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Abstract
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I. Introduction

The average return that any hedge fund i delivers to investors is the sum of two components. The

alpha component ac∗i is based on private information—it captures the net return that the fund pro-

duces by using its proprietary information signals. The beta component bc∗i is based on public

information—it captures the return that the fund produces by following mechanical trading strate-

gies. The economic importance of these two components is potentially large. A commonly held

view is that hedge fund managers deliver positive alphas because they are more sophisticated, less

constrained, and more incentivized than mutual fund managers. In addition, the literature consis-

tently emphasizes that hedge funds take advantage of the positive returns of alternative strategies

that are weakly correlated with the equity market (e.g., Carhart et al., 2014; Pedersen, 2015).

Decomposing returns is key for evaluating the performance and risk profile of hedge funds. It

is therefore important for researchers, investors, and policymakers alike. This decomposition is

likely to exhibit substantial variation across funds as they follow many investment strategies and

private information signals (e.g., Lhabitant, 2007). As a result, averaging across funds provides

limited information about the entire fund population. For example, it does not reveal how many

funds deliver positive alphas—an important quantity for testing the predictions of equilibrium

models of active asset management. Capturing fund heterogeneity is also crucial for hedge fund

investors because they can only invest in a handful of funds (Bollen, Joenväärä, and Kauppila,

2021). These arguments call for the estimation of the entire distributions of the alpha and beta

components characterized by the densities ϕ∗
ac and ϕ∗

bc.

The estimation of these distributions is hampered by misspecification. Capturing all the strate-

gies followed by hedge funds is notoriously difficult, which implies that any chosen model k is

likely misspecified—that is, it omits relevant factors that drive the beta components of individual

funds. In this case, we cannot infer the true components ac∗i and bc∗i . Instead, we can only observe

the estimated components âcki and b̂c
k

i , which serve as inputs to compute the distributions ϕ̂k
ac and

ϕ̂k
bc. These distributions are imperfect and noisy versions of ϕ∗

ac and ϕ∗
bc. They are imperfect be-

cause the alphas absorb the average returns of the factors omitted by the model. Put differently,

high alphas are simply hidden betas. The distributions are also noisy because of the sampling vari-

ation of the omitted factors. This misspecification-driven variation, which affects all funds, does

not vanish even when the fund population grows large.
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We propose a new methodology to address the challenges of misspecification. We develop a

nonparametric approach for estimating the distributions ϕk
ac and ϕk

bc for any chosen factor model.

Its key feature is to explicitly account for the dual impact of misspecification. First, it provides a

framework for comparing models and identifying the ones with greater ability to capture alternative

strategies. Using models less prone to misspecification produces a sharper identification of the true

alpha and beta components ac∗i and bc∗i . Second, it comes with a full-fledged asymptotic theory that

incorporates the estimation noise due to misspecification. This contribution is crucial to conduct

proper statistical inference on the fund alphas and betas and perform valid model comparison tests.

Our approach contributes to previous studies which measure the distribution of fund alphas

under correct specification (e.g., Barras, Gagliardini, and Scaillet, 2022; Harvey and Liu, 2018). In

contrast, we account for the impact of misspecification, which is essential for decomposing hedge

fund returns. Our approach also provides the first formal comparison of misspecified models in

a large population of funds. It therefore departs from previous tests based on a small number of

assets (e.g., Kan and Robotti, 2009; Kan, Robotti, and Shanken, 2013). We cannot apply such tests

here because they require the inversion of the entire return covariance matrix—an operation that

cannot be performed because the number of funds is larger than the number of return observations.

