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ABSTRACT. Factor and sparse models are two widely used methods to impose a low-
dimensional structure in high-dimension. They are seemingly mutually exclusive.
We propose a lifting method that combines the merits of these two models in a su-
pervised learning methodology that allows to efficiently explore all the information
in high-dimensional datasets. The method is based on a flexible model for high-
dimensional panel data, called factor-augmented regression (FarmPredict) model
with both observable or latent common factors, as well as idiosyncratic components.
This model not only includes both principal component (factor) regression and
sparse regression as specific models but also significantly weakens the cross-sectional
dependence and hence facilitates model selection and interpretability. The method-
ology consists of three steps. At each step, the remaining cross-section dependence
can be inferred by a novel test for covariance structure in high-dimensions. We
developed asymptotic theory for the FarmPredict model and demonstrated the va-
lidity of the multiplier bootstrap for testing high-dimensional covariance structure.
This is further extended to testing high-dimensional partial covariance structures.
The theory is supported by an simulation study and applications to the construction
of a partial covariance network of the financial returns and a prediction exercise for

a large panel of macroeconomic time series from FRED-MD database.
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1. INTRODUCTION

With the emergence of new and large datasets, the correct characterization of the
dependence among variables is of substantial importance. Usually, to achieve this
goal, the literature has followed two seemingly orthogonal tracks over the last two
decades. On the one hand, factor models have become an essential tool to summarize
information in large datasets under the assumption that the remaining dependence
structure is negligible. For instance, panel factor models are applied now to a wide
variety of important applications, ranging from forecasting (macroeconomic) variables
and asset pricing models to causal inference in applied microeconomics and network
analysis. On the other hand, there have been major advances on parameter estimation
in ultra high-dimensions under the assumption of sparsity or weak-sparsity. That is, a
variable depends only on a (very) small subset of the other variables. For an overview
on these two topics and their exciting developments, see [Fan et al.| (2020)).

In this paper, we take an alternative route and combine the best of the two worlds
described above in order to better characterize the dependence structure of high-
dimensional data. More specifically, we consider that the covariance structure of a
large set of variables, organized in a panel data format, is characterized as a combina-
tion of a factor structure, where factors can be either observed, unobserved, or both,
and a weakly-sparse idiosyncratic component. This formulation is general enough
in order to accommodate a very large number of data generating processes of in-
terest in economics, finance, and related areas. The proposed methodology has two
ingredients: a three-step estimation procedure and a new test for structure in high
dimensional (partial) covariance matrices. The steps of the estimation procedure are
as follows. In the first one, we take the original data and remove the effects of any
observed factors. These factors can be deterministic terms such as seasonal dummies
and/or trends or any other observed covariates. The first step can be parametric or
nonparametric, low or high dimensional. A latent factor model is then estimated us-
ing the residuals from the first stage. Finally, in a final step we model the dependence
among idiosyncratic terms as a weakly sparse regression estimated by the Least Ab-
solute Shrinkage and Selection Operator (LASSO). At each step, the null-hypothesis
of no remaining cross-section dependence can be tested by the proposed test for the

(partial) covariance structure in high-dimensions.
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Our approach has many downstream econometric applications. It can enhance
high-dimensional prediction, select more interpretable variables, construct counter-

factuals for treatment evaluations, and depict (partial) correlation networks.

1.1. Motivation. Let Y, := (Y3;,...,Ys)" be a random vector generated as Y =
ANF, + Uy, fori = 1,....n, t = 1,...,T, where ¥ := E(U,U)}), with U; :=
(Ui, - .., Unt)', is not necessarily diagonal. Fix one component of interest i € {1,...,n},

which serve as a response variable. Consider the following prediction models:
Ml . E(}/;'t‘Yfit); MQ . E(}/:Lt‘Ft)y and Mg . E(}/;t‘Fthit); (11)

where Y _;; and U _; are, respectively, vectors with the elements of Y; and U, ex-
cluding the i-th entry. Model M3 is indeed the factor augmented regression model
since it is the same as E(Yi|F, Y _i).

Suppose that we observe both F; and U_;. Which one of three models above
is best in terms of mean square error (MSE) for prediction? Comparison between
M and M, is not clear since it depends, among others, on the magnitude of X
relative to A’A, where A := (A,...,A,)". However, since the o-algebras generated
by Y _;; and F; are both included in the o-algebra generated by (F;, U _;), it is not
surprising that MSE(M3) < min[MSE(M;), MSE(M5)]. The same will hold true if
we replace the models in by their best linear projections, which we denote by M j
for j € {1,2, 3}, since the linear space Mg is the largest. In fact, since linear span by
(Fy,U_j) is the same as that by (Y _;, F';), we expand the space in the informative
factor directions F';. In the linear case, we can explicitly write the “gains” of /\73

when compared to M 1 and ./WQ:
MSE (M) — MSE(M,) = —6,%_; .8,
MSE (M) — MSE(M,) = —AR AL — ALY Ay,

where 6, and 3, are the coefficients of the projection of U;; onto U _;; and the coeffi-
cients of the projection of X;; onto X _;, respectively; ¥_; _; is 3 excluding the i-th
row and column; Ay; := A; — B.A_; and Ay; := 3, — 6;. From the previous expres-
sions, it becomes evident that both /Wl and /\72 are restrictions on Mg. Broadly
speaking, whenever one does not expect to have an exact factor model, there are
potential gains of taking into account the contribution of the idiosyncratic compo-

nents U _;;. Therefore, we use Mg as the base model for the estimation methodology

described in Section 2.2l
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1.2. Main Contributions and Comparison with the Literature. The contri-
butions of this paper are multi-fold. First, our methodology bridges the gap between
two apparently competing methods for high-dimensional modeling; see, for example
the discussion in |Giannone et al. (2021) and Fan et al. (2020). This yields a vast
number of potential applications and spin-offs. For instance, in [Fan et al.| (2020), we
apply the methods developed in here to evaluate the effects of interventions and we
contribute to the literature on synthetic controls and related methods by combining
the approaches of Gobillon and Magnac| (2016)) and (Carvalho et al.|(2018). Therefore,
in our setup both a common factor structure and weak sparsity can coexistE]

Second, our results can also serve as a diagnostic and misspecification tool. For
panel data models with interactive fixed effects as in [Pesaran| (2006), Bai (2009),
Moon and Weidner| (2015) and Bai and Liao (2017)), our test can be directly applied
to uncover the dependence structure among cross-sectional units before and after
accounting for common factor components. If the factor structure is informative
enough, we expect the idiosyncratic covariance matrix to be almost sparse. If this
is not the case, we may have possibly underestimated the number of factors. One
popular application is in asset pricing as discussed in (Gagliardini et al.| (2019)) and in
the empirical section of this paper. There are a huge number of proposed factors as
described in Feng et al.| (2020), Giglio and Xiu (2020)), and Gu et al.| (2020)). We can
apply our methodology not only to test for omitted factors, but, as well, to estimate
network connections among firms as in |Diebold and Yilmaz| (2014) and Brownlees
et al. (2020). Finally, as a diagnostic tool, our paper tackle the same problem as
Gagliardini et al.| (2019). However, we take an alternative solution strategy which
relies on a much different set of hypothesis; see also |Gagliardini et al.| (2020).

Third, the methodology proposed here contributes to the forecasting literature.
For instance, in the second application considered in this paper, we build forecasting
models for a large cross-section of macroeconomic variables. We call this method
the FarmPredict. We show that the combination of factors and a sparse regression
strongly outperforms the traditional principal component regression as in Stock and
Watson (2002a,b). Therefore, FarmPredict can be an additional contribution to the
forecasting and machine learning toolkit. The method can be easily extended to a

multivariate setting combining factor-augmented vector autoregressions (FAVAR) as

1Spaulrsity and factor models can also coexist in the framework of sparse principal components; see
Fan et al.| (2020]).
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in Bernanke et al.| (2005)) with sparse vector models as in |[Kock and Callot| (2015) and
Masini et al. (2019)). Hence, we contribute to the debate in (Giannone et al.| (2021)).
Fourth, we show consistency of factor estimation based on the residuals of a first-
step regression. Our results hold for both parametric (linear or nonlinear) and non-
parametric first stage. A high-dimensional first stage is also allowed. Note that,
current results in the literature consider that factors are estimated based on observed
data and our derivations favor a much more flexible and general setup (Bai and Ng|
2002, 2003} 2006). More specifically, our methodology favors settings where there
are both observed and latent factors, as well as trend-stationary data. In the later,
the trend can be first removed by (nonparametric) first-stage regression. In addi-
tion, whenever the unobserved factors and the observed covariates are correlated, the
method proposed in [Pesaran (2006) can be used and all or results follow directly.
Fifth, we contribute to the LASSO literature. LASSO can not be model selection
consistent for highly correlated variables. Through the decomposition of covariates
into factors and idiosyncratic components, namely the idea of lifting, we decorrelate
the variables and make the model selection condition much easier to hold; see, for
example, (Fan et al., 2020). We show consistency of the estimates based on residuals
of the previous steps. Our results are derived under restrictions on the population
covariance matrix of the data and not on the estimated one, as it is usual in many
papers. See, for example, van de Geer and Buhlmann (2009)). Furthermore, we derive
our results under much mild conditions that the ones considered in (Fan et al., 2020)).
Finally, we extend the results in (Chernozhukov et al.| (2013, 2018) to strong-mixing
data in order to construct hypothesis tests for covariance and partial covariance struc-
ture in high dimensionsE] This step is necessary for econometrics and financial ap-
plications. As side results, in order to develop the test we first show consistency
of kernel-based estimation of a high-dimensional long-run covariance matrix of de-
pendent process. This is a new result with important consequences for the theory of
high-dimensional regression with dependent errors. We also establish consistency of a
new estimator of the partial covariance matrix in high-dimensions and strong-mixing
data. Our proposed tests can be used to infer if the (partial) covariance matrix of
a high-dimensional random vector is diagonal or block-diagonal. More generally, we
can test any pre-defined structure. Furthermore, we show that the test remains valid
ZRecently, |Giessing and Fan| (2020) also extended the results in Chernozhukov et al.|(2013). However,

their setup is very different from ours and the authors only consider the case of independent and
identically distributed data.
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when we use the residuals from a previous step estimation to compute the covariance
matrix. This result allows us to to apply the test to the three-stage estimation pro-
cedure proposed here. Although our results are derived under the assumption that
the number of factors is known, simulation results presented in the paper provide
evidence that the test have good finite-sample properties even when the number of
factors is determined by data-driven methods commonly found in the literature. In
addition, due to the factor augmentation, our method is robust to the over-estimation
of the number of factors. Over the past years, a vast number of papers proposed
different methods to test for covariance structure in high dimensions. See, for exam-
ple, |[Ledoit and Wolf (2002), (Chen et al| (2010), Onatski et al. (2013), (Cai and Ma
(2013), |Li and Qin| (2014)), [Zheng et al.| (2019), Cai et al.| (2016]), Zheng et al.| (2019),
and |Guo and Tang (2020), among many others.E] To the best of our knowledge, we
complement all the previous papers by simultaneously considering high-dimensions,
strong-mixing data with mild distributional assumptions, and pre-estimation when
constructing tests for both covariance and partial covariance structure.

Summarizing, our approach provides:

(1) A systematic way to unify factor and sparse models in order to construct
econometric specifications which use all the available information. These mod-
els can be applied to:

(a) Forecasting in a high-dimensional setting;
(b) Construction of counterfactuals to aggregate data;
(c) Estimation of partial correlation networks;
(2) An inferential procedure to test for genereal structures in covariance and par-

tial covariance matrices.

1.3. Organization of the Paper. In addition to this Introduction, the paper is
organized as follows. We present the model setup and assumptions in Section[2] The
theoretical results are presented in Section [3] with practical guides given in Section [4]
We depict the results of a simulation experiment in Section 5| and discuss the em-
pirical application in Section [6] Section [7] concludes. All proofs are deferred to the
Supplementary Material.

1.4. Notation. All random variables (real-valued scalars, vectors and matrices) are

defined in a common probability space (€2, .#,P). We denote random variables by an

3For a nice recent review, see Cai (2017)).
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upper case letter, X for instance, and its realization by a lower case letter, X = x. The
expected value operator is with respect to the P law such that EX := { X (w)dP(w).
Matrices and vectors are written in bold letters X. Except for the number of factors,
r, and number of covariates, k, defined below, all other dimensions are allowed to
depend on the sample size (1"). However, we omit this dependency throughout the
paper to avoid clustering the notation prematurely.

We use | - |, to denote the ¢? norm for p € [1, 0], such that for a d—dimensional
(possibly random) vector X = (Xi,...,X,), we have |X|, := (3, |XiP)"/? for
p e [1,0) and | X | = sup;q|X;|. If X is a (m x n) possibly random matrix then
| X[, denotes the matrix ¢’-induced norm and | X |max denotes the maximum entry
in absolute terms of the matrix X. Note that whenever X is random, then || X, for
p € [1,00] and || X |max are random variables. We also reserve the symbol | - || without
subscript for the Euclidean norm | - | := | - [|2 for both vectors and matrices.

For any convex function ¢ : R* — R™* such that ¢(0) = 0 and ¢(z) — o0 as x — ©
and (real-valued) random variable X, we denote its Orlicz norm by |X |, which is
defined by | X | := inf {C’ >0:E [¢ (%')] < 1}. Since we are only concerned with
polynomial and exponential tails we restrict ourselves to Orlicz norm induces by the
class of function defined by (3.3). Evidently, as opposed to |X|,, |X||y, is always a
non-negative non-random scalar. We do not abide to any convention to apply Orlicz
norm to vector or matrices to avoid confusion.

For any vector X, diag (X) is a diagonal matrix whose diagonal is the elements
of X. 1(A) is an indicator function on the event A, i.e, 1(A) = 1 if A is true and
0 otherwise. We adopt the Landau big/small O, o notation and the “in probability”
Op and o, analogues. We say that x is of the same order of y, x = y, if both x = O(y)
and y = O(z). We write X =p Y if both X = Op(Y) and Y = Op(X). Unless stated
otherwise, the asymptotics are taken as T' — oo, where T is the time dimension, and
the o(1) and op(1) are with respect to the limit as 7' — 0. We denote convergence

in probability and in distribution by “~-»” and “=", respectively.

2. SETUP AND METHOD

2.1. Data Generating Process. We consider a very general panel data model,
which is rich enough in order to nest several important cases in economics, finance

and related areas. We define the following Data Generating Process (DGP).



8 J. FAN, R.P. MASINI, AND M.C. MEDEIROS
Assumption 1 (DGP). The process {Yi: : 1 <i < n,t > 1} is generated by

Yii =7 X+ NFy+ Uy (2.1)

=Ry
where Xy is a k-dimensional observable (random) vector which may also include a
constant term, F; is a r-dimensional vector of common latent factors, and U is
a zero mean idiosyncratic shockﬁ The unknown parameters are v, € R¥, the factor
loadings \;, and the covariance matrix of the idiosyncratic shocks. Finally, we assume

that X, Fy and Uy are mutually uncorrelated.

Remark 1. In Assumption[1] we consider that k, the dimension of X is finite and
fixed. Furthermore, the relation between Y;; and X is linear. This is for the sake of
exposition. However, the theoretical results in this paper are written in terms of the
consistency rate of the first-step estimation. Therefore, the DGP can be made much

more general by just changing the rates.

Remark 2. The assumption that X, Fy and Uy are mutually uncorrelated can be
relaxed. Whenever X ;; is correlated with F'; and U;; are correlated and the interest lies
of the estimation of the parameters v, 1 = 1,...,n, the method proposed by Pesaran
(2000) can applied in the first-stage of the procedure considered in this paper and our
theoretical results will follow. Nevertheless, we provide several examples below where

the assumption that X, Fy and Uy are mutually uncorrelated is reasonable.

Example 1 (Asset Pricing Models). Suppose Yy, is the return of an asset i at time
t and let X;; := X, be a set of k observable risk factors, such as the market returns
and or Fama-French factors (Fama and Frenchl, |1995, 12015). F; can be a set of
additional, non observable, risk factors. Several asset pricing models, such as the
Capital Asset Pricing Model (CAPM) of the Arbitrage Pricing Theory (APT) model,

are nested into this general framework.

Example 2 (Networks). Model also complements the network specifications
discussed in Barigozzi and Hallin (2016,2017b) and | Barigozzi and Brownlees (2019).
Furthermore, the test proposed here can be used to detect networks links as in|Diebold
and Yilmaz (2014)) and|Brownlees et al.| (2020). For example, Y can be the (realized)
volatility of financial assets and X;; := X can be volatility factors as in|Brito et al.

(2018) and|Andreou and Ghysels (2021).

4For simplicity, we assume that all the units i have the same number of covariates (k). The framework
can certainly accommodate situations where k; is a function of <.
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Example 3 (FAVAR). In the case where the index i represents a different depen-
dent (endogenous) variable and Uy is a dependent process, model turns out
to be equivalent to the Factor Augmented Vector Autoregressive (FAVAR) model of
Bernanke et al. (2005). In this case, X 3 may also include lagged dependent variables.

