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Abstract

I study market quality implications of the competition between traditional

market making and high-frequency trading. A long-run traditional market

maker responds to the competition from high-frequency traders by reducing

both the spread and the amount of capital committed in market making. While

a lower spread level is beneficial, less capital commitment deteriorates market

quality. Specifically, the market’s capacity to satisfy large demand is impaired.

My model provides a more comprehensive illustration of high-frequency trad-

ing’s implications on market quality by integrating both price and quantity

effects. I further use this framework to analyze implications of different high-

frequency trading regulatory measures.
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1 Introduction

Over the past decade, high-frequency trading has become increasingly prevalent

worldwide. According to O’Hara (2015), high-frequency traders (henceforth HFTs)

contribute more than half of market trading volume. This growing trend of high-

frequency trading has led to a policy debate over proper regulatory measures to

adapt to this change. Clearly, policy makers have yet to reach a consensus over this

issue as different countries are implementing regulations with opposing intended ef-

fects.1 Most European countries have carried out strict rules to reduce high-frequency

trading and “level the playing field” while some Asian countries such as Japan and

Singapore embrace high-frequency trading by providing systematic support including

introducing co-location service and rebating high-frequency trades.

Extant empirical research has documented that the presence of HFTs leads to

lower spreads in the market. Some papers take this as direct evidence that high-

frequency trading improves market quality.2 There are essentially two rationales

behind this claim. First, lower spreads indicate less information asymmetry. Second,

lower spreads enhance market efficiency by facilitating assets moving to agents with

higher valuations.

However, an implicit market clearing assumption lies behind the second claim.

That is, at each instant, the asset price is determined by a centralized planner, who

receives all market participants’ supply and demand schedules, to clear the market.

Although it is a reasonable assumption for analyzing the long-run behavior of the

market, it is a strong assumption in modeling high-frequency trading for two reasons.

First, since trading happens very fast, it is unlikely that each market participant has

time to submit a sequence of limit orders to form a demand or supply schedule in

each trade. Second, even if there is a planner with all the information, the price may

not be adjusted quickly enough to clear the market at each instant. Without the

market clearing assumption, the one to one link between price and quantity breaks;

i.e., a lower spread level no longer indicates a larger trading volume. Specifically, fac-

1For a comprehensive survey of the global high-frequency trading regulation environment, see
Bell and Searles (2014)

2See Hendershott, Jones, and Menkveld (2011), Boehmer, Fong, and Wu (2018), Brogaard,
Hendershott, and Riordan (2014), Hendershott, Jones, and Menkveld (2011), Boehmer, Fong, and
Wu (2018), Hendershott and Riordan (2013), Hasbrouck and Saar (2013), Brogaard, Hagströmer,
Nordén, and Riordan (2015), Conrad, Wahal, and Xiang (2015) and Conrad and Wahal (2018),
among others.
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ing competition from HFTs, a market maker might reduce his capacity in absorbing

market imbalance as well as the spread since market making becomes less profitable.

On the other hand, HFTs’ abilities to provide liquidity are constrained by market

conditions and might be insufficient to fill the gap left by tte market maker. The

decrease of market making capacity would lead to lower trading volume and deterio-

rate market quality. Indeed, Chordia, Roll, and Subrahmanyam (2011), O’Hara, Yao,

and Ye (2014) and Korajczyk and Murphy (2019a) show that the average order size

becomes smaller and investors have difficulties executing large orders.

I consider a model where the market maker and the HFT compete to sell shares to

a potential buyer in each period.3 For clarity, I use female pronouns for the HFT and

male pronouns for the market maker and the buyer. The market maker contracts with

the exchange to provide liquidity and is obliged to post quotes in the market.4 As a

firm, the market maker can either commit his capital in market making, i.e, buying

shares from an inter-dealer market for sale, or paying out dividend to investors.5

The amount of capital committed in market making is endogenously determined by

equalizing the marginal value of market making and the marginal value of paying

dividend. When no HFT exists, the market maker is modeled as a monopolist due

to the market power he enjoys from advantageous terms provided by the exchange.6

Under this circumstance, making the market is highly profitable and the market

maker commits a large amount of capital in market making.

In my model, the HFT enters the market with exogenous probability and holding.

This means to capture the reality that the HFT makes profit by anticipating the

arrival of future orders.7 If the HFT detects a buying order, she tries to quickly buy

cheaper shares from other channels and sell to the buyer at a slightly higher price. This

way of operation makes the HFT’s presence and the amount of shares supplied highly

depend on exogenous market conditions. The competition from the HFT affects

the market maker’s pricing and capital commitment decisions. The market maker

3This model bears similarities to Kreps and Scheinkman (1983).
4In practice, the market maker in my model can be considered as a designated market maker in

NYSE or a specialist in NASDAQ.
5Alternatively, I can assume that there is a risk-free asset with unlimited supply the market

maker can invest in.
6This differs from the competitive market making assumption in Kyle (1985) and other models

in market micro-structure.
7There are certainly other types of high-frequency traders. For instance, some market makers

nowadays adopt advanced technology for trader. In my model, they fall into the market maker
category.
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may tighten the spread to compete with the HFT. This reduces buyers’ transaction

costs and improves market quality. On the other hand, market making becomes less

attractive because of the competition and the market maker would reduce his capital

commitment in market making. This weakens the market’s capacity to satisfy large

demands and effectively leads to a shallower market.8

I first consider the setting where the HFT possesses superior trading technology

relative to the market maker. It enables the HFT to observe both the market maker’s

capital commitment and spread before making her pricing decision. In other words,

the market maker and the HFT set spreads sequentially. The market maker faces a

trade-off. If the market maker sets a high spread aiming to achieve a high expected

payoff when the HFT does not enter, upon entering, the HFT would undercut and

the market maker would only receive the residual demand. If the market maker sets a

low spread, he sacrifices some profit when the HFT does not enter. Yet a low spread

protects the market maker from the HFT’s undercut. In the steady state, the market

maker posts a high (low) spread if the HFT’s entry probability is low (high). In other

words, competition from the HFT has a positive price effect on market quality but

reduces the return of market making. Thus, the market maker’s steady state capital

commitment is (weakly) decreasing in the HFT’s entry probability. This deteriorates

market quality. I use liquidity, the expected shares sold to the buyer, as a proxy

of market quality to measure the aggregate effect of high-frequency trading. Impor-

tantly, under mild assumptions, liquidity is not changing monotonically with respect

to the HFT’s entry probability. This lack of monotonicity has two implications. First,

using linear regression to analyze high-frequency trading’s market and welfare effects

may lead to erroneous conclusions. Second, past observations on high-frequency trad-

ing’s effects on financial markets may not be sufficient to guide policy making, which

would change the market condition faced by HFTs dramatically.

I then analyze the setting where the market maker and the HFT’s trading technolo-

gies are “head to head”. The HFT and the market maker in this setting set spreads

simultaneously. This corresponds to realistic situations with high-frequency market

making or limitations on maximum trading speed. In the equilibrium, the market

maker and the HFT both use mixed pricing strategies. The market maker’s expected

8In my model, this corresponds to the buyer leaving the market with a smaller portion of his
fulfilled. In practice, this may corresponds to the buyer purchasing a large portion of shares from
other liquidity providers at a higher price.
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payoffs are the same setting spreads sequentially and simultaneously. However, the

HFT’s expected payoff is (weakly) lower when submitting spreads simultaneously.9

Specifically, when the HFT’s entry probability is low, the HFT has incentive to ac-

quire superior trading technology at a low cost but the market maker would have no

incentive to match the technology level. This is detrimental to market quality.

In both settings, two regimes of equilibrium (the wide spread region and the tight

spread region) exist depending on the HFT entry probability. In the wide spread

region with low HFT entry probability, the market maker sets a high spread and

his capital commitment is decreasing in HFT entry probability. An increase in HFT

entry in this region has ambiguous effects on market quality since it increases liquidity

supplied by the HFT but decreases liquidity supplied by the market maker. In the

tight spread region where the HFT entry probability is high, the market maker sets a

low spread and his capital commitment is not changing in the HFT’s entry probability.

Thus, more HFT entry leads to better market quality in this region. Moreover, in

the wide spread region, equalizing trading technologies of the market maker and the

HFT improves market quality. This is because by switching from sequential pricing

to simultaneous pricing, the average spread becomes lower while the market maker’s

capital commitment remains the same.

My model differs from the existing theory in two ways.10 First, I explicitly consider

the market maker’s capital commitment decision, which has critical implications for

market quality. Second, liquidity suppliers in my model face asymmetric constraints.

Specifically, the market maker has an affirmative obligation to provide liquidity and

faces a trade off between committing capital in market making and paying dividend.

On the contrary, the HFT’s entry and the amount of liquidity supplied (extensive

and intensive margin) depend on exogenous market conditions. Although market

making is profitable for the HFT, these constraints limit the HFT’s ability to fill the

gap when the market maker commits less capital. Contrary to conventional wisdom,

competition does not necessarily lead to better markets when there is asymmetry

among liquidity suppliers.

I further consider three extensions. In the first extension, I endogenize the HFT’s

entry probability by imposing a fixed high-frequency trading participation cost. The

9This is in line with the evidence in Baron, Brogaard, Hagströmer, and Kirilenko (2018) that
faster HFTs achieve higher payoffs.

10For examples, see Goettler, Parlour, and Rajan (2009), Budish, Cramton, and Shim (2015),
Biais, Foucault, and Moinas (2015) and Foucault, Hombert, and Roşu (2016), etc.
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HFT needs to pay the cost to enter the market with an exogenous probability.11 If the

cost is high, the exogenous entry probability is low or the market is competitive, the

HFT would rationally not participate in high-frequency trading. The market maker

in this extension enjoys an additional strategic advantage. He can make the market

competitive by setting a low spread to deter the HFT from participating in trading.

This deterring spread is increasing with the HFT’s participation cost. The equilibrium

outcome depends on the magnitude of the participation cost. When the participation

cost is low, market quality is the same as in the baseline model since deterring the

HFT’s participation is too costly for the market maker. Conversely, with a high

cost, the HFT may not participate in high-frequency trading and the market maker’s

spread and capital commitment increase with the participation cost and eventually

converge to the monopolistic levels. The overall effect of the participation cost on

market quality is ambiguous. Yet it is certain that high participation cost harms the

market.

The second extension considers flipping. That is, the HFT can purchase shares

from the market maker and re-supply them at a higher spread. With high HFT entry

probability, the market maker sets a low spread to induce flipping. When the HFT

flips shares, market quality appears to be good since the expected trading volume is

high and the average spread is low. However, these indicators are not characterizing

market quality faithfully under this situation for two reasons. First, most of the

cheaper shares are purchased by the HFT rather than the liquidity buyer. Second,

the trading volume is “double-counted”. The actual volume sold to the buyer is much

lower. This extension demonstrates the importance of separating trades between

liquidity suppliers and trades from liquidity suppliers to other investors to avoid

over-estimating market quality.

In the third extension, the market maker can post a supply schedule to sell shares

at different spreads.12 With no HFT, the market maker chooses to sell all shares at the

monopolistic spread. However, facing competition from the HFT, the market maker

would sell shares at a continuum of spreads. I characterize conditions that determine

the market maker’s pricing strategy and capital commitment at the steady state and

discuss implications for market quality. Furthermore, this extension illustrates how

11For example, EU’s trading tax on both executed and canceled orders can be considered as a cost
of this type.

12In the baseline model, I assume the market maker has to sell all shares at one spread.
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competition between the market maker and the HFT determines the shape of limit

order book.

My model contributes to the theoretical literature on high-frequency trading by

exploring how high-frequency trading affects market quality via the capital commit-

ment channel. Competition from the HFT leads the market maker to commit less

capital in market making. This effect dampens the benefit brought by pricing compe-

tition, and, if large enough, the presence of a potential HFT might even deteriorate

market quality. Ait-Sahalia and Saglam (2017a) and Han, Khapko, and Kyle (2014)

also consider market quality implications with competition between the HFT and the

market maker. However, in these papers, the size of orders is fixed. This assumption

constrains these models’ abilities to capture how capital commitment of the market

maker affects market quality.13 In my model, it is possible that a market with wide

spread has better quality than a market with tight spread. The reason is that in the

latter market, the market maker commits much less capital in market making.

The implications of my model are consistent with the following empirical findings

in the literature: (1) High-frequency trading leads to lower average spreads in the

market; (2) the average trade size becomes smaller; (3) market makers commit less

capital in market making; (4) Large orders might face higher trading costs with the

presence of HFTs; (5) market quality improves when all market participants have sim-

ilar trading speeds. My model also provides several insights for future studies. First,

the price information alone does not provide a complete characterization of market

quality. The volume information is equally important. Second, market quality may

not change monotonically with increasing HFT presence. In this sense, we cannot only

rely on linear regression for accurate welfare implications of high-frequency trading.

Third, when the HFT can flip orders, it is important to differentiate trades between

liquidity providers and trades from liquidity providers to other investors. Otherwise,

the data cannot faithfully reflect market quality since HFTs would exploit most of

the cheaper orders with superior trading technology.

This paper also generates important insights for HFT regulations. The model

suggests that if high-frequency trading is prevalent in the market, encouraging high-

frequency trading benefits liquidity. On the other hand, when high-frequency trading

13In Ait-Sahalia and Saglam (2017a), the HFT, as a long run market maker, also holds inventory.
However, since the supply is fixed to one, the inventory does not have a quantity effect. Instead, it
has a price effect due to the inventory aversion assumption.
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is less prevalent, more HFT’s presence drives out the market maker’s capital and has

ambiguous effects on market quality. Second, when the HFT’s entry probability is

low, equalizing the trading speeds of the HFT and the market maker improves market

quality. When the HFT’s entry probability is high, it benefits mid-valuation buyers

yet hurts low-valuation buyers. I also analyze implications of high-frequency trading

participation cost. A low participation cost does not affect the market quality while a

high participation cost increases market maker’s capital commitment but also drives

up the spread. The aggregate effect is ambiguous.

Finally, my paper complements the literature of limit order book formation by

illustrating the effect of asymmetric competition between the market maker and the

HFT over limit order book shape.14 Specifically, with no HFT, the market maker

would sell all shares at the monopolistic spread. Facing the competition from the

HFT, the market maker sets a non-degenerate limit order book to avoid the HFT’s

undercutting. My model predicts a downward sloping limit order book at lower

spreads and a large volume supplied at the monopolistic spread.

The rest of the paper is organized as follows. Section 2 reviews related literature.

Section 3 presents baseline models. Section 4 analyzes baseline models. Section

5 considers the costly participation extension. Section 6 uses results developed in

Sections 3, 4 and 5 to discuss market quality implications of various high-frequency

trading regulations. Section 7 considers the flipping extension. Section 8 considers

the extension in which the market maker can submit supply schedules. Section 9

concludes.

2 Related Literature

2.1 HFT Behavior

An existing theory literature analyzes how high-frequency trading effects market

quality from the information perspective.15 Han, Khapko, and Kyle (2014) demon-

strate how adverse selection problem arising from fast order cancellation leads to wide

14For other papers on limit order book formation, see Glosten (1994), Chakravarty and Holden
(1995), Seppi (1997), Biais, Martimort, and Rochet (2000), Viswanathan and Wang (2002) Parlour
and Seppi (2003), Foucault, Kadan, and Kandel (2005), Roşu (2009), Back and Baruch (2013),
Baruch and Glosten (2019), etc.

15For a comprehensive survey, see Menkveld (2016).
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spreads when the HFT enters the market with probability between 0 and 1. Budish,

Cramton, and Shim (2015) show how mechanical arbitrage in high-frequency time

horizon hurts liquidity and propose frequent batch auctions mechanism as a solution.

Biais, Foucault, and Moinas (2015) endogenize investment decisions on fast trad-

ing technology and show that equilibrium investment level on fast trading is higher

than the social optimal level because high-frequency trading has a negative external-

ity. Van Kervel (2015) analyzes the link between high-frequency trading and order

cancellations across trading venues. Foucault, Hombert, and Roşu (2016) analyzes

news trading by fast speculators and its implications for trading volume and asset

price. Ait-Sahalia and Saglam (2017a) and Ait-Sahalia and Saglam (2017b) analyze

high-frequency market making and show that the faster market maker provides more

liquidity. Baldauf and Mollner (2019) consider the informational implication of high-

frequency trading and conclude that the bid-ask spread narrows yet the information

production also diminishes. Budish, Lee, and Shim (2019) consider a model where

exchanges capture economic rents by selling speed technologies to discuss exchanges’

incentives to adopt new market designs. Li, Wang, and Ye (2020) model competition

between slower execution algorithms and high-frequency traders featuring the impli-

cation of the tick size. My model differs from the existing literature by explicitly

considering the market maker’s capital commitment decision facing competition from

HFT and its implications for market quality.

Many empirical papers test high-frequency trading’s impact on liquidity. Re-

search generally documents an increase in liquidity with high-frequency trading. For

instance, Hendershott, Jones, and Menkveld (2011), Hendershott and Riordan (2013),

Hasbrouck and Saar (2013), Conrad, Wahal, and Xiang (2015) and Conrad and Wa-

hal (2018),16 using spread as a proxy for liquidity, conclude that liquidity is improved

by high-frequency trading. Brogaard, Hendershott, and Riordan (2014), using order

flow data, conclude that HFT is liquidity improving around macroeconomic news

since liquidity supply is greater than liquidity demand. Boehmer, Fong, and Wu

(2018) using execution shortfalls as a proxy, reach the similar conclusion. My model

does not contradict these evidences. However, it does suggest that some important

quantity aspects of market quality cannot be captured by these proxies. Specifically,

16Hasbrouck and Saar (2013) also examines number of shares displayed on the order book as a
proxy for depth. One concern is that since HFTs can cancel orders with fast speed, this NearDepth
might not able to capture real market depth.
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spread measures might not capture the quantity information related to the market

maker’s capital commitment. The execution shortfall can better capture the price

change facing large demand. Yet even the execution shortfall does not incorporate

information about unexecuted and canceled orders. Moreover, order flow as a proxy

of liquidity often includes trades between HFTs. This might lead to an over estimate

of market quality. The extension on flipping directly addresses this concern. Recently,

Korajczyk and Murphy (2019b) and Korajczyk and Murphy (2019a) document that

less high-frequency trading is associated with higher transaction costs for small trades

and lower transaction costs for large trades. Hu (2019) shows that market quality im-

proves when IEX, an institute implementing a trading speed bumps to all participant,

became a national securities exchange. These findings are in line with predictions in

my model.