To demonstrate the benefits of our approach, we apply it to a set of nine diverse models. In ad-

dition to the CAPM, we include four standard models commonly used in previous work: the mod-

els of Carhart (1997), Fama and French (2015), Fung and Hsieh (2004), and Asness, Moskowitz,

and Pedersen (2013). We examine the two machine learning models of Kozak, Nagel, and San-

tosh (2020) trained on 50 characteristic-based equity portfolios. Finally, we consider two models

formed with five additional factors that plausibly capture hedge fund strategies: marketwide illiq-

uidity, betting-against-beta (BAB), variance (short position), carry, and time-series (TS) momen-

tum.1 The first model by Joenväärä et al. (2021) (JKKT) is a Carhart model with illiquidity, BAB,

and TS momentum. Based on the work by Carhart et al. (2014) and Pedersen (2015), we form a

second model (CP) that includes all five additional factors (alongside with market and size).

We conduct our analysis between 1994 and 2020 using monthly data on 5,231 hedge funds.

Following Joenväärä et al. (2021), we carefully aggregate four different databases and mitigate

1As discussed in Section IV.B, the illiquidity, BAB, carry, and TS momentum factors are constructed by Pástor and
Stambaugh (2003), Frazzini and Pedersen (2014), Koijen et al. (2018), and Moskowitz, Ooi, and Pedersen (2012).
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the various biases that affect hedge fund reporting (backfill, selectivity, and survivorship). For

each model k, the estimation of the alpha and beta distributions ϕk
ac and ϕk

bc requires as inputs the

estimated components âcki and b̂c
k

i for each fund. To this end, we run a regression of the excess

return (net of fees) of each fund on the excess returns of the factors included in model k. We then

compute the two components as âcki = α̂k
i and b̂c

k

i = µ̂i − âcki , where α̂k
i and µ̂i are the estimated

alpha and the average return of the fund.

Our formal comparisons uncover sharp differences between models. In our baseline analysis,

we use as reference the CAPM—a simple model that is ill-equipped to capture hedge fund returns

(beyond the market premium). If a proposed model delivers the same alphas as the CAPM, it is

therefore unable to capture any of the alternative strategies followed by hedge funds. We reach

this conclusion for all the standard and machine learning models. In contrast, the JKKT and CP

models are able to capture the premia on alternative factors. In particular, the difference between

the CP model and the CAPM is statistically and economically large, stable over time, and robust

to the inclusion of factor trading costs and alternative filters for reducing data biases.

These results have strong implications for the fund return decomposition. Consistent with

previous studies, the standard models produce large alpha components—more than 70% of the

funds have a positive alpha equal to 2.7% per year on average.2 At the same time, the average

beta component due to the non-market factors (i.e., all factors but the market) barely reaches 0.2%

per year. Therefore, hedge funds deliver superior performance, while being immune to alternative

sources of risk. The CP model reverses this conclusion. We find that only 50% of the funds deliver

positive alphas. The average alpha drops to 0.4% per year, whereas the non-market factors become

the main contributors to average returns (2.9% per year).

The five additional factors are economically important. The majority of the funds load posi-

tively on each of them, which supports the view that hedge funds follow alternative strategies to

boost returns (e.g., Carhart et al., 2014). We also find that underperforming funds are particularly

aggressive in their factor exposures—possibly to boost returns and hide their lack of skills. Out

of the five factors, the CP model includes the three most relevant ones—TS momentum, variance,

and carry—whose respective return contributions are equal to 1.1%, 0.8%, and 0.4% per year. This

2A non-exhaustive list of papers that document positive average alphas under the standard models includes
Avramov, Barras, and Kosowski (2013), Buraschi, Kosowski, and Trojani (2014), Capocci and Hübner (2004), Chen,
Cliff, and Zhao (2017), Diez de los Rios and Garcia (2010), Kosowski, Naik, and Teo (2007).
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finding explains the edge of the CP model over the JKKT model. It is also in line with ample anec-

dotal evidence that hedge funds follow trends, take short option positions, and buy cheap assets

with high carry (Asness et al., 2015; Pedersen, 2015).