Example 4 (Panel Data Models). Model is the panel model with iterative fixed-
effects considered in|Gobillon and Magnac (2016), where the authors propose an alter-
native to the Synthetic Control method of|Abadie and Gardeazabal (2005) and|Abadie
et al.| (2010) to evaluate the effects of regional policies. Model is also in the
heart of the FarmTreat method of |Fan et al. (2020).

2.2. Three-Stage Method. The method proposed here for estimation, inference
and prediction consists of three stages where at the end of each stage, the covariance

structure of the residuals is tested.

(1) For each i € {1,...,n} run the regression:
Etzvgxit—i_Rita tE{].,...,T},

and compute ]%it =Y, — :)\/;X i The first stage may consist of a regression
on a constant, a deterministic time trend and seasonal dummies, for instance,
or, as in Example [I a regression on observed factors. After removing the
contribution from the observables, we can use the test for the null hypothesis of
no remaining (partial) covariance structure to check if the (partial) covariance
of R;; is dense or sparse. If it is dense we move to Step 2. Otherwise, we
jump directly to Step 3. This first parametric, low dimensional step can be
replaced by a nonlinear/nonparametric regression or by a high-dimensional
model, when, for example, the number of observed factors is large. As pointed
out in Remark [2| the Pesaran’s (2006) estimator can be also used whenever
correlation between X ;; and R;; is allowed. This will be discussed more in the
subsequent sections.

(2) Write R; := (Ryy, ..., Ry) and R, = AF; + U,. The second step consists of
estimating A and F; for t = 1,...,T using IA%t through principal component
analysis (PCA) and compute

ﬁt == _ﬁt - Kﬁ‘t
After estimating the factors and loadings, we apply our testing procedure to

check for remaining covariance structure in U,;. The second-step estimation
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can be carried out also by dynamic factor models as in Barigozzi and Hallin
(2016,2017,2020) or Barigozzi et al.| (2020)). In Section [4| we discuss the deter-
mination of the number of factors.

(3) Now, define ﬁ_it = (ﬁlt, e ﬁi_l,t, ﬁi-ﬁ-l,t . ﬁnt)’. The third step consists of
a sparse regression to estimate the following model for each i € {1,...,n}:

A~ A~

UitzefiU,it‘f"/it’ tE{l,,T}

(4) The regression in Step 3 provides useful augmentation for predicting the re-
sponse variable Yj; (if Y}; is a variable to be predicted; see ([2.3))), which reduces
the error further from Uj; to Vj;. The sparsity of estimated 6; is useful for con-

structing partial correlation network or graphica model.

At the end of Steps 2 and 3, we can conduct the relevant inference on the struc-
tures of the covariance or partial covariance matrices. We can also provide updated
prediction future outcomes. We detail those in the next subsection. Also note that

the nonzero estimates of 8; shed light on the links among idiosyncratic components.ﬂ

2.3. Estimators and Inference Procedure. In a pure prediction exercise one is
usually interested in the linear projection of Y;; onto (X7, F,, U’ )", which results

in the factor-augmented regression model (FARM)
Yi=v'Xu+NFi+0,U_y+ey, tef{l,....,T} (2.2)
for each given i, and can be predicted by
Vi=9'Xu+NF+60,U_y  ie{l,... nh. (2.3)

This will be called FarmPredict. Note that model is equivalent to using the
predictors Xy, Y _;; and F';, which augment predictors X;;, Y _;; by using the common
factors F';. The form in ([2.2) mitigates the collinearity issues in high dimensions.
Model also bridges factor regression (8; = 0) on one end and (sparse) regres-
sion on the other end with A; = A’ ,0;, where A_; is the loading matrix without the

i'" row. In the latter case, model (2.2)) becomes a (sparse) regression model:

Yii =/ X+ 60/R_ + 4, te{l,...,T}. (2.4)
5The three-stage procedure described here could be replaced by a single-step joint estimation. How-

ever, not only the computational burden will be much higher, but also the technical challenges will
be greater. I believe that the simplicity of the method is more a blessing than a curse.
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In this case, FARM specification as in decorrelates the variables R_; in (2.4).
It makes the model selection consistency much easier to satisfy and forms the basis
of FarmSelect in (Fan et al) [2020). Our contribution in this specific task is to
allow heteroscadestic adjustments, resulting in the estimated data R;. In general, for
FARM with sparsity, FarmPredict chooses additional idiosyncratic components
to enhance the prediction of the factor regression.

In other cases, the structure of the idiosyncratic components U = (Uy,...,U,)" is

the objective of interest. An estimator for ¥ = E(U,U}) could be simply given by
A~ 1 T ~ ~/
3= ?;UtUt. (2.5)

In order to proper understand the (linear) relation between a pair (U, Uj;) of Uy,
a simple covariance estimate sometimes is not enough. In applications, it is often
desirable to have a direct measure of how U; and Uj;; are connected. By direct
connection, we meant the relation between those units removing the contribution of
other variables of U,;. For this purpose, we use the partial covariance between Uy
and Uj;, defined for any pair 4,j € {1,...,n} as m;; := E(V;;+Vji), where Vi, :=
Uit — Proj(U|U _;;+) and Proj(U|U _;;+) denotes the linear projection of Uy onto the
space spanned by all the units except ¢ and j, which we denote by U_;;;. We suggest

to estimate the partial covariance matrix IT := (7;;) by
~ 1 o A
II .= (7?1]) and ’/?U = = Z ij,t‘/ji,ta (26)
r=

where ‘A/Z-jt is the residual of the LASSO regression of (71-,5 onto ﬁ_ij,t fori,je{l,...,n}.
We also would like to conduct formal test on the population structure of U;. Specif-

ically, we propose a test for the following null hypothesis:
Hy : Xp = X9, Dc{l,....,n} x{1,...,n}, (2.7)

for a given subset D, where ¥Xp denotes the elements of 3 indexed by D and we allow
d := |D| to diverge as n, T — co. For example, to test if ¥ is diagonal, D consists of
all off diagonal elements and %, = 0. To test if X is block diagonal, D can be taken
to the corresponding off-diagonal blocks. Similarly, for testing the structure on the

partial covariance matrix

HS :Tp =113, Dc{l,...,n} x{1,...,n}. (2.8)
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The null hypotheses and nest several cases of interest. The most common
would be to test for a diagonal or a block diagonal structure in 33 and /or IT. But it also
accommodates other structures The task of estimating X is well documented in liter-
ature even in high-dimensions; see, for example, Ledoit and Wolf (2004,2012,2017,2020),
Fan et al| (2008), [Lam and Fan| (2009), or [Fan et al| (2013) ][]

The challenges for testing and can be summarized as follows:

(1) As we allow for both n and d to diverge to infinite as 7" grows, sometimes at
a faster rate, we have a high-dimensional test where some sort of Gaussian
approximation result for dependent data must be deployed as we also allow
the number covariances to be tested (d) to diverge. In this case, a high-
dimensional long-run covariance matrix must be estimated if one expects to
get (asymptotic) correct test size.

(2) We do not observe {U.} or {V;;.}. Instead, we have an estimate of both from
a postulated model on observable random variables. Therefore, the estimation
error must be taken into account to claim some sort of asymptotic properties
of the test. In fact, it is not uncommon to obtain estimates of both {U,} and

{Vij+} from a multi-stage estimation procedure as we illustrate later.

We propose to test (2.7)) using the statistic
S3 = [VT(Ep — B9)max- (2.9)

The quantiles of S35 are approximated by a Gaussian bootstrap. To describe the
procedure, let Ty denote the (d x d) covariance matrix for the vectorized submatrix
(Gij)(i,j)eps Where G;; = %thl U;.Uj . Since the process {U,} might present some
form of temporal dependence (refer to Assumption [3(c)) we estimate Yy using a
Newey-West-type estimator. For a given K € K, where K is a class of kernel functions
described below in and bandwidth h > 0, Yy is estimated by

T

~ —~ —~ 1 A~ ~/

Yy:= > K(/h)Myg, and My,:=— > Ds,Dy, (2.10)

T
[e|<T t=0+1

where ﬁz,t is a d-dimensional vector with entries given by (7“(7 s+ — 04 for (4,7) € D,
where 0;; is the (7, j) element of 3 defined in (2.5). Finally, let ¢%(7) be the 7-quantile
of the Gaussian bootstrap S := | Z% . and Z5 X, Y ~ N(0, Yx).
6With minor changes, the proposed test can also be used to test the null Mvec (X) = m for some

(d x n?) matrix M and d-dimensional vector m where d := dr is also a function of T
"See [Ledoit and Wolf| (2021al) for a recent survey or the book by [Fan et al.| (2020).
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Theorem [4] demonstrates the validity of Gaussian bootstrap procedure described
above, i.e., it states conditions under which the 7-quantile of the test statistic ([2.9)
can be approximated by ¢&(7) in the appropriate sense.

Similarly, the test statistic for is given by

Sp 1= [VT(Tp — T1)) fmas- (2.11)

Let Y denote the (dx d) covariance matrix of (7;;)(; jjep Where 7;; := % ZtT=1 ViiaVijit-

Y is estimated by

T
~ —~ —~ 1 ~ ~ 1
TH = Z K(g/h)MrLg; MH,Z = T 2 DH,tDH,tfb (212)
4| <T t=0+1
where IA)Hyt is a d-dimensional vector with entries given by ‘A/l-j,tf}m — 7,5 for (i,7) €
D. Also, let ¢f;(7) be the T-quantile of the Gaussian bootstrap S5 := |Zf/« and
Zy|X,Y ~N(0,Tv).
Theorem [5| demonstrate the validity of Gaussian bootstrap, i.e., it states conditions
under which the 7-quantile of the test statistic (2.11)) can be approximated by ¢f;(7)

in the appropriate sense.

3. THEORETICAL RESULTS

In this section we collect all the theoretical guarantees for the estimation of the
model by using the proposed three-stage method described above. Specifically,
Section 3.1 deals with estimation and Section 3.2 with inference on the (partial)
covariance structure of II.

To present the next results it is convenient to use a more compact notation. For
eachi =1,...,n, we define the T-dimensional vectors Y; := (Y1,...,Y;r) and U; :=
(Un, ..., Ug)’. We also define the (T x k) matrix of covariates X; := (X;1,..., X))’
for each i = 1,...,n and the (T x r) matrix of factors F' := (F'y,..., Fr) such that

(2.1)) can be represented as

YZ'ZXi’Yi-FF)\Z’-FUZ', i=1,2,...,n,

(3.1)
for each cross-sectional unit i, where R; := F\; + U;.
When no confusion is likely to arise, we also define for each ¢t = 1,...,T, the

n-dimensional vectors Y, := (Yy,...,Y,) and U; := (Uyy,...,U,)’; and the nk-
dimensional vector X; := (X7,,..., X ;). Also, set the (n x nk) block diagonal
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matrix I whose block diagonal is given by (v}, ...,~/,) and the (n x r) loading matrix
A= (A1, ..., Ay)". Then, (2.1) can also be represented as panel time series

Y,=TX,+AF,+U, t=12....T

(3.2)
=TI'X; + Ry,

where R, := AF, + U,.

3.1. Estimation. We consider the following set of assumptions

Assumption 2 (Factor Model). Assume:
(a) E(F;) =0, E(F.F,) = I, and A'A is a diagonal matriz;

(b) All eigenvalues of A'A/n are bounded away from zero and infinity as n — ©;
(c) | = AN| = O(1); and
(d) [Almax < C.

Remark 3. Assumption[dis standard in the literature. Note also that the assumption
E(F}) = 0 is not restrictive as our approach considers a first-step estimation which

may include a constant in the set of regressors. It is also needed for identifiability.

In order to present the results in a unified manner for both light and heavy tail
distributions, we state the next assumption in terms the Orlicz norm of the random
variables. Specifically, since we are only concerned with polynomial and exponential
tails we define the following subset of unbounded, convex, real-valued functions that

vanish at the origin:
U= {¢, : R" >R :¢,(z) =aP,p=>6
or Pp(x) = 21[0 < 2” < (1 —p)/p] + [exp(2’) — 1]1[z" = (1 — p)/p],p > 0}.
(3.3)

Also, for each v, € ¥, we define ¢, (x) := 2P*° for some € > 0 if ¢, (x) = 2P;

otherwise (for the exponential case) 1,4 1= 1,.

Assumption 3 (Moments and Dependency). There ezists a constant C' < o
and function 1, € ¥ defined in (3.3) such that, for alli = 1,...,n; L = 1,... k;
s,t=1,....,T;and j=1,...,7:

(@) Xy, < C. [Uiluy, < C. | Fyluy, < C:
(0) (XX /T) gl < C
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(c) The process {(X's,, F,,U})',t € L} is weakly stationary with strong mizing
coefficient o satisfying a(m) < exp(—2cm) for some ¢ > 0 and for all m €
Z, where X g denotes the vector X, after excluding all deterministic (non-
random) components.

(d) |n" P UU, ~EUU] |y,, <C;

(¢) In™2 3 NalUitly,, < C; and

(f) logn = 0<%).

A few words about Assumption (3| are in order. Assumptions (3.a) and (3.c) allow
us to apply a Marcinkiewicz-Zygmund type inequality for partial sums to deal with
the polinomial tails (Rio| (1994) and Doukhan and Louhichi (1999)) and a Bernstein
inequality (Merlevede et al.| (2009) - Theorem 2) to control exponential tails. More-
over, Assumption (3.c) excludes the deterministic component of X; to accommodate
possibly non-random non-stationary (but uniformly bounded by (a)) covariates. As-
sumption (3.d) is only used to prove results for the first-stage estimation in case it
is performed by ordinary least-squares (Theorem [1]). Assumption (3.d) controls for
the level of cross-sectional dependence among the units. As we allow the number of
units to diverge with T', some sort of control on this quantity is necessary which is not
implied by (3.c). Assumption (3.e) has a similar role to (3.d) but in terms of linear
combinations of the idiosyncratic components. Assumption (3.e) only bounds the
growth rate of the number of units n to be sub-exponential with respect to T'. As a
matter of fact, this assumption is only binding in the exponential tail case, otherwise
the rate conditions imposed in the theorems below imply (3.e).

For each = = 1,...,n, let R; := F\; + U; denote the unobservable error term
in (3.1), 4, the least-squares estimator of ~; and R, := Y, — X4, the vector of
residuals. Also set R := (Ry,...,R,) and R := (Ry,...,R,). We must control
for the least-squares estimation error in the first step of the proposed methodology.
The next result gives a bound for the maximum entry of the (n x 7) matrix R-R
when the first-stage is conducted by OLS in a linear setup. Note that in this case we

assume that X;;, F'; and U;; are mutually uncorrelated.

Theorem 1. Under Assumption[3(a)-(d)

5 Ck, ~ ¢y (nT)
max | Ry = Ruly,, < T;f and | R — Rlmax = Op [WT ,

where the Cy . s a constant only depending on k and 1,.
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Remark 4. In case the first step of the method involves more complicated estimation,
such as Pesaran’s (2006) method, instrumental variables, or LASSO, for example, we
write | R — R|max = Op(w), where w := Wy, 18 a non-negative sequence. This will be

used in the next theorems.

Define the (n x T') matrices Y := (Y,...,Y ) and U := (U4,...,Ur); and the
(nk x T) matrix X := (X1,..., X ). We can write (2.1)) in the matrix form as

Y=TX+AF' +U. (3.4)

Notice that R = AF' + U where U := U + R — R and (A, F) can be estimated
by Principal Component Analysis (PCA), which minimizes

g(A, F) = |R— AF'|%, (3.5)

with respect to A and F', subject to the normalization F'F /T = I,. The solution F
is the matrix whose columns are v/ times r eigenvectors of the top r eigenvalues of
RRand A = RF/T.

Since we do not directly observe U, in the third step of our estimation procedure
we use U := R — AF instead. Therefore, we must control of the estimation error
in the factor model given by (n x T') matrix U — U which is the main purpose of
Theorem [2] below. Also, it is well know fact that the loading matrix A and the factors
F are not separably identified since AF; = AH'HF,; for any matrix H such that
H'H =1, Ifwelet H := T-'V"'F FA’'A, where V is the (r x r) diagonal matrix
containing the r largest eigenvalues of }AQIIA?/ T in decreasing order, we have that H F';
is identified as AF; is identified.

The result below first appeared in Bai (2003) for the case of fixed (n,T"), and was
further extended to hold uniformly in (i < n,t < T) by Fan et al. (2013). |[Fan et al.
(2020) makes the conditions modular. However, both consider the case when the
factor model is estimated using the true data as opposed to an “estimated” one as
in our case. Therefore, the next result is a generalization that takes into account
that pre-estimation error term and quantifies how the error impact on the precision

of factor analysis.

Theorem 2. Let w := w, r be a non-negative sequence such that |R—R|max = Op(w).
Then, under Assumptions @ and @/Jljl(nZ)/\/T + ¢, (nT)w = O(1), we have that



BRIDGING FACTOR AND SPARSE MODELS 17
" (1)
1 p -1
Nia + P\/ﬁ + w¢p/2(nT)] ,

max||F, — HF |, = Op [
t<T
(b)

+—=+tuw

~ “1n 1
TEJMZ'—HAZ"QZOPW;) Vi ]

(0
IR QUGS

VT o i)

||ﬁ - UHmax = OP |:

By setting w = 0, i.e., no estimation error in the first step, we recover Theorem
4 and Corollary 1 in [Fan et al| (2013) under sub-Gaussian assumption. Note that
in order to have the error |[U — U|max vanishing in probability we must have the
pre-estimation error | R — R)max of order (in probability) smaller than 1/ wp’/;(nT).

We have decided not to replace w in Theorem 2 with the rate obtained in Theorem []]
as the latter only applies to the least square estimator. In some applications, however,
the first step of the procedure could be done using a different type of estimator. For
instance a penalized adaptive Huber regression (Fan et al., 2017)) if the number of
features k is comparable or even larger than T and the tail of the distribution is
heavy. By stating the Theorem [2[ in terms of a generic rate, it is easier to account
for the effect of a different estimator. By combining Theorems [1| and [2| we have the
following corollary

Corollary 1. Under the same assumptions of Theorems[1] and[3, for the OLS used

in the first-stage to obtain IA?,, we have

GABT) (D)
VT NG

In particular for the sub-Gaussian case (Y(x

U = Ulmax = Op

exp(z?) — 1) we have
3

) =
PN B [log(nT)] [log T
”U_UHmax_OP [ ﬁ + n ] )

and for polynomial tails (Y (z) = xP)

A 6/p TP
HU—Umax:oP[ " ]

T1/2—6/p + \/ﬁ
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For notational convenience, for each i € {1, ..., n}, consider the split U" = (U;,U ;)
where U is a T-dimensional vector and U _; a T' x (n — 1)-dimensional matrix. Anal-
ogously, we split U = (ﬁz,ﬁ_z) Then for a the penalized parameter & > 0, the

LASSO objective function can be written for each 7 € {1,...,n}
1 ~ A
L(0) + Penalty(0) := ?HUz —~U_0|* +¢£|9]:. (3.6)

To ensure a consistent estimation of 8, a sort of restricted strong convexity of the
objective function is required when n > 7. This in turns is ensured, in the case of a
quadratic loss, by bounding the minimum eigenvalue on U /_Zﬁ _;/T away from zero
restrict to a cone (refer to Negahban et al.| (2012)) or [Fan et al.| (2020) for a thorough
discussion). Here, we adopt the compatibility constant defined in van de Geer and
Biithlmann| (2009)). For an index & < {1,...,n} and any n-dimensional vector v, let
vs be the vector containing only the elements of the vector v indexed by S. Thus,
#Hvs = #S and §° := S\{1,...,n} is the complement of S.

Definition 1. For an n x n matric M, a set S < {1,...,n} and a scalar ¢ = 0, the

compatibility constant is given by

K(M,S,¢) = inf {M VIS| cxeR": |zse

[

1 < §|ws|1}, (3.7)

where ||x||pr = &' Mx. Moreover, we say that (M,S, () satisfies the compatibility
condition if k(M ,S,() > 0.

Notice that the square of the compatibility constant is close related to the minimum
of the ¢;-norm of the eigenvalues of X restricted to a cone in R™. Let t Sp; := {j :
0;; # 0} and k; 1= & [E(U_U_;)/T),So,,3]. Set the maximum non-sparsity level
and minimum compatibility constant

S0 1= m<ax|807z~| and kg := min K;. (3.8)
n

x N
The next result shows the ¢; and ¢, rate results for the Lasso estimator (3.6 based on
the “estimated data” and quantifies how the estimation errors impact on the choice

of regularization parameter and rates of convergence.
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Theorem 3. Letn := n, r be a non-negative sequence such that U =U | max = Op(n).
Assume that Assumption[3 holds and

—1
¥,(n?)
so=0 |k “1(nT) + ] + 22—~ . 3.9
For every e > 0 there is a constant 0 < C. < o0 such that if the penalty parameter is
set to 1( )
Pyl _
§ = Ce| =2+ (1) (3.10)

then for any minimizer 0, of (3.6)), with probability at least 1 — €:

~ ~ ~ 2
T, — 0,)U U _.(6: — 6,) + £]6: — 4] < 85%. efl.... .n
0

Remark 5. Notice that we apply the compatibility condition on the non-random co-
variance matriz B(U" U _;)/T instead of the estimated random covariance matriz
ﬁliﬁ_i/T or the “unobservable” random matriz U' U _;/T. Careful review of the
proofs reveals that the same is true for the gradient of the objective function that

defines our parameter via a first order condition.

Once again, we purposely avoided to replace 1 in Theorem |3| with the rate of
Corollary [1| to make it readily applicable to the case when a different type of factor
models was used or, as a matter of fact, any other pre-estimation procedure. By

plugging the rate of Corollary (1| into 1 we have the next corollary

Corollary 2. If n defined in Theorem[3 is taken to be rate given by Corollary[l] and
the compatibility condition holds, i.e.: kg = C' > 0 then under the conditions of the

Theorem [3:
A G DYWL (T) (T
max B~ 6, = O [( ( z/%/t‘)(n ) . p(j(ﬁ )) .

3.2. Inference on Covariance and Precision Matrices. We now obtain the null
distributions of our test statistics for the structures of the covariance and the partial
covariance. Recall the setup and notation of section In particular, we consider
the kernel IC(+) appearing in the covariance estimator defined by belongs to the
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class defined in |Andrews| (1991)) which we reproduce below for convenience

K:={f:R—-[-1,1]: f(0) =1, f(z) = f(—x),Vx € R,Jﬂ(m)dw < o0, f is continuous}.
(3.11)
This includes most of the well-known kernel used in the literature. To avoid confusion,
it is worth to point out that our tuning parameter h, also called bandwidth parameter
by |Andrews| (1991)), is supposed to diverge, as opposed to the bandwidth in the density
kernel estimation setup, which is expected to shrink to zero.
The next result shows how accurately the elements of the covariance matrix are

estimated and validates the bootstrap method.

Theorem 4. Let 1 := 0,1 and v := v, 1 be non-negative sequence such that Hﬁ —
Ullmax = Op(n) and max;, H]?Elt — Rit|y, = O(v) and K(-) € K. Under Assumptions
[H3, if further

(a) {U,} is fourth-order stationary process

(b) |diag(Ys)]e = ¢ for some ¢ >0

(c) As h,n, T — 00!
(log n) p/z(n) +/log T'log nwg/;(n)w;/;(Tl/‘l

(c.1) T1/6 + T/ = o(1)

(¢.2) (logn)*h [n(w;, ' (VT))* + ;4 (n) VT | = o(1)

(c.3) (logn)? <\F77 A+ A +7’3V> =o(1),
where the rates 11,719,175 are defined in Lemma and h > 0 is the bandwidth
parameter of the covariance estimator defined in (2.10)); then

T = Tslmax = Op |1 (06" (0T)]" + v (n*)/VT) | = (1),

and supp sup,c.1y [P [Sh < 2( )] = 7| = o(1), where the first supremum is over all
null hypotheses of the form (2.7)) indexed by D € {1 : n} x {1:n}.

Remark 6. The rate assumptions (c.1)-(c.3) in Theorem [ seem over complicated.
However, they are a direct consequence of having the first and second step estimation
error rates, v and n respectively, explicitly appearing in the final rate and the general
tail condition through the 1,(-) function. It allows the practitioner to directly adjust
the final rate should (s)he prefer to employ different intermediate estimators. For
instance, a LASSO estimator in the first step in case the number of covariates k is

large enough or estimate the factor model by PCA variants.
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Remark 7. Careful review of Theorem ’8 proof reveals that (c.1) traces back to the

Gaussian Approzimation of the (unobservable) process {# ML UU, EUtU:‘}TN;

whereas (c.8) controls for the difference between Uy — U ¢+ and, therefore, takes into
account the estimation error of the first and second steps. Note the presence of v
and n in (c.3) which are absent in (c.1). Finally, (c.2) make sure that the bootstrap
constructed in terms of the estimated covariance matriz is close to the bootstrap based

in the true covariance. Note the presence of the bandwidth parameter h in (c.2).

If we were to specialized Theorem {4 to the sub-Gaussian case and incorporate the

rates obtain in Theorem [I| and Corollary [I| we have the following cleaner Corollary.

Corollary 3. Consider the sub-Gaussian where 1y(x) = exp(x?). Suppose that the
Assumptions[1{3 and conditions (a) and (b) of Theorem|[4] hold. If the rates v andn are
set to be rates given by Theorem[1] and Corollary (1], respectively, then the conclusion
of Theorem [} holds provided that as h,n,T — oo:

(a) logn = o(T"'®)

log n)15/2 logn)®
(b) b | Loh" o Lot | 1)
(c) (logn)?(log T)IWVT _ o(1).

n

Remark 8. In order to establish the rate of convergence in the last result of Theorem
we need an upper bound on the tails of the pre-estimation error namely ||2— Z | maz-
In fact, we need to control the tails of the factor model estimation to establish uniform
bounds on ||Uy — Uit|yp, which translate into obtain bounds on max;, Hﬁjt — Fji|y and

max;; | Aji — Ajill -

The next theorem shows how well the elements of the partial autocovariance matrix
is estimated and gives the conditions under which the bootstrap test works. Note that
in calculation the partial covariance , we used the residual XA/Z»jt of the LASSO
regression of (A]it onto [Af_ijyt for 7,5 € {1,...,n}. This adds extra technical challenges
to the proof. Let §0,ij denote the active set of the projection of U; onto U_,j,
for i,7 € {1,...,n} and R;; := K [E(U'_ijU,ij)/T),g'o’ij,3]. Set the maximum non-
sparsity level and minimum compatibility constant

S0 := KT;Engn |§07Z~j| and Ko := 1<T¢i]n<n Rij. (3.12)

We assume the same sparsity structure as in Theorem 3.
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Theorem 5. Let n := n, v and v := v, be non-negative sequence such that Hﬁ —
U|max = Op(n) and max; ; ||}A%it—Rit||¢p = O(v), K € K where K appears in and
K defined by , the LASSO regqularization parameter E set as in , and the
sparsity level obeying with sq and kg replaced by o and Rq, respectively. Under
Assumptions 2-4, if further

(a) {U;} is fourth-order stationary process
(b) ||diag(Ym)|w = ¢ for some ¢ > 0

(¢c) Asn,T — oo:

(logn)7/S¢ h(n)  log Tlognyy n(n) o (T1/4)
( ]) T1/6p/2 + :,1:/12/4 22 :0(1)

~ Ypu(n?)

(.2) (log n)*h ( [+ €05 ()] [Bovy ()] + 3 220 )] — o(1)

_ 2
(c.3) (logn)® ({25 + 2& +raw + 80, () + VT [+ €0, " )] }) = o(1),
where the rates r1,r9,73 are defined in Lemma and h > 0 is the bandwidth
parameter of the covariance estimator defined in (2.12)); then

1= Ytfox = O (h {go[n + &0y ()[R0t ()P + d’%)}) = o(1)

and supp sup,c 1) [P(Sp < (7)) — 7| = o(1)  under Hi', where the first supremum
is over all null hypotheses of the form (2.8)) indexed by D € {1 x n} x {1 x n}.

Similar comments as in Remarks [6}f§ and Corollary [3| apply to Theorem [5| as well.

Remark 9. As opposed to the case of testing covariance, when testing partial co-
variance in high-dimensional setup, the sparse structure plays a role in terms of Sy
appearing in the rates (c.2) and (c.3). Therefore, these assumptions restricts the
cases when the proposed partial covariance test has the correct asymptotic size. For
instance, in the case of a complete dense partial covariance structure, i.e, all the re-
gressors are active in all LASSO regressions we are likely to have 5y of order of n
and, therefore, (c.2) and (¢.3) are not expected to hold.

4. GUIDE TO PRACTICE

The methodology in this paper involves three steps. The first step consists of
identifying known covariates that we may want to control for. It may involve the
removal of deterministic trends and seasonal effects, for instance. This can be done

either by parametric or nonparametric regressions. It is important to notice, however,
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that the convergence rates of the estimations in the subsequent steps will be influenced
by the convergence rate of the estimation in the first part of the procedure.

After the data is filtered in the first step, one can test for remaining covariance
structure. For instance, if the covariance matrix of the filtered data is (almost)
diagonal, there is no need to estimate a latent factor structure and the practitioner
may jump directly to the third step of the method.

On the other hand, if the covariance of the first-step filtered data is dense, a latent
factor model should be considered and the number of factors must be determined.
To determine the number of factors we consider either the eigenvalue ratio test of
Horenstein| (2013) or the information criteria put forward in Bai and Ngj (2002). The
factors can be estimated by the usual methods.

The last step involves a sparse regression in order to estimate any remaining links
between idiosyncratic components. Before running the last step, we may test for
a diagonal covariance matrix of the idiosyncratic terms. If the null is not rejected,
there is no need for additional estimation. In case of rejection, we can proceed with
a LASSO regression. We recommend that the penalty term is selected by Bayesian
Information Criterion (BIC) as advocated by Medeiros and Mendes (2016]).

Finally, concerning the estimation of the long-run matrices, the usual methods
discussed in the literature can be used here to select the kernel and the bandwidth.
We use the simple Bartlett kernel with bandwidth given as |T'/3].

5. SIMULATION

In this section we report simulation results divided into two parts. In the first one,
we evaluate the finite-sample properties of the test for remaining covariance structure.
In the second part, we highlight the informational gains when considering both the
common factors and the idiosyncratic component. We simulate 1,000 replications
of the following model for various combinations of sample size (7') and number of

variables (n):
Y= AF, +W,, (
F,=08F, , +E, (
Wiy = oW1 + Uy, (
Uy = 1(i = 1)(012Us; + 613U3; + 014Uy + 615Us) + Viy (
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where I(-) is the indicator function, {Vi:} is a sequence of independent Gaussian
random variables with zero mean and variance equal to 0.25, and {E,} is a sequence
of r-dimensional independent random vectors normally distributed with zero mean
and identity covariance. Furthermore, {V;;} and {E;} are mutually independent for
all time periods, factors and variables. For each Monte Carlo replication, the vector of
loadings is sampled from a Gaussian distribution with mean -6 and standard deviation
0.2 for © = 1 and mean 2 and unit variance for i = 2,...,n. The value of ¢ is either
0 or 0.5. The coefficients 015, 613, 614, and 6,5 are equal to zero or 0.8, 0.9, -0.7, and
0.5, respectively. We set r = 3.

5.1. Test for Remaining Covariance Structure. We start by reporting results
for the test of no remaining structure on the covariance matrix of Uy = (Uyy, ..., Un)'.
The null hypothesis considered is that all the covariances between the first variable
(¢ = 1) and the remaining ones are all zero. For size simulations we set 015 = 013 =
014 = 015 = 0 in the DGP. In order to evaluate the effects of factor estimation as well
as the methods in selecting the number of factors, we consider the following scenarios:
(1) factors are known and there is no estimation involved; (2) factors are estimated by
principal components but the number of factors is known; (3) the number of factors
is determined by the eigenvalue ratio procedure of Horenstein| (2013); (4)-(7) the
number of factors is determined by one of the four information criteria proposed by
Bai and Ng| (2002) as defined by

IC; = log[S(r)] + r™ L log (1) 1C, = log[S(r)] + rtE log C%;,

n+T
ICy = log[S(r)] + r—'°§,§jT ICy = log[S(r)] + rltT=ElloalnT),

where S(r) = —=|R — A F,|2 and Cpp = \/min(n, T).

Tables[I]and [5] report the results of the empirical size of test for different significance
levels. We consider the case of ¢ = 0 in Table [I] and ¢ = 0.5 in Table 5| in the
Supplementary Material. The tables present the results when the factors are known
in panel (a), the factors are unknown but the number of factors is known in panel
(b), or the number of factors are estimated either by the information criterion IC; in
panel (c) or the eigenvalue ratio procedure in panel (d). Table[7]in the Supplementary
Material shows the results when the number of factors are determined by ICy — ICy.

A number of facts emerge from the inspection of the results in the Table [T} First,
size distortions are small when the factors are known. In this case, the test is un-

dersized when the pair (n,T") is small. When the factor are not known but the true
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number of factors is available, the size distortions are high only when 7" = 100 and
n = 50 due to inaccurate estimation of factors. However, the distortions disappear
when the pair (T, n) grows. In this case, the empirical size is similar to the situation
reported in Panel (a). The finite performance of test in the case where the number of
factors is selected by information criterion IC; is almost indistinguishable to the case
reported in Panel (b). However, the results with the eigenvalue ratio procedure are
much worse when 7' = 100 and n = 50. In this case, the procedure selects less factors
than true number r = 3. For instance, the procedure selects 2 or less factors in 36%
of the replications. Just as comparison, for 7" = 100 and n = 50, IC; underdetermines
the number of factors only in 3.10% of the cases. The latter also confirms that over
estimation of the number of factors will not have big adversorial effect. For all the
other combinations of T" and n all the data-driven methods selects the correct number
of factors in almost all replications.

When the idiosyncratic components are autocorrelated the size distortions are
higher, as reported in Table This is mainly caused by the well-known difficul-
ties in the estimation of the long-run covariance matrix.

Tables [2] and [6] report the results of the empirical power with 15 = 0.8, 813 = 0.9,
b1a = —0.7, and f15 = —0.5 in the DGP. When the factors are known, the test always
rejects the null and the empirical power is one for any significance level. On the other
hand, when factors must be estimated but the number of factors are known, the
power decreases as depicted in panel (b) in the tables. Nevertheless for T = 500, 700
the power is reasonably high, specially when test is conducted at a 10% significance
level. For T' = 100, the performance deteriorates as n grows. The results are similar
when data-driven procedures are used to determine the number of factors and the
conclusions are mostly the same if ¢ = 0 or ¢ = 0.5.

The main message of the simulation exercise is that the finite-sample performance
of the proposed tests depend on the correct selection of factors. Nevertheless, for the
DGP considered here, the usual data-driven methods available in the literature to

determine the true number of factors seem to work reasonably well.

5.2. Informational Gains. The goal of this simulation is to compare, in a predic-
tion environment, the three-stage method developed in the paper by evaluating the
information gains in predicting Y, by three different methods. First, the predictions
are computed from a LASSO regression of Yj; on all the other n — 1 variables. This

is the Sparse Regression (SR) approach. Second, we consider a principal component



26 J. FAN, R.P. MASINI, AND M.C. MEDEIROS

regression (PCR), i.e., an ordinary least squares (OLS) regression of the variable of
interest on factors computed from the pool of other variables. Finally, we consider
predictions constructed from the method proposed here, the FarmPredict method-
ology. Table |3 presents the results. The table presents the average mean squared
error (MSE) over 5-fold cross-validation (CV) subsamples. As in the size and power
simulations, we consider different combinations of 7" and n. We report results for the
case where 015 = 0.8, 613 = 0.9, ;4 = —0.7, and 0,5 = —0.5 in the DGP.

According to the DGP, the theoretical MSE is 0.25 when all the information is
used. When just a factor is used, the MSE is 2.21. From the table is clear that
there are significant informational gains when we consider both factors and the cross-
dependence between idiosyncratic components. Several conclusions emerge from the
table. First, it is clear that when the sample size increases the MSE reduces. This
is expected. Second, the PCR’s MSE and FarmPredict’s MSE are close to their
theoretical values of 2.21 and 0.25 when the sample increases. The performance of
the FarmPredict is quite remarkable when 7' = 500 or 7" = 700 and is always superior

to Sparse Regression and PCR.

6. APPLICATIONS

In this section we consider two applications with real data to illustrate the benefits

of the methodology developed in the paper.
6.1. Factor Models and Network Structure in Asset Returns.

6.1.1. The Dataset. We illustrate the methodology developed in this paper by study-
ing the factor structure of asset returns. We consider monthly close-to-close ex-
cess returns from a cross-section of 9,456 firms traded in the New York Stock Ex-
change. The data starts on November 1991 and runs until December 2018. There
are 326 monthly observations in total. In addition to the returns we also consider 16
monthly factors: Market (MKT), Small-minus-Big (SMB), High-minus-Low (HML),
Conservative-minus-Aggressive (CMA), Robust-minus-Weak (RMW), earning/price
ratio, cash-flow/price ratio, dividend/price ratio, accruals, market beta, net share is-
sues, daily variance, daily idiosyncratic variance, 1-month momentum, and 36-month
momentum. The firms are grouped according to 20 industry sectors as in Moskowitz
and Grinblatt| (1999). The following sectors are consideredf]| Mining (602), Food

8The number between parenthesis indicate the number of firms in our sample that belong to each
sector.
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(208), Apparel (161), Paper (81), Chemical (513), Petroleum (48), Construction (68),
Primary Metals (133), Fabricated Metals (186), Machinery (710), Electrical Equip-
ment (782), Transportation Equipment (166), Manufacturing (690), Railroads (25),
Other transportation (157), Utilities (411), Department Stores (67), Retail (1018),
Financial (3419), and Other (11).

6.1.2. Results. We start the analysis by looking at the correlation matrix of a sample
of nine different sectors, namely: Mining, Food, Petroleum, Construction, Manu-
facturing, Utilities, Department Stores, Retail, and Financial. Figure [I| plots the
correlations that are larger than 0.15 in absolute value. We also test for the null
of diagonal covariance matrix. The null hypothesis is strongly rejected with p-value
much lower than 1%. To conduct the test of the covariance matrix we use the sim-
ple sample estimator as described in the paper. However, the correlations plotted in
Figure |1| and in the subsequent ones are based on the nonlinear shrinkage estimator
proposed by [Ledoit and Wolf (2020).

We proceed by regressing the daily returns on the observed 16 factors. These three
factors explain most of the variation of the returns. Figure [2| shows the empirical
distribution of the OLS estimates of factor loadings over the 9,456 regressions. Figure
presents the estimated correlations for the first-stage residuals. We focus on the nine
sectors as before. The first-stage regression as efficient in removing the correlation
within specific sectors in some cases. The most notable ones are Financial and Retail,
followed by Construction, Petroleum, and Manufacturing. Nevertheless, the tests for
diagonal covariance matrix reject the null even in these specific cases.

The second step is to conduct a principal component analysis on the residuals
of the first-stage. The eigenvalue ratio procedure selects two factors, while all four
information criteria points to a single factor. We proceed with two factors. Note
that, by construction, the principal component factors are orthogonal to all the 16
risk factors considered in the first stage. Figure [4] shows the estimated correlations
for the residuals of the second-stage. The latent factor are not able to reduce the
correlations within each sector. However, when we consider the partial correlations
the conclusions are much different. As can be seen from Figure [5] that the partial
correlation matrices are (almost) diagonal. In addition, we are not able to reject the
null of a diagonal covariance matrix at a 5% significance level.

To shed some light on the links among different sectors, we report how often vari-

ables from sector i are selected in the third-stage LASSO regression for firms in sector
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j. The numbers are normalized by the total number of firms in each sector and are
presented in Figure [6, The most interesting fact is that covariates from the finan-
cial sector are the ones most frequently selected for all the other sectors. This may
indicate that there is a “financial factor” that was unmodeled in the first two stages.

The results presented here can be useful in applications where forecasting future
returns is the goal, for instance. The results indicate that the inclusion of the returns
of firms belonging to the financial sector may improve the performance of forecast-
ing models. For example, if we run a regression of the residuals of the first-stage
regression of firms that do not belong to the financial sector on the first principal
component computed with the first-stage residuals only from the financial sector, we

find a statistically significant coefficient in 28% of the cases.

6.2. Macroeconomic Forecasting. The second application consists of forecasting
of a large set of monthly macroeconomic variables. We compare four different models:
(1) Autoregressive model; (2) Sparse LASSO Regression (SR); (3) Principal Compo-
nent Regression (PCR); and (4) FarmPredict.

6.2.1. The Dataset. Our data consist of variables from the FRED-MD database,
which is a large monthly macroeconomic dataset designed for empirical analysis in
data-rich macroeconomic environments. The dataset is updated in real time through
the FRED database and is available from Michael McCraken’s webpage/[] For further
details, we refer to McCracken and Ngj (2016)).

We use the vintage as of October 2020. Our sample extends from January 1960 to
December 2019 (719 monthly observations), and only variables with all observations
in the sample period are used (119 variables). The dataset is divided into eight
groups: (i) output and income; (ii) labor market; (iii) housing; (iv) consumption,
orders and inventories; (v) money and credit; (vi) interest and exchange rates; (vii)
prices; and (viii) stock market. Finally, all series are transformed in order to become

approximately stationary as in McCracken and Ngf (2016)).

6.2.2. Setup and Methodology. In order to highlight the gains of exploring all relevant
information in the the dataset, we construct one-step forecasts for each one of the

119 variables in the dataset according to the following models:

Yhttps:/ /research.stlouisfed.org/econ/mccracken /fred-databases,/.
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(1) Autoregressive model (AR):

(AR N RS RS .
Y;ftJr)l‘t = gbio + §Z5i1Y;7t + ...+ ¢ip}/:i,t—p+17 1=1,...,n,

~ ~

where ggio, ity Gip, © = 1,...,n, are OLS estimates. This model will be
also the first-stage model in our methodology.
(2) AR + Sparse regression (SR):

PR _ P

i1t T i1t + Rz‘,t+1\ta

where ]3%,15 =Y — A 1,...,n, IA%t = (él,n . ,]%n’t), and

itlt—17

~ ~ ~! A~ ~! A~
Rigyre = Boi + B + ...+ B Ry py1, i=1,...,n,

Boméu 3Byt = 1,...,n, are LASSO estimates. The parameters are es-
timated equation-wise for each one of the 119 variables in the dataset. The
penalty parameter is selected by BIC as discussed in Section [4

(3) AR + Principal Component Regression (PCR):

prm _pum L 3R,

i1t i1t

where F, is the estimate of the (k x 1) vector of factors F'; given by principal
component analysis of ﬁt, the residuals of the first-stage regression. The
parameter \; is computed by OLS regression of E’i,t on ﬁ’t in-sample.

(4) AR + Full Information (FarmPredict):

\-(FarmPredict) _ +>(PCR) >
Yi,t+1|t = Yz‘,t+1|t + Ui 1)t

where
A~ ~ A~ A~ A~ A~

~ ~ ~ \/ ~ ~
U, = (ULt, .. .,Un,t> and Uy = Y, — A 1,...,n. The estimates

itlt—1
gom éu ..., 0,1 =1,...,n, are given by LASSO.

The forecasts are based on a rolling-window framework of fixed length of 480 ob-
servations, starting in January 1960. Therefore, the forecasts start on January 1990.
The last forecasts are for December 2019. Note that the AR model only considers
information concerning the own past of the variable of interest. SR and PCR expand
the information by two opposing routes. While SR uses a sparse combination of the
set of variables, PCR considers only a factor structure (dense model). FarmPredict

combines these two approaches and uses the full information available.
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6.2.3. Brief In-Sample Analysis. We start by looking at the full sample in order
to analyze the structure of dependence among the variables. We first estimate an
autoregressive model of order 4, AR(p), for each transformed series. Panel (a) in
Figure[f]reports the empirical distribution of the OLS estimators of the AR coefficients
and Panel (b) in the figure shows the distribution of the absolute value of the sum
of the estimates. This gives an idea of the persistence of each series. Only one series
has estimated persistence above one. This is the case for NONBORRES: Reserves of
Depositary Institutions, which belongs to group (v): Money and Credit. The reason
for such high persistence if due to a major structural break present in the second half
of the series. However, 82.35% of the series have estimated persistence below 0.9@

We continue by estimating the number of factors when the full sample is used.
We consider two different situations. In the first, we do not include any lag in the
basket of variables used to compute the factors. In the second approach, we include
four lags of each variable as well. The eigenvalue ratio procedure selects either two
(no lags) or a single factor (with lags). The four information criteria of |Bai and Ng
(2002)) estimate for the case with no lags (with lags) the following number of factors:
six (one), five (one), nine (one), and one (one). Note that the factors are estimated
for the residuals of the first-step AR filter. If we remove the NONBORRES variable
from the sample the results to not change for the eigenvalue ratio procedure. On the
other hand, the new numbers of factors selected by the information criteria are as
follows: seven (one), six (one), eleven (one), and one (one).

Finally, we apply the testing approach developed in this paper to check for re-
maining (partial) covariance structure in the data. The tests strongly reject the null
of a diagonal matrix when applied to the residuals either of the first or the second
stages of the methodology. This serves as evidence that FarmPredict may be a useful

modeling approach for this macroeconomic dataset.

6.2.4. Forecasting Results. For each of the models above, we report a number of
performance metrics in Table The table presents the frequency each model has
the best performance among the four alternatives. Numbers between parentheses
indicates the frequency each model is the second, third, and fourth best. We report
the results for each one of the eight sectors as well as for the set of all 119 variables.
We show the results for two methods to determine the number of factors. Panel

(a) reports the results for the eigenvalue ratio method while Panel (d) presents the

10Conventional unit-root tests also reject the null of unit-root for all but one of the series.



BRIDGING FACTOR AND SPARSE MODELS 31

results for the information criterion IC4. Criteria ICy, IC,, and IC3 select a very large
number of factors. Panels (¢) and (d) in the table show the results for the cases where
the number of factors are kept fixed (r =1 or r = 2).

FarmPredict is the model which is ranked first more frequently when all the series
are considered. It is also the best model for the following groups: output and income,
labor market, housing, and consumption, orders and inventories. The AR model is best
for the following groups: money and credit and stock market. The sparse regression

is superior also for two groups: interest and exchange rates and prices.

7. CONCLUSIONS

In this paper we propose a new methodology which bridges the gap between sparse
regressions and factor models and evaluate the gains of increasing the information set
via factor augmentation. Our proposal consists in several steps. In the first one, we
filter the data for known factors (trends, seasonal adjustments, covariates). In the
second step, we estimate a latent factor structure. Finally, in the last part of the
procedure we estimate a sparse regression for the idiosyncratic components. We also
propose a new test for remaining structure in both high-dimensional covariance and
partial covariance matrices. Our test can be used to evaluate the benefits of adding
more structure in the model. Our paper has also a number of important side results.
First, we proved consistency of kernel estimation of long-run covariance matrices in
high-dimensions where both the number of observations and variables grows. Second,
we derive the theoretical properties of factor estimation on the residuals of a first step
process. Third, the proposed test can be used as a diagnostic tool for factor models.

We evaluate our methodology with simulations and real data. The simulations
show the test has good size and power properties even when the true number of fac-
tors is unknown and must be determined from the data. If the number of factors is
underestimated, we observe size distortions. This is specially the case when the eigen-
value ratio test is used to determine the number of latent factors. The simulations
also show that there are major informational gains when combining factor models

and sparse regressions in a forecasting exercise. Two applications are considered.
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TABLE 1. Simulation Results: Size with ¢ = 0.

The table reports the empirical size of the test of remaining covariance structure. Panel (a)
reports the case where the factors are known, whereas Panel (b) considers that the factors
are unknown but the number of factors is known. Panels (¢) and (d) present the results
when the number of factors are determined, respectively, by the eigenvalue ratio test and
the information criterion IC. Factors are estimated by the usual principal component
algorithm. Three nominal significance levels are considered: 0.01, 0.05, and 0.10. The
table reports the results for the case where ¢ = 0 in .
Panel(a): Known factors
T =100 T =500 T =700
0.10 0.05 0.01  0.10 0.05 0.01 0.10 0.05 0.01
n=05x7 008 003 0.01 0.10 0.05 0.01 0.09 0.04 0.01
n=1xT 0.06 0.02 0.00 0.07 0.03 0.01 0.10 0.05 0.01
n=2xT 0.07 0.02 0.00 0.07 0.02 0.00 0.08 0.04 0.00
n=3xT 0.05 0.01 0.00 0.08 0.04 0.01 0.07 0.04 0.01

Panel(b): Known number of factors
1 =100 1T = 500 1 =700
0.10 0.05 0.01  0.10 0.05 0.01  0.10 0.05 0.01
n=05xT7 023 013 0.02 0.14 0.06 0.02 0.11 0.05 0.01
n=1xT 0.13 0.06 0.01 0.09 0.04 0.01 0.12 0.05 0.01
n=2x7T 0.09 0.04 0.01 0.08 0.04 0.01 0.09 0.04 0.00

n=3xT 0.06 0.02 0.00 0.08 0.04 0.01 0.07 0.03 0.01

Panel(c): Information criterion (IC,)
1 =100 1T = 500 T =700
0.10 0.05 0.01  0.10 0.05 0.01  0.10 0.05 0.01
n=05xT7 024 014 0.03 0.14 0.06 0.02 0.11 0.05 0.01
n=1xT 0.14 0.07 0.02 0.09 0.04 0.01 0.12 0.05 0.01
n=2xT 0.10 0.05 0.01 0.08 0.04 0.01 0.09 0.04 0.00

n=3xT 0.07 0.03 0.01 0.08 0.04 0.01 0.07 0.03 0.01

Panel(d): Eigenvalue ratio
1 =100 1T = 500 T =700
0.10 0.05 0.01  0.10 0.05 0.01  0.10 0.05 0.01
n=05xT 047 038 025 0.14 0.06 0.02 0.11 0.05 0.01
n=1xT 0.14 0.07 0.02 0.09 0.04 0.01 0.12 0.05 0.01
n=2xT 0.09 0.04 0.01 0.08 0.04 0.01 0.09 0.04 0.00

n=3x7T 0.06 0.02 0.00 0.08 0.04 0.01 0.07 0.03 0.01
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TABLE 2. Simulation Results: Power (¢ = 0).

The table reports the empirical power of the test of remaining covariance structure. Panel
(a) reports the case where the factors are known, whereas Panel (b) considers that the
factors are unknown but the number of factors is known. Factors are estimated by the
usual principal component algorithm. Three nominal significance levels are considered:
0.01, 0.05, and 0.10.

Panel(a): Known factors

T =100 T = 500 I = 700

0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01
n=05xT 1 1 1 1 1 1 1 1 1
n=1xT 1 1 1 1 1 1 1 1 1
n=2xT 1 1 1 1 1 1 1 1 1
n=3xT 1 1 1 1 1 1 1 1 1

Panel(b): Known number of factors

T =100 T = 500 1 = 700

0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n=05xT 033 018 0.03 099 097 0.83 0.99 0.99 0.94
n=1xT 0.20 0.08 0.01 0.84 0.60 0.13 0.95 0.81 0.33
n=2xT 0.16 0.07 0.01 0.83 0.55 0.11 0.94 0.82 0.34
n=3xT 0.08 0.03 0.00 0.82 056 0.10 0.95 0.81 0.34
Panel(c): Eigenvalue ratio

T =100 1 = 500 1 =700
0.10 0.05 0.01  0.10 0.05 0.01 0.10 0.05 0.01
n=05x7T 015 0.09 0.02 099 097 0.83 0.99 0.99 0.94
n=1xT 0.19 0.07 0.01 0.84 0.60 0.13 0.95 081 0.33
n=2xT 0.16 0.07 0.01 0.83 0.55 0.11 0.94 0.82 0.34
n=3xT 0.08 0.03 0.00 0.82 0.56 0.10 0.95 0.81 0.34

Panel(d): Information criterion (IC,)

T =100 1 = 500 T =700
0.10 0.05 0.01  0.10 0.05 0.01 0.10 0.05 0.01
n=05x7T 015 0.09 0.02 099 097 0.83 0.99 0.99 0.94
n=1xT 0.19 0.07 0.01  0.84 0.60 0.13 0.95 081 0.33
n=2xT 0.16 0.07 0.01 0.83 0.55 0.11 0.94 0.82 0.34

n=3xT 0.08 0.03 0.00 0.82 0.56 0.10 0.95 0.81 0.34
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TABLE 3. Simulation Results: Informational Gains

The table reports the average mean squared error (MSE) of three different prediction
models over 5-fold cross-validation subsamples. The goal is to predict the first variable
using information from the remaining n— 1. Panel (a) considers the case of Sparse Regres-
sion (SR) where Y7, is LASSO-regressed on all the other variables. Panel (b) shows the
results of Principal Component Regression (PCR). Finally, Panel (c) presents the results
of FarmPredict. “N/A” means “not available”. Note that there is no factor selection for

Sparse Regression. “Known Number” means that the number of factors is known.
Panel(a): Sparse Regression (SR)

Known Number Eigenvalue Ratio Information Criterion (IC;)

T=100 T=500 TT=700 T =100 T"=500 T"=700 T =100 T =500 T =700
n=05xT 057 0.35 0.34 N/A N/A N/A N/A N/A N/A
n=1xT 0.40 0.36 0.32 N/A N/A N/A N/A N/A N/A
n=2xT 0.39 0.33 0.31 N/A N/A N/A N/A N/A N/A
n=3xT 0.35 0.32 0.30 N/A N/A N/A N/A N/A N/A

Panel(b): Principal Component Regression (PCR)

Known Number Eigenvalue Ratio Information Criterion (IC;)

T=100 T=500 TT=700 T =100 T"=500 T"=700 T =100 T =500 T =700
n=05xT 382 3.12 3.01 4.69 3.12 3.01 3.26 3.04 2.34
n=1xT 3.09 2.35 2.34 4.05 3.35 3.34 3.22 3.02 2.32
n=2xT 3.14 2.97 221 4.13 3.97 2.21 3.29 3.21 2.27
n=3xT 3.83 3.00 2.33 3.83 3.00 2.33 3.12 3.00 2.28

Panel(c): FarmPredict

Known Number Eigenvalue Ratio Information Criterion (IC;)

T=100 T=500 TT=700 7T =100 T=500 T"=700 T =100 T =500 T =700
n=05xT 0.50 0.33 0.31 0.52 0.33 0.31 0.50 0.34 0.30
n=1xT 0.32 0.29 0.28 0.37 0.29 0.28 0.53 0.28 0.27
n=2xT 0.27 0.27 0.26 0.28 0.27 0.26 0.32 0.28 0.28

n=3xT 0.22 0.21 0.21 0.22 0.21 0.21 0.34 0.27 0.27
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TABLE 4. Forecasting Results.

The table reports the frequency each model is ranked the first, second, third and fourth best model
among the four alternatives. Panel (a) considers the case when the factors are selected by the eigen-
value ratio procedure. Panel (b) presents the results when factors are selected by the information
criterion IC;. Panels (c¢) and (d) consider the cases when the number of factors are pre-specified as
either one or two. We present the results for each individual group of variables as well as for the full

set of macroeconomic variables.

Panel (a): Optimal Factor Selection (eigenvalue ratio)

AR SR PCR FarmPredict
Group 1st 2nd  3rd  4th 1st 2nd  3rd  4th 1st 2nd  3rd  4th 1st 2nd  3rd  4th
(i) output and income 0.125 0.000 0.250 0.625  0.000 0.125 0.625 0.250  0.375 0.500 0.125 0.000  0.500 0.375 0.000 0.125
(ii) labor market 0.032 0.097 0.290 0.581  0.226 0.065 0.516 0.194  0.194 0.516 0.097 0.194  0.548 0.323 0.097 0.032
(iii) housing 0.100 0.100 0.300 0.500  0.400 0.400 0.100 0.100 0.000 0.200 0.400 0.400  0.500 0.300 0.200 0.000
(iv) consumption, orders and inventories  0.000 0.000 0.333 0.667  0.000 0.000 0.667 0.333  0.333 0.667 0.000 0.000  0.667 0.333 0.000 0.000
(v) money and credit 0.429 0.357 0.143 0.071 0.214 0.214 0.357 0.214 0214 0.286 0.357 0.143  0.143 0.143 0.143 0.571
(vi) interest and exchange rates 0.368 0.211 0.263 0.158  0.526 0.316 0.158 0.000 0.053 0.263 0.211 0.474  0.053 0.211 0.368 0.368
(vii) prices 0.150 0.150 0.600 0.100  0.650 0.100 0.200 0.050  0.050 0.200 0.100 0.650  0.150 0.550 0.100 0.200
(viii) stock market 0.667 0.000 0.000 0.333  0.000 0.000 0.667 0.333 0.000 1.000 0.000 0.000  0.333 0.000 0.333 0.333
(ix) all 0.185 0.134 0.311 0.370  0.311 0.160 0.378 0.151 0.160 0.387 0.168 0.286  0.345 0.319 0.143 0.193

Panel (b): Optimal Factor Selection (IC,)

AR SR PCR FarmPredict
Group 1st 2nd  3rd  4th 1st 2nd  3rd  4th 1st 2nd  3rd  4th 1st 2nd  3rd  4th
(i) output and income 0.125 0.125 0.188 0.563  0.063 0.250 0.500 0.188  0.250 0.375 0.313 0.063  0.563 0.250 0.000 0.188
(ii) labor market 0.032 0.097 0.258 0.613  0.226 0.032 0.548 0.194  0.226 0.581 0.065 0.129  0.516 0.290 0.129 0.065
(iii) housing 0.000 0.000 0.400 0.600  0.200 0.500 0.100 0.200 0.200 0.100 0.500 0.200  0.600 0.400 0.000 0.000
(iv) consumption, orders and inventories  0.000 0.000 0.333 0.667  0.167 0.000 0.500 0.333  0.167 0.667 0.167 0.000  0.667 0.333 0.000 0.000
(v) money and credit 0.571 0.286 0.071 0.071 0.143 0.429 0.357 0.071 0.143 0.286 0.429 0.143  0.143 0.000 0.143 0.714
(vi) interest and exchange rates 0.316 0.105 0.105 0.474  0.368 0.158 0.368 0.105  0.158 0.263 0.474 0.105  0.158 0.474 0.053 0.316
(vii) prices 0.100 0.150 0.650 0.100  0.500 0.300 0.150 0.050  0.100 0.150 0.100 0.650  0.300 0.400 0.100 0.200
(viii) btl)(k market 0.667 0.000 0.000 0.333  0.000 0.667 0.333 0.000 0.000 0.333 0.667 0.000  0.333 0.000 0.000 0.667
(ix) al 0.176 0.118 0.277 0429  0.252 0.227 0.378 0.143  0.176 0.353 0.269 0.202  0.395 0.303 0.076 0.227

Panel (c): Fixed Number of Factors (r = 1)

AR SR PCR FarmPredict
Group 1st 2nd  3rd  4th 1st 2nd  3rd  4th 1st 2nd  3rd  4th 1st 2nd  3rd  4th
(i) output and income 0.125 0.125 0.188 0.563  0.063 0.250 0.500 0.188  0.250 0.375 0.313 0.063  0.563 0.250 0.000 0.188
(ii) labor market 0.032 0.097 0.258 0.613  0.226 0.032 0.548 0.194  0.226 0.581 0.065 0.129  0.516 0.290 0.129 0.065
(iii) housing 0.000 0.000 0.400 0.600  0.200 0.500 0.100 0.200 0.200 0.100 0.500 0.200  0.600 0.400 0.000 0.000
(iv) consumption, orders and inventories ~ 0.000 0.000 0.333 0.667  0.167 0.000 0.500 0.333  0.167 0.667 0.167 0.000  0.667 0.333 0.000 0.000
(v) money and credit 0.571 0.286 0.071 0.071 0.143 0.429 0.357 0.071 0.143 0.286 0.429 0.143  0.143 0.000 0.143 0.714
(vi) interest and exchange rates 0.316 0.105 0.105 0.474  0.368 0.158 0.368 0.105  0.158 0.263 0.474 0.105  0.158 0.474 0.053 0.316
(vii) prices 0.100 0.150 0.650 0.100  0.500 0.300 0.150 0.050  0.100 0.150 0.100 0.650  0.300 0.400 0.100 0.200
(viii) stock market 0.667 0.000 0.000 0.333  0.000 0.667 0.333 0.000 0.000 0.333 0.667 0.000  0.333 0.000 0.000 0.667
(ix) all 0.176 0.118 0.277 0429  0.252 0.227 0.378 0.143  0.176 0.353 0.269 0.202  0.395 0.303 0.076 0.227

Panel (d): Fixed Number of Factors (r = 2)

AR SR PCR FarmPredict
Group 1st 2nd  3rd  4th 1st 2nd  3rd  4th 1st 2nd  3rd  4th 1st 2nd  3rd  4th
(i) output and income 0.063 0.125 0.250 0.563  0.063 0.063 0.625 0.250  0.250 0.625 0.063 0.063  0.625 0.188 0.063 0.125
(ii) labor market 0.065 0.129 0.226 0.581 0.226 0.097 0.516 0.161 0.226 0.452 0.097 0.226  0.484 0.323 0.161 0.032
(iii) housing 0.200 0.200 0.000 0.600  0.500 0.400 0.100 0.000  0.000 0.100 0.700 0.200  0.300 0.300 0.200 0.200
(iv) consumption, orders and inventories ~ 0.167 0.167 0.167 0.500  0.167 0.167 0.500 0.167  0.333 0.333 0.333 0.000  0.333 0.333 0.000 0.333
(v) money and credit 0.500 0.357 0.071 0.071 0.214 0.357 0.143 0.286 0.143 0.286 0.429 0.143  0.143 0.000 0.357 0.500
(vi) interest and exchange rates 0.316 0.368 0.000 0.316  0.368 0.263 0.263 0.105  0.105 0.316 0.263 0.316  0.211 0.053 0.474 0.263
(vii) prices 0.100 0.100 0.100 0.700  0.500 0.150 0.250 0.100 0.200 0.150 0.550 0.100  0.200 0.600 0.100 0.100
(viii) stock market 0.667 0.000 0.000 0.333  0.000 0.667 0.333 0.000 0.000 0.333 0.667 0.000  0.333 0.000 0.000 0.667
(ix) all 0.193 0.193 0.126 0487 0.286 0.202 0.361 0.151  0.176 0.345 0.311 0.168 0.345 0.261 0.202 0.193
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FiGure 1. Correlations of returns.
We estimate the correlations between all pairs of returns from specific sectors. The correlations that

are higher than 0.15 in absolute value are shown as black dots. We consider the sectors: mining,
food, petroleum, construction, manufacturing, utilities, department stores, retail, and financial.
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FIGURE 2. First-stage coefficient estimates.
The figure shows the empirical distribution of the first-stage regression where each excess returns

are linearly regressed on 16 risk factors.
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F1GURE 3. Correlations of first-stage residuals.
We estimate the correlations between all pairs of residuals from the first-stage OLS regression on
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16 observed risk factors from specific sectors. The correlations that are higher than 0.15 in absolute

value are shown as black dots. We consider the sectors: mining, food, petroleum, construction,

manufacturing, utilities, department stores, retail, and financial.
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FiGURE 4. Correlations of second-stage residuals.
We estimate the correlations between all pairs of residuals from the second-stage principal component

analysis from specific sectors. The correlations that are higher than 0.15 in absolute value are shown

as black dots.

utilities, department stores, retail, and financial.

We consider the sectors: mining, food, petroleum, construction, manufacturing,
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FIGURE 5. Partial correlations of second-stage residuals.
We estimate the partial correlations between all pairs of residuals from the second-stage LASSO

regression from specific sectors. The correlations that are higher than 0.15 in absolute value are
shown as black dots. We consider the sectors: mining, food, petroleum, construction, manufacturing,
utilities, department stores, retail, and financial.

mining

food

apparel

paper

chemical

petroleum
construction
primary metals
fabricated metals
machinery

electrical equipment
transportation equipment
manufacturing
railroads

other transportation
utilities

department stores
retail

financial

other

o © o o o o© o o
o [ P N N w w IS
a ) a @

mining

food

apparel

paper

chemical

petroleum
construction
primary metals
fabricated metals
machinery
electrical equipment
manufacturing
railroads

other transportation
utilities

department stores
retail

financial

other

transportation equipment

FIGURE 6. Variable Selection Frequency.
We report how often that variables from column sectors are selected in the third-stage LASSO

regression for firms on row sectors . The numbers are normalized by the total number of firms in
each sector.
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(a) AR coefficients. (b) Absolute sum of AR coefficients.

FIGURE 7. Distribution of AR estimates
Panel (a) illustrates the empirical distribution of the ordinary least squares (OLS) estimation of
the coefficients of an fourth-order autoregressive, AR(4), model across the 119 macroeconomic time
series. Panel (b) illustrates the empirical distribution of the absolute sum of the AR(4) coefficients
across the 119 series.
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F1GURE 8. Estimated number of factors.
The figure illustrates the number of selected factors over the estimation windows. The figure reports

the results for the eigenvalue ratio procedure and the four information criteria discussed in the
paper.
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APPENDIX A. ADDITIONAL SIMULATION RESULTS

Tables [5] and [6] show, respectively, size and power simulations with ¢ = 0.5. Table
[7 presents additional size results. The table reports the empirical size of the test of
remaining covariance structure. Panels (a)—(c) consider that the number of factors
are determined by information criteria IC5, IC3 and ICy. Factors are estimated
by the usual principal component algorithm. Three nominal significance levels are
considered: 0.01, 0.05, and 0.10.

APPENDIX B. PROOF OF THE THEOREMS

Throughout the proofs we use the equivalence |X|,, < 0 <= P(|X| > z) =
O, ()], as © — oo, for any random variable X and v, € ¥ (refer to Lemma

belofzv) combined with Lemma 6 in Carvalho et al. (2018) and Lemma 1 in Masini and
Medeiros (2021)). The key ingredients of the lemmas are a Marcinkiewicz-Zygmund
type inequality for strong mixing sequences to deal with the polynomial tails (Rio,
1994; Doukhan and Louhichi, [1999)) and a Bernstein inequality under strong mixing

conditions to control exponential tails (Merlevede et al. (2009)) - Theorem 2).

B.1. Proof of Theorem . We first upper bound H}A%n — Ritlly. By subsequent
application of Holder’s inequality we have
| Rie = Rit| = (Vi — ) Xl < |75 = vill 1| X[ oo
a1 - .
= 1% Uil Xitloo < K5 maxl|Dilloo [ Xit oo
where 3, 1= X! X;/T and v; := X.U;/T. Then, by the Cauchy-Schwartz conjugate
~ ~—1 R
| Rit = Ritllsya < B [max o, 11930, 11 X it -

The first term is bounded by Assumption [3[b). For the second term we have:
HXithitH%/Q < || Xieellw, 1Uitlly, < C* by Assumption (a). Then, {X;Uii}io is a
zero-mean strong mixing sequence with exponential decay (Assumption [3(c)) with
bounded 1, 2-norm. Therefore, ||B;]xly,, = O(1/VT), uniformly in i < n. The

last term is bounded by the maximal inequality (van der Vaart and Wellner (1996) -
Lemma 2.2.2) and Assumption [3(a). The result follows.