Some empirical papers focus on characteristics of traditional market makers and

HFTs. Kirilenko, Kyle, Samadi, and Tuzun (2017) document that, different from tra-

ditional market makers, HFTs behaviors during the flash crash are more consistent

with the latency arbitrage theory. Hirschey (2018) shows that HFTs can anticipate

and trade ahead of other investors’ order flow. Baron, Brogaard, Hagströmer, and

Kirilenko (2018) find that faster HFTs gain higher payoffs. This is in line with the

prediction of my model that small HFTs has incentive to upgrade trading technology

to be able to undercut the market maker. Van Kervel and Menkveld (2019) docu-

ment that HFTs initially lean against institutional orders but eventually trade along

long-lasting orders since they are likely to be information-motivated.17 Yao and Ye

(2018) document that HFTs provide more liquidity for stocks with higher relative

tick size. Clark-Joseph, Ye, and Zi (2017) use data of two trading halts to show that

designated market makers’ participation has important liquidity implications. This

clearly shows that designated market makers and HFTs operate on different business

models. Bessembinder, Hao, and Zheng (2019) also highlight the importance of des-

ignated market makers by showing that an improving of contract terms for designate

market makers in NYSE improves market quality. This is consistent to the prediction

of my model. If the market maker receives extra rebate on each share, he will commit

more capital in market making and posts a lower spread.18

17This finding is consistent with my assumption that the HFT acts as a liquidity provider. How-
ever, my model is silent on the HFT trading alone the information-motivated orders since my model
does not consider informed trading.

18Bessembinder, Hao, and Zheng (2019) also document the spillover effect in market quality
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2.2 Capital Constraint and Capital Commitment

Many models explore the link between capital constraints of intermediaries and liq-

uidity provision. Kyle and Xiong (2001) describe the situation that when convergence

traders lose capital, their liquidation leads to excess volatility and more correlation

among different markets. Gromb and Vayanos (2002) show that constrained arbi-

trageurs might provide too much or too little liquidity compare to the social optimal

level, depending on their initial investment positions. Weill (2007) and Brunnermeier

and Pedersen (2008) both demonstrate that insufficient capital of the market maker

would lead to lower liquidity provision then the optimal level. In Weill (2007), lack

of capital prevents the market maker to absorb enough order imbalance when the

economy is recovering from a negative shock. In Brunnermeier and Pedersen (2008),

traders’ lack of funding and market liquidity deterioration reinforce each other and

let to “liquidity spiral”. My paper contributes to this strand of literature by show-

ing that, even when the market maker is not constrained, his capital commitment

decision plays an important role to market quality when facing competition from

high-frequency trading.

A relatively small empirical literature examines the capital commitment of market

makers. Hameed, Kang, and Viswanathan (2010) show that negative market return

decreases liquidity asymmetrically. The authors attribute the decrease to the mar-

ket maker’s capital constraint. Comerton-Forde, Hendershott, Jones, Moulton, and

Seasholes (2010) find a similar result using data on NYSE specialist positions and rev-

enues. Bessembinder, Jacobsen, Maxwell, and Venkataraman (2018) document that

capital commitments of corporate bond dealers are decreasing overtime, specifically

in markets with more electronically facilitated trades. The authors interpret this as

a result of electronic trading reducing search cost and required capital. This model

suggests an alternative explanation. The decrease of capital commitment might due

to the growing entry of HFTs facilitated by electronic trading. Brogaard and Garriott

(2019) document similar capital commitment decreases of market makers in the stock

market.

improvement because of the strategic complementary effect in market making. My model is silent
on this aspect because I assume a deep inter-dealer market.
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3 Model Setting

3.1 The Setup

Consider a game with infinite many periods and three (kinds of) players: a long-run

market maker, a short-run HFT and a short-run buyer. The market maker’s discount

rate is δ and has net worth w0 in period 0. In each period, the market maker can

either pay dividend d or acquire shares from a inter-dealer market at the fair price

1 for market making.19 The market maker maximizes E0(
∑∞

t=0 δ
tdt), the expected

dividend payout. In each period, a short-run HFT enters the market with probability

π. Upon entering, the HFT holds qh shares and aims at maximizing her expected

profit. The market maker and the HFT are both sellers and compete to provide

liquidity for the short-run buyer. Due to liquidity or hedging needs, the buyer is

willing to pay v > 1 for each share and demands qb shares; i.e., he is willing to pay a

premium v − 1 for each share within his demand qb.

The sequence of events in a single period, illustrated in Figure 1, can be specified

as follows: Let wt be the market maker’s net worth at the beginning of period t.

The market maker first chooses a non-negative dividend level dt. He then commits

the remaining capital, wt − dt, to purchase qm,t = wt − dt shares from the inter-

dealer market at the fair price 1.20 The market maker then posts a spread xm,t,

committing to sell all shares at the ask price 1 + xm,t. After the market maker sets

his spread, a short-run HFT holding qh shares enters the market with probability π.

If the HFT’s trading technology is superior to the market maker, she observes the

market maker’s capital commitment qm,t and spread xm,t before setting her spread

xh (the sequential pricing game). Otherwise, the HFT only observes the market

maker’s capital commitment qm,t (the simultaneous pricing game). After the market

maker and the HFT determine their spreads, the short-run buyer arrives with random

demand qb and random buying threshold v > 1. After the buyer finishes buying, the

market maker and the HFT (if enters) may sell the remaining shares at the fair price

1 back to the inter-dealer market. This concludes a period.

I make the following assumptions on the distributions of qb and v: v − 1 follows

19Another interpretation can be that the market maker invests some capital into a safe asset and
deposits the rest of capital into a margin account to cover the cost of potential short selling.

20It is without loss of generality to assume that the market maker commits all remaining net
worth in market making. If he chooses to commit less, he may raise his dividend payout to achieve
a higher payoff.
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MM deter-
mines dt

MM posts
the spread
xm,t

HFT posts
the spread xh

Buyer pur-
chases shares

Buyer and
HFT leave

Period t

Figure 1: A Concise Time-line

a distribution supported on [0, x̂] with CDF F . qb follows a distribution with finite

expectation, positive support and CDF G. F and G are independent and continuously

differentiable. I further assume that F has non-decreasing hazard rate; i.e., f(x)
1−F (x)

is

non-decreasing, or equivalently, f is log-concave.

Several specific assumptions are worth more discussion. First, the buyer’s demand

qb is inelastic when spreads are lower than v− 1. In practice, this corresponds to the

buyer posting a limit order with quantity qb at price v. Since the market maker and

the HFT do not observe qb when setting spreads, higher spreads reduce the probability

of trade. Thus, although the demand curve of each buyer is inelastic, from the market

maker’s and the HFT’s perspectives, the demand curve is downward sloping. Second,

in this model, the HFT is a short-run player with an exogenous entry probability

π and a fixed shareholding qh. This assumption by no means denies the possibility

of the HFT being a long term market participant in practice. Instead, it means

to reflect two features of high-frequency trading: (1) The HFT’s entry and holding

heavily depend on exogenous market conditions; (2) the HFT focuses on short term

trading and only carries positions for a short period of time. Third, I only consider

a one-sided market; i.e., the market maker and the HFT only sell shares to other

investors. This is without loss of generality given that the market maker can adjust

his position with no cost in the inter-dealer market. Considering a two-sided market

setting leads to similar qualitative predictions.

3.2 Measures of Market Quality

Liquidity is one of the most important indicators of market quality. In this section, I

define liquidity, the main measure of market quality in this model, and briefly discuss

other market quality measures. Formally, Lt, liquidity in period t, is the expected

number of shares sold to the buyer in period t. Since I focus on the steady state, where

the market maker’s pricing and capital commitment decisions are time invariant, I
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drop the time subscript and define liquidity (in the steady state) to be

L = π E(min(qb, qmI{xm≤v−1} + qhI{xh≤v−1}))︸ ︷︷ ︸
Expected selling volume with HFT

+(1− π) E(min(qb, qmI{xm≤v−1}))︸ ︷︷ ︸
Expected selling volume without HFT

.

Further define L(v) to be the expected number of shares sold to the buyer with

buying threshold v. It captures the market’s capacity to satisfy buyers with buying

thresholds higher than v. Specifically, the fill rate at buying threshold v can be

measured by L(v)/E(qb). It is also worthwhile to examine the average spread. Define

it to be the expected profit of liquidity providers (the market maker and the HFT)

divided by liquidity.

Several features of this liquidity definition worth discussing. First, this definition

incorporates both price and quantity information of the market. If spreads are high,

the buyer’s buying probability would be low. Then even with a large supply, liquidity

would be low due to the lack of buyer. On the other hand, low spreads alone does not

imply high liquidity. If the aggregate supply is small due to the low profit margin,

liquidity would still be low since only a small portion of the buyer’s demand can be

satisfied. Second, this measure is closely related to (the buyer’s) welfare.21 Since

the buyer has a higher valuation for each share, holding everything else equal, higher

liquidity indicates better welfare. This definition differs from the buyer’s surplus,

by putting equal weights on each share sold. These two measures bear similarity in

the sense that the buyer’s surplus and liquidity almost always change in the same

direction in the comparative statics. Moreover, liquidity is more feasible than the

buyer’s surplus as a market quality measure since trading volume is easier to observe

in practice.

3.3 Equilibrium Definition

Two facts suggest that the market maker’s net worth, w, should be considered as the

state variable. First, net worth constraint is the only constraint faced by the market

maker. Second, given the market maker’s strategy, the HFT has no incentive to relate

her action to the history of the game. Thus, equilibrium can be defined as follows:

21Here I follow the tradition of the literature by regarding the market maker and the HFT as
integrated parts of the financial market and focusing on the buyer’s welfare. The discussion on the
social planner’s problem is delegated to the Appendix.
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Definition 1 Consider a infinite horizon game (w0, qh, π) where the market maker

starts with net worth w0 and the HFT enters the market with probability π and qh

shares.

1. An equilibrium in a sequential pricing game is a triple (qm(w), xm(qm(w)), xh(qm, xm))

such that: (i) Given qm and xm, xh(qm, xm) maximizes the expected payoff of

the HFT. (ii) Given xh(qm, xm), {qm,t = wt − dt}∞t=0 and {xm,t = xm(qm,t)}∞t=0

maximize E0(
∑∞

t=0 δ
tdt).22 (iii) 0 ≤ qm,t ≤ wt for all t.

2. An equilibrium in a simultaneous pricing game is a triple (qm(w), xm(qm(w)), xh(qm))

such that: (i) Given qm, xh(qm) maximizes the expected payoff of the HFT.

(ii) Given xh(qm), {qm,t = wt − dt}∞t=0 and {xm,t = xm(qm,t)}∞t=0 maximize

E0(
∑∞

t=0 δ
tdt). (iii) 0 ≤ qm,t ≤ wt for all t.

I focus on the steady state capital commitment and spread to characterize the

long term market quality. The formal definition of a steady state equilibrium is as

follows:

Definition 2 An equilibrium is a steady state equilibrium if there exists qm, xm and

xh such that qm,t = qm, xm,t = xm and xh,t = xh for all t.23

Intuitively, in a steady state equilibrium, the market maker’s capital commitment

qm,t, spread xm,t and the HFT’s spread xh,t are time invariant. Since the focus of

this paper is on capital commitment rather than capital constraint, I assume that the

market maker always starts the game with a sufficiently large net worth w0.

22Notice that the distribution of wt+1 can be uniquely determined by wt and the equilibrium
strategies. Given w0, the dynamic of wt is well-defined.

23In the simultaneous moving game, xm and xh might be distributions rather than numbers.
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4 Baseline Models

4.1 Benchmark Case with No HFT

First consider the situation with no HFT (or equivalently, π = 0). The market

maker’s value function satisfies the following equation:

V (w) = maxd,xmd+ δ F (xm)V (w − d)︸ ︷︷ ︸
Buyer not buying

+δ[(1− F (xm))

∫ w−d

0

V (w − d+ xmq)g(q)dq︸ ︷︷ ︸
Buyer buying with small demand

+ (1− F (xm))(1−G(w − d))V ((1 + xm)(w − d))︸ ︷︷ ︸
Buyer buying with large demand

]

(1)

with the budget constraint

0 ≤ d ≤ w . (2)

Let

k(s) = EG(min(qb, s)) .24

This function measures expected trading volume when s shares are within the buying

threshold. Since the buyer’s demand is random, this function is strictly concave and

the marginal value of capital commitment is decreasing to zero.25 In other words, at

a certain point, the market maker would find it more profitable to payout dividend.

Specifically, there exists a steady state equilibrium with the capital commitment

qm = q̄ and the spread xm = x∗. The market maker pays out w0 − q̄ in period 0 and

his profit in subsequent periods as dividend. The steady state can be characterized

by the following theorem:

Theorem 1 With no HFT, there exists a unique steady state equilibrium where the

market maker set qm,t = q̄ (dt = wt − q̄) and x = x∗ for all t. x∗ satisfies

x∗ = argmaxx(1− F (x))x .

24The subscript emphsizes that the expectation is over the buyer’s demand.
25Alternatively, if qb is deterministic, when the market maker’s capital commitment is lower than

qb, at any fixed spread, each unit of capital committed has the same marginal value. Then the
capital commitment problem become trivial since the market maker would choose to commit either
qb or 0.

16



q̄ satisfies
δ

1− δ
(1− F (x∗))x∗(1−G(q̄)) = 1 .26

The market maker’s expected payoff is

V (w0) =
δ

1− δ
(1− F (x∗))x∗k(q̄) + (w0 − q̄) .

Liquidity at the steady state is

L = (1− F (x∗))k(q̄) .

The average spread is x∗.

Proof. See Appendix.

This theorem has a clear economic interpretation. Since the buyer’s demand is

random, each additional share is less likely to be sold at any given spread. Thus, the

market maker’s capital commitment has decreasing marginal value. Conversely, the

marginal value of dividend payout is constant. This implies that in the equilibrium,

the market maker would commit capital up to a unique level where the marginal

value of capital commitment equals the marginal value of dividend payout. In the

steady state, the market maker maintains his capital commitment level and pays out

the profit. This makes him act like a short-run monopolist, setting the spread to

maximize the expected profit.

With no HFT, the market has high supply at a high spread. Indeed, from the

pricing perspective, x∗ is the highest possible spread set by any rational liquidity

supplier.27 From the capital commitment perspective, the marginal value of capital

commitment is the highest for the market maker facing no competition from the HFT.

With HFT’s presence, the market maker’s steady state capital commitment is always

lower than q̄.

4.2 Sequential Pricing Game

In the sequential pricing game, the HFT observes the market maker’s shareholding

qm and spread xm before posting her spread xh. In practice, this corresponds to the

26If no such q̄ exists, the optimal strategy is to liquidate (d = w0) at t = 0.
27At a spread higher than x∗, the loss from selling with lower probability dominates the benefit

from selling at a higher price.
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situation where the HFT has a superior trading technology and can undercut the

market maker before the market maker is able to adjust the spread.

To characterize the steady state, it is helpful to first consider a one-shot game with

fixed capital commitment/shareholding. The reason is clear: In the steady state, the

market maker’s capital commitment is constant over time and he pays out his profit

from the previous period as dividend. Thus, in the steady state, the market maker

would set spread as if he is a one-shot profit maximizer.

Consider a one-shot game (qm, qh, π) where the market maker holds qm shares and

the HFT enters with probability π holding qh shares. The market maker sets spread

xm first and the HFT, if enters, sets spread xh after observing xm. Each player aims

for maximizing his/her expected profit and can sell shares back to the inter-dealer

market at the end of the game at price 1. Equilibrium of this one-shot game can be

defined as follows:

Definition 3 An equilibrium of a one-shot sequential pricing game (qm, qh, π) is a

pair (xm, xh(xm)). Given the market maker’s spread xm, the HFT’s spread xh(xm)

maximizes her expected payoff. Given the HFT posting her spread according to xh(xm),

the market maker’s spread xm maximizes his expected payoff.

First consider the HFT’s pricing problem. If the HFT sets her spread xh ≤ xm,

her shares would be purchased first but at a lower price. Conversely, if xh > xm, the

HFT would earn higher profit per share sold. Yet she would only receive the residual

demand. Within each pricing region (xh ≤ xm or xh > xm), the HFT only faces the

trade-off between earning higher unit profit and losing the buyer with low valuation.28

This trade-off is characterized by the term (1− F (x))x, the expected marginal value

of supplying a share at spread x within the buyer’s demand. Since I assume F , the

CDF of the buyer’s buying threshold, has non-decreasing hazard rate, (1−F (x))x is

increasing in x for x ≤ x∗ and decreasing in x for x ≥ x∗. This simplifies the HFT’s

optimal pricing strategy.

Lemma 1 Given the market maker’s capital commitment qm and spread xm, the

HFT’s optimal spread is either xh = xm or xh = x∗.

28Notice that for a buyer with buying threshold higher than 1 + xh, his expected demand does
not depend on xh. This relies on the independence assumption of the buyer’s buying threshold and
demand.
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Proof. See Appendix.

Next consider the market maker’s pricing problem. If the market maker sets a

spread such that the HFT chooses xh = xm, the market maker would be better off

setting xm = x∗. If the market maker sets a spread such that the HFT chooses

xh = x∗. Since (1 − F (x))x is increasing in x for x ≤ x∗, the market maker would

optimally set xm = x < x∗ such that the HFT is indifferent between setting xh = x

and setting xh = x∗. All other pricing strategies are dominated by either of the

aforementioned two strategies. To simplify the notation, define

a(x) =
(1− F (x))x

(1− F (x∗))x∗
≤ 1 .29

The following lemma characterizes the market maker’s optimal pricing strategy:

Lemma 2 The market maker’s optimal spread is either xm = x∗ or xm = x < x∗. x

is pinned down by the HFT’s indifference condition

a(x)k(qh) = k(qm + qh)− k(qm) .