Next, we turn to the analysis of three diverse investment categories: (i) equity funds, (ii) macro

funds, and (iii) arbitrage funds. We find that the superiority of the CP model applies to each

category. The average alpha is equal to 0.6%, -0.4%, and 0.9% per year for equity, macro, and

arbitrage funds (versus 2.4%, 3.7%, and 2.8% under the CAPM). The widespread reduction in

alphas arises because some additional factors transcend style boundaries. For instance, carry is

widely used by hedge funds regardless of their styles when they implement currency carry trades,

buy high-yield bonds, or favor value stocks (Pedersen, 2015). At the same time, some factors

primarily matter for specific styles. For instance, TS momentum is crucial for capturing trend-

following strategies in the macro category. This result highlights the potential benefits of including

style-specific factors to lower model misspecification.

The analysis of investment styles reveals a large fund heterogeneity. Under the CP model, the

cross-sectional volatilities in the alpha and beta components range between 4.9% and 11.0% per

year. Therefore, sorting funds based on the three categories does not produce homogenous groups

with similar performance and risk profiles. This heterogeneity provides key insights on how to

form models using style information. It invalidates the common practice of peer benchmarking

which imposes that all funds in a given category are benchmarked against the same style index. It

also suggests that style-specific factor models are more effective when applied to narrowly-defined

investment categories (see, for instance, Duarte, Longstaff, and Yu, 2006).

Fund heterogeneity introduces uncertainty in the fund selection process. To reduce this uncer-

tainty, we examine whether fund characteristics that proxy for managerial incentives and flexibility

(e.g., performance fees, lockup period) can be used as initial filters. We find that it is the case—

the proportion of positive-alpha funds is systematically higher among funds with higher incen-

tives/flexibility. Fund heterogeneity has also implications for models of active management. The

Berk and Green (2004) model predicts that all funds deliver zero alphas. Whereas this prediction

holds quite well for mutual funds, it is at odds with our empirical results. In contrast, the model of

Gârleanu and Pedersen (2018) is consistent with fund heterogeneity as investors are compensated

for search costs—an intuitive explanation given the complex process of evaluating hedge funds.
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Our analysis uncovers notable time trends between 1994 and 2020. Whereas hedge funds

remain unique in their exposures to alternative strategies, they converge towards mutual funds

along two dimensions. First, their performance becomes increasingly similar as the gap in alphas

reaches its lowest value of 1.6% in 2020. Second, they load increasingly on the equity market after

the 2008 crisis. The equity market is now the most prevalent risk factor—its average contribution

is equal to 2.3% per year, which represents 44% of the total beta component.

Finally, our approach sheds light on the impact of investor sophistication on hedge fund val-

uation. Whereas the CP alpha gives the valuation of a hypothetical investor able to replicate the

five additional factors, the CAPM alpha determines the valuation of a less sophisticated investor

who can only invest in the market. We find that the average valuation gap is large (2.6% per year)

as the CAPM investor values the alpha component as well as the return contribution of alternative

strategies she cannot replicate. Examining fund flows, we find that real-world hedge fund investors

are closer to the CP investor in terms of sophistication. Decomposing returns across funds with

low and high flows, we find that flows primarily respond to the alpha component obtained with the

CP model, but not to the beta component (as would a CAPM investor do).

The remainder of the paper is as follows. Section II presents the framework for decomposing

hedge fund returns. Section III describes the methodology. Section IV presents the hedge fund

dataset and the models. Section V contains the empirical analysis, and Section VI concludes. The

appendix provides additional information on the methodology, the data, and the empirical results.

II. Decomposing Hedge Fund Returns Under Misspecification

II.A. Theoretical Framework

II.A.1. Definition of the Alpha and Beta Components

We consider a population of n funds over T periods and denote by ri,t the excess net-of-fee re-

turn that fund i (i = 1, . . . , n) delivers to investors at time t (t = 1, . . . , T ). Our objective is to

decompose the average fund return E[ri,t] into its alpha and beta components. The definition of

each component hinges on its information source. The alpha component ac∗i is based on private

information—it captures the net return that the fund produces by trading on its proprietary infor-

mation signals. The beta component bc∗i is based on public information—it captures the return that
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the fund produces by following mechanical trading strategies. Put differently, bc∗i represents the

return component that sophisticated investors with access to public information can replicate.

To formalize this intuition, we denote the excess return vector of the mechanical strategies by

ft and its average value by E[ft] = λ. If the factors ft are known, we can decompose the average

fund return as

E[ri,t] = ac∗i + bc∗i = α∗
i + b∗′i λ, (1)

where ac∗i is given by the fund alpha α∗
i and bc∗i = b∗′i λ corresponds to the average return of a

benchmark portfolio with the same betas on the mechanical strategies as the fund.3 This decompo-

sition allows the number of factors to be large as ft includes all the alternative strategies followed

by hedge funds. In particular, ft includes the returns of dynamic strategies (or managed portfolios).

Therefore, the use of constant betas is not restrictive for capturing factor-timing strategies based

on public information (see, e.g., Ferson and Schadt, 1996; Haddad, Kozak, and Santosh, 2020;

Kelly and Pruitt, 2013). To elaborate, suppose that hedge funds commonly change their market

betas after observing a public signal zt−1 that predicts the equity market return rm,t. Equation (1)

absorbs the time-variation in betas by including the scaled factor zt−1rm,t in the vector ft.
4

The magnitude of the beta component depends on the factor premia λ. Consistent with standard

asset pricing models, these premia can be a compensation for fundamental sources of risk in the

economy. They can also reflect limits to arbitrage when hedge funds bear nonfundamental risk to

correct price anomalies caused by behavioral biases (Gromb and Vayanos, 2010). Finally, they can

be the outcome of market segmentation when hedge funds require a premium for holding stocks

that constrained investors cannot buy (e.g., Merton, 1987). We remain agnostic on the drivers of

the premia—bc∗i simply controls for strategies that investors can replicate using public information.

II.A.2. Remarks About the Alpha and Beta Components

The return decomposition in Equation (1) calls for several comments. First, the alpha component

ac∗i is a measure of performance, not skill. Whereas the two notions are commonly used inter-

3A key requirement is that all elements in ft are excess returns (i.e., tradable factors with zero prices). Otherwise,
λ ̸= E[ft], implying that the difference E[ri,t]− b∗′i E[ft] cannot be interpreted as the alpha α∗

i (see Ferson, 2013).
4This reasoning is also valid if the public signal is observed multiple times between t − 1 and t. For instance,

suppose that we observe fund returns at a monthly frequency and that hedge funds change their market betas using
daily signals zdt−1 (d = 1, 2, ...). In this case, we include the scaled factor

∑
d z

d
t−1r

d
m,t (ignoring compounding for

simplicity), where rdm,t denotes the daily stock return (Patton and Ramadorai, 2013).
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changeably, they differ in important ways (Barras, Gagliardini, and Scaillet, 2022; Berk and van

Binsbergen, 2015). Skill determines whether funds are able to create value by exploiting supe-

rior information. Performance determines whether investors hold sufficient bargaining power to

receive some of this value. Positive performance implies positive skill, but not vice-versa.

Second, Equation (1) ignores the short-term variations in alpha (around its average α∗
i ) that

could arise from changing economic conditions, industry competition, or aggregate mispricing

(e.g., Avramov, Barras, and Kosowski, 2013; Pástor, Stambaugh, and Taylor, 2015, 2017). As

discussed below, measuring α∗
i for hedge funds is a challenging task. Modelling its conditional

variation via a proper choice of predictors and functional forms makes the estimation even more

difficult (see, e.g., Gagliardini, Ossola, and Scaillet, 2020; Bakalli, Guerrier, and Scaillet, 2021).

Third, Equation (1) does not require that we model the determinants of ac∗i and bc∗i across funds.

Both components may depend on several fund characteristics such as fees, share restrictions, or

leverage.5 Specifying these characteristics is useful for identifying funds with high alpha or high

exposures to specific strategies (as discussed in Section V.C.1). However, it is not necessary for

estimating the two components ac∗i and bc∗i .

II.A.3. The Distributions of the Alpha and Beta Components

Hedge funds follow diverse alternative strategies and rely on multiple information signals to create

value. It is therefore likely that the alpha and beta components vