 Iij − 2
∂2 lnDi (p)

∂ ln pi∂ ln pi

> 0

The second line used equation (126), the third line used equations (127) and (128),

and the fourth line used equation (128).

Turning to the comparative static bounds. For the general case, the bounds for

j = i from proposition 3 are

∂pi
∂ci

∈

ci
pi(

1− ci
pi

)2

|∇ii|

[
1

1 + δiδ−i
,

1

1− δiδ−i

]
, δi =

∑
j∈N\i |∇ij|
|∇ii|

(129)

noting that the iDD degree is constructed using the row sum as we are using proposi-

tion 3. In the main text, I am interested in the lower bound, which can be manipulated

39An equilibrium in this model is considered stable if the Jacobian is negative semidefinite (see
Dixit, 1986 pg 117), which is implied by equation (125) and diagonal dominance of ∇ (the latter
being implied by equations 126, 127, and 128)
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further using δ−i < 1

∂pi
∂ci

>

ci
pi(

1− ci
pi

)2

|∇ii|
1

1 + δi

=

ci
pi(

1− ci
pi

)2∑
j∈N |∇ij|

=

ci
pi(

1− ci
pi

)2∣∣∣∣∣− ci
pi(

1− ci
pi

)2 +
∂2 lnDi(p)
∂ ln pi∂ ln pi

∣∣∣∣∣+∑j∈N\i

∣∣∣ ∂2 lnDi(p)∂ ln pi∂ ln pj

∣∣∣
=

ci
pi(

1− ci
pi

)2

ci
pi(

1− ci
pi

)2 − ∂2 lnDi(p)
∂ ln pi∂ ln pi

+
∑

j∈N\i

∣∣∣ ∂2 lnDi(p)∂ ln pi∂ ln pj

∣∣∣ (130)

where the second line used the definition of δi from equation (129); the third line

used the definition of the Jacobian from equation (124); and the fourth line used the

second-order condition equation (125).

The bounds under the case considered in the main text become

∂pi
∂ci

>

ci
pi(

1− ci
pi

)2

ci
pi(

1− ci
pi

)2 − ∂2 lnDi(p)
∂ ln pi∂ ln pi

+
∣∣∣ ∂2 lnDi(p)∂ ln pi∂ ln pi

∣∣∣ > 1

where the first inequality imposed equation (126) in equation (130), and the second

inequality used equation (127). Thus, pass-through is greater than unity.

C.5 Network Games

Consider a broad class of games played on networks (Galeotti et al., 2010). These

game theoretic models capture a wide variety of economic settings, such as peer effects,

public goods and technology adoption. I consider the workhorse simultaneous-move

game with unconstrained actions and linear best replies, as reviewed in chapter five

of Bramoullé et al. (2016).
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Nodes in this framework correspond to players, which may be interpreted as, for

example, students or firms, depending on the application. Interactions are described

by the network adjacency matrix (describing, for example, a social network), and the

peer effect parameter (which modulates the strength and sign of the interactions).

For the comparative static of a player’s effort, I show that the Jacobian satisfies gen-

eralized diagonal dominance (remark 4), row diagonal dominance (remark 3) and a

variant on signed diagonal dominance (remark 5) under assumptions that are regu-

larly appealed to in the literature concerning equilibrium uniqueness, learning, and

strategic complementarities. The bounds on the comparative static of a player’s effort

with respect to their own private benefit is identified solely from summary statistics of

the adjacency matrix, such as the spectral radius, eigenvector centralities, or network

degrees, which all have independent interest in the literature. As I show, these results

are particularly useful for identifying the peer effect parameter in settings of incom-

plete network data, which is the empirically typical case (Lewis and Chandrasekhar,

2011).

Player i ∈ N choses effort yi ∈ R to maximize a linear-quadratic utility function

ui = βxiyi −
1

2
y2i + γ

∑
j∈N

Gijyixj + ϕ
∑
j∈N

Gijyiyj

Gij ∈ R is a signed, directed and weighted adjacency matrix, whose magnitude indi-

cates the strength of the interaction between agents i and j. I assume ∀i : Gii = 0 as

standard (there is no interaction with oneself). xi ∈ R is an exogenous characteris-

tic of individual i. The utility value of exerting effort exhibits diminishing marginal

utility and depends directly on i’s own characteristic xi with coefficient β ∈ R, on its

peers’ characteristics,
∑

j∈N Gijxi, with coefficient γ ∈ R, and on it’s peers’ actions,∑
j∈N Gijyi, with coefficient ϕ ∈ R. The last term gives rise to strategic interactions

between players when maximizing utility. ϕ scales the magnitude of the strategic

interactions, and will be referred to as the peer effect parameter (also known as the

payoff impact parameter). i and j’s actions are strategic complements when ϕGij ≥ 0,

and strategic substitutes when ϕGij ≤ 0.

The first order condition of maxyi ui yields player i’s best reply

yi = βxi + γ
∑
j∈N

Gijxj + ϕ
∑
j∈N

Gijyj (131)
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The second and third terms correspond to contextual and endogenous peer effects, in

the language of Manski (1993). The Nash equilibrium is the y such that all players’

best replies are satisfied, and these form the basis of the equations of state, equation

(1). Consider the comparative static of effort with respect to the individual character-

istic, ∂yi
∂xj

. In order to facilitate application of the bounds, first make a transformation

of equation (131) as follows

yi +
γ

ϕ
xi = ϕ

∑
j∈N

Gij

(
yj +

γ

ϕ
xj

)
+

(
β +

γ

ϕ

)
xi

and consider ỹi ≡ yi+
γ
ϕ
xi as the endogenous state, with xi the exogenous shock. The

equations of state are then

0 = fi (ỹ,x) ≡ ỹi − ϕ
∑
j∈N

Gij ỹj −
(
β +

γ

ϕ

)
xi (132)

The corresponding Jacobian and direct effects are

∇ij ≡
∂fi
∂ỹj

= Iij − ϕGij,
∂fi
∂xj

= −
(
β +

γ

ϕ

)
Iij

The reason for the aforementioned transformation is that the direct effect matrix ∂fi
∂xj

of this system satisfies equation (59), a necessary condition for proposition 3.40 The

comparative static of interest, ∂yi
∂xj

, is related to this transformed system by

∂yi
∂xj

=
∂ỹi
∂xj

− γ

ϕ
Iij (133)

=
{
(I − ϕG)−1}

ij

(
β +

γ

ϕ

)
− γ

ϕ
Iij (134)

where the first line used yi = ỹi − γ
ϕ
xi, and the second line used equation (3) for

the system given in equation (132). The comparative static bounds will be applied

directly to ∂ỹi
∂xj

, which will be used to bound ∂yi
∂xj

through equation (133).

Diagonal dominance is satisfied under conditions typically invoked for equilibrium

uniqueness. As outlined in Bramoullé et al. (2016) section 5.4.1 (see also Bramoullé

40Whereas the direct effect matrix of the untransformed system would be −βIij − γ
∑

j∈N Gij ,
which does not satisfy equation (59) in general.
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et al. 2014), a Nash equilibrium exists and is unique if I − ϕG is invertible, and

is asymptotically stable if the spectral radius of ϕG is less than one. A sufficient

condition for both of these is |ϕ|µ < 1, where µ is the spectral radius of |G|.41 If one

also assumes G is irreducible, which is equivalent to the often invoked assumption of

the network being is strongly connected,42 in addition to |ϕ|µ < 1, then the conditions

required for proposition 4 are satisfied (see remark 4).43 The proposition gives the

following bounds for the comparative statics, shown for the case where β+ γ
ϕ
≥ 0 (the

bracketed term in equation 135 is flipped when β + γ
ϕ
< 0)

∀i ∈ N :
∂yi
∂xi

∈

[
β + γ

ϕ

1 + ϕ2µ2
,
β + γ

ϕ

1− ϕ2µ2

]
− γ

ϕ
(135)

∀i ∈ N , j ∈ N\i :
∣∣∣∣ ∂yi∂xj

∣∣∣∣ ≤ |ϕ|µ
∣∣∣β + γ

ϕ

∣∣∣ vjvi
1− ϕ2µ2

(136)

where {vi} is the eigenvector of |G| with eigenvalue µ. The bracketed term in equation

(135), and the expression in equation (136), use the bounds and sign from equations

(69), (70) and (71), applied to ∂ỹi
∂xj

, noting that equation (68) is satisfied for j = i. The

bounds only depend on low dimensional summary statistics of the adjacency matrix

G, which have independent interest in the literature: the spectral radius µ (Ballester

et al., 2006; Bramoullé et al., 2014) and the eigenvectors vi, which correspond to the

eigenvector centralities of each node (Golub and Jackson, 2010).

I next consider a number of special cases. Suppose that G ≥ 0 (element-wise

non-negativity) and G is row-normalized, ∀i ∈ N :
∑

j∈N Gij = 1 (assume no i is

isolated).44 This is the linear-in-means model. Here, the spectral radius equals one,

µ = 1. The Jacobian also becomes row diagonally dominant with δi = |ϕ|, and the

41The spectral radius of |ϕG| is always weakly greater than of ϕG by Horn and Johnson (2012)
theorem 8.1.18. Under pure strategic complements, ∀i, j : ϕGij ≥ 0, the two spectral radii are equal
because ϕG = |ϕG|.

42A network is strongly connected if any node in the network has a directed path to any other
node (Bramoullé et al., 2016, page 523). This assumption is very common in the network literature,
especially when considering learning dynamics, existence of a consensus, and eigenvector centralities
(Bramoullé et al., 2016, section 19.3.2).

43Proposition 4 uses the matrix A from equation (67), which in the present model is Aij = |ϕGij |,
with ρ = |ϕ|µ. Note that |G| is irreducible iff G is irreducible.

44It’s straightforward to include isolated individuals. The iDD degree for an isolated individual is
zero. The bounds in equations (137) and (138) are still valid but no longer sharp. The sharp bounds

for isolated i and non-isolated j are ∂yi

∂xi
= β, ∂yi

∂xj
= 0,

∣∣∣∂yj

∂xi

∣∣∣ ≤ |ϕ|
∣∣∣ ∂yi

∂xi
+ γ

ϕ

∣∣∣.
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bounds from proposition 3 can be applied to ∂ỹi
∂xi

, noting that ∂fi
∂xi

satisfies equation

(59)

∀i ∈ N :
∂yi
∂xi

∈

[
β + γ

ϕ

1 + ϕ2
,
β + γ

ϕ

1− ϕ2

]
− γ

ϕ
(137)

∀i ∈ N , j ∈ N\i :
∣∣∣∣∂yj∂xi

∣∣∣∣ ≤ |ϕ|
∣∣∣∣∂yi∂ai

+
γ

ϕ

∣∣∣∣ (138)

where again the case β + γ
ϕ
≥ 0 is shown (and again the bracketed term in equation

137 is flipped when β + γ
ϕ
< 0). If we further assume ϕ ≥ 0 (strategic complements),

then the lower bound in equation (137) can be strengthened by noting that ∇ satisfies

equation (73), one of the conditions for proposition 5. This implies that∇ also satisfies

equation (77), and therefore ∀i : {∇−1}ii ≥ 1, thus45

∂yi
∂xi

=
{
∇−1

}
ii

(
β +

γ

ϕ

)
− γ

ϕ

≥ β if β + γ
ϕ
≥ 0

≤ β if β + γ
ϕ
≤ 0

where the first equality follows from equation (134). If one assumes sgn (β) = sgn (γ)

(direct and contextual effects have the same sign), then the comparative static for

j = i satisfies

∀i ∈ N :

∣∣∣∣∂yi∂xi

∣∣∣∣ ∈ [|β| , |β|+ ϕ |γ|
1− ϕ2

]
, sgn

(
∂yi
∂ai

)
= sgn (β) (139)

where the upper bound used
∣∣∣ ∂yi∂xi

∣∣∣ ≤ ∣∣∣ β+ γ
ϕ

1−ϕ2 −
γ
ϕ

∣∣∣ = |β|+ϕ|γ|
1−ϕ2 , with the inequality follow-

ing from applying equation (137) under both cases β + γ
ϕ
≷ 0. Equation (24) in the

main text is derived by setting γ = 0 in equation (139).

If one also assumes |γ| ≤ |β| (contextual effects are weaker than direct effects),

which is likely the typical prior as the effect of a shock tends to decay with distance,

equation (139) can be inverted to bound ϕ in terms of the comparative statics, ∂yi
∂xi

.

Just like in the main text in section 4.1, use the upper bound for a subset individuals

45Proposition 5 cannot be applied completely because ∇ does not satisfy (column) diagonal dom-
inance assumption 1), but instead row diagonal dominance equation (58). One, however, can derive
an analogue to proposition 5 that applies to a row diagonally dominant ∇ that obeys the sign
equation (73).
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N1 ⊂ N , which gives

i ∈ N1 :

∣∣∣∣∂yi∂xi

∣∣∣∣ ≤ |β|+ ϕ |γ|
1− ϕ2

|γ|≤|β|
≤ |β| 1 + ϕ

1− ϕ2
= |β| 1

1− ϕ

And substitute β out using the lower bound in equation (139) for a different subset

of individuals N2 ⊂ N

i ∈ N1, j ∈ N2 : ϕ ≥ 1−
∣∣∣∣∂yj∂xj

/∂yi
∂xi

∣∣∣∣
Which can be identified using

ϕ ≥ 1−
∣∣∣∣b2b1
∣∣∣∣ (140)

where b1, b2 are estimated from regression equation (27) as in the main text. The

difference between the bound here and in the main text is that equation (26) requires

the stronger assumption γ = 0, while equation (140) requires the weaker assumption

|γ| ≤ |β|. Accordingly, the lower bound under γ = 0 is weakly greater than under

|γ| ≤ |β|,
√

1−
∣∣∣ b2b1 ∣∣∣ ≥ 1 −

∣∣∣ b2b1 ∣∣∣. Using the estimate of
∣∣b2/b1∣∣ = 0.53 from table 2,

the lower bound under |γ| ≤ |β| is 0.47, as opposed to 0.69 under γ = 0. Intuitively,

the lower bound on ϕ is less when allowing for contextual effects because some of the

observed effect on yi from xi,
∂yi
∂xi

, may be driven by the contextual effects γ, and not

by the endogenous peer effect ϕ.

C.6 Time Series

Consider the ARMA(p, q) model, a widely used econometric framework for time series

(Brockwell and Davis, 2016). The nodes in this framework correspond to time periods,

and interactions between nodes are described by the autoregressive lag coefficients.

For the comparative statics of the dependent variable in the econometric model, I

show assumption 1 is satisfied if the sum (in absolute terms) of all the autoregressive

coefficients is less than one. This assumption guarantees existence and uniqueness

of a stationary and causal solution. The bounds on the comparative static (theorem

1) with respect to the jth lag of the independent variable in the econometric model

depends only on the absolute sum of all the autoregressive coefficients, and the jth

lag coefficient.
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Let i ∈ N represents time over N periods, and {yi}i∈N be a ARMA(p, q) process

defined by the model

i ∈ N : yi −
p∑
s=1

βsyi−s = xi +

q∑
s=0

θsxi−s (141)

where {xi}i∈N is a white noise process (definition 3.1.1 in Brockwell and Davis (2016)).

βs is the effect of y with a lag of s periods, and θs the effect of x with a lag of s periods.

The equations of state in this model corresponds to

i ∈ N : fi (y,x) = yi −
p∑
s=1

βsyi−s − xi −
q∑
s=1

θsxi−s

The Jacobian is

∇ij = Iij − βi−j · 1 [i− p ≤ j < i] (142)

The direct effects matrix is ∂fi
∂xj

= −Iij − θi−j · 1 [i− q ≤ j < i], with

∣∣∣∣∂f−i∂xj

∣∣∣∣ =

∑q

s=1 |θs| j = i

1 +
∑

s∈{1,...,q}\i |θs| j ̸= i

The Jacobian ∇ satisfies assumption 1 iff

p∑
s=1

|βs| < 1 (143)

Proof. Assumption 1 is satisfied iif

|∇jj| −
∑
i̸=j

|∇ij| > 0 (144)

Under the Jacobian of this model,

|∇jj| −
∑
i̸=j

|∇ij| = 1−
∑
i̸=j

|Iij − βi−j · 1 [i− p ≤ j < i]|

= 1−
p∑
s=1

|βs|
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where the first line used equation (142) and the second line a manipulation of the

indices. Thus, equation (144) holds iff
∑p

s=1 |βs| < 1.

The condition in equation (143) is sufficient for existence and uniqueness of a

causal, stationary solution {yi}i∈N for this model as N → ∞.

Proof. By Brockwell and Davis (2016) pg 75, a stationary solution exists and is unique

iff

1−
p∑
s=1

βsz
s ̸= 0 (145)

for all |z| = 1 where z ∈ C. The stationary solution is causal (yi only depends on xj

for j ≤ i) if equation (145) holds for all |z| ≤ 1 where z ∈ C (Brockwell and Davis,

2016 pg 75). A sufficient condition for equation (145) is

Re

{
p∑
s=1

βsz
s

}
̸= 1

This holds under equation (143) because

Re

{
p∑
s=1

βsz
s

}
≤

∣∣∣∣∣
p∑
s=1

βsz
s

∣∣∣∣∣
≤

p∑
s=1

|βs| |zs|

≤
p∑
s=1

|βs|

< 1

where the second line used the triangle inequality, the third used |z| ≤ 1 and the last

line used equation (143) . Thus (143) is sufficient for the existence and uniqueness of

a causal stationary solution.

In what follows I will consider only nodes i < N −max {p, q} to avoid having to

complicate the notation to include boundary cases. However, the results naturally

apply to these nodes too.
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The iDD degree (definition 1) is

δi =

p∑
s=1

|βs|

Under equation (143), theorem 1 can be used to imply bounds on the comparative

static of yi with respect to xj. Suppose
∑q

s=1 |θs| ≤ 1, then

∂yi
∂xj

∈


[
1−

∑q
s=1|θs|

∑p
s=1|βs|

1+(
∑p
s=1|βs|)

2 ,
1+

∑q
s=1|θs|

∑p
s=1|βs|

1−(
∑p
s=1|βs|)

2

]
j = i[

θi−j−(1+
∑
s∈{1,...,q}\i|θs|)

∑p
s=1|βs|

1−(
∑p
s=1|βs|)

2 ,
θi−j+(1+

∑
s∈{1,...,q}\i|θs|)

∑p
s=1|βs|

1−(
∑p
s=1|βs|)

2

]
j ̸= i

where j ∈ [i− q, i]. Note that the sign of ∂yi
∂xj

is positive for j = i while it’s unde-

termined for j ̸= i. The bounds are identified from knowledge of only the sums of

all the coefficients on y,
∑p

s=1 |βs|, and the x coefficient corresponding to the shock

θi−j, and the sum of the remainder,
∑

s∈{1,...,q}\i |θs|. Knowledge of all the coefficients

individually is not required.

C.7 Spatial Econometrics

Consider the standard spatial autoregressive model, a workhorse framework in spa-

tial econometrics (LeSage et al., 2009, section 3.1.1). The nodes in this framework

correspond to locations, and the interactions between nodes are described by the

spatial weight matrix and the spatial lag parameter. For the comparative statics of

the dependent variable in the econometric model, I show row diagonal dominance

(remark 3) is satisfied if the spatial lag parameter is less than one in absolute value.

This condition is assumed almost without exception in the literature. The bounds

on the comparative static with respect to the independent variable in any location is

identified from the spatial lag parameter and the coefficient on the exogenous local

characteristic alone; notably, the spatial weight matrix is not needed to calculate the

bounds. I show how this can be used to partially identify the spatial lag parameter

under incomplete or misspecification of the spatial weight matrix, which helps rem-

edy a key critique against the spatial econometric literature (Gibbons and Overman,

2012).
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The spatial autogressive model is

yi = ρ
∑
j∈N

Wijyj + βxi + εi (146)

where i ∈ N represents locations, y and x are some endogenous and exogenous loca-

tion characteristics, respectively. Wij ≥ 0 is the spatial weight matrix, representing

how strongly connected locations i and j are, often parameterized to be inversely

related to distance between the two locations. ρ ∈ R is the spatial lag (or spatial

autoregressive) parameter, modulating the overall magnitude and sign of the spatial

interdependence. β is the direct effect of xi on yi, holding the indirect effect through∑
j∈N Wijyj fixed. εi is the residual.

Typically in these models, the spatial weight matrix is constructed to have no

interaction within a location, ∀i ∈ N : Wii = 0, and all row sums equal to one,

∀i ∈ N :
∑

j∈N Wij = 1. The term
∑

j∈N Wijyj then represents a spatially weighted

average of y neighboring i. Under this restriction, the parameter ρ is almost always

assumed to have modulus less than one (Ord, 1975; Kelejian and Robinson, 1995;

LeSage et al., 2009; Gibbons and Overman, 2012)

|ρ| < 1 (147)

This assumption implies the model has a “stable” solution (Fingleton, 1999). That

is, the variance of the system is finite even if the matrix has cycles or if N → ∞.

It also ensures the model is well-defined as I − ρW is invertible. The prevalence

of this assumption, however, is perhaps more rooted in computational convenience,

facilitating maximum likelihood estimation. The equations of state in this model are

0 = fi (y,x) ≡ yi − ρ
∑
j∈N

Wijyj − βxi − εi

The Jacobian is

∇ij ≡ Iij − ρWij

and the direct effects matrix is ∂fi
∂xj

≡ −βIij,
∣∣∣∂f−i∂xj

∣∣∣ = β (1− Iij). Equation (147),

along with the fact that all row sums of (nonnegative) W equal one, implies that the
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Jacobian is row diagonally dominant,

∀i ∈ N :
∑
j ̸∈N

|∇ij| =
∑
j ̸∈N

|ρ|Wij <
∑
j ̸∈N

Wij = 1 = |∇ii|

And because the only non-zero direct effect is on j = i, equation (59) is satisfied and

we can apply proposition 3 to bound the comparative static. The iDD degree under

row diagonal dominance is

δi =

∑
j ̸∈N |∇ij|
|∇ii|

=

∑
j ̸∈N |ρ|Wij

1
= |ρ|

The resulting bounds are
∂yi
∂xi

∈
[

β

1 + ρ2
,

β

1− ρ2

]
(148)

and

j ̸= i :

∣∣∣∣∂yj∂xi

∣∣∣∣ ≤ |ρ|
∣∣∣∣∂yi∂xi

∣∣∣∣ ≤ |ρ| β
1− ρ2

(149)

Where the sign is determined for the j = i comparative static because equation (10)

is satisfied. Note that the second inequality in equation (149) used the upper bound

of equation (148).

The bounds are enumerated from knowledge of β, ρ only; no knowledge of the

spatial weight matrix, W , is required. This is a potentially useful insight, as a diffi-

culty in spatial autoregressive models is characterizing the implications of different ρ

for the distribution of y, which is generally challenging due its interaction with the

spatial weight matrix, W (Conley, 2016 pg 7).

A key critique of the spatial econometric literature is that identification of ρ de-

pends pivotally of the specification of the spatial weight matrix W being correct (e.g.

the assumed functional form of its dependence on distance), which is typically hard

to justify (Gibbons and Overman, 2012). My bounds can be used to partially identify

ρ even if W is misspecified, thus alleviating this critique.

Restricting ρ ∈ [0, 1), one can apply the same strategy as in step 9 of section 4.1,

as the spatial econometric model equation (146) is isomorphic to the linear-in-means

model equation (14). One would use the regression in equation (27) for two subsets

of locations that differ in their position in the spatial weight matrix. For instance,

a measure correlated with centrality in W (such as trade openness or market access,
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depending on the empirical setting) would suffice. The result is a lower bound on ρ

(analogue to equation 26) that does not require correct or full specification of W .
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