Proof. See Appendix.

By Lemma 1 and 2, I can pin down the equilibrium by comparing the market

maker’s payoffs with pricing strategies xm = x and xm = x∗.

Proposition 1 If k(qm) > πk(qh), the unique equilibrium is xm = xh = x∗. If

k(qm) < πk(qh), the unique equilibrium is xm = x and xh = x∗. When k(qm) =

πk(qh), both equilibria exist.

Proof. See appendix.

By Proposition 1, the market maker has two possible pricing strategies against the

potential HFT. I name xm = x∗ to be the wide spread strategy. This strategy yields

a high expected profit without HFT presence. When the HFT enters, however, the

market maker will be undercut and only receives the residual demand. The effective-

ness of this strategy depends on the HFT’s entry probability π and shareholding qh.

xm = x is the tight spread strategy. Under this strategy, the market maker receives

a lower expected profit when the HFT does not enter. Yet when the market maker

29Note that x∗ = argmaxx(1− F (x))x.
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uses the tight spread strategy, it is unprofitable for the HFT to undercut the market

maker. Thus, the buyer would always buy shares from the market maker first and

the HFT’s entry does not affect the market maker’s expected profit.

Another observation is that the HFT always sets spread xh = x∗ in the equilibrium.

However, this does not imply that the HFT always sells shares at a higher spread.

When the market maker is using the wide spread strategy, the HFT’s pricing strategy

should be understood as undercutting the market maker at xh = x∗ − ε with an

infinitesimally small ε.30

4.2.1 Steady State Characterization

In this section, I solve for the steady state equilibrium of the infinite period game. Let

M(q) be the market maker’s expected profit in the one-shot game with qm = q. Let

x̂m(q) and x̂h(q) correspond to the market maker and the HFT’s equilibrium spreads

in the one-shot game.31 If the game reaches a steady state in period 0 with capital

commitment q, the market maker’s expected payoff is

δ

1− δ
M(q) + (w0 − q) .

δ
1−δM(q) is the present value of a perpetuity paying out the market maker’s expected

profit starting from period 1. w0− q is the market maker’s dividend payout in period

0 to reach the steady state. An obvious candidate of the market maker’s steady state

capital commitment is

qm = argmaxq∈[0,q̄]
δ

1− δ
M(q) + (w0 − q) .

The following theorem validates that qm is indeed the market maker’s capital com-

mitment in the steady state equilibrium.

Theorem 2 Let qm = argmaxq∈[0,q̄]
δ

1−δM(q) + (w0 − q).

1. qm,t = qm, xm = x̂m(qm), xh = x̂h(qm) consists a steady state equilibrium. The

30If a minimum tick size exists, then the HFT would post a lower spread than the market maker
in this situation.

31I suppress the dependency of these functions on qh and π.
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market maker’s expected payoff in the equilibrium is

V (w0) =
δ

1− δ
M(qm) + (w0 − qm) .

2. If the market maker uses the wide spread strategy in the equilibrium, market

liquidity is

L = (1− F (x∗))[πk(qm + qh) + (1− π)k(qm)] .

The average spread is x∗.

3. If the market maker uses the tight spread strategy in the equilibrium, market

liquidity is

L = (1− F (xm))k(qm) + π(F (x∗)− F (xm))(k(qm + qh)− k(qm)) .

The average spread is lower than x∗.

Proof. See appendix.

I now discuss some important corollaries.

Corollary 1 For π > 0, qm < q̄.

Corollary 1 states that the market maker commits less capital facing competition

from the HFT. The competition reduces the marginal value of the market maker’s

capital commitment. This is either due to the HFT’s undercut or the market maker

using a lower spread. Lower marginal value leads to less capital commitment in the

equilibrium.

Corollary 2 If q̄ > 0, qm > 0. In other words, the market maker never fully exit

the market in the steady state equilibrium. Moreover, qm, the market maker’s steady

state capital commitment, satisfies the following conditions:

1. If the market maker uses the wide spread strategy,

δ

1− δ
(1− F (x∗))x∗[(1− π)(1−G(qm)) + π(1−G(qm + qh))] = 1 .

2. If the market maker uses the tight spread strategy,

δ

1− δ
(1− F (x))x(1−G(qm)) > 1 .

21



Proof. See appendix.

Corollary 2, derived from first order conditions of the market maker, is useful for

comparative statics in π. Using the wide spread strategy, the market maker’s marginal

value of committing capital equals to the marginal value of dividend payment fixing

xh. On the contrary, under the tight spread strategy, the market maker’s marginal

value of committing capital is larger fixing xh. This means using the tight spread

strategy, the market maker refrains from committing more capital because the market

maker needs to maintain a low spread to prevent the HFT from undercutting.

4.2.2 Comparative Statics on π

In this section, I analyze how the steady state equilibrium and market quality change

with π, the HFT’s entry probability. Higher π indicates fiercer competition from the

HFT. The market maker would adjust his capital commitment and pricing strategies

accordingly and thus changes market quality.

First, consider the one-shot game. Importantly, the HFT’s pricing decision does

not depend on π. Thus, regardless of π, the market maker’s candidates for the optimal

spread, i.e., x∗ and x, are the same. Furthermore, if xm = x∗, the market maker’s

expected payoff is decreasing in π due to the HFT’s undercut. Conversely, the market

maker’s expected payoff does not depend on π when xm = x. Consequently, the

tight spread strategy becomes more attractive with higher HFT entry probability.

The comparative statics for one-shot games can be characterized by the following

proposition:

Proposition 2 Consider two one-shot games (qm, qh, π1) and (qm, qh, π2) with π2 >

π1.

1. If the market maker adopts the tight spread strategy in the equilibrium in game

(qm, qh, π1), then he would also adopt the tight spread strategy in game (qm, qh, π2).

His expected profits in two games are the same.

2. If the market maker adopts the wide spread strategy in the equilibrium in game

(qm, qh, π2), then he would also adopt the wide spread strategy in game (qm, qh, π1).

His expect payoff is higher in game (qm, qh, π1).

Proof. Since qm and qh are fixed, the equilibrium strategy choices are implied by

proposition 1.
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Note that the tight spread x is determined by the equation

k(qh + qm)− k(qm) = a(x)k(qh) ,

which does not depend on π. Thus, the market maker’s expected payoff when adopting

the tight spread strategy, (1− F (x))xk(qm), does not depend on π.

The market maker’s expected net profit of adopting the wide spread strategy is

(1− F (x∗)x∗)[π(k(qh + qm)− k(qh)) + (1− π)k(qm)] .

This quantity is decreasing in π since

k(qh + qm) < k(qh) + k(qm) .

Now consider the infinite period game in two markets with different HFT entry

probabilities. If the market maker uses the tight spread strategy in both markets,

then he would make identical pricing and capital commitment decisions and enjoy

the same expected payoffs. On the other hand, by Corollary 2, if the market maker

uses the wide spread strategy in both markets, in the market with high HFT entry

probability, he commits less capital and achieves a lower expected payoff. Combining

these observations leads to the following result:

Theorem 3 There exists π̂ ∈ (0, 1] such that in the steady state equilibrium, xm = x∗

when π < π̂ and xm = x when π > π̂. Denote [0, π̂) to be the wide spread region and

(π̂, 1] to be the tight spread region.

1. In the wide spread region, the market maker’s expected payoff V (w0) and equi-

librium capital commitment qm is decreasing in π; liquidity L’s change in π is

ambiguous.

2. In the tight spread region, the market maker’s expected payoff V (w0) and equi-

librium capital commitment qm remain constants; Liquidity L is increasing in

π.

3. The market maker’s equilibrium capital commitment is smaller in the tight

spread region comparing to any equilibrium capital commitment in the wide

spread region.
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4. In the wide spread region, the average spread is x∗. In the tight spread region,

the average spread is lower than x∗ and increasing in π.

Proof. See appendix.

By Theorem 3, the steady state equilibrium can be categorized into two regimes

depending on π. In the wide spread region, the market maker sets the monopolistic

spread xm = x∗ and responds to the competition by cutting capital commitment. In

this region, the competition between the market maker and the HFT does not benefit

low-valuation buyers since both the market maker and the HFT set the monopolistic

spread. Instead, when the HFT enters the market, she improves market quality by in-

creasing the market’s capacity to satisfy high-valuation buyers’ demands. Conversely,

when the HFT does not enter, the market’s capacity to satisfy large demand is lower

and decreasing in π since the market maker’s capital commitment is decreasing in π

in this region.

In the tight spread region, low-valuation buyers benefit from the competition since

the market maker’s spread is lower then the monopolistic spread. However, to deter

the HFT from undercutting, the market maker keeps his capital commitment at a

lower level. This impairs the market’s capacity to satisfy large demands and the

market becomes shallower. Indeed, although shares become cheaper, the supply is

limited. When the buyer’s demand is large, either the price per share would jump to

the monopolistic price with the HFT’s presence or no enough supply exists to fulfill

the order.32 Moreover, in this region, an increase in the HFT’s entry probability

improves market quality since the market maker’s capital commitment and spread are

not changing in π. A higher HFT entry probability increases the market’s capacity

to satisfy buyers with large demands.

This theorem also demonstrates why the average spread and the implementation

shortfall may fail to faithfully characterize market quality. Since higher average spread

indicates higher implementation shortfall in this model, I only focus on the average

spread in the following discussion. In the wide spread region, although liquidity (and

thus the buyer’s welfare) is changing with π, the average spread remains the same

since both the market maker and the HFT set the monopolistic spread x∗. In the

tight spread region, higher π leads to better market quality. Yet the average spread

is also increasing because the HFT’s spread is higher. With a higher HFT entry

32In this model, I do not consider other liquidity providers. Yet in reality it can be the case that
the rest of the order are fulfilled by other suppliers at a higher price.
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probability, a larger proportion of shares are sold at the higher spread. This drives

up the average spread.

How liquidity changes with π is ambiguous in the wide spread region. Under

some mild assumptions, more competition from the HFT is not always beneficial to

the market. When the wide spread region is large enough, there is always a region

where the liquidity is decreasing with the level of competition.

Proposition 3 Suppose the wide spread region is [0, 1]; i.e., the market maker uses

the wide spread strategy when π = 1. Then either there exists a region where L is

strictly decreasing in π or L is constant over [0, 1].

Proof. See appendix.

The reason behind this result is simple. If the market maker uses the wide spread

strategy at π = 1, from the first order condition, qm + qh = q̄. In other words, from a

buyer’s perspective, the market is identical to the monopolistic market and thus has

the same liquidity. By continuity, if L is not constant over π, there exists a region

where L is strictly decreasing in π. Importantly, when the HFT’s shareholding qh

is small, the assumption of Proposition 3 holds. Intuitively, with low qh, the HFT’s

undercut is not much of a concern for the market maker. It is optimal for the market

maker to set the monopolistic spread regardless of the HFT’s entry probability. Thus,

when qh is low enough, there is always a region where liquidity is decreasing in π.

Assumptions may also be imposed on the distribution of the buyer’s demand qb.

If G follows the exponential distribution (which has constant hazard rate), liquidity

is not changing in π over the wide spread region. If G has increasing hazard rate (or

equivalently, g is log-concave),33 there always exists a region where L is decreasing in

π.

Proposition 4 If G follows an exponential distribution, liquidity is a constant with

respect to π in the wide spread region.

Proof. See appendix.

The discussion above leads to the following theorem regarding the non-monotonicity

of liquidity L over the level of competition π:

33Many distributions satisfy this property including uniform distribution, gamma distribution
with α > 1, truncated normal distribution, etc.
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Theorem 4 If G has increasing hazard rate or qh is small, L is non-monotonic with

respect to π on [0, 1].

Proof. See appendix

This theorem, albeit simple, bears important implications for both empirical anal-

ysis and policy debate over high-frequency trading. In many high-frequency trading

empirical research, when market quality as a welfare indicator is the dependent vari-

able, there is an independent variable highly correlated to the HFT entry probability.

For example, it can be high-frequency trading volume, frequency of order submission

and cancellation, etc. If liquidity, as a measure of market quality, is not changing

monotonically with respect to the HFT entry probability, the linear regression model

might not deliver accurate prediction over high-frequency trading’s effects over market

quality.

From the policy making perspective, this theorem suggests that policy makers

cannot only rely on past observations of how high-frequency trading changes the

market to predict the welfare and market quality effects of high-frequency trading

regulation. The reason is that regulations’ would have huge effects on the HFT entry

probability. Without monotonicity, the welfare and market quality effects might “flip

signs”. A theoretical framework is necessary to achieve a critical stance over high-

frequency trading policy making.

4.3 Simultaneous Pricing Game

In this section I analyze the situation where the HFT only observes qm (but not xm)

before setting her spread xh. This corresponds to the market maker and the HFT

having similar trading technologies and the HFT cannot undercut the market maker

easily. This is related to two real world scenarios. First, some HFTs may become

designated market makers.34 With a better trading technology, the market maker

can flicker quotes fast enough to avoid the HFT’s detection. Second, the HFT might

be constrained by exchange policies or regulation requirements such that she can no

longer observe the price information ahead of other traders or undercut other traders

easily.

34Actually, two out of four NYSE’s major designated market makers, Citadel Securities LLC and
Virtu Americas LLC, are considered also as high-frequency trading firms.
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We first analyze a one-shot simultaneous pricing game (qm, qh, π). In this game,

the market maker’s shareholding is qm and the HFT enters the market holding qh

shares with probability π. Similar to the sequential pricing game, the buyer would

purchase shares from the HFT first if the HFT and the market maker post the same

spread.35

Definition 4 An equilibrium of a one-shot simultaneous pricing game (qm, qh, π) is

a pair of cumulative distribution function (Hm, Hh) such that xm has CDF Hm and

xh has CDF Hm. Let the support of xm (xh) be a measurable set Xm (Xh). The

equilibrium satisfies following conditions:

1. Given that the HFT posts spreads according to Hh, the market maker posting

spreads according to Hm maximizes his expected payoff.

2. Given that the market maker posts spreads according to Hm, the HFT posting

spreads according to Hh maximizes her expected payoff.

3. Given Hh, any xm ∈ Xm yields the same expected payoff for the market maker;

this expected payoff is weakly higher than the expected payoff by posting a spread

xm 6∈ Xm.

4. Given Hm, any xh ∈ Xh yields the same expected payoff for the market maker;

this expected payoff is weakly higher than the expected payoff by posting a spread

xh 6∈ Xh.

The following proposition characterizes candidates of equilibrium.

Proposition 5 No pure strategy equilibrium exists. Let the infimum of Xm(Xh) be

xm(xh) and the supremum of Xm(Xh) be x̄m(x̄h). In any mixed strategy equilibrium,

xm = xh = x, x̄m = x̄h = x∗. Xm and Xh are dense in [x, x∗]. There exists no

xm(xh) ∈ [x, x∗) such that xm(xh) is posted with positive probability in the equilibrium.

Proof. See appendix.

By Proposition 5, without loss of generality, I consider equilibrium where Xm and

Xh are intervals. The equilibrium can be pinned down by the market maker and the

HFT’s indifference conditions.

35The only purpose of this assumption is to make the simultaneous pricing case comparable to
the sequential pricing case. The specific tie-breaking rule does not matter.
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Proposition 6 There exists a unique equilibrium in the one-shot game (qm, qh, π)

satisfying the following conditions:

1. If k(qm) ≥ πk(qh), in the equilibrium the market maker posts spread xm = x∗

with positive probability P̄m = 1− πk(qh)
k(qm)

.

x is uniquely determined by

(1− π)k(qm) + π(k(qm + qh)− k(qh)) = a(x)k(qm) . (3)

The market maker’s mixed strategy satisfies

Hm(x) = (1− a(x)

a(x)
) · k(qh)

k(qm) + k(qh)− k(qm + qh)
∀x ∈ [x, x∗) . (4)

Hm satisfies Hm(x) = 0, lim
x→x∗−

Hm(x) = 1− P̄m.

The HFT’s mixed strategy satisfies

Hh(x) =
1

π
(1− a(x)

a(x)
) · k(qm)

k(qm) + k(qh)− k(qm + qh)
∀x ∈ [x, x∗) . (5)

Hh satisfies Hh(x) = 0, lim
x→x∗−

Hh(x) = 1.

2. If k(qm) ≤ πk(qh), in the equilibrium the HFT posts spread xh = x∗ with positive

probability P̄h = 1− k(qm)
πk(qh)

.

x is uniquely determined by

k(qm + qh)− k(qm) = a(x)k(qh) . (6)

Hm satisfies Equation (4). Moreover, Hm(x) = 0, lim
x→x∗−

Hm(x) = 1.

Hh satisfies Equation (5). Moreover, Hh(x) = 0, lim
x→x∗−

Hh(x) = 1− P̄h.

Proof. By Proposition 5, Xm and Xh are dense in [x, x∗]. Thus, in any ”regular”

equilibrium, (x, x∗) ∈ Xm; (x, x∗) ∈ Xh. Then the uniqueness naturally follows from

the equilibrium construction.

I only prove the first part of the theorem here since the calculation for the second

part is similar. The only difference is that x∗ is not in the support of Xm since the

payoff of posting x∗ is strictly lower than posting x∗ − ε for a small ε.
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The HFT’s indifference condition implies

(1− P̄m)(k(qm + qh)− k(qm)) + P̄mk(qh) = a(x)k(qh) . (7)

The market maker’s indifference condition implies

(1− π)k(qm) + π(k(qm + qh)− k(qh)) = a(x)k(qm) . (8)

By equation (7) and (8),

P̄m =
a(x)k(qh) + k(qm)− k(qm + qh)

k(qh) + k(qm)− k(qm + qh)
= 1− πk(qh)

k(qm)
. (9)

Hm can be pinned down by the HFT’s indifference condition:

a(x)[Hm(x)(k(qm+qh)−k(qm))+(1−Hm(x))k(qh)] = a(x)k(qh) ∀x ∈ [x, x∗) . (10)

Hh can be pinned down by the market maker’s indifference condition:

a(x){(1−π)k(qm)+π[Hh(x)(k(qm+qh)−k(qh))+(1−Hh(x))k(qm)]} = a(x)k(qm) ∀x ∈ [x, x∗) .

(11)

Notice that a(x) is increasing with x for x ∈ [0, x∗] and k(qm+qh) < k(qh)+k(qm).

Thus, existence and uniqueness of Hm and Hh is guaranteed by the intermediate

value theorem. For the market maker (HFT), the indifference condition guarantees

any strategy in support Xm (Xh) yields the same expect profit. From the proof of

Proposition 5, no player has incentive to deviate to a spread smaller than x or larger

than x∗.

An important corollary of Proposition 6 is that the market maker’s expected

payoffs are the same in both the sequential pricing game and the simultaneous pricing

game. Since the market maker acts as if a short term payoff maximizer in the steady

state, the same one-shot payoff induces the same capital commitment decision. This

observation simplifies the comparison of market quality under two settings.

Corollary 3 In any one-shot game (qm, qh, π), the market maker’s expected profits

are the same under sequential pricing and simultaneous pricing.

Proof. If k(qm) > πk(qh), the market maker would use the wide spread strategy in
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the sequential pricing game with expected profit

(1− F (x∗))x∗[(1− π)k(qm) + π(k(qm + qh)− k(qh))] .

This equals the expected profit in the simultaneous pricing game when k(qm) >

πk(qh).

If k(qm) < πk(qh), in the sequential pricing game, the market maker would use

the tight spread strategy to achieve the expected payoff (1− F (x))xk(qm) where the

tight spread x is determined by

k(qm + qh)− k(qm) = a(x)k(qh) .

This equals the expected profit in the simultaneous pricing game when k(qm) <

πk(qh).

4.3.1 Steady State Characterization

The following theorem relates equilibria in one-shot games to the steady state equi-

librium of the infinite period game. Moreover, this theorem offers comparison over

the market maker and the HFT’s expected payoffs in the sequential pricing game and

the simultaneous pricing game.

Theorem 5 Let qm = argmaxq∈[0,q̄]
δ

1−δM(q) + (w0 − q).

1. Let xm(qm) and xh(qm) follow the mixed strategy defined in Proposition 6. Then

qm, xm(qm) and xh(qm) determines a steady state equilibrium.36 In this equilib-

rium, the market maker’s expected payoff is

Vm(w0) =
δ

1− δ
M(qm) + (w0 − qm) .

2. The market maker’s expected payoffs and steady state capital commitments are

the same in both sequential pricing and simultaneous pricing games.

36When G has non-decreasing hazard rate, this equilibrium can be micro-founded by considering a
model where the HFT does not observe δ and the market makers signals δ with capital commitment.
There exists a perfect Bayesian equilibrium that shares the same on path property as this steady
state equilibrium.
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3. The HFT is strictly better off in the sequential pricing game if π is in the wide

spread region. The HFT’s expected payoffs are the same under both settings if

π is in the tight spread region.

4. In a simultaneous pricing game, the steady state liquidity is

L =(1− F (x∗))[πk(qm + qh) + (1− π)k(qm)] + π

∫ x∗

x

[Hm(z)Hh(z)k(qm + qh)

+ (1−Hm(z))Hh(z)k(qh) +Hm(z)(1−Hh(z))k(qm)f(z)dz

+ (1− π)

∫ x∗

x

Hm(z)k(qm)f(z)dz] .

Proof. See appendix.

It is informative to compare market qualities under the sequential pricing game

and the simultaneous pricing game. By Theorem 5, the market maker’s equilibrium

capital commitments are the same in both settings. Pricing decisions of the market

maker and the HFT drive the difference in market qualities. The following proposition

summarizes liquidity comparison results.

Proposition 7 Denote the steady state liquidity in the sequential pricing game and

the simultaneous pricing game to be Lse and Lsim.

1. Lsim > Lse if π is in the wide spread region.

2. Lsim − Lse is constant for any π in the tight spread region.

3. Lsim and Lse is increasing in π in the tight spread region.

Proof. See Appendix.

To understand the intuition, first consider the wide spread region. In the sequen-

tial pricing game, all shares are supplied at the monopolistic spread x∗ while in the

simultaneous pricing game, spreads are lower than x∗ with positive probability. Since

the market maker makes the same capital commitment decisions, liquidity is higher

in the simultaneous pricing game. Moreover, since the HFT cannot undercut the

market maker at the spread x∗ in the simultaneous pricing game, the HFT’s expected

payoff is lower. In other words, the HFT in the simultaneous pricing game is willing

to pay a small cost to trade faster than the market maker. Conversely, since the
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market maker’s expected payoffs are the same in both settings, in the sequential pric-

ing game, the market maker has no incentive to upgrade his technology to trade at

the same speed as the HFT. This means the HFT has stronger incentive to upgrade

trading technology than the market maker. Yet as discussed above, this incentive is

detrimental to market quality.

In the tight spread region, liquidity comparison between two settings is ambiguous.

In the sequential pricing game, more shares are supplied at a low price because the

market maker fixes a tight spread. Yet for a buyer with buying threshold between

1+x and 1+x∗, only the market maker’s supply is available. On the other hand, in a

simultaneous pricing game, a buyer with buying threshold 1+x will not purchase any

share with probability one. Yet for a buyer with buying threshold slightly lower than

1 + x∗, in expectation he would be able to purchase more shares in a simultaneous

pricing game. This ambiguity does not impose much difficulties in the quantitative

analysis. I show that the liquidity difference between the sequential pricing game and

the simultaneous pricing game is not changing in π in the tight spread region. With

specific assumptions on distributions of the buyer’s buying threshold and demand, I

can achieve a clear comparison over liquidity under two settings in the tight spread

region.

4.4 Numerical Examples

This section contains numerical examples to visualize results in sections 4.2 and 4.3.

In all examples, the buyer’s buying threshold v follows a uniform distribution. The

difference lies in the distribution of the buyer’s demand qb and the magnitude of

HFT’s shareholding qh.

Figure 2 depicts liquidity and the market maker’s equilibrium capital commitment

under different HFT entry probabilities when the buyer’s demand qb follows a uniform

distribution and the HFT’s shareholding qh is small. With small qh, even when π = 1,

the market maker still sets the monopolistic spread in the equilibrium; i.e., the wide

spread region is [0, 1]. As shown in Figure 2b, with no regime change, the market

maker’s equilibrium capital commitment is decreasing continuously with π.

The blue line in Figure 2a shows how steady state liquidity changes with π in the

sequential pricing game. There exists a region where liquidity is decreasing in π. In

this example, the region is π ∈ [0, 1
2
]. The red line in Figure 2a shows how liquidity
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(a) Liquidity (b) Capital Commitment

Figure 2: Uniform Demand with Small HFT

changes with π in the simultaneous pricing game. As predicted by Proposition 7,

liquidity in the simultaneous pricing game is higher.

(a) Liquidity (b) Capital Commitment

Figure 3: Uniform Demand with Large HFT

Figure 3 shows liquidity and the market maker’s capital commitment when qb

follows a uniform distribution and qh is large. When π is large, the market maker

would use the tight spread strategy in the equilibrium. This leads to the liquidity jump

in Figure 3a and the capital commitment jump in Figure 3b. Since the market maker

secures his payoff against the HFT entry in the tight spread region, the equilibrium

capital commitment is not changing in π.

Another important observation can be made by comparing liquidity with π ∈
[0.5, 0.6] and liquidity with π = 0 under the sequential pricing setting. Obviously, the

average spread is lower in the tight spread region than in the monopolistic market.
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However, the liquidity when π ∈ [0.5, 0.6] is lower. The reason is that the market

maker cut capital commitment facing the HFT’s competition. This implies that

pricing information alone cannot fully reflect market quality.

(a) Liquidity (b) Capital Commitment

Figure 4: Exponential Demand

Figure 4 shows liquidity and the market maker’s capital commitment when the

buyer’s demand follows an exponential distribution. This serves as a robustness check

by demonstrating a similar comparative statics. The only difference is that liquidity

remains constant in the wide spread region in the sequential pricing game. This

follows from the constant hazard rate property of the exponential distribution.

5 Costly High-Frequency Trading Participation

In this section, I consider an extension where the HFT needs to pay a fixed cost

C to participate in high-frequency trading. Specifically, after observing the market

maker’s capital commitment qm (and spread xm in the sequential pricing game), the

HFT chooses whether to participate in high-frequency trading with cost C. If the

HFT participates, she successfully enters the market with probability π. The cost C

is paid regardless of the HFT successfully entering the market or not.37 The HFT’s

37Another way to model costly participation is to assume that the HFT only pays the cost C upon
successfully entering the market. Yet assuming the HFT always pays the cost is in line with the
regulatory measures taken in practice. For instance, the German High Frequency Trading Act of
2013 requires exchanges to charge excessive system usage fees, including both order amendments and
order cancellations. France and EU also have similar requirements on charging order cancellation
fee. For examples of exchange policies complying these regulations, see Eurex. (2016) and Eurex.
(2019).
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profit is normalized to zero if she does not participate. This extension partially

endogenizes the HFT’s entry decision.38

5.1 Sequential Pricing Game

In the sequential pricing game, the HFT observes the market maker’s shareholding qm

and spread xm before making the entry decision. Consider a one-shot game with high

frequency trading cost C. Since the HFT observes the market maker’s shareholding

and spread before posting her spread, I focus on the pure strategy equilibrium.

Definition 5 An equilibrium of a one-shot sequential pricing game (qm, qh, π, C) is

a triple (xm, η, xh); η ∈ {0, 1} indicates the HFT’s participation decision. The HFT’s

participation (non-participation) of high-frequency trading is denoted by η = 1 (η =

0).

1. Given the market maker’s spread xm and holding qm, xh maximizes the HFT’s

expected payoff. η = 1 if and only if the HFT’s expected payoff is greater than

C.

2. Given the HFT posts spreads according to xh(xm) and makes entry decisions

according to η, xm maximizes the market maker’s expected payoff.

It is useful to compare one-shot games with and without participation cost. Con-

dition on participating in trading, the HFT’s optimal pricing strategies and thus the

market maker’s pricing strategies in two games are the same. On the other hand, with

participation cost, the HFT takes her entry probability π into account. Specifically,

the HFT would lose money if she participates in high-frequency trading but cannot

enter the market. This gives the market maker an additional strategic advantage.

Let the deterring spread xd ≤ x∗ satisfy

π(1− F (xd))xdk(qh) = C .

If the market maker sets the deterring spread xd, participating in trading and un-

dercutting the market maker is (weakly) not the optimal strategy for the HFT since

doing so cannot cover the participation cost C. From the market maker’s perspective,

38The endogenous entry is a special case of this setting with π = 1.
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he would set xm = xd only when xd ≥ x. Facing the tight spread x, the HFT is indif-

ferent between setting the wide spread x∗ and undercutting the market maker. Thus,

when the market maker optimally sets xm = xd > x, it must be that participating in

trading and setting xh = x∗ cannot cover the participation cost, either. Thus, when

the participation cost is high, the market maker may deter the HFT from partici-

pating by setting the deterring spread. Given the equilibrium strategy in a one-shot

game without participation cost, the only additional decision for the market maker

in the similar game with C > 0 is whether to post the deterring spread xd. This

strategy becomes more profitable with higher participation cost C. Formally, the

market maker and the HFT’s pricing decisions in a one-shot game (qm, qh, π, C) can

be characterized as follows:

Proposition 8 Consider a one-shot game (qm, qh, π, C). Let

C̄(π) = π(1− F (x∗))x∗k(qh) .

If C ≥ C̄ the market maker posts xm = x∗ and the HFT does not participate in

high-frequency trading (η = 0). For C < C̄:

1. If (i) k(qm) < πk(qh) and

C > π(1− F (x∗))x∗[k(qm + qh)− k(qm)] ,

or (ii) k(qm) > πk(qh) and

C >
πk(qh)

k(qm)
(1− F (x∗))x∗[π(k(qm + qh)− k(qh)) + (1− π)k(qm)] ,

the market maker posts the deterring spread xd and the HFT does not participate

in high-frequency trading (η = 0).

2. If k(qm) < πk(qh) and

C ≤ π(1− F (x∗))x∗[k(qm + qh)− k(qm)] ,

the market maker posts the tight spread x and the HFT participates (η = 1).

Upon a successful entry, the HFT sets xh = x∗.

36



3. If k(qm) > πk(qh) and

C ≤ πk(qh)

k(qm)
(1− F (x∗))x∗[π(k(qm + qh)− k(qh)) + (1− π)k(qm)] ,

the market maker posts the wide spread and the HFT participates (η = 1). Upon

a successful entry, the HFT posts xh = x∗ to undercut the market maker.

Proof. See appendix.

Now consider the steady state in the infinite period game. A similar analysis

guarantees the existence of a steady state equilibrium. The following result considers

the comparative statics on C.

Theorem 6 There exists Ĉ(π, qh) ∈ (0, C̄) such that:

1. For 0 < C ≤ Ĉ, the steady state equilibrium is the same as the steady state

equilibrium with no participation cost (C = 0).

2. For Ĉ < C ≤ C̄, the market maker sets the deterring spread xm = xd and the

equilibrium capital commitment satisfying

δ

1− δ
(1− F (xm))xm(1−G(qm)) = 1 .

The HFT does not participate in high-frequency trading.

3. For C > C̄, the steady state equilibrium is the same as the monopolistic steady

state equilibrium. The HFT does not participate in high-frequency trading.

Proof. See appendix.

This result is intuitive. When the participation cost is low, it is unprofitable for

the market maker to deter the HFT from participating in trading.39 In this case, the

HFT’s expected payoff is larger than the participation cost C. Thus, the HFT always

participates and the steady state equilibrium is the same as the equilibrium with no

participation cost. If the participation cost is high enough, the market maker de-

ters the HFT’s participation with the deterring spread. Moreover, the market maker

39The market maker may still prevent the HFT from undercutting with a tight spread strategy
as in the baseline model
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optimally commits capital to the level such that the marginal value of capital commit-

ment equals 1, the marginal value of dividend payout. The HFT in this situation does

not participate in high-frequency trading. Finally, with an extremely high participa-

tion cost C > C̄, the HFT never breaks even participating in high-frequency trading

regardless of the market maker’s spread. The market maker becomes a monopolist.

5.2 Simultaneous Pricing Game

In the simultaneous pricing game, the HFT only observes qm, the market maker’s

shareholding, before making the participation decision. Consider a one-shot game

(qm, qh, π, C). Similar to the simultaneous pricing game with no participation cost,

no pure strategy equilibrium exists. A mixed strategy equilibrium can be defined as

follows.

Definition 6 An equilibrium of a one-shot simultaneous pricing game (qm, qh, π, C)

is a triple (Hm, η,Hh). η ∈ [0, 1] is the HFT’s participation probability. xm follows

CDF Hm and xh follows CDF Hh. Let the support of xm(xh) be Xm(Xh). The

equilibrium satisfies the following conditions:

1. Given that the HFT posts spreads according to CDF Hh and tries to enter ac-

cording to η, the market maker posting spreads according to CDF Hm maximizes

his expected payoff.

2. Given that the market maker posts spreads according to CDF Hm, the HFT

posting spreads according to CDF Hh and tries to enter according to η maximizes

her expected payoff.

3. Given Hh and η, any xm ∈ Xm yields the same expected payoff for the market

maker; this expected payoff is weakly higher than the expected payoff by posting

a spread xm 6∈ Xm.

4. Given Hm, any xh ∈ Xh yields the same expected payoff for the market maker;

this expected payoff is weakly higher than the expected payoff by posting a spread

xh 6∈ Xh.

To find out the equilibrium pricing strategy of the one-shot game (qm, qh, π, C),

consider (qm, qh, π, 0), a one-shot game with no participation cost. If the HFT’s ex-

pect profit in the equilibrium of game (qm, qh, π, 0) is greater than C, in the game
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(qm, qh, π, C), the HFT participates with probability 1 and both players use the same

pricing strategy as in game (qm, qh, π, 0). Conversely, if the HFT’s expected equi-

librium profit in game (qm, qh, π, 0) is lower than C, she would mix in participation

decision. This mixing has two effects. First, it reduces the expected participation

cost. Second, by entering the market with a lower probability, the HFT improves her

strategic position against the market maker in the pricing game. The participating

probability η can be uniquely determined by the HFT’s indifference condition over

participation.

Proposition 9 Consider a one-shot simultaneous pricing game (qm, qh, π, C). Define

a(x)(π) as in Proposition 6. That is, if k(qm) ≥ πk(qh),

a(x)(π) = 1− π + π
k(qm + qh)− k(qh)

k(qm)
;

if k(qm) < πk(qh),

a(x)(π) =
k(qm + qh)− k(qm)

k(qh)
.

1. If

π(1− F (x∗))x∗a(x)(π)k(qh) ≥ C ,

the HFT chooses η = 1. The equilibrium of game (qm, qh, π, C) coincides with

the equilibrium of game (qm, qh, π, 0) characterized in Proposition 6.

2. If

π(1− F (x∗))x∗a(x)(π)k(qh) < C ,

there exists a unique η ∈ (0, 1) such that

π(1− F (x∗))x∗a(x)(ηπ)k(qh) = C .

In the equilibrium, the HFT participates with probability η and receives zero

expected payoff if enters. The equilibrium of game (qm, qh, π, C) coincides with

the equilibrium of game (qm, qh, ηπ, 0).

Proof. See appendix.

An important implication of this proposition is as follows:

39



Corollary 4 For any game (qm, qh, π, C), the market maker’s equilibrium payoffs are

the same under both the sequential pricing and the simultaneous pricing settings.

Proof. See appendix.

Since the market maker receives the same expected payoffs in game (qm, qh, π, C)

in the sequential pricing game and the simultaneous pricing game, the market maker’s

steady state capital commitments is both games are the same.

Proposition 10 In the steady state, the market maker commits the same amount of

capital in both the sequential and the simultaneous pricing game.

Proof. This proof is similar to the no participation cost case and is thus omitted.

5.3 Numerical Examples

This section presents a numerical example to illustrate how market quality changes

with the HFT’s participation cost. In this example, the HFT’s entry probability

π is fixed. The buyer’s buying threshold v follows a uniform distribution while his

demand qb follows an exponential distribution. The market maker uses the tight

spread strategy in the steady state when C = 0.

The equilibrium can be divided into three regions. With a low participation

cost, it is profitable for the HFT to participate with probability one. Thus, the

market is the same to a market with no participation cost. As the participation cost

increases, the market maker’s deterring strategy becomes more profitable. Moreover,

the marginal value of capital commitment also increases. Thus, the market maker’s

capital commitment is increasing with participation cost. One observation is that

in the sequential game, the market maker’s spread jumps downward when transiting

into the deterring region. The reason is that when using the tight spread strategy,

the spread is decreasing with the market maker’s capital commitment. On the other

hand, when the market maker is deterring the HFT with the deterring spread, this

effect does not exist. Thus, when the market maker is indifferent between using the

tight spread strategy and the deterring spread strategy, the deterring spread must be

smaller. Finally, with a high participation cost, the market becomes a monopolistic

market since it is never profitable for the HFT to participate.
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(a) Liquidity (b) Capital Commitment

(c) MM’s Spread (Sequential Game)

Figure 5: Comparative Statics on Participation Cost

6 Policy Implications

In this section, I collect results developed in previous sections to discuss effects of reg-

ulations over high-frequency trading. Taking the sequential game as the benchmark,

this paper examines three types of regulations: altering the HFT’s entry probability

π, leveling the trading technology difference between the HFT and the market maker

and imposing high-frequency trading participation cost.

6.1 Altering the HFT’s Entry Probability

In practice, the HFT’s entry probability hinges on the HFT’s ability to detect other

investor’s orders and acquire shares in a timely manner. Regulations changing the

HFT’s detecting and purchasing capacities affect the HFT’s entry probability. For

instance, banning co-location and integrating financial markets would decrease the
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HFT’s entry probability. Upgrading exchange’s trading system without further re-

stricting high-frequency trading would increase the HFT’s entry probability.

This model predicts that in a market with high HFT entry probability (tight

spread region), encouraging the HFT’s entry is beneficial to market quality. The

reason is that the market maker is setting a tight spread facing a fierce competition

and the HFT is fulfilling the residual demand. An increase in HFT’s entry probability

leads to more liquidity supply from the HFT without changing the market maker’s

incentive to commit capital. On the other hand, in a market with low HFT entry

probability, the market maker responses to the competition by committing less capital

in market making. Liquidity would increase with the HFT’s entry probability only

if the benefit from more HFT supply outweighs the market maker’s cut in capital

commitment. Moreover, this model predicts that banning high-frequency trading

does not necessarily deteriorates liquidity. Yet the spread would become higher due

to the lack of competition.

6.2 Leveling the Trading Technology

This type of regulation “levels the playground” by making the market maker’s trading

technology comparable to the HFT’s. For instance, the regulator can encourage HFTs

to become designated market makers or incentivize existing market makers to upgrade

their trading technologies. The batch auction proposed by Budish, Cramton, and

Shim (2015) also achieves this goal since the market maker would have a chance to

revise his order.

This model predicts that this policy is beneficial when the HFT’s entry probability

is low (wide spread region). Without a superior technology, the HFT mixes in posting

spreads rather than undercuts the market maker at the monopolistic spread. This

drives down the average price and improves market quality. When the HFT’s entry

probability is high, this model predicts that leveling the trading technology leads

to less shares for low-valuation buyers (because the market maker now mixes rather

than stick to the tight spread) and more shares for high-valuation buyers (because

the HFT now mixes rather than stick to the monopolistic spread). The overall effect

can be ambiguous.
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6.3 Imposing High-frequency Trading Participation Cost

The third type of regulation imposes a participation cost over high-frequency trading.

For example, regulations in France and Germany require a fee to be charged based on

both executed and canceled orders. Regulation in Germany further requires all traders

to tag algorithm generated orders. These regulations essentially induce participation

costs on high-frequency trading.

This model predicts that low participation cost would not change the market

quality. On the other hand, if the cost is high, the HFT would (at least partially)

exit the market. The market maker’s spread increases with the cost but he also

commits more capital in market making. The directional change of liquidity depends

on which effect dominates. Yet it is certain that extremely high participation cost

always hurts the market.

7 Flipping

In this section, I consider the situation where the HFT can flip orders by first pur-

chasing shares from the market maker and then reselling them at a higher spread.

The HFT observes the market maker’s capital commitment qm and spread xm before

making flipping and pricing decisions. There are two implicit assumptions. First, the

HFT is not capital constrained.40 Second, the market maker does not have enough

time to acquire additional shares from the inter-dealer market after the HFT pur-

chases shares from him. For the ease of notation, I assume that G has an unbounded

support. When G has a bounded support, the qualitative results are essentially the

same. All proofs in this section are delegated to the appendix.

First consider the HFT’s flipping and pricing decisions in a one-shot game (qm, qh, π).

If the HFT flips shares, her spread must be higher than the market maker’s spread.

This implies her optimal spread is xh = x∗. If the market maker holds qm shares and

his spread is xm < x∗, the HFT’s expected payoff when buying qf shares from the

market maker is

r(qf ) = (1− F (x∗))x∗[k(qm + qh)− k(qm − qf )]− xmqf . (12)

40The HFT’s shareholding qh reflects the exogenous market condition. Thus, the HFT cannot
expand her shareholding even she is not capital constrained.
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The first term of the right hand side is the expected gain from selling qh+qf shares at

spread x∗ when the market maker is left with qm−qf shares at a lower spread xm. The

second term of the right hand side is the premium paid by the HFT. The HFT pays

1 + xm for each flipped share. If the buyer does not purchase these shares, the HFT

only receives 1 by selling each share left to the inter-dealer market. By purchasing

shares from the market maker, the HFT reduces the market maker’s supply and

thus the competition. Since the market maker’s spread is lower and the demand is

uncertain, the marginal benefit of flipping is increasing in qf . Thus, the HFT would

follow an “all or nothing” flipping strategy.

Proposition 11 The HFT either purchases the market maker’s entire shareholding

qm or nothing. In other words, qf = qm or 0.

Then consider the market maker’s pricing problem. At a low enough price, by

Proposition 11, the HFT would purchase all shares from the market maker upon

entry. Thus, comparing to the baseline case, the market maker has an additional

option to strategically lower his spread to induce flipping. The highest possible spread

that induces flipping, xfm, can be pinned down by the HFT’s indifference condition:

Buying all shares from the market maker should be more profitable than the optimal

pricing strategy without flipping. This can be summarized by the following lemma:

Lemma 3 xfm satisfies

(1− F (x∗))x∗k(qm) ≥ xfmqm (13)

and

(1− F (x∗))x∗k(qm + qh) ≥ xfmqm + (1− F (xfm))xfmk(qh) . (14)

At least one inequality is binding. Moreover, if Inequality (14) binds, the flipping

strategy dominates the tight spread strategy.

The wide and tight spread strategies are still available to the market maker. Specif-

ically, if the market maker uses a wide spread, his expected payoff is

(1− F (x∗))x∗[π(k(qm + qh)− k(qh)) + (1− π)k(qm)] .

If x > xfm, the market maker’s expected payoff from the tight spread strategy is

(1− F (x))xk(qm) .
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If the market maker posts xfm, his expected payoff is

πxfmqm + (1− π)(1− F (xfm))xfmk(qm) .

An important observation is that, if the market maker expects the HFT to flip shares,

the market maker’s expected payoff is increasing in π. With flipping, the HFT is

providing insurance for the market makers. When the HFT entry probability is large,

the market maker would always induce flipping.

Proposition 12 Under any qm and qh, if π is high enough, the market maker sets

spread xfm in the equilibrium.

In the infinite period game, although the market maker can be insured by the HFT,

he does not have the inventive to increase capital commitment indefinitely. This is

because under any capital commitment level, the expected payoff is upper-bounded

by the monopolistic payoff. Moreover, when the capital commitment is large, the

spread to induce flipping becomes close to zero. This implies an upper-bound exists

for the market maker’s capital commitment in the steady state equilibrium.41

Proposition 13 For large enough w0, a steady state equilibrium exists.

(a) Liquidity v.s. Volume (b) Buyers’ v.s. Average Spread

Figure 6: Equilibrium Volume and Price with Flipping

Figure 6 presents a numerical example showing the equilibrium liquidity and av-

erage spread when the HFT is able to flip orders. At low HFT entry probability,

41The upper-bound may not be q̄ since the market maker’s expected payoff with shareholding q̄
might be lower than the monopolistic payoff.
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whether the HFT can flip shares or not does not change the equilibrium outcome.

The reason is that from the market maker’s perspective, the benefit of using a low

spread to induce flipping is not large enough.

When the HFT’s entry probability becomes large, the market maker sets a low

spread to induce flipping. A large portion of transactions happens between the market

maker and the HFT since the HFT purchases all low price shares upon entering. The

buyer only benefits from the market maker’s low spread when the HFT fails to enter

the market. This suggests that it is important to separate trades between liquidity

suppliers (the market maker and the HFT) and trades from liquidity suppliers to the

buyer. As shown in Figure 6a, the expected trading volume and the average spread

do not accurately reflect the market quality. The expected shares sold to the buyer

only increase modestly in π comparing to the expected trading volume. Moreover, the

average spread remains low while the buyer is facing a much higher spread increasing

in π. This is because the majority of low price shares are purchased by the HFT. As

the HFT becomes more likely to enter the market, the buyer becomes less likely to

purchase cheap shares. When the HFT can flip shares, the entry of HFT only has

limited benefits for the buyer. If we only look at the overall trading data, the benefit

of high-frequency trading will be overestimated.

8 Supply Schedule and Induced Limit Order Book

Up till now I assume the market maker sells all shares at one spread. In this section,

I analyze an extension where the market maker can submit a supply schedule to sell

shares at different spreads. To keep the problem tractable, I maintain the assumption

that the HFT sells all her shares at one spread and determines her spread after

observing the market maker’s capital commitment qm and supply schedule.

Formally, given the market maker’s capital commitment qm, his pricing strategy

can be represented by a supply schedule Ψ. The amount of shares supplied by the

market maker with spreads less or equal to x is qmΨ(x). In the steady state, the

market maker posts the supply schedule to maximize his expected profit in each

period. Thus, it is suffice to first solve for the optimal Ψ in a one-shot game under

any qm and then determine the steady state capital commitment with the market

maker’s indifference condition.
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8.1 No HFT

Consider a one-shot game where the market maker holding qm shares maximizes

expected profit in a single period. With no HFT, even though the market maker may

sell shares at different spreads, he optimally supplies all shares at the monopolistic

spread x∗. Formally, we have the following proposition:

Proposition 14 Given any qm, in a one-shot game, the market maker would opti-

mally set the supply schedule to be Ψ(x) = I{x≥x∗}.

Proof. See appendix

A direct implication of Proposition 14 is that, in a infinite period game with no

HFT, the steady state equilibrium is the same as the equilibrium in the baseline

model. In other words, with no potential competition from the HFT, the market

maker has no incentive to submit a non-degenerate supply schedule.

Corollary 5 When no HFT exists, the steady state equilibrium is the same as the

baseline model. Moreover, the market maker does not pay dividend when his net worth

is smaller than the steady state capital commitment w̄.

Proof. The first statement is a straightforward result from Proposition 14. For the

second statement, if the dividend payout is non-zero, the market maker can always

achieve a higher payoff by refraining from paying dividend and supply the extra

amount of shares at the spread x∗ and payout the total return from the extra shares

in the next period.

8.2 With HFT

When the HFT may enter the market, the market maker’s pricing strategy is non-

degenerate. Specifically, it is never optimal for the market maker to sell all shares

at one spread. The intuition behind this result is simple. Given any single spread

pricing strategy, the market maker can always sell a small amount of shares at another

spread without changing the HFT’s pricing strategy. If the market maker is using

the wide spread strategy, he can improve his payoff by selling some shares before the

HFT at a spread close to the monopolistic spread. If the market maker is using the

tight spread strategy, he can sell some shares at a higher spread without the HFT

undercutting him.
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Proposition 15 For any qh and π > 0, supplying all shares at any spread x is not

the optimal pricing strategy for the market maker in the steady state equilibrium.

Proof. See appendix

Moreover, with the ability to flexibly sell shares, an immediate lower bound q

exists for the market maker’s capital commitment in the steady state. If the capital

commitment level is below q, the market maker can always improve his expected

payoff by committing more capital and sell additional shares at the spread x∗.

Corollary 6 The market maker would commit at least q > 0 unit of capital, as long

as his capital commitment with no HFT is non-zero. Specifically, q is the solution of

δ

1− δ
(1− F (x∗))x∗[π(1−G(q + qh)) + (1− π)(1−G(q))] = 1 .

Notice that q is also the market maker’s equilibrium capital commitment level in

the wide spread region of the baseline model. Thus, allowing the market maker to sub-

mit a supply schedule improves liquidity in the wide spread region. Liquidity change

in the tight spread region when the market maker can submit a supply schedule is

ambiguous. However, the following proposition guarantees that given any specific set

of parameters, the market maker’s supply schedule can be easily computed. Then the

change in spreads and liquidity can be characterized through numerical calculation.

Proposition 16 The market maker’s equilibrium pricing strategy Ψ(x) satisfies three

conditions:

1. Ψ(x∗) = 1.

2. Ψ(·) has no mass point for x < x∗.

3. The HFT achieves the same expected payoff by setting any xh ∈ [x, x∗] where

Ψ(x) = 0.42

Proof. See appendix

With this result, the market maker’s equilibrium capital commitment qm and

pricing strategy Ψ(x) can be numerically computed with the following algorithm: (i)

42Notice that the second result is implied by the third result. If there is a mass point at a spread
x < x∗, the indifference condition cannot hold everywhere.
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Fix a qml, the amount of shares sold by the market maker with spreads lower than x∗.

(ii) If qml ≤ q, q = q; i.e., the market maker sells q − qml shares at the monopolistic

spread x∗. Otherwise, q = qml. (iii) Given qml and q, Ψ(x) is pinned down by

(1− F (x))x[k(Ψ(x)q + qh)− k(Ψ(x)q)] = (1− F (x∗))x∗[k(qml + qh)− k(qml)]

for x ∈ [x, x∗) and Ψ(x∗) = 1. (iv) As in the baseline case, let M(q) be the expected

per-period payoff of the market maker with capital commitment q. If q = q, define

M(q) to be the maximum expected payoff for qml ∈ [0, q]. (v) The market maker’s

equilibrium capital commitment is

qm = maxq∈[q,q̄]
δ

1− δ
M(q) + (w0 − q) .

The market maker’s pricing strategy is then pinned down by the procedure above.

Figure 7: Supply Schedule of the Market Maker

When the buyer’s demand qb follows an exponential distribution, the market

maker’s supply schedule can be explicitly characterized. Specifically, let ψ(x) = Ψ
′
(x).

Then for x ∈ [x, x∗), ψ(x) ∝ 1
x
− f(x)

1−F (x)
. Figure 7 provides a visual illustration of the

market maker’s supply schedule under a further assumption that the buyer’s spread

tolerance v− 1 follows a uniform distribution. The x-axis represents the spread while

the y-axis represents the density of the market maker’s supply schedule. The den-

sity of the market maker’s supply is decreasing to zero approaching the monopolistic

spread x∗. Moreover, the line at rightmost of Figure 7 demonstrates that the market

maker is supplying a positive quantity at the spread x∗.
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8.3 Discussion

This extension analyzes the change in market quality when the market maker can sell

shares at different spreads. With no HFT, the limit order book is degenerate in the

sense that all shares are still supplied at the monopolistic spread x∗ as in the baseline

model. Conversely, when the HFT might enter the market, the market maker would

supply shares at continuum of spreads. This improves liquidity in the wide spread

region. The liquidity change in the tight spread region is ambiguous.

Moreover, this extension illustrates how asymmetric competition between the mar-

ket maker and the HFT determines the shape of the limit order book.43 Intuitively,

fixing the HFT’s pricing strategy, the market maker has incentive to increase spreads

of some shares for higher expected profit. Yet to prevent the HFT from undercutting,

the market maker needs to supply enough amount of shares at low spreads. This

trade-off uniquely determines the shape of the limit order book. In any steady state

equilibrium, the market maker would choose a supply schedule such that the HFT is

indifferent between undercutting the market maker at any spread in the schedule and

posting the monopolistic spread x∗.

9 Conclusion

My paper studies how high-frequency trading changes market quality through affect-

ing the traditional market maker’s capital commitment and pricing decisions. I con-

sider a long-run market maker facing competition from short-run HFTs in providing

liquidity. In the steady state, the long-run market maker responses to the compe-

tition by reducing his spread and committing less capital in market making. The

latter effect impairs market quality. Thus, when taking the market maker’s capital

commitment channel into consideration, high-frequency trading does not necessar-

ily improves market quality though it always (weakly) reduces the average spread.

Moreover, in my model, the difference in trading technologies between the HFT and

the market maker affects market quality. When the HFT’s entry probability is low,

“leveling the playground” by making the market maker and the HFT trade at the

same speed improves market quality.

43Roşu (2009) analyzes a similar problem under the assumption that each market participant
supplies one unit of share to the market and all market participants have the same trading speed.
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I further consider three extensions. The first extension introduces high-frequency

trading participation cost to endogenize the HFT’s participation. When the HFT

trades faster than the market maker and the participation cost is low, market quality

remains the same. On the other hand, when the participation cost is high, the market

maker optimally sets a spread to deter the HFT from entering the market. Although

the HFT does not participate in trading when the participation cost passes a certain

threshold, the cost level still affects the market quality since the market maker’s

deterring strategy depends on the cost. When the HFT and the market maker trade

at the same speed, the model’s prediction is similar except that the HFT mixes in

participation facing high participation cost.

In the second extension, the HFT can “flip shares” by purchasing shares from

the market maker and resupplying them at a higher spread. With high HFT entry

probability, the market maker would induce flipping by posting a low spread since

flipping effectively insures the market maker. Yet the buyer does not benefit much

from the low spread since most of the cheaper shares are mainly acquired by the

HFT. This extension demonstrates the importance to exclude the trading between

liquidity suppliers when evaluating market quality. Otherwise, market quality would

be overestimated with an overestimation of the expected trading volume and an

underestimation of the average spread.

The third extension investigates implications on the shape of the limit order book

when the market maker can sell shares at different spreads. Specifically, with no

HFT, the market maker would still sell all shares at the monopolistic spread. Facing

the competition from the HFT, the market maker would sell shares at a continuum

of spreads. This extension demonstrates how competition between the market maker

and the HFT determines the shape of the limit order book.

I want to emphasize several important insights of this model. First, the price in-

formation alone cannot fully reflect market quality; the volume information is equally

important. Second, more high-frequency trading does not necessarily improves mar-

ket quality since it reduces the market maker’s willingness to commit capital in market

making. Third, the relative trading speed between the market maker and the HFT

affects market quality. When the HFT’s entry probability is low, letting the market

maker and the HFT trade at same speed improves market quality. Fourth, it is im-

portant to separate the trades among liquidity suppliers to avoid overestimations on

market quality and the high-frequency trading’s welfare effect.
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A Base Case Proofs and Claims

A.1 Useful Results

Lemma 4 (1− F (x))x is unimodal.

Proof. Note that

[(1− F (x))x]
′
= 1− F (x)− xf(x)

= [1− F (x)](1− x f(x)

1− F (x)
) .

1− F (x) ≥ 0 and 1− x f(x)
1−F (x)

is continuous and decreasing. Thus, either there exists

a unique x∗ such that 1 − x∗ f(x∗)
1−F (x∗)

= 0 or 1 − x f(x)
1−F (x)

> 0 for all x ∈ [0, x̂]. In the

latter case let x∗ = x̂. Easy to see that for x > x∗, [(1 − F (x))x]
′
< 0; for x < x∗,

[(1− F (x))x]
′
> 0.

A.2 No HFT

A.2.1 Proof of Theorem 1

Proof. First consider a relaxed problem with d = w − q ∈ [−q̄, w]. Conjecture that

the optimal policy is dt = wt− q̄ and xt = x∗ where x∗ = argmax(1−F (x))x, forall t.

If this policy is indeed the optimal policy for this relax problem, then for w0 ≥ q̄, this

optimal policy is applicable and thus also optimal for the original more constrained

problem. This proposition also implies that the market maker’s payoff is linear in w0

with w0 ≥ q̄.

We use a method similar to one-shot deviation principle to establish the optimality

of proposed policy. Notice that although the market maker discounts future dividends,

the per-period dividend does not necessarily have a uniform bound. Thus, I directly

check that this problem is continuous at infinity.

Consider two dividend and pricing policies {dt, xt}∞t=0 and {d̃t, x̃t}∞t=0. dt, xt, d̃t, x̃t

are functions of ht, the history of the first t−1 periods.44 We suppress the dependence

for the ease of notation. Consider the case when dt = d̃t and xt = x̃t for t ≤ T . Define

the absolute value of the difference in expected payoffs between two policies to be DT .

44We define h0 = ∅.
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We have

DT = |E0(
∞∑

i=T+1

δi(di − d̃i))|

≤ |E0(
∞∑

i=T+1

δici)|+ δT+1 1

1− δ
q̄

≤ δT+1E0(wT+1) +
∞∑

i=T+1

δix̄EG(q) + δT+1 1

1− δ
q̄

= δT+1E0(wT+1) + δT+1 1

1− δ
x̄EG(q) + δT+1 1

1− δ
q̄ .

The first inequality is because the worst dividend plan after period T is to pay −q̄
for all periods. The second inequality is because for any period t, the expect profit

is (1− F (xt))xtEG(min(q, wt − dt)).45 This is uniformly bounded by x̄EG(q). Thus,

in each period, the expected dividend is bounded by x̄EG(q) plus part of the market

maker’s net worth in period T + 1. Notice that commit more shares cannot improve

the expected dividend bound since EG(min(q, w)) ≤ EG(q). Thus, the expected

discounted dividend payout is bounded by the case when the market maker pays

dividend equal to the entire net worth in period t = T + 1 and pays the upper bound

of expected profit in each period.

Notice that δT+1 1
1−δ x̄EG(q) → 0 and δT+1 1

1−δ q̄ → 0 as T → ∞. Moreover,

Et(wt+1) ≤ wt + x̄EG(q) + q̄. This implies that

δT+1E0(wT+1) ≤ δT+1[w0 + (T + 1)(x̄EG(q) + q̄)] . (15)

Thus, δT+1E0(wT+1) → 0 as T → ∞. Thus, for any two policies that different only

after period T , as T →∞, DT → 0.

Since this game is continuous at infinity, if there exists a profitable deviation, then

there exists a profitable deviation such that the deviating policy is different from the

candidate policy for finite periods. Consider a deviation where the the deviating

policy is different from the candidate policy for n periods. For t ≥ n, the deviating

policy switches back to the candidate policy d̂t = wt − q̄ and x̂t = x∗. Consider

the market maker in period t = n with net worth wn. Suppose the deviating policy

specifics d̂n = wn−ŵ and xn = x̂n. Then in period n, the difference between expected

45EG means q follows distribution G, I suppress the time notation because demands are i.i.d.
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payoffs of two policies is

En(dn − d̂n + δdn+1 − δd̂n+1) = ŵ − q̄ + δ(1− F (x∗))x∗EG(min(q, q̄))

− δ(1− F (x̂n))x̂nEG(min(q, ŵ))− δ(ŵ − q̄)

≥ (1− δ)(ŵ − q̄) + δ(1− F (x∗))x∗[EG(min(q, q̄))− EG(min(q, ŵ))] .

The inequality follows from (1− F (x̂n))x̂n ≤ (1− F (x∗))x∗.

Define

A(y) = (1− δ)(y − q̄) + δ(1− F (x∗))x∗[EG(min(q, q̄))− EG(min(q, y))] .

Then

A
′
(y) = 1− δ − δ(1− F (x∗))x∗(1−G(y)) ,

A
′′
(y) = g(y) > 0 .

Since A
′
(y) is monotone, A

′
(y) = 0 has at most one solution and upon which A(y)

achieves minimum. Note that A
′
(y) = 0 implies

δ

1− δ
(1− F (x∗))x∗(1−G(y)) = 1 .

Thus, A(y) achieves minimum at y = q̄ and A(q̄) = 0. Thus,

En(dn − d̂n + δdn+1 − δd̂n+1) ≥ 0 . (16)

This implies that if there exists a profitable deviation such that the deviating

policy differs from the candidate policy for n periods, then in period n, the market

maker should adopt the candidate policy. Same reasoning then shows that the market

maker should adpot the candidate policy in period n − 1. The backward induction

goes back to period 1. Since n is arbitrary and this problem is continuous at infinity,

no profitable deviation exists and the candidate policy is optimal.
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A.2.2 Existence of Value Function

Proposition 17 There’s a unique V such that it is continuous and strictly increasing

in w.

Proof. We focus on V (w) for w ∈ [0, ŵ]. Moreover, since V (w) = w − q̄ + V (q̄)

Define operator T to be

(T l)(w) =supd,xd+ δ{F (x)l(w − d)

+ (1− F (x))[

∫ w−d

0

(l(min(q̄, w − d+ xq)) +max(0, w − c+ xq − q̄)g(q)dq+

(1−G(w − d))(l(min(q̄, (1 + x)(w − d))) +max(0, (1 + x)(w − d)− q̄))]}
(17)

satisfying c ∈ [0, w].

First check that for large enough K̄, l(w) ≤ K̄ =⇒ T l(w) ≤ K̄. Thus, the value

function is bounded and Blackwell condition is applicable. Easy to check T satisfies

monotonicity and discounting.

By contract mapping theorem, operator T has a unique fixed point V . Easy to

see T maps increasing functions to strictly increasing functions. This implies V must

be increasing.

A.3 Sequential Pricing

A.3.1 Proof of Lemma 1

Proof. If xm > x∗, since argmaxx(1−F (x))x = x∗, the HFT’s optimal strategy is to

set xh = x∗. Consider the situation when xm ≤ x∗. For xh ≤ xm, the HFT’s expected

net profit is

(1− F (xh))xhk(qh) ,

which attains maximum at xh = xm by lemma A.1. For xh > xm, the HFT’s expected

net profit is

(1− F (xh))xh[k(qh + qm)− k(qm)] ,

which attains maximum at xh = x∗.
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A.3.2 Proof of Lemma 2

Proof. First notice that xm > x∗ cannot be optimal. If xm > x∗, the HFT’s best

response is to set xh = x∗ and the market maker’s expected net profit is

(1−F (xm))xm[π(k(qh+qm)−k(qh))+(1−π)k(qm)] < (1−F (x∗))x∗[π(k(qh+qm)−k(qh))+(1−π)k(qm)] .

This implies the market maker will be better off by setting xm = x∗.

Next, there is a unique x < x∗ such that if xm = x, the HFT is indifferent between

xh = x∗ and xh = xm. For any xm < x∗, the HFT’s expected net profit with xh = x∗

is

(1− F (x∗))x∗[k(qh + qm)− k(qm)] ;

the HFT’s expected net profit with xh = xm is

(1− F (xm))xmk(qh) .

Since (1− F (x))x is increasing for x ∈ [0, x∗] and k(qh + qm)− k(qm) < k(qh), there

exists a unique x ∈ (0, x∗) such that

(1− F (x))xk(qh) = (1− F (x∗))x∗[k(qh + qm)− k(qm)] ,

or equivalently,

a(x)k(qh) = k(qh + qm)− k(qm) .

Finally, check that any other pricing strategy of the market maker is dominated

either by xm = x∗ or xm = x. If xm ∈ (x, x∗), the HFT would set xh = xm. The

market maker’s expected net profit is

(1−F (xm))xm[π(k(qh+qm)−k(qh))+(1−π)k(qm)] < (1−F (x∗))x∗[π(k(qh+qm)−k(qh))+(1−π)k(qm)] .

Thus, he would be better off switch to xm = x∗. For xm ∈ (0, x), the HFT would set

xh = x∗. The market maker’s expected net profit is

(1− F (xm))xmk(qm) < (1− F (x))xk(qm) .

This suggests that he would be better off to set xm = x.
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A.3.3 Proof of Proposition 1

Proof. For any qm, the tight spread can be determined by the equation

a(x(qm)) =
k(qm + qh)− k(qm)

k(qh)
. (18)

The tight spread strategy strategy is optimal if

a(x(qm))k(qm) ≥ π[k(qm + qh)− k(qh)] + (1− π)k(qm) . (19)

Subtract k(qm) from both sides,

k(qm + qh)− k(qm)− k(qh)

k(qh)
k(qm) ≥ π[k(qm + qh)− k(qh)− k(qm)] . (20)

Since k(qm + qh)− k(qh)− k(qm) < 0 for qm > 0, qh > 0, we have

k(qm)

k(qh)
≤ π . (21)

A.3.4 Proof of Theorem 2

Proof. Consider a relaxed problem where dt ∈ [−q̄, wt]. Given HFT’s best response

, this problem can be reduced to a decision problem of the market maker. Suppose

the policy proposed in this theorem is not optimal. Using the same argument as in

the proof of theorem 1, this game is continuous at infinity. Thus, I can focus on

considering a finite period deviation. Consider a better policy with deviation for at

most n periods. In period n, I only need to consider the difference of dividends in

period n and n + 1. If dn 6= wn − qm, by Proposition 1, the market maker’s optimal

strategy is to set xm = x̂m(qm) and get expected net profit M(qm). This is exactly the

original policy. Suppose dn = wn − ŵ. Since the market maker’s maximum expected

profit in period n is M(ŵ),

wn − ŵ + δ[M(ŵ) + (ŵ − qm)] > wn − qm + δM(qm) .
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This implies
δ

1− δ
M(ŵ)− ŵ >

δ

1− δ
M(qm)− qm .

Since qm = argmaxw∈[0,q̄]
δ

1−δM(w)+(w0−w), if such ŵ exists, it must be ŵ > q̄. Since

M(w) = max((1−F (x∗))x∗[k(w+qh)−k(qh)], (1−F (x(w))x(w))k(w)) is continuous

and differentiable almost everywhere. Easy to see that δ
1−δM

′
(w) ≤ 1 for w ≥ q̄.

Thus, if ŵ > q̄,
δ

1− δ
M(q̄)− q̄ ≥ δ

1− δ
M(ŵ)− ŵ .

This is because

δ

1− δ
M(ŵ) =

δ

1− δ
M(q̄) +

∫ ŵ

q̄

δ

1− δ
M
′
(x)dx .

This implies that any n period deviation can be dominated by a n−1 period deviation

for all n. Repeating this argument implies that no finite period deviation exists and

establishes the optimality of the proposed policy. Since w0 > q̄, the proposed policy

is implementable in the original problem and is thus optimal. The HFT’s optimality

condition is satisfied since the HFT always plays the best response.

A.3.5 Proof of Corollary 2

Proof. Two conditions are derived from the first order condition ofmaxw∈[0,q̄]
δ

1−δM(w)+

(w0 − w). To see the market maker never fully exit the market, notice that x → x∗

when xm → 0. Since q̄ > 0, δ
1−δ (1−F (x∗))x∗ > 1. Then there always exists a qm > 0

such that δ
1−δ (1− F (x∗))x∗(1−G(qm)) = 1.

A.3.6 Proof of Theorem 3

Proof. For the ease of notation, let qπm be the equilibrium capital commitment of the

market maker when the HFT’s entry probability is π. Let x(q) be the tight spread

when the market maker’s shareholding is q. Notice that x does not depend on π.

Consider a sequential pricing game with π = 1. If in the steady state equilibrium, the

market maker uses the wide spread strategy with shareholding q1
m, then by Theorem

2, for any q ∈ [0, q̄],

δ

1− δ
(1−F (x∗))x∗[k(q1

m+qh)−k(qh)]+(w0−q1
m) ≥ δ

1− δ
(1−F (x(q)))x(q)k(q)+(w0−q) .
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That is, adopting the wide spread strategy with shareholding q1
m is better than using

the tight spread strategy at any level of shareholding. Then for π < 1 and any q,

δ

1− δ
(1− F (x∗))x∗{π[k(qπm + qh)− k(qh)] + (1− π)k(qπm)}+ (w0 − qπm)

>
δ

1− δ
(1− F (x∗))x∗[k(q1

m + qh)− k(qh)] + (w0 − q1
m)

≥ δ

1− δ
(1− F (x(q)))x(q)k(q) + (w0 − q) .

Thus, for π < 1, the market maker’s equilibrium strategy must still be the wide

spread strategy. This corresponds to the case where π̂ = 1.

If the market maker is using the tight spread strategy at a π1 < 1, then for π2 > π1,

by a similar argument with Proposition 2, the market maker would still use the tight

spread strategy. Moreover, qπ1
m = qπ2

m and thus x(qπ1
m ) = x(qπ2

m ) and the market maker

has the same equilibrium payoff. Denote this equilibrium payoff when the market

maker is using a tight spread strategy by V tight. Define

V wide
π =

δ

1− δ
(1− F (x∗))x∗[π(k(q + qh)− k(qh)) + (1− π)k(q)] + (w0 − q)

where q satisfies

δ

1− δ
(1− F (x∗))x∗[1− πG(q + qh)− (1− π)G(q)] = 1 .

V wide
π is the equilibrium payoff for the market maker if the wide spread strategy is

adopted in the equilibrium. V wide
π is continuous and decreasing with respect to π.

Moreover, V wide
0 goes to the monopolistic payoff. Since V tight > V wide

1 and V tight is

bounded away from the monopolistic payoff, there exist π̂ ∈ (0, 1) such that V wide
π̂ =

V tight. By previous argument, the market maker adopts the wide spread strategy if

π < π̂ and tight spread strategy if π > π̂.

In the tight spread region,

L = (1− F (xm))k(qm) + π(F (x∗)− F (xm))(k(qm + qh)− k(qm)) .

Since in the tight spread region, qm and xm = x(qm) is not changing with respect to

π, L is increasing in π.

For the third statement, consider a game at π = π̂ < 1. Two equilibrium share-
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holdings for market maker, wtightm and wwidem both exist. If the market maker chooses

shareholding qtightm (qwidem ), he will play the tight (wide) spread strategy in the equi-

librium. By Proposition 1, k(qwidem ) ≥ π̂k(qh) ≥ k(qtightm ). This implies qwidem ≥ qtightm .

For π < π̂, qm > qwidem ≥ qtightm . This establishes that the market maker always have

a higher equilibrium shareholding in the wide spread region.

A.3.7 Proof of Proposition 3

Proof. Notice that in the wide spread region, L is continuous in π. Moreover, if

the wide spread region is [0, 1], liquidity is the same at π = 0 and π = 1. These two

observations imply the proposition.

A.3.8 Proof of Proposition 4

Proof. For any w ≥ 0, givenG is an exponential distribution, k(s) = EG(min(q, s)) =

EG(q)G(s). By theorem 1, when no HFT exists, the market maker’s capital commit-

ment q̄ satisfies δ
1−δ (1 − F (x∗))x∗(1 − G(q̄)) = 1. By corollary 2, when the mar-

ket maker posts a wide spread in the equilibrium, his capital commitment satisfies
δ

1−δ (1 − F (x∗))x∗[(1 − π)(1 − G(qm)) + π(1 − G(qm + qh))] = 1. Thus, G(q̄) =

πG(qm + qh) + (1− π)G(qm).

Then,

k(q̄) = EG(q)G(q̄)

= EG(q)(πG(qm + qh) + (1− π)G(qm))

= πk(qm + qh) + (1− π)k(qm) .

(22)

This implies that liquidity does not depend on π in the wide spread region and is

equal to the liquidity in a monopolistic market.

A.3.9 Proof of Theorem 4

Proof. Let’s consider the first statement. Since I take other parameters as fixed

and only change π, I represent liquidity by L(π) and the market maker’s capital

commitment by qm(π) to make their dependences on π explicit while suppressing all

other dependences.