B.2. Proof of Theorem [2] The proof is an adaption of the proof of Theorem 4 and
Corollary 1 in Fan et al.| (2013), henceforth FLM, to include the estimation error in

the sample covariance matrix. For part (a), we use expression (A.1) in Bai (2003)) to
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TABLE 5. Simulation Results: Size with ¢ = 0.5.

The table reports the empirical size of the test of remaining covariance structure. Panel (a)
reports the case where the factors are known, whereas Panel (b) considers that the factors
are unknown but the number of factors is known. Panels (¢) and (d) present the results
when the number of factors are determined, respectively, by the eigenvalue ratio test and
the information criterion IC. Factors are estimated by the usual principal component
algorithm. Three nominal significance levels are considered: 0.01, 0.05, and 0.10. The
table reports the results for the case where ¢ = 0.5 in .

Panel(a): Known factors
T =100 T = 500 T =700

0.10 0.05 0.01  0.10 0.05 0.01  0.10 0.05 0.01

n=05x7 009 0.03 001 0.11 0.06 0.01 0.10 0.05 0.01
n=1xT 0.07 0.03 0.00 0.07 0.03 0.01 0.11 0.06 0.01
n=2xT 0.08 0.02 0.00 0.08 0.03 0.00 0.09 0.05 0.00
n=3xT 0.05 0.02 0.00 0.09 0.04 0.01 0.07 0.04 0.01

Panel(b): Known number of factors
1 =100 1T = 500 1 =700

0.10 0.05 0.01  0.10 0.05 0.01  0.10 0.05 0.01

n=05xT7 024 014 0.02 0.15 0.07 0.02 0.12 0.06 0.01
n=1xT 0.13 0.07 0.01 0.09 0.04 0.01 0.14 0.06 0.02
n=2x7T 0.09 0.04 0.01 0.08 0.04 0.01 0.09 0.05 0.00
n=3xT 0.07 0.02 0.00 0.08 0.04 0.01 0.08 0.03 0.01

Panel(c): Information criterion (IC;)
T =100 1T = 500 T =700

0.10 0.05 0.01  0.10 0.05 0.01  0.10 0.05 0.01

n=05xT7 049 042 029 0.15 0.07 0.02 0.11 0.06 0.01
n=1xT 0.15 0.09 0.02 0.10 0.04 0.01 0.14 0.06 0.01
n=2x7T 0.09 0.04 0.01 0.09 0.04 0.01 0.09 0.05 0.00
n=3xT 0.07 0.03 0.00 0.10 0.04 0.01 0.08 0.03 0.01

Panel(d): Eigenvalue ratio
1 =100 1T = 500 T =700

0.10 0.05 0.01  0.10 0.05 0.01  0.10 0.05 0.01

n=05xT7 025 014 0.04 0.14 0.07 0.02 0.13 0.06 0.01
n=1xT 0.15 0.07 0.02 0.10 0.04 0.01 0.13 0.06 0.02
n=2xT 0.11 0.05 0.01 0.08 0.05 0.01 0.10 0.05 0.00
n=3x1T 0.08 0.03 0.01 0.09 0.04 0.01 0.08 0.03 0.01
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TABLE 6. Simulation Results: Power (¢ = 0.5).

The table reports the empirical power of the test of remaining covariance structure. Panel
(a) reports the case where the factors are known, whereas Panel (b) considers that the
factors are unknown but the number of factors is known. Factors are estimated by the
usual principal component algorithm. Three nominal significance levels are considered:
0.01, 0.05, and 0.10.

Panel(a): Known factors

T =100 T = 500 T =700

0.10 0.05 0.01 0.10 0.05 0.01  0.10 0.05 0.01
n=05xT 1 1 1 1 1 1 1 1 1
n=1x7T 1 1 1 1 1 1 1 1 1
n=2xT 1 1 1 1 1 1 1 1 1
n=3xT 1 1 1 1 1 1 1 1 1

Panel(b): Known number of factors

T =100 T = 500 T =700
0.10 0.05 0.01  0.10 0.05 0.01  0.10 0.05 0.01
n=05x7 036 0.18 003 1.00 1.00 091 1.00 1.00 1.00
n=1x7T 0.20 0.09 0.02 089 0.69 0.13 1.00 0.92 0.39
n=2xT 0.18 0.07 0.01 098 0.59 0.13 1.00 0.96 0.36
n=3xT 0.10 0.03 0.00 091 0.66 0.11 1.00 0.92 0.39

Panel(c): Eigenvalue ratio

T =100 T = 500 T =700
0.10 0.05 0.01  0.10 0.05 0.01  0.10 0.05 0.01
n=05x7 015 0.11 0.03 1.00 1.00 096 1.00 1.00 1.00
n=1xT 0.22 0.08 0.01 099 0.70 0.16 1.00 0.95 0.38
n=2xT 0.17 0.07 0.01 094 0.62 0.12 098 0.88 0.37
n=3x7T 0.09 0.03 0.00 0.89 0.59 0.11 1.00 0.87 0.40

Panel(d): Information criterion (IC,)

T =100 T = 500 T =700
0.10 0.05 0.01  0.10 0.05 0.01  0.10 0.05 0.01
n=05x7 015 0.11 0.03 1.00 1.00 096 1.00 1.00 1.00
n=1xT 0.22 0.08 0.01 099 0.70 0.16 1.00 0.95 0.38
n=2xT 0.17 0.07 0.01 094 0.62 0.12 0.98 0.88 0.37

n=3xT 0.09 0.03 0.00 089 0.59 0.11 1.00 0.87 0.40

obtain the following identity

- VN ' 1w EUU,) 1«
gooe - (V) LSO 1S

s=1 s=1

(10+ a0 78] w3
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TABLE 7. Simulation Results: Size (Additional Results).

The table reports the empirical size of the test of remaining covariance structure. Panels
(a)—(c) consider that the number of factors are determined by information criteria ICs,
IC5 and ICy. Factors are estimated by the usual principal component algorithm. Three
nominal significance levels are considered: 0.01, 0.05, and 0.10.
Panel(a): Information criterion (ICs)
T =100 T =500 T =700
0.10 0.05 0.01  0.10 0.05 0.01 0.10 0.05 0.01
n=0>5xT 0.25 0.14 0.03 0.14 0.06 0.02 0.11 0.05 0.01
n=1xT 0.13 0.07 0.02 0.09 0.04 0.01 0.12 0.05 0.01
n=2xT 0.10 0.04 0.01  0.08 0.04 0.01 0.09 0.04 0.00

n=3xT 0.07 0.03 0.01 0.08 0.04 0.01 0.07 0.03 0.01

Panel(b): Information criterion (IC;)
1 =100 1T = 500 1 =700
0.10 0.05 0.01  0.10 0.05 0.01  0.10 0.05 0.01
n=05xT7 024 013 0.03 0.14 0.06 0.02 0.11 0.06 0.01
n=1xT 0.13 0.07 0.02 0.09 0.04 0.01 0.12 0.05 0.01
n=2x7T 0.10 0.04 0.01 0.08 0.04 0.01 0.09 0.04 0.00

n=3xT 0.07 0.03 0.00 0.08 0.04 0.01 0.07 0.03 0.01

Panel(c): Information criterion (IC,)
1 =100 I = 500 T =700
0.10 0.05 0.01  0.10 0.05 0.01  0.10 0.05 0.01
n=05xT7 026 015 0.04 0.14 0.06 0.02 0.11 0.05 0.01
n=1xT 0.14 0.08 0.03 0.09 0.04 0.01 0.12 0.05 0.01
n=2xT 0.10 0.04 0.01 0.08 0.04 0.01 0.09 0.04 0.00

n=3xT 0.07 0.03 0.01 0.08 0.04 0.01 0.07 0.03 0.01

where E’;t, N and Est are defined before Lemma

By Assumptions [2(d) and [§(a) and the maximal inequality we have |R|max <
7| Allmax| F [ max + [|U |max = Op[tv~*(nT)]. Applying Lemma we conclude that
Hi — Bmax = Opfw[ty2(nT) + w]} = Op(1). Finally, v (n?)/v/T = O(1) also
by assumption. Then, |¥|~" = Op(1) by Lemma . Using the results (a)-(d) of
Lemma we can bound in probability each of the terms in brackets of in /o
norm, uniformly in ¢ < 7. Result (a) follows.
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For part (b) we use the fact that A := RF/T and set F'F =1, to write
Xi—HX; = ZHFtUZfI— ZR,t (Fo—HF)+H ( ZFtF’ ) . (B2)

The first term can be upper bounded in /5 norm, unlformly in ¢ < n, by

Z 51U = Op(1)0p [Up A m)VT + ],

where the equality follows from Lemma B.6(b) and (e). The ¢y norm of the second

V| H | maxmax|

term is upper bounded uniformly in ¢ < n by

(Qaf%i}%lzf’t Hth)l/ formon [1+avmwr]}”,

=1 =1
where the first term after the equality follows from Lemma [C.6[d) together with
theorem’s assumption and the second term from Lemma [C.4fe). Finally, the last
term of (B.2)) is upper bounded by

! i F.F,
r4 o
where the last term is Op(1/+/T) by the maximum inequality and Assumption .
Plugging the last three displays back into yields result (b).

For part (c) we use we have |U — Ullmax = |AF' — AF + R - R max < HK?’I —
AF | max + H}Al — R|max- The last term is Op(w) by assumption. For the first term we

use the decomposition
NF, —~NF, =\ — HXN)(F,— HF,) + (H\) (F, — HF,)
+ (A — HX)HF, + X,(H'H — I,)F,. (B.3)
Therefore, we can upper bound the left hand side as
XNF, — Ny <X~ HX[|F, — HE,| + |HX||F, — HF |
+ |Xi = HX||HF,| + | X||F||H'H - I,|.

Now we bound in probability, uniformly in ¢ < n and t < T', each of the four terms

H | max | ~ 1| = 0p()O(W)Op(LNT),

above. The first one is given by part (a) and (b). max;<, [HX;| < |H | max;<n || Ai] <
Op(1)r|Afmax = Op(1) by Lemma [C.6(b) and Assumption [2[d). Thus, the second
term is bounded by part (a). For the third term, max;<7 |H F;| < |H|| max;<7 || F:| =
Op(1)Op [ "HT)] = Op [¢"1(T)] by Lemma [C.6[b) and Assumption [2(a). Finally,
|HH —I.| = Op(1/v/T + 1/\/n + w) by Lemma (c) Hence, the last term is
Op[¢y"HT)(1/v/T + 1/4/n + w)] by Assumptions (d) and (a)
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B.3. Proof of Theoreml We have that L(05)+§||0§H1 < L(0)+&| 0|, for all 8 € R™
by definition of 05, where L(0) := |u, — 6’ U, |2/T. Also, since L(8) is a quadratic
function, it implies that (8¢ —6)'V2L(8)(8; —0) < VL(H)’(ag —0)+£(|0]l— |B¢]1)-
By Holder’s inequality we have [VL(0) (6 —8)| < |[VL(8)|.|8:—8]. By assumption
€ = 2|VL(0)|x. Therefore,
(B —6)'V2L(9)(Bc — 0) < £/20c — Ol +&(16]1 — [6ch).  (B4)
For any index set S € [n], by the decomposability of the ¢; norm (refer to Definition
1 in Negahban et al.| (2012)) followed by the triangle inequality we have Hé\ng =
105l + [Beseli = [0l — [Be.s — Osl1 + [0csels and [0 — 8]y = [Bes — Oss +
|\9575c — 05|y < \|§§73 — 05|, + H@asc — Osc|;. Plugging it back in yields
20 — 0)'V’L(0)(8: — 0) + &[Be.se — Osel1 < 3¢[Be.s — Ol + 4051 (B5)
We then conclude that any minimizer é\g of and @ € R" obeys 55 —0 €
C(8,0) :={x e R" : |xsc|1 < 3|xs|s + 4[|@sc|1}. If we take @ = 0y and S = Sj :=
{i : 6o; # 0} then 55 — 0y € Cy := C(Sp,0p). Cpis a cone in R™ that does not
depend on 6y as |6y sc|| = 0. Moreover, by definition of the compatibility constant
k= k(U,U,/T, Sy, 3) we have that Hé&s —0s|; < (65 — 0)’V2 05 —0)4/|So|/k-
Apply this inequality to and use the fact that 4ab < a? + 4b2 for non-negative
a,b e R to obtain (8¢ — ) V2L(0) (0 — 6) + £]0; — 6], < 4¢2|So|/k. Finally, we have
by assumption that |U — Ulmax < C1, U |max < Cs and C1(2C5 + C1) < o157 Which,
in turn fulfills the assumptions of Lemma with ¢ = 3 and a = 1/2. Therefore,

we conclude that k£ > ko/2 and we have the result.

B.4. Proof of Theorem |4, We use in this proof the following additional notation
for short: For every random vector X, we denote by X x its covariance matrix, dx the
diagonal of X x and 0% := |dx|l»x. Also, X denotes zero-mean Gaussian random
vector defined in the same probability space, independent of X and with the same
covariance matrix of X . Finally, for every pair of random vectors X,Y of the same

dimension and scalar s > 0 define

p(X.Y) i sup (X | < 1)~ B(Y |0 < )
€

A(X,s) :=supP(t < | X | <t +5)
teR
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Combining equations (83)—(86) in (Giessing and Fan| (2020)) yields

~ ~ , log n

1S < (0] - 11 < Q. Qo) + o, {VEE" 4+ PO~ Xl = 00}

maXx
Viogn

max

AL P(1Q - QL > ) (B.6)
where 62 is defined below.

We start by Bounding the first term to the right-hand side of . We adapt
the classical “big block-small block” which was used in the proof of Theorem E.1 in
Chernozhukov et al.| (2018)). Consider two sequences of non-negative integers a := ar
and b := by such that b < a, a+ b < T, min{a,b} — 0, a = o(T) and b = o(a) as
T — . Let m := [T/(a + b)] and define for j € {1,...,m} consecutive blocks of
size @ and b with index set A; := {((j —1)(a+b) +1,...,(j — 1)(a + b) + a} and
B ={(j—-1(a+0b) +a+1,...5(a+0b)}. Finally, set C := {m(a +b)+1...,T},
which might be empty. Thus,

1 N 1« =
Aj;:%ZDt, Bj:%ZDt, and \/WZ

teA; teB; teC
such that
~ 1 ~ ma [ 1 < Imb [ 1 T —m(a+0)
=— Y Di=,/—|—= ) A; — | —= ) B; —=C
@ VT ; ‘ T ( m Z ]> NT ( m Z J> - T
= ]_1 ]—1

Let V = \/LEZ;L ;1]- where {At, 1 <t < m} is an independent sequence such
that A; and A; have the same distribution for all 1 < ¢ < m. Similarly define

L= \/LE PV Ej. Lemma |C.7| give us for any scalar s > 0

2(2.00) <0 (V.V0) +0 (5 Ve ) + 5 (/5 Ves)
+P <\/?|I;||OO > 5) +p (V, 17) +p (L, i) . (B.7)

Notice that any measurable A € R? we have |P[(A, As) € A] — [Al, Ay ]l < ay
where {a,,n € N} denote the a-mixing coefficient of the sequence (D) which is the
same of the sequence (U;). Then, the last two terms in (B.7]) can be upper bounded

by (m —1)ay and (m — 1)a, respectively by induction. Since «,, is non-increasing in

n and a = b we have that

0 (V, V) +p (L, E) < 2(m — 1)ay, < 2T exp(—2ch). (B.8)
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where we use Assumption [3f(c) to obtain the last inequality.
For the fourth term we have by the maximal and Markov’s inequalities that
—1
Imb, ~ svVT
P ?HLHOO >s5 | < @D 1 .
OW/’,,/Q (n)vmb

By the anti-concentration inequahty for Gaussian random vectors (Theorem 7 in

Giessing and Fan| (2020) with p = c0) we have that

ma Io vlogn
\ T maoyy
_ Cutghmmb

JT ¢p /Q(TV) for some v > 0 then

(\F vc,)w(\/» ||L||m>s)<_\r Al i LRSS

(B.9)

For the second term we have from Rio (2013) that, for every € > 0,
™ ~ e/(2+€) | TS ~
[M]y| = |Cov(Dis. Dju-o)| < 207" | Ditllzwc| Dyl
Hence, from Assumption (3| we have that |M|max S exp(—2c55:¢) and

ma ma
| < (1= %) 1B e + [ = S

) 37
T
b
<(a+b >Evumax+ S M+ ) Ml

Ve
[¢|<a a<|l|<T

-5,

b a 1 €
<—-4+=4+4-+T -2
~a+T+a—|— exp( 02+6a>,
where we use the fact that Xy = Xy = Xy = X4, = Dit<a(l — [€]/a) My,
Yo, = g = 2jgerd = [U/T)My, 2y || Mifmax < ¢ for some ¢ < o0 and
Yias<it<r M emax < T'exp(—2c35;a). Finally, we can bound the second term using
Theorem 8 in Giessing and Fan| (2020). In particular, for p = oo it implies that

( ma ) |Og n\/H%E‘;G — EQGHmaX
VGa <
vV T e Y 0%

L Iogn\/s + 2+ 1+ Texp(—2£a)

2+e€

~

Oy V 0y
For the first term we have that HZN?Z-tH% » 1s uniformly (upper) bounded by Assump-
tion(az. Then, sois | Ay, ,, = | iy, = 175 Zoea, 5¢s\lw,,/3- Also (E(max; |Ay|)?)? <

I max; [Aitllly,, < w;/é(n) max; || Ay, , < ;Dp_/;(n) Since {A;,1 < t < m} is an iid
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sequence of random vectors, Theorem 5 in Giessing and Fan| (2020) implies

R D)

(B.10)

By the triangle inequality we have that 0% > aé — |dg — dyllmax = ¢ — g —
Y lmax 2 ¢ — = — Texp(—2c5-a). By setting a = [v/T], we conclude that O’%/, is
eventually bounded away from zero for large enough T'. If we further set b = [log T'/¢]

and v = 1/4 and apply (B.8)-(B.10) to bound the right-hand side of (B.), we obtain
5.8.) -0 (log n)7/%4, 5(n) , ViegTlog n (), 5 (THY)
P RG] T T1/6 T1/4

Finally, we bound the last two terms appearing in . Let v and 5 be positive

sequences depending on n and T such that | — Y |max = Op(11) and |Q — Q| =

Op(72). Suppose we can state conditions under which
log® n(71 v ¥2) = 0(1) T,n — 0. (B.11)
Then, the last two terms vanish in probability if we set d; = v, logn and 65 = 5 logn

in (B.6). Lemmas and give us expressions for y; and 7, respectively, which
combined with the rate assumptions in the theorem implies (B.11)).

APPENDIX C. ADDITIONAL LEMMAS

Lemma C.1. Let a; and b; denote the j-th eigenvalue in decreasing order of 3 and
AA' respectively. Then, under Assumption[4(b) and (c): (a) b; =n for 1 < j <r;
(b) max;<, |a; —b;| = O(1); and (¢) a; =n for 1 <j<r.

Proof. Result (a) follows from the fact that the r eigenvalues of A’A are also (the only
7 non-zero) eigenvalues of AA" and Assumption 2b). Part (b) follows from Weyl’s
inequality that implies max;<, |a; — b;| < [|£ — AA'| = O(1), where the last equality
follows from Assumption [J[(c). Finally, result (c) follows from part (a) and (b) and

the (reverse) triangle inequality. d

Recall that ¥ is the (n x n) covariance matrix of Uy = Z; — TW,. Let > =

%thl U.U; and 3 the same as 3 but with T' replaced by the estimator . Let a;

denote the j-th eigenvalue in decreasing order of 3.

Lemma C.2. Let wy be a non-negative sequence of n and T such that Hi — 3 max =
Op(wy). Then, under the Assumptz'ons@ and@: (0) | E—3max = Op[wl—i—z/zp_/é(nQ)/\/T];
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(b) max;<,, |a; — aj| = Op[n(w; + wp_/é(n2)/\ﬁ)] and (¢) a; =p n for j < r provided
that wy + ¢ 5 (n*)/NVT = Op(1).

Proof. Part (a) follows by the triangle and maximal inequalities, since |£ — 2| max <
15— x| E = Smax = Op(w1) + Op [ (%) /ﬁ] Part (b) follows from Weyl’s
inequality, the fact that | — 2| < n|E — %|max and part (a). Part (¢) follows from
the triangle inequality combined with part (b) and Lemma [C.1|(c). O

The Lemmas below are an adaption of Lemmas 8-10 in |[Fan et al.| (2013),
henceforth FLM, to include the estimation error in the sample covariance matrix. To
avoid confusion and make it easier for the reader to follow through the changes we
use the same notation adopted in FLM. In particular, if é;; denotes the (i,t) element
of A := R — R then Uys = Uy + 6 for i e [n] and t € [T]. We consider that
|A|max = Op(w) for some non-negative sequence w depending on n and 7.

Define:
~ _UU, EUU) <U;Ut - ]E(U;Ut)) ) (Ugat A 5;&) N

n n n n n n n

~ £ NTe 230 AU N Fi 20 Xidir

Nst -= = =Mt + 77:75
n n n

~  FY AU FUS AU FUST A

ot 1= — ;11 = ;11 + = ; = &ot + &

Lemma C.3. Under Assumption[3: (a) (s = Op(1/y/n); (b) ns = Op(1/y/n); (c)
Eu = Op(1/y/n); (d) ¢4 = Op(w + w?) and max,er (& = Op [ (nT)w + w?]; (e)
ny = Op(w); and (f) & = Op(w).

Proof. Parts (a) — —(c) are straightforward. For (d) we have that 2U U, = Op(1)
and 1878, < |A]Z,. = Op(w?). Then, the other two terms in parentheses in the
definition of (¥ are Op(w) by the Cauchy-Schwartz inequality. Part (e) and (f)

follows by similar arguments. Therefore,
T

1 1,.\2 , ?
Tga%T; (E‘SsUt> = rtn<aj)‘( TL2 < Z 6 0 ) Ut HAHmax <T<a72( |Ut1/n)

and

¢4 < Ul 0cloe + 1T eleol0sler + 18000 < 2T ma | A s + 1A e
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Lemma C.4. Under Assumption @ (a) %ZtT:I [% - J?]-SIE(U’SUt)]2 = Op(1/T);
~ ~ 12 ~ 2
() 3 |F 20 Fila| = 0p [(vn s wrw?]s () 250 | 350 Tl =
~ 2
Op | (1/v/n +w)*]; RS 230 Fista| =0 [y +w)|; and finalty, (e)
AXTL N HE = 0p T+ (i b))

Proof. Part (a) is unaltered by the presence of a pre-estimation, so it follows directly
from Lemma 8(a) in FLM. For part (b), we have that for s,/ € [n] and j € [r] by
Cauchy-Schwartz inequality

PN R ~ o~
72 T;fjscst] <|7 21( 2@@)

= s,l

1/2

Since Cy = Gy + % = Op(1/4/n + w + w?) by Lemma the term in parentheses
is Op [(1/4/n + w + w?)?]. Result (b) follows. For (c), by the triangle inequality and
Lemma 8(c) in FLM, we have that || D", Xl < | 20, AUl + | 200y Ajidael| =
Op(y/n) + Op(nw). Then, we Conclude

T T

LS Y Fal < L S IR T = OplUn + i + o).

=1 * s=1 ‘a4
The proof of part (d) is analogous to (c) and is omitted. For (e), let [}t —Hf,;
denote the j-th entry of ]A"t — H f,. Since V /n is bounded away from zero by Lemma
C.2(c), the fact that (a + b+ ¢ + d)? < 4(a® + b* + ¢ + d*) and using (B.1), we have
that max;<, 771 Zt[}'t — H f,]; is upper bounded by some constant C' < o times

Tsz—Z ZﬁsEUUt] +T3%—Z< Zﬁ@)

2
+T32<_Z< ngsnst) +max ( ijsfst>

The result follows by applying the bounds from (a)—(d) to each of the terms above.
O

Lemma C.5. UndeI éssumption@ (a) maxi<r |5 ZS ) f E(ULU,)| = Op(1/VT);
() mrcr ST 3.8l = O [\ Jo b+ 0 e o 2] (o) mareer |4 21, Filal =
Op [y~ ( )/ +wl; and (d) maxier |3 S0 ool = Op [67(T)(1/v/n + w)].
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Proof. Part (a) is unaltered by pre-estimation, so it follows directly from Lemma 9(a)

in FLM. For part (b), from the Cauchy-Schwartz inequality we have

1 &~ ~ 1 &~ 12
—_— —_— 2 —_—
T;Ifscst < (T;!fs\ rgLaTXTZCst> -

The first summation inside the parentheses equal r» due to the normalization. For the

max
t<T

. . . . 1T o 1 7T 2
second summation, by the triangle inequality, we have max;<r 7 >, _; (5 < Maxe<r 7 254 o+
T T . .
2maxier & 2oy Gt (A maxeer 7 .., (47, For the first term, the maximum inequal-

ity followed by Assumption [2(e) yields

r“X‘EPQ [zw<>@?M?mm]=0phwangxmi]=0P[

(1)

t<T T n '
The last one is Op [(¢~ (nT)w + w2)2] by Lemmal|C.3|d). Then, by Cauchy Schwartz
we have that maxi<p 7 Ly % =0p [(4 [ p/2( )/n+ Y (nT)w + w2)2] and result
(b) follows.

For (c), by the triangle inequality we have that max;<r || = Y7, A Uy|| < maxeer 1230 AU |+
max<r |2 27 Xidye||. For the first term, the maximum inequality followed by As-
sumption [2[f) yields
1
—A/Ut =

n

max
t<T

e D IRV | DN
0 [ max| A0 | = 00 [ (1) ).

The second term is upper bounded by r|A|max|Almax = Op(w) by Assumption [2(d)

max
t

max
t<T

\

We obtain the result since
B [w—lm
max

na Zhw fo 52Aut - +4. )

By the triangle inequality, | 3, 35 Milis £ < |5 X, X AU £+ 75 20 25 Aidis -
Lemma 9(d) of FLM shows that the first term is Op(1/4/n). For the second term, for

each j € [r]:
1 ~ 1
ﬁ;;AZéZSf]S Z)\zézs f]S <T;]€25> = Op(wz).

Thus, H% Z D AU f.l| = Op(1/y/n + w) and by Cauchy-Schwartz inequality:

Z Jolst| < 17122)\1[7%}5 = Op [ H(D)(1/Vn +w)].

(C.2)
O

2
12
<T

s=1

max max | F||

t<T
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Lemma C.6. Let wy+1~1(n?)/v/T = O(1) where wy is defined in Lemma|C.4. Then,
under Assumption@ we have: (a) [V = Op(1/n); (b) |H|| = Op(1); (c) |H' H —
L|r = Op(1/NT+1/y/n+w); (d) maxic, 37 R = Op [w(w’l(nT) + w) + wp_/;(n)/\/fjt 1}'

and (e) max;<, Max;< rTZt L tUzt [ S(n )/\F—Fw]

Proof. We have that V™! = diag (1/ay,...,1/a,) and 1/a; =p 1/n for j < r by
Lemma (c) The result (a) then follows. The normalization tell us |F| = /T,
Lemma 11(a) in FLM give us |F| = Op(v/T), |A’A| = & = n by LemmalC.1{(a) and
from part (b) we have [V ™!| = Op(1/n). Result (b) then follows since by definition
H:=T'V'FFAA. For (c) we have by the triangle inequality

|H'H ~ I|y < |H'H - HF'F/TH|; + |H'F'F/TH - L]
For the first term we have

|H'(I, - F'F/T)H|r < |H|’|I, - F'F/T|r = Op(1)Op(1/VT).
The second term is equal to |H'F'F/TH — ﬁ’/ﬁ’/THF.

For (d) we have
T T

1 ~ 1 ~
max?zth < max?Z(R?t R2) + max—ZR E(RZ) + max—ZE R2)

<n <n <n
t=1 t=1
~ 1
2 2 2 2 2
< max|R;, — R;| + max — E R;, — E(R;) + maxE(R;).
2, <n T 01 2,0

The last term is O(1) by Assumption (a), the middle term OP(szj/;(n)/\/T). The
first term is no larger then |A|max(2| R max + [|Allmax) = Op(w( ™ (nT) + w)). The
result (d) then follows.

For (e) we have for each j <r

T_lejt(Z-t < T_lethit + T_lejt(Sit
: ¢ ?

1/2
< T’lethﬁ + (leFﬁleéft>

The first term is Op[ ; /2( n)/vT ] by the maximum inequality and Assumptlon
and the second is Op(w). O]




BRIDGING FACTOR AND SPARSE MODELS 59

Lemma C.7. For every s > 0:

0(5.2) < 5y (T.2) + 8, (\/@z ) i, (@z z)
+P (\/?u?np > s) 0, (TT) 4y (U,0).

Proof. We start by showing that for every pair of random variables X and Ydefined
in the same probability space taking values in the normed space (S, || - |) and pair of

non-negative reals ¢, s, we have
PX] < t=5)=P([Y] > 5) <P([X+Y] < ?) <P(|X] <t+5)+P([Y] > 5). (C.3)
Indeed, for the right hand side inequality we use | X + Y| = | X —(=Y)| = | X]|—|Y].

Hence, for any ¢, s > 0:
POX +Y]<?) < IP)(HXH <t+ Y]) <P(X[ <t +[Y], Y] <s) +P(Y] > s)
POIX] <t +s)+P(JY] > s).
For the other side we use | X + Y| < | X| + |V to write
POX+Y]<t) = P(X] <t = |Y]) = P(X]| <t = [Y) + P([Y] > s) = P([Y] > s).

Now replace X and Y by /%27 and /%"U in (C.3|), respectively and set | - | =
| - |lp- The right hand side of the resulting expression can be upper bounded by

IP’(«/%H%HP < t+5)+P(4 /%Hﬁ” > s)+pp(T f)+pp(U (7) whereas the left hand side
can be lower bounded by ]P’(«/%Hf” <t— A /quUH > s5)—pp(T, T)— pp(U, ).
Therefore,

mq, ~ mr o~ ~ ~

P<\/7||Tp <t—3) —]P( Ul > 3) — Pp <T>T> — Pp (U>U>
mq, ~ mr, ~ ~ ~

PUsly <) <P (\2UTl < t+s) + 7 ({20101, > 5) + 5, (1.F) 45, (0.)

Then, for the right-hand side,

P <4 /%m\p <t+ s) <P <4 /%\an <t+ s> + oy (f Z)
P ( /™21, < t) A, ( Jmaz ) + 0, (1.2)
n n
(2], <)+ p, (4 /%m) +A,,( "7.) 0 (T.2).

Similarly for the left-hand side and the proof is completed. O
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By the triangle inequality | ¥ — Y [max < | T = Xmax + | T = X|max where Y is
the sample covariance matrix of D, := U,U_y,. The second term is O, ( 2)/NT)
while for the first | ¥ — Ymax < [D — D|max(2|Dmax + | D — D||max). The first
term in parentheses is O [¢; ' (nT)] and the second can be upper bounded by HlAf -
U | max(2|U || max + ||IA/' — U | max) Which is shown to be Op [(n, T)y~*(nT)] in the proof
of Lemma [C.16| Therefore, we conclude that

T = Tlmax = O (mlon. Ty (T )iy s (nT) + Uy A (0*)NT )

To leverage on the results of Gaussian approximation, in particular on the work of
Giessing and Fan (2020) we would like to establish some sort of asymptotic linearity

namely
Z 2 D, + Ry =:Qr + Ry. (C.4)

such that |Ry|s vanishes in probablhty at an appropriate rate as n,T — oo. Then
we can approximate the distribution of S = |Q] by the distribution of S := H&)Hp,
which in turn can be approximated by the distribution of S* := |Q*|, with high
probability.
For some € > 0 we might set
81 = h[n(n, T) (™} (nT))* + ¢4 (n*)/VT]
Sy =T (n) + VT4

Lemma C.8. | T — Y |max = Or (h[nw;l(n:r))?’ 4 ¢];/}1(n4)/ﬁ])

Proof. Let 4 := (iy,12,13,14) be a multi-index where iy, 45,43, 14 € [n]. Define for 7 and
| <T:
| Z
5 = T Z Ui, Uiy 1 Uiy t— 10Uy =101 vi = EA;,

t=|¢|+1
and 4} as 3f with U’s replaced by U’s. Also define

Vii= L RE/MA vi= )

le|<T le|<T

and U; as ¥; with U’s replaced by U’s. Then we write

i—vi= > kWA =)+ Y (k(E/h) = 1) (C.5)

[e|<T [4|<T
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Since 5 — vily,,, = OK/T —{/T) = O(1/v/T), the 1,,,-Orlicz norm of the first
term is bounded by

b3 IR =l = O (i [ Il ) = OV,

|| <T
whereas the second term is deterministic and is shown to be O(h/+/T) by Andrews
(1991). Thus [T; — vify,, = O(h/~/T) uniformly in 4 € [n]*. Thus, by the maximal
inequality followed by Markov’s inequality we conclude that

max [B; — vi| = Op(¢,,(n") max [T; = villy,,) = Op[¥,4(n HhNT. (C.6)

We now use the fact that for any x,y € R? we have |[[_, = — [[}_ vl =
o5, |z — y||ly|,) combined with the fact that HU — U||max = 0(1) to obtain

TTBZXW, %| maX|UZ1tU22tUZ3t |£|U14t le] — Uz‘l,tUig,tUig,t—|£|Uu,t—\z\|

= O(HU U”maxHUHmax)
= Op[nly, ' (nT)P’]

Therefore we conclude
max [0;~ 0] < maxwZ il D |k(e/h)| = Op <hn[¢ (nT)] f|k |du> Op(hn[, ' (nT)]?).