As π → 0, the market maker’s payoff by posting the wide spread converges to the

monopolistic payoff. By continuity of the market maker’s payoff, for π small enough,
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the market maker would post a wide spread in the steady state equilibrium. In the

wide spread region, the market maker’s capital commitment qm(π) satisfies

δ

1− δ
(1− F (x∗))x∗[(1− π)(1−G(qm(π))) + π(1−G(qm(π) + qh))] = 1 . (23)

Take derivative with respect to π,

G(qm(π))−G(qm(π) + qh)−πg(qm(π) + qh)q
′

m(π)− (1−π)g(qm(π))q
′

m(π) = 0 . (24)

Collecting terms to get

q
′

m(π) =
G(qm(π))−G(qm(π) + qh)

πg(qm(π) + qh) + (1− π)g(qm(π))
. (25)

In the wide spread region, L(π) = (1 − F (x∗))[(1 − π)k(qm(π)) + πk(qm(π) + qh)].

Then

1

1− F (x∗)
L
′
(π) =k(qm(π) + qh)− k(qm(π)) + π(1−G(qm(π) + qh))q

′

m(π)

+ (1− π)(1−G(qm(π)))q
′

m(π) .

(26)

Easy to see this function is continuous in π. Consider L
′
(π) at π = 0. Since

qm(0) = q̄,

1

1− F (x∗)
L
′
(0) = k(q̄ + qh)− k(q̄) + (1−G(q̄))

G(q̄)−G(q̄ + qh)

g(q̄)
. (27)

L
′
(0) < 0 if and only if

G(q̄ + qh)−G(q̄)

k(q̄ + qh)− k(q̄)
>

g(q̄)

1−G(q̄)
. (28)
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Use integration by parts,

k(s) = s(1−G(s)) +

∫ s

0

qg(q)dq

= s(1−G(s)) + sG(s)−
∫ s

0

G(q)dq

= s−
∫ s

0

G(q)dq

=

∫ s

0

(1−G(q))dq .

(29)

Thus, L
′
(0) < 0 if and only if∫ q̄+qh

q̄
g(q)dq∫ q̄+qh

q̄
(1−G(q))dq

>
g(q̄)

1−G(q̄)
. (30)

Let

I(x) =

∫ q̄+x

q̄

g(q)dq − g(q̄)

1−G(q̄)

∫ q̄+x

q̄

(1−G(q))dq .

Inequality (30) holds if and only if I(qh) > 0. Notice that I(0) = 0. Moreover,

I
′
(x) = g(q̄ + x)− g(q̄)

1−G(q̄)
(1−G(q̄ + x)) .

Since g(x)
1−G(x)

is increasing, for x > 0, I
′
(x) > 0. Thus, I(qh) > 0 and L

′
(0) < 0.

Then by continuity of L
′
(π), there exists a small region around 0 such that liquidity

is decreasing in π.

Notice that the calculation above works for the situation when q̄ + qh is in the

support of G. If q̄+qh is not in the support of G, replace q̄+qh with the upper-bound

of G’s support yields the same result.

For the increasing part, it is suffice to consider the situation where π = 1 is in the

tight spread region. Since liquidity is increasing with π in the tight spread region,

there exists π̃ such that liquidity is increasing for π ∈ [π̃, 1]. This finish the proof of

the first statement.

Now I consider the second statement. Fix π = 1. Notice that for any fixed qm > 0,

a(x) =
k(qm + qh)− k(qm)

k(qh)
→ 1−G(qm) < 1 as qh → 0 .
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This implies that the market maker’s payoff by using the tight spread strategy is

bounded away from the monopolistic payoff as qh → 0. On the other hand, if the

market maker uses the wide spread strategy, easy to see as qh → 0, the expected

payoff converges to the monopolistic payoff. Thus, for small enough qh, the market

maker would use the wide spread strategy at the steady state even when π = 1. This

finish the proof of the second statement.

A.4 Simultaneous Pricing

A.4.1 Proof of Proposition 5

Proposition 5 can be divided into following claims.

Claim 1 Players never propose spreads greater than x∗.

Proof. If a player propose a spread greater than x∗, regardless of the other player’s

strategy, switching to proposing x∗ yields a strictly larger payoff.

Claim 2 Neither players would use pure strategies in an equilibrium.

Proof. Suppose the market maker posts spread xm = x in a equilibrium. The HFT’s

optimal strategy would be posting xh = x∗, xh = x or a mix between these two price.

Then the market maker would achieve higher payoff by undercutting the HFT’s lowest

possible price for a small enough ε. Contradiction

Suppose the HFT post spread xh = x in an equilibrium. Then in an equilibrium

the market maker can only post x∗. (Undercutting will lead to no equilibrium because

the payoff of the market maker is not continuous at x.) This implies xh 6= x∗ in the

equilibrium. However, if xh < x∗, given the market maker is posting xm = x∗, the

HFT would be better off posting xh = x∗. Contradiction.

Suppose there exists a mixed strategy equilibrium. Denote the infimum and supre-

mum of the spread posted by the market maker (HFT) by xm(xh) and x̄m(x̄h).

Claim 3 xm = xh and neither the market maker nor the HFT would post this spread

with positive probability in an equilibrium.

Proof. If xm 6= xh, the player with smaller spread lower-bound could raise the lower-

bound by a small enough amount to achieve a higher payoff. Denote this common
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lower-bound by x. If the HFT posts this spread with positive probability, rather than

posting x, the market maker would be strictly better off undercutting the HFT for a

small amount.

Suppose the market maker posts x with positive probability. Let B(x, r) be a

open ball centered at x with radius r. First note that ∀ε > 0, ∃xh ∈ B(x, ε) such

that xh is in HFT’s mixed strategy’s support. If not, since x is posted by the HFT

with zero probability, the market maker can increase xm by ε to achieve higher payoff.

Then for small enough ε, HFT’s profit of posting x+ ε is strictly smaller than posting

x. Contradiction.

Claim 4 (No Holes) 6 ∃a, b ∈ (x, x̄m), a < b such that (a, b)
⋂
Xm = ∅. A similar

claim holds for Xh.

Proof. Suppose this claim is false. Without loss of generality, let (a, b) be the

maximum interval satisfying the claimed property. That is, (a, b)
⋂
Xm = ∅ and for

any a
′
< a and b

′
> b, (a

′
, b)

⋂
Xm 6= ∅ and (a, b

′
)
⋂
Xm 6= ∅.

By claim 1, x̄m, x̄h ≤ x∗. Notice that if (a, b) 6∈ Xm, then (a, b) 6∈ Xh. This is

because if x ∈ (a, b) and x ∈ Xh, the HFT may increase x by a small amount to

increase her payoff.

Then notice that a 6∈ Xm. This is because posting xm ∈ (a, b) will achieve a higher

payoff given (a, b) 6∈ Xh. Moreover, a 6∈ Xh by a similar argument.

Given that spread a is not posted by the HFT and the market maker with positive

probability, when xm → a from below, the payoff goes to the payoff of posting xm = a

by continuity, which is smaller than posting xm ∈ (a, b). Since (a, b) is a maximum

interval satisfying (a, b)
⋂
Xm = ∅, ∀ε > 0, B(a, ε)

⋂
Xm 6= ∅. This contradicts the

equilibrium definition that xm ∈ Xm is a best response to the HFT’s pricing strategy.

Claim 5 x̄m = x̄h = x∗.

Proof. Suppose that x̄m < x̄h. Then (x̄m, x̄h)
⋂
Xh = ∅ since posting xh = x̄h yields

a higher payoff. This contradicts Claim 4. Similarly, it is impossible that x̄m > x̄h. If

x̄m = x̄h < x∗, x̄m 6∈ Xm since xm = x∗ would yield higher payoff. Since x̄m 6∈ Xm, by

the same argument, x̄h 6∈ Xh. However, then by the continuity argument, for small

enough ε, xm ∈ B(x̄m, ε) will be dominated by posting xm = x∗. Contradiction.
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Claim 6 For all x ∈ (x, x∗)
⋂
Xm, x is not proposed by the market maker with

positive probability in an equilibrium. For all x ∈ (x, x∗)
⋂
Xh, x is not proposed by

the HFT with positive probability in an equilibrium.

Proof. We prove by contradiction. Suppose that the market maker posts spread x

with positive probability. Then by claim 4, ∀ε > 0, B(x+ε, ε)
⋂
Xh 6= ∅. However, by

continuity, when ε is small, the payoff posting that spread is dominated by posting x.

Contradiction. If the HFT posts spread x, note that the market maker’s profit when

posting a spread approaching x from the left is larger than the profit when posting a

spread approaching x from the right. This leads to a contradiction.

A.4.2 Proof of theorem 5

Proof. The proof of the first part is the same as the proof of Theorem 2. For the

second and the third statement, note that expected payoffs of the market maker are

the same in all one-shot games. Thus, in the equilibrium the market maker commits

the same amount of capital to the market. The HFT’s payoffs can be calculated from

the corresponding one-shot game.

A.4.3 Proof of proposition 7

Proof. For the first statement, notice that

Lse = (1− F (x∗))[πk(qm + qh) + (1− π)k(qm)] .

Compare this to Lsim in Theorem 5 to reach the conclusion.

Notice that I have shown that Lse is increasing in π. Thus, the third statement

is merely a corollary of the second statement. If π is in the tight spread region,

in equilibrium, k(qm) ≤ πk(qh) and a(x) is not changing with π. Moreover, qm

also remains constant with respect to π. Then by the market maker’s indifference

condition, for all x ∈ (x, x∗),

a(x){(1− π)k(qm) + π[Hh(x)(k(qm + qh)− k(qh)) + (1−Hh(x))k(qm)]} (31)

is constant for all π in the tight spread region. This implies for any given x, πHh(x)

is constant for all π in the tight spread region. This together with Theorem 5 implies
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that Lsim − Lse is constant. It also implies that in the tight spread region, increase

in π only benefits buyers with buying thresholds higher than 1 + x∗.

B Extension: Costly Entry

B.1 Sequential Pricing

B.1.1 Proof of Proposition 8

Proof. If C ≥ C̄ = π(1 − F (x∗))x∗k(qh), the expected return of the HFT cannot

cover the cost even when the HFT undercuts the market maker at spread x∗. Thus,

the HFT will not enter the market regardless of the market maker’s spread. In

equilibrium, the market maker would choose xm = x∗.

Now consider the situation where C < C̄. In this case, if the market maker

posts the wide spread x∗, the HFT would attempt to enter the market and undercut

the market maker upon entry. Moreover, the HFT would not choose to enter and

undercut the market maker if the market maker posts the deterring spread x satisfying

π(1−F (x))xk(qh) = C. If the market maker posts a spread higher than the deterring

spread x, the HFT will always enter since she can always undercut the market maker

and earn a expected payoff higher than C.

If k(qm) < πk(qh), given the HFT chooses to enter the market, the market maker’s

optimal spread is the tight spread satisfying (1−F (x))xk(qh) = (1−F (x∗))x∗[k(qm+

qh)−k(qm)]. Moreover, as long as the HFT does not undercut the market maker, the

market maker always prefers to set the spread xm higher (given xm ≤ x∗). Thus, in

equilibrium, the market maker will compare the tight spread and the deterring spread

and pick the greater one. Specifically, if C > π(1 − F (x∗))x∗[k(qm + qh) − k(qm)],

posting the deterring spread is more profitable. Otherwise, posting the tight spread

is more profitable. Furthermore, when facing the tight spread, the HFT is indifferent

between posting the monopolistic spread and undercutting the market maker. Then

when the market maker posts the deterring spread, upon entering, the HFT is better

off undercutting the market maker. This implies that when the market maker posts

the deterring spread, the HFT will choose not to try to enter the market. The

discussion for k(qm) > πk(qh) follows the similar logic and is thus omitted.
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B.1.2 Proof of Theorem 6

Proof. Let xd satisfies π(1 − F (xd))xdk(qh) = C for C ∈ [0, C̄]. Let qdm satisfies
δ

1−δ (1− F (xd))xd(1−G(qdm)) = 1. This is the equilibrium capital commitment if the

market maker uses a deterring entry strategy. The equilibrium payoff is VC(w0) =
δ

1−δ (1 − F (xd))xdk(qdm) + (w0 − qdm). Easy to see that this quantity is increasing in

C. Easy to see that when C ≥ C̄, this quantity becomes monopolistic payoff. Let

the market maker’s equilibrium payoff when C = 0 be V0(w0). There exist a unique

Ĉ such that VĈ(w0) = V0(w0). Thus, for C > Ĉ, the market maker is using the

deterring strategy in the equilibrium.

When the market maker is using the deterring strategy, suppose the HFT chooses

to participate, then she optimally set xh = x∗. Since (1) the HFT is not undercutting

the market maker, and (2) when the HFT participates, her optimal pricing strategy

does not depend on C, when C = 0, the market maker can use the same equilibrium

strategy to achieve a higher expected payoff. Contradiction. Thus, the HFT does not

choose to participate.

B.2 Simultaneous Pricing

B.2.1 Proof of Proposition 9

Proof. First consider the case where C > C̄. In this case, the HFT’s expect profit

can never cover the cost regardless of the market maker’s pricing strategy. Thus,

η = 0 and the market maker sets xm = x∗.

Now consider the situation when C ∈ [0, C̄]. Suppose the HFT chooses η = 1 and

plays a mixed pricing strategy as in a game (qm, qh, π, 0). By Proposition 6, the HFT’s

expected profit is π(1 − F (x∗))x∗a(x)(π)k(qh). If π(1 − F (x∗))x∗a(x)(π)k(qh) ≥ C,

since C is paid at the end of the period, the equilibrium characterized by Proposition

6 still holds.

If π(1 − F (x∗))x∗a(x)(π)k(qh) < C < C̄, note that η 6= 0 in the equilibrium.

This is because if η = 0, the market maker would post xm = x∗. The HFT has

incentive to deviate to η = 1. Thus, I need to consider an equilibrium where the HFT

mixes between participating. In other words, η ∈ (0, 1). η can be pinned down by

the indifference condition that the HFT earns zero profit when trying to enter the

market.
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First consider the situation k(qm) ≥ πk(qh). By Proposition 6, if the HFT tries

to enter with probability η, x is determined by

(1− ηπ)k(qm) + ηπ(k(qm + qh)− k(qh)) = a(x)k(qm) . (32)

Notice that x is decreasing in η and x→ x∗ as η → 0. Thus, there exist a unique η ∈
(0, 1) such that ηπ(1−F (x∗))x∗a(x)(ηπ)k(qh) = ηC where x is the lower-bound of the

mixed strategy in the game (qm, qh, ηπ, 0). If the HFT participates with probability η

and posts spread according to Hh in the game (qm, qh, ηπ, 0), the market maker has no

incentive to deviate from posting spread according to Hm in the game (qm, qh, ηπ, 0).

If the market maker sets price according to Hm, upon entering, the HFT has no

incentive to deviate from posting spread according to Hh. Moreover, the HFT earns

zero expected profit for trying to enter. Thus, the HFT has no incentive to deviate

from η.

Next consider the situation k(qm) < πk(qh). Notice that x remains constant in

this region. Let η̄ satisfies k(qm) = η̄πk(qh). By the same argument, there exists a

unique η ∈ (0, η̄) such that k(qm) > πηk(qh) and π(1 − F (x∗))x∗a(x)(π)k(qh) = C

where x is the lower-bound of the mixed strategy in the game (qm, qh, ηπ, 0). The rest

of the verification is the same.

B.2.2 Proof of Corollary 4

Proof. This proof essentially involves only comparing the market maker’s payoffs

under two settings with different parameter values. Fix a game (qm, qh, π, C). First

consider the case when k(qm) ≥ πk(qh). In the one-shot simultaneous pricing game,

a(x)(π) = 1− π +
k(qm + qh)− k(qh)

k(qm)
π .

If π(1 − F (x∗))x∗a(x)(π)k(qh) ≥ C, by Proposition 9, in the simultaneous pric-

ing game, the HFT participates in high-frequency with probability 1. The market

maker enjoys the same expected payoff as in the simultaneous pricing one-shot game

(qm, qh, π, 0), which equals to (1−π)k(qm) +π(k(qm + qh)−k(qh)). By Proposition 8,

the market maker receives the same expected payoff in the sequential pricing one-shot

game . For π(1 − F (x∗))x∗a(x)(π)k(qh) < C, in the simultaneous pricing game, the

market maker receives payoff (1−F (x∗))x∗a(x)(ηπ)k(qm) by the indifference condition
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where

a(x)(ηπ) =
C

π(1− F (x∗))x∗k(qh)
.

Thus, the market maker’s expected payoff is C
πk(qh)

k(qm), which equals to the expected

payoff in a one-shot sequential pricing game by Proposition 8..

Next consider the case when k(qm) < πk(qh). In a one-shot simultaneous pricing

game,

a(x)(π) =
k(qm + qh)− k(qm)

k(qh)
.

If π(1−F (x∗))x∗a(x)(π)k(qh) = π(1−F (x∗))x∗(k(qm + qh)− k(qm)) ≥ C, in a simul-

taneous pricing game, the market maker’s expected payoff is (1−F (x∗)x∗)a(x)k(qm).

This is the same as the expected payoff in a sequential pricing game. If π(1 −
F (x∗))x∗a(x)(π)k(qh) < C, in a simultaneous pricing game, the market maker re-

ceives payoff (1− F (x∗))x∗a(x)(ηπ)k(qm) where

a(x)(ηπ) =
C

π(1− F (x∗))x∗k(qh)
.

Thus, the market maker’s expected payoff is C
πk(qh)

k(qm), which equals to the expected

payoff in the sequential pricing game.

C Flipping

C.1 Proof of Proposition 11

Proof. Notice that

r
′
(qf ) = (1− F (x∗))x∗(1−G(qm − qf ))− xm ,

r
′′
(qf ) = (1− F (x∗))x∗g(qm − qf ) > 0 .

This implies the maximum is achieved at the boundary qf = 0 or qf = qm.

C.2 Proof of Lemma 3

Proof. Inequality (13) guarantees that the HFT is better off with qf = qm than with

qf = 0 when setting xh = x∗. Inequality (14) guarantees that the HFT is better off
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with w = qm than undercutting the market maker. Since the market maker is better

off choosing the highest possible spread given the HFT is flipping orders, one of the

inequalities must be binding.

Moreover, if inequality (13) binds,

xfm =
(1− F (x∗))x∗k(qm)

qm
.

Otherwise, since (1− F (x))x is increasing in [0, x∗], there exists a unique

xfm ∈ (0,
(1− F (x∗))x∗k(qm)

qm
)

such that

(1− F (x∗))x∗k(qm + qh) = xfmqm + (1− F (xfm))xfmk(qh) .

If inequality (14) binds,

(1− F (x∗))x∗k(qm) > xfmqm (33)

and

(1− F (x∗))x∗k(qm + qh) = xfmqm + (1− F (xfm))xfmk(qh) . (34)

Then,

(1− F (x∗))x∗[k(qm + qh)− k(qm)] < (1− F (xfm))xfmk(qh) . (35)

Thus,

xfm > x . (36)

In this case, the tight spread strategy is never optimal because the market maker can

raise the spread to xfm to achieve higher expected payoff.

C.3 Proof of Proposition 12

Proof. Consider the situation when π = 1. If inequality (13) is binding, the market

maker’s expected payoff with flipping is

xfmqm = (1− F (x∗))x∗k(qm) .
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This is the highest possible payoff. If inequality (14) is binding, by Lemma 3, the

tight spread strategy is dominated. Moreover,

xfmqm = (1−F (x∗))x∗k(qm+qh)−(1−F (xfm))xfmk(qh) > (1−F (x∗))x∗(k(qm+qh)−k(qh)) .

Thus, setting xm = xfm is better than setting xm = x∗. By continuity, for π large

enough, it is always optimal to induce flipping.

C.4 Proof of Proposition 13

Proof. The proof is omitted since it is similar to the existence result proved in

previous sections.

D Extension: Supply Schedule and Induced Limit

Order Book

D.1 Proof of Proposition 14

Proof. Obviously, it is not optimal for the market maker to sell any share at a

spread higher than x∗. Then without loss of generality, I only consider the situation

where the market maker set spreads lower than x∗. The proof consists of two steps.

I first show that if the market maker can supply shares with n spreads x1, ..., xn with∑n
i=1 qi = qm, then he should optimally set x1 = ... = xn = x∗. Then I show that

the market maker’s payoff under any supply schedule Ψ(x) can be approximated with

arbitrary precision by a n-spreads supply plan with a large enough n.

Consider the situation when n = N . Without loss of generality, suppose x1 ≤
x2 ≤ ... ≤ xN ≤ x∗. Define q0 = 0. The market maker’s expected payoff is

N∑
i=1

(1− F (xi))xi[k(
i∑

j=0

qj)− k(
i−1∑
r=0

qr)] .

Note that the market maker can increase his expected payoff by setting x1 = x2 since

(1 − F (x))x is increasing in x ∈ [0, x∗]. This reduce the problem to n = N − 1

situation. By induction, for arbitrary n, x1 = ... = xn = x∗ is the optimal supply

schedule.
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Next consider the approximation procedure under arbitrarily fixed qm. For ar-

bitrary Ψ(x), divide its support into n intervals {I1, ..., In}. The Ii interval is from
i−1
n
th quantile to i

n
th quantile. Consider a new supply schedule that supply shares at

n spreads. Specifically, in the new schedule, the market maker supplies qi shares at

spread xi for i = 1, ..., n. Let xi = EΨ(x|x ∈ Ii); qi = qm
n

for all i. Under any buyer’s

demand and buying threshold, realized profits of this new schedule and schedule Ψ

differ by at most a factor of qm
n

, which goes to 0 as n → ∞. Thus, expected profit

from any supply schedule Ψ can be approximated to an arbitrarily close level by a

schedule with n spreads when n is large enough. This establish the fact that the

optimal supply schedule is to sell all shares at the spread x∗.

D.2 Proof of Corollary 5

Proof. The first statement is a straightforward result from Proposition 14. For the

second statement, if the dividend payout is non-zero, the market maker can always

achieve a higher payoff by refraining from paying dividend and supply the extra

amount of shares at the spread x∗ and payout the total return from the extra shares

in the next period.

D.3 Proof of Proposition 15

Proof. From the analysis of the baseline model, any single spread pricing strategy

is dominated either by the wide spread strategy or the tight spread strategy. Thus,

I only need to show that, when the market maker can submit a supply curve, using

the wide spread strategy or the tight spread strategy is not optimal.

Suppose for some π and qh there exists a steady state equilibrium with capital

commitment qm and supply schedule Ψ(x) = I{x≥x∗}. Then upon entering the market,

the HFT would set spread xh = x∗. The market maker’s expected dividend payout

each period would be

π(1− F (x∗))x∗[k(qm + qh)− k(qh)] + (1− π)(1− F (x∗))x∗k(qm) .

Consider a deviation of the market maker by selling ε shares at the spread xε satisfying

(1− F (x∗))x∗(k(ε+ qh)− k(ε)) = (1− F (xε))xεk(qh)
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and qm− ε shares at the spread x∗. Then the HFT would still set spread xh = x∗ and

the market maker’s expected dividend payout would be

div(ε) = (1−F (xε))xεk(ε)+π(1−F (x∗))x∗[k(qm+qh)−k(qh+ε)]+(1−π)(1−F (x∗))x∗[k(qm)−k(ε)] .

Easy to check

div
′
(0) = (1− F (x∗))x∗πG(qh) > 0 .

Thus, the market maker can deviate in pricing to achieve a higher expected payoff.

Contradiction.

For the tight spread strategy, a similar argument can show that the market maker

can achieve higher expected payoff by increasing the spread of a small amount of

shares. This completes the proof.

D.4 Proof of Proposition 16

Lemma 5 In any steady state equilibrium, the HFT set xh = x∗.

Proof. Suppose not, then lim
x→x−h

Ψ(x) < 1. The market maker would achieve a higher

expected payoff by sell qm( lim
x→x∗−

Ψ(x)− lim
x→x−h

Ψ(x)) shares at the spread x∗.

Proof. Proposition 16 First note that if Ψ(x∗) < 1, the market maker can become

better off by selling all shares with spreads higher than x∗ at spread x∗.

Suppose Ψ(x) has a mass point at x < x∗. If the HFT is strictly prefers posting

xh = x∗, then there exists an ε such that the market maker can sell these shares at the

spread x+ ε to achieve higher payoff. If the HFT is indifferent, then there must exist

an ε such that the HFT is strictly prefer setting xh = x∗ than setting xh = x + ε. If

the HFT is indifferent between posting x and x∗, since x is a mass point, there exists

a ε > 0 such that the HFT strictly prefers setting xh = x∗ to setting xh ∈ (x, x + ε).

The market maker can then improve his pricing by selling all shares within the spread

range (x, x+ ε) and some shares at the spread x to the spread x+ ε.

The next step is to show that for any Ψ violating the indifference condition of the

HFT, the market maker can always find a better pricing plan. Specifically, I consider

this problem holding qmΨ(x∗−) and qm constant. First notice that x can be uniquely

pinned down by

(1− F (x∗)x∗)k(qh + qmΨ(x∗−))− k(qmΨ(x∗−)) = (1− F (x)x)k(qh) .
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Denote the pricing distribution satisfying the HFT’s indifference condition by Ψ(x).

Then for all x ∈ [x, x∗], Ψ(x) ≥ Ψ(x). Otherwise the HFT will not set xh = x∗ and

the pricing distribution cannot be optimal at the steady state. Suppose Ψ 6= Ψ, let

x́ = infx{Ψ(x) > Ψ(x)}. Since Ψ(x) does not have mass point, there exists ξ > 0

such that Ψ(x) > Ψ(x) for x ∈ (x́, x́ + ξ] and Ψ(x́ + ξ) > Ψ(x́). Then by the same

approximation and moving mass argument, the market maker is better off selling

shares in the spread interval (x́, x́+ ξ) at the spread x́+ ξ.

E Capital Commitment when G has Non-decreasing

Hazard Rate

This section provides a detailed analysis of the market maker’s capital commitment

strategy when the buyer’s demand G follows a distribution with increasing hazard

rate. Particularly, under any fixed HFT shareholding qh, the market maker has a

unique optimal steady state tight spread strategy.

Proposition 18 Let B = δ
1−δ (1 − F (x∗))x∗ > 1.46 If G has non-decreasing hazard

rate, maxyB
k(y+qh)−k(y)

k(qh)
k(y) + (w0 − y) has a unique solution qm ∈ [0, q̄].

The connection between this proposition and the tight spread strategy is clear.

Notice that a(x) = k(qm+qh)−k(qm)
k(qh)

. By posting spread xm satisfying (1− F (xm))xm =

(1− F (x∗))x∗a(x), a short-run HFT with qh shares has no incentive to undercut the

market maker.

Proof. The first order condition is

W
′
(y) =

B

k(qh)
[(1−G(y))(k(y+ qh)−k(y))− (G(y+ qh)−G(y))k(y)]− 1 = 0 . (37)

When y = 0, W
′
(0) = B − 1 > 0. When y ≥ q̄, W

′
(y) < B(1−G(q̄))k(y+qh)−k(y)

k(qh)
− 1.

Since B(1−G(q̄)) = 1, W
′
(y) < 0. By continuity, W

′
(y) cross zero at least once for

y ∈ [0, q̄]. If I can show that W
′

only cross zero once, then a unique maximizer exists.

Consider any qm such that W
′
(qm) = 0. We have

(1−G(qm))[k(qm + qh)−k(qm)]− (G(qm + qh)−G(qm))k(qm) = k(qh)(1−G(q̄)) > 0 .

(38)

46If B ≤ 1, the market maker would not make that market even as a monopolist.
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Thus,
k(qm + qh)− k(qm)

k(qm)
>
G(qm + qh)−G(qm)

1−G(qm)
. (39)

Next I show that W
′′
(qm) < 0. W

′′
(qm) < 0 is equivalent to

g(qm)[k(qm+qh)−k(qm)]+k(qm)[g(qm+qh)−g(qm)]+2(1−G(qm))[G(qm+qh)−G(qm)] > 0 .

(40)

Since G(qm + qh)−G(qm) > 0, a sufficient condition for inequality (40) is

g(qm)[k(qm + qh)− k(qm)] > k(qm)[g(qm)− g(qm + qh)] . (41)

Since G has non-decreasing hazard rate, g(qm+qh)
1−G(qm+qh)

≥ g(qm)
1−G(qm)

. Thus, g(qm)− g(qm +

qh) ≤ G(qm+qh)−G(qm)
1−G(qm)

g(qm). This implies inequality (39) is sufficient for inequality

(41).

In sum, there exists a qm ∈ [0, q̄] such that W
′
(qm) = 0. Moreover, for any qm

such that W
′
(qm) = 0, W

′′
(qm) < 0. This implies that W (y) has a unique maximum.

Proposition 19 Suppose G has non-decreasing hazard rate. Consider two simulta-

neous pricing games where the market maker has discount rate δ1 in the first game

and discount rate δ2 in the second game. Suppose δ1 > δ2 and all other parameters

are the same. Let q1
m (q2

m) be the market maker’s steady state capital commitment in

the first game (the second game). Then q1
m > q2

m.

Proof. Let B1 = δ1
1−δ1 (1−F (x∗))x∗; B2 = δ2

1−δ2 (1−F (x∗))x∗. If the market maker is

using the wide spread strategy in both games, then q1
m > q2

m directly follows from the

first order condition. If the market maker is using the tight spread strategy in both

games, then by the first order condition,

B1

k(qh)
[(1−G(q1

m))(k(q1
m + qh)− k(q1

m))− (G(q1
m + qh)−G(q1

m))k(q1
m)]− 1 = 0 .

Since B1 > B2, we have

B2

k(qh)
[(1−G(q1

m))(k(q1
m + qh)− k(q1

m))− (G(q1
m + qh)−G(q1

m))k(q1
m)]− 1 < 0 .
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Then by Proposition 18, there exists a unique q2
m < q1

m such that

B2

k(qh)
[(1−G(q2

m))(k(q2
m + qh)− k(q2

m))− (G(q2
m + qh)−G(q2

m))k(q2
m)]− 1 = 0 ,

and q2
m maximize the market maker’s expected payoff given he is using a tight spread

strategy in the steady state. If the market maker is using the wide spread strategy in

the first game and the tight spread strategy in the second game, combine the result

about with Theorem 3 yield the result that q1
m > q2

m. This covers all situations when

the market maker is using the wide spread strategy in the first game.

Now consider the situation where the market maker is using the tight spread strat-

egy in the first game. Let q1
t and q1

w (q2
t and q2

w) be the market maker’s shareholding

under the optimal tight and wide spread strategy in the first (second) game. Since

the market maker is using the tight spread strategy in the first game, q1
m = q1

t . By

the discussion above, q1
t > q2

t ; q
1
w > q2

w. If q1
t > q2

w, the claim is true. Thus, we only

consider the case when q1
t ≤ q2

w.

From the optimality condition,

δ1

1− δ1

M(q1
t )+(w0−q1

t ) ≥
δ1

1− δ1

M(q1
w)+(w0−q1

w) >
δ1

1− δ1

M(q2
w)+(w0−q2

w) , (42)

where M(·) is the expected profit of the market maker in a one-shot game. If M(q1
t ) >

M(q2
w), since q1

t ≤ q2
w, we have

δ2

1− δ2

M(q2
t ) + (w0 − q2

t ) >
δ2

1− δ1

M(q1
t ) + (w0 − q2

t ) >
δ2

1− δ2

M(q2
w) + (w0 − q2

w) .

Thus, the market maker would use the tight spread strategy in the second game and

q1
m > q2

m = q2
t .

If M(q1
t ) ≤M(q2

w), from equation 42 and δ1
1−δ1 >

δ2
1−δ2 , we also have

δ2

1− δ2

M(q2
t ) + (w0 − q2

t ) >
δ1

1− δ2

M(q1
t ) + (w0 − q2

t ) >
δ2

1− δ2

M(q2
w) + (w0 − q2

w) .

This implies q1
m > q2

m = q2
t and concludes the proof.

This result is important for the simultaneous pricing game extension. Notice

that the equilibrium I construct in the simultaneous pricing game might not be sub-

game perfect. In the sub-game where the market maker commits less capital than
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the steady state level, it might not be optimal for the market maker to stick to the

strategy specified in the equilibrium since net worth may have additional benefit.

However, if I assume G has non-decreasing hazard rate, this is not a problem since I

can consider a game where the HFT is uncertain about the market maker’s discount

rate δ and infers it from the market maker’s capital commitment decision. This result

guarantees the existence of a separating equilibrium where in equilibrium, the market

maker’s discount rate is perfectly signaled by his capital commitment decision.47 In

this sense, the equilibrium I propose coincide with a perfect Bayesian equilibrium in

this extended game.

Proposition 20 Suppose G has non-decreasing hazard rate. If qh ≥ q̄
2
, argmaxyW (y) ∈

[0, q̄
2
].

Proof. By Proposition 18, if W
′
( q̄

2
) ≤ 0, then argmaxyW (y) ∈ [0, q̄

2
]. Thus, it is

sufficient to show that for all qh ≥ q̄
2
, W

′
( q̄

2
) ≤ 0.

This is equivalent to

k(qh)(1−G(q̄)) + (G(
q̄

2
+ qh)−G(

q̄

2
))k(

q̄

2
)− [1−G(

q̄

2
)][k(

q̄

2
+ qh)− k(

q̄

2
)] ≥ 0 . (43)

When qh = q̄
2
, the LHS of inequality (43) becomes

(1−G(
q̄

2
))[2k(

q̄

2
)− k(q̄)] . (44)

This quantity is greater than zero since 2k( q̄
2
) > k(q̄). Denote the LHS of inequality

(43) by J(qh). If J(qh) is increasing in qh, the lemma is proved.

J
′
(qh) = (1−G(qh))(1−G(q̄)) + g(

q̄

2
)k(

q̄

2
)− [1−G(

q̄

2
)](1−G(

q̄

2
+ qh)) . (45)

A sufficient condition of J
′
(qh) ≥ 0 is 1−G(q̄)

1−G( q̄
2

)
≥ 1−G( q̄

2
+qh)

1−G(qh)
. Since qh ≥ q̄

2
, it is sufficient

to have 1−G(q̄+z)

1−G( q̄
2

+z)
decreasing in z. Take derivative to get

− g(q̄ + z)(1−G(
q̄

2
+ z)) + g(

q̄

2
+ z)(1−G(q̄ + z)) ≤ 0 . (46)

47When the market maker’s capital commitment cannot be mapped to any δ, any off path belief
can be specified. For example, the HFT may assume that the market maker is maximizing the short
term profit.
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This condition is satisfied due to the increasing hazard rate of G.

F Social Planner’s Perspective on Welfare

In this section, I briefly discuss the social planner’s perspective on welfare. In practice,

the social planner can be either a policy maker or an exchange, aiming at maximizing

market participants’ welfare. I assume that the social planner can control qm, the

market maker’s capital commitment and π, the HFT’s entry probability. In this case,

the social planner provides the market maker operating capital qm at period 0 to make

the market and the market maker pays the profit from market making as dividend.48

For simplicity, I focus on the situation where the HFT trades faster than the market

maker.

If the social planner aims at maximizing liquidity, he has two possible policies.

Either he relies on the market maker to supply liquidity by setting qm = ∞ and

π = 0.49 In this market, L = (1−F (x∗))EG(qb) = (1−F (x∗))k(∞). Alternatively, the

social planner can rely on both the market maker and the HFT to supply liquidity by

setting qm = qh and π = 1. In this market, L = (1−F (x∗))k(2qh)+[F (x∗)−F (x)]k(qh)

where x is uniquely pinned down by a(x)k(qh) = k(2qh)− k(qh). The social planner

would choose the policy that provides higher liquidity. Intuitively, when qh is large,

the social planner tends to use the latter policy. In either case, the social planner is

committing more capital than the profit maximizing market maker.

48Alternatively, I may assume the social planner set a mandatory capital commitment level for
the market maker. Two settings lead to similar qualitative results.

49π can be any number between 0 and 1 and market liquidity will be the same.
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