[|<T

(C.7)

The result then follows from the triangle inequality | X — X|max < max; |[0; — 0| +

max; |U; — v;|, expression ((C.10]) and (C.11]). O

Lemma C.9. If [0y, < C < o0 where 0y := ]?2“ — Ry then
1 U
Vi pi/ﬁ + 4, L(T)C).

Proof. In this proof we use the fact that for any (possibly random) Ay, by Cauchy-

(V/n)(F — HF)|2|ly, = O(

Schwartz inequality and the normalization 1?‘1?‘/T = I,, we have H% Zil ﬁ’sAst|| <
1/2
W(% Zstl Agt> - Thus
1< Y
Ast) ='||T;1FSA5¢|| =0 ZA>
(a) Set Ay = E(UU,)/n, then g(Ay) = O(1/y/T).

(b) Set Ay = Cy = (U.U, —E(U.U,))/n, then by maximal inequality g(Ay) =
O(| maxs<r [Cstl ) = O(WH(T) maxser ||Cst]y). By the triangle inequality

2

¥
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”Est”zﬁ < | Gstly + [[C5]ly- The first term is O(1/4/n) by Assumption (d)

The second can be upper bounded by |U%d;/n|y + [|6.U/n|y + [650:/n), =

Ol el )+ Ol ). T () = 0TI+ + ),

(c) Set Agp = st := F, > Ai(Uit + i)/, then apply Cauchy-Schwartz twice to
obtain

1 & " Uy + 6 " L)
1t it it it
9(Ax) = O(H(f Z 1FS )y, 0 ZAiTHwP/g) = O0(1)O(| ZMWH%NH Zkig\m/g)-
=1 =1 =1

s=1
The first term in square brackets is O(1/4/n) by Assumption [2(d) and [J(e);
the second is O(C'). Hence g(Ay) = O(% + C).
(d) Set Ay = fst = F. > Ni(Uis + dis)/n, then apply Cauchy-Schwartz twice

followed by the maximal mequahty to obtain
T

Uzs+6zs
9(Ast) = O Fel[,,, | (7 ZHEA %))

s:l i=1

- 0mow @IS A, + 1A,

The first term in square brackets is O(1/4/n) by Assumption [2(d) and [J(e);
the second is O(C'). Hence g(Ay) = O (T)[\/iﬁ + C).

p/2
Finally, use the identity (B.1]), the triangle inequality twice and the bounds (a) — (d)
to obtain the result. U

Lemma C.10. If max;, [64]y = O(C) and |U — Ullmax = Op(n) then

_Op(\fn +—+—+7"30)

(U - UU) Tt

=

where

-
o
|
<
S
S
X
ey
=3
+
§
[\l

ry 1= 4 () L(T) + 4y <>%ﬂ>

Proof. By the triangle inequality we have

1 N
+2 H—U(U —UY

I~ - /
—=U-U){U-U) Nis

A~ ~/
UU -UU’ <
N <197

1(
VT max
For the first term we have

O -0 - vy

max max

SVT|U = Ul = Op(VT7).

max
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For the second term we use decomposition - to write

ZUzt it — Ut :fEUltAFt )\,Ft‘i‘RJt—R]t)

1 &, =
Y Uu(F,— HF))

= [&—HA) + HAj]' N

T
+ [(S‘J —HX\;) + (H'H - [r>)‘j], \/I*ZUtht +(;—5) TZ UuW ji

Apply Cauchy-Schwartz inequality in each term followed by the triangle inequality

we obtain
T

Z w(F,— HF,)

H—U(U Uy
1 T
— » Uy F
\/T; t£ t

VT

< |max R, — EEA L VLA |
max gsn s

" [mgx 5, — H| + i HH - L|||A||max] max
ji<n i<n

. 1 o
+ r]nga;( H"Yj _')’jH Z”;iﬁ _TZUitht .

—1

Ypr2(T)
(ﬁ + ¢ /2( )C1) du? to Lemma |C.6(a),
Lemma|C.9|and the maximal inequality; the second term is O p(w’?\/}( )+ \ﬁ‘Hﬁ L(nT) C)OP(wp/g( n))

The first term is Op(l)Op(w_l(n)[\/LT +

since, by the maximal inequality, we might take w = ¢~!(nT)C in Theorem [2| I
The last term is Op (¢~ () 5 (n)/VT)Op(y s (n?)). Thus, )%U(ﬁ—uy(
Op(ry) where

Uy ()1, ()5 (n?) (), u(T) + 4y 5(n)

Ty = T + NG +(0, (), 4 (T)+, (R, 5 (n))C.
(C.8)

The result then follows.

max

O

Lemma C.11. Let HIA]—UH = Op(n) then max; ;, |IA/ij7t—VZ~j7t| = Op(so[n+&Yp~t(n)]).

Proof. By the triangle inequality we have
A~ ~ Al A~
Vije = Vil < Use = Uil +10;U —ij0 — O;U —ija.
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Using Holder’s inequality, the second term can be further bounded as
0.0 50 — OU 50| < [0,(U iz — U_is)| + 1(8; — 8, U _i5|
<[0T s = U—siallc + [8; = 8.l |U —izeo
< (163l + 18; = 6:)IT i = U—ijallc + [8; = il [U i1
Combining the last two expressions with the fact that [|6;]|; < s0]0i]. < Cso and

H@l — 011 = Op(&sp) = Op(1) by Assumption (f) and the the maximum inequality
yields the result 0

Lemma C.12. Let |[U — U| = Op(n) then

T
max \% 2 Visa Vit = VigaVigo| = Op{silra + €07 (n) + VT (n + €07 ()]}
’ t=1

Proof. By the triangle inequality
max| (V Vi —Vi,;Vi)l < max|
f \f
The first term can be bounded using Lemma since
1 ~ A N —
max ‘\/_T(Vij —Vi)(Vii— Vil < \/T[rpja}(‘/%ﬁ — Vii)l? = Op(VTs0(n + &~ (n)]?).
The second term can be upper bounded by

maX|TV' (U, —U,)| + max [ m||1ma>< HTV/ (U_ij = U_ij)]0

+max|6;; — 0
2,

(Vij— sz)(ng Vi) Vi (Vi=Vi)l.

1
+2max |—
| ij |\/T

slmax| = VU

Recall the rate ry appearing in (C.8).Then the first term is Op(sors), the second
Op(s3rs) and the last term is Op(€s31~"(n)). Thus max;; | 2=V, (Vi; — V)| =
Op[s3(rs + &~(n))]. The result then follows.

U

> AGS!
Lemma C.13. [Ty = Tl = Op (lsuly + 605 0500, (0T + 02451

Proof. The proof is similar to the proof of Lemma [C.8] refer to it for details. It
suffices to bound in probability |V = V| max and |V ||max, where V is (n2 x T') matrix
whose entries are V;;; for ¢,j € [n] and t € [T']. Similar for V with Vij+ replaced ‘A/ijvt.
Lemma [C.11]bounds the former, for the later we have |V |[max < max;; [05;]1[U [max =

O(So’@/Jfl (TLT))
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Let ¢ := (iy,12,13,14) be a multi-index where iy, 19,173,754 € [n]. Define for ¢ and
| <T:
| Z
i = T 3 Ui UniUssiiqUssime; =B,
t=|¢|+1
and 4} as §f with U’s replaced by U’s. Also define
Vii= L RE/MA vii= )
||<T [e|<T
and U; as ¥; with U’s replaced by U’s. Then we write
= > kW/B)F; =) + D (k(/h) = 1), (C.9)
[e|<T [4|<T

Since |7 — Yilw,,, = OWT = |/T) = O(1/v/T), the 1,,,-Orlicz norm of the first
term is bounded by

- - h
b3 IR =l = O (i [ Il ) = 0D,
[|<T \/T
whereas the second term is deterministic and is shown to be O(h/v/T) by |Andrews
(1991). Thus |5; — vsly,,, = O(h/VT) uniformly in ¢ € [n]*. Thus, by the maximal
inequality followed by Markov’s inequality we conclude that
max|T; — vi| = Op (4 (n*) max [ B — vily,,) = Ople, 4 (n)R/VT]. (C.10)

We now use the fact that for any x,y € R? we have |[[/_,z; — [}, w] =
o5, |z =y ly|L,) combined with the fact that ||U — U|max = 0(1) to obtain

rr;%xhz %| maX|Uz1tU22tUzgt |£|U14t le] — Uil,tUiz,tUig,t7|€|Ui4,t7\€\|

= O(HU U”maxHUHmax)
= Op[nly™ (nT)P’]

Therefore we conclude

max [0;—0;| < maX!ve Vil 2, [k(t/h)| = Op <hn[w‘1(nT)]3f\k(U)!dU> = Op(hn[y~" (nT)°).

[e|l<T

(C.11)
The result then follows from the triangle inequality HT Y [ max < max; |0; — ;] +
max; |U; — v;|, expression ((C.10|) and (C.11]). O
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Lemma C.14. Let U,V be T xn matrices such that U —V || max < C1 and ||V | max <
Csy, then

XU = Bv|max < C3 1= C1(2C2 + (1),
where Xy := U'U/T and Xy := V'V /T. Furthermore, if C3 < ax(Zy, S, 3)/(|S|(1+
€)?) for S < [n], ¢ >0 and a € [0, 1], then

(1 - Oé)"i(EVaSvC) < H(EU»Sv C) < (1 + Oé)"i(EVﬁS?C)

Proof. By the (reverse) triangle inequality we have [|U |max — |V [max < U = V|| max;
from which we conclude that |Ul|max < |[U — Vmax + [|[V|max < C1 + C3. Now
HEU - ZVHmax = MaXjgi,j<n ’T_l Zthl Uitth - Vz‘tVz‘jt| < Max; ;¢ ’Uitth - Vitvjt| and

\UnUjt — VieVie| < (Ui — Vig)Uje + (Uje — Vi) Vig| <

U = Vimax (1U [ max + [V [max) < C1(2C2 + Ch).

For the second part of the lemma notice that for any & € R" we have |#'Xyx —
r'Syz| = |2/(Sy — Sv)z| < |Bu — Sv|melz|? < Cslz|? by the first part.
Also, if [|@se|1 < (||xzs|i we have that |z = |zs|i + |Tse|1 < (1 + Q)lzs|1 <
(1+ )/ v z|S|/k(Zv, S, ¢) where the last inequality follows from the definition of
compatibility condition. Thus |2'Syz—2' Sy x| < C3(1+()*x' Sy x|S|/k(Bv, S, () <

'Yy /2, where the last inequality follows from the definition of compatibility con-

dition. Therefore, we have that (1 — a)x’Eyvx < '3pz < (1 + a)z’Eyx whenever

|zse|1 < ¢||es|i- Take the infimum to conclude. O

Lemma C.15. Let W := (U,V) and Z := (X,Y) be T x (n + 1) matrices such
that |W — Z||max < C1 and | Z | max < Ca, then for any 6 € R™ we have

UV —U8)/)T — X' (Y — X68)/T ||l < (1+6]1)C1(2C, + CY)

Proof. For convenience let ¢ := V —Ud € RT and r := Y — X§ € R?, then Hoélder’s
inequality gives us |7]o < (1 + [|0]1)Z]|max < (1 + []1)C2 and |g — 7lleo < (1 +
[0 )W — Z|max < (1 + ||§]1)Cy. From the (reverse) triangle inequality we obtain
lalloe < llg —7lloo + |7]loc < (14 [6]1)(Cy + C3). Now, following the same steps in the
proof of previous Lemma, we can upper bound the right hand side of the display by
|U = X max|qlloo + [lg = 7/loo|| X || max, Which in turn can be upper bounded by the left
hand size of the display. 0
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Lemma C.16. Under the same conditions of Theorems 1 and 2
ST T ) n) e ()T
T4 " N

IVL(61) = VLo(61)] = Op
2 2 : -1 wp_/é("ﬂ)
[VZL(8) = VZLo(0)max = Op | n(n, T) [} (nT) +n(n,T)] +

S

where VLo(8) := 2E[U_1,(Uy, — U _1,)] and V?Lo(8) := EU_,U" ,,.

Proof. By the triangle inequality we have
1 N
IVLO) = VLo(0)|w = [(Us = U + U)' V/T = E(ULV/T) o
<|ULV/T =BULY /T + [Us = Ul max |V |-

Similarly, using Lemma 5.B

A~ A~

HVQL(O) - V2LO(H)Hmax < HUxe/T - U;Ux/T”max + HUfchx/T - E<U;Ux/T>Hmax
<NUz = Usmax(2|U [ max + [Uz — Usz|max)
+ HU;&UHC/T - E(U;UI/T)Hmax
By Corollary [1] and Assumption [3| we can bound in probability each of those terms

, , )
ULV /T =BV D)= Or | 02
R (Y () () A () A
HUm - Uszax =Op T1/4 & + \/ﬁ = OP[TI(W T)]
|Vle = ¢~ H(T)

|U sl max = Op[¢™! (nT)]

[ULUL/T = E(ULU /T)max = O [%(n >] |

Therefore
Grhn) TN T D (M) e ()T
VT " T1/4 * \n

3

IVL(6) = VLo(0)]c = Op [

and
Yy a(n?)
VT

[V2L(0) — V?Lo(6) |max = Op [n(n, T)[v~ (nT) +n(n, T)] +
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Lemma C.17. For p > 0, let ¢, : R, — R, defined by ¥p(x) = vljpcaeyy +

1/p
(exp(z?) — D)1{x > t} where t := (%) - f | Xy, < oo then there exist constants
C1 > 0 and Cy > 0 such that

P(|X]| > z) < Cyexp(—a?/Cs) x> 0.
In particular, if 0 < | Xy, < 0 we might take C1 = 24+ 10 < p < lexp((1 —p)/p)
and Cy = HXHZ)ZD. Conversely, if there exist constants C, > 0 and Cy > 0 such that
P(|X| > z) < Cyexp(—aP/Cy) for x > 0, then
[(2Cy + 1)Co]VP v 2C,CyPp'T(1/p) :0<p<1
[(C1 + 1)C] P p =1,

where I'(+) denotes the Gamma function.

Xy, <

Proof. If | X|ly, = 0 then X = 0 a.s and the inequality holds for any choice of
C1,Cy > 0. For the case when 0 < | X, < o we have by Markov inequality and the

fact that = — expalz|P is non-decreasing for a > 0
P(|X| > x) = P(exp(a|X|?) = exp(aa?)) < exp(—az?)E exp(a|X|?).
Also
Eexp(a|X[P) = Eexp(a|X[")1a'?|X| < t + Eexp(a| X [P)1a?|X| > t
<exp((1—p)/p)10 < p < 1+ Eg,(a'?|X]|) + 1.

Set a = || X[} to conclude that the middle term is less or equal to 1.

For the converse we have for a > 0, by Fubini’s Theorem
|z [P
Eexp(laX|P)—1= JJ a? exp(aPy)dyP(dx)
0

0
= apf P(|X| > z'/?) exp(aPz)dz.
0

Since P(|X| > z) < Cy exp(—a?/Cy), for a < Cy /", we have

Eexp[(|aX])P] -1 < apC'lj

exp [—x(L - a”)] dr < 24
0

Co
Also

a0 o0
E|X| = f P(|X| > 2)dr < le

exp(—a?/Cy)dr = Cfll/pr(l/p)-
0 0 pCy
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Therefore using the last two displays we have, for 0 < a < Cy 1/p

E,(a] X]) < E[aX|10 <p <1+ Eexp[(|aX])P] -1

C rC
< pg{%/pr(l/p)]lo <p<l+ 5%

When p > 1 the right hand side is less or equal than 1 for a < [(1 4+ C1)Cy]~"/? hence
1X]y, < [(1+ C1)Co]"P. For 0 < p < 1, the right hand side is less or equal than
1 for a < {CyP[(2C, + 1)7Y7 A 2C1p~'T(1/p)]} " then 1X ]y, < (201 + 1)Co]YP v
2C1CyPp1T(1/p).

U

Lemma C.18. For p > 0, there is a constant C, only depending on p such that
XY e < Cp (1 X, v Y ]w,)

where v, defined as per Lemma (C.17)).

Proof. If | Xy, = 0 or Yy, = 0 then XY = 0 a.s and the inequality hold trivially.
Similarly if [X|y, = o or [Y|,, = . So we assume that 0 < |X|,, < oo and
0 < Y]y, < and from Lemma (C.17) we have for z > 0

P(X] > @) < Ky exp[—(z/[ Xy, )"]
P(Y] > x) < Ky exp[—(z/| X ]y, )"],
where K, := 2+ 10 < p < lexp((1 —p)/p). Then
P(IXY|>2) <P(X| = V) + P(Y] > V) < Kyexp(=2"?/|X[},)) + Ky exp(—2"2 /Y], )
< 2K, exp(—zp/Q/Dg)
where D, := | X[y, v [Y]y,- Apply once again Lemma to conclude that

| XYy, < CpD, where C, = (2K, + 1)V? for p > 1 otherwise (4K, + 1) v
8K, I'(2/p)p~. O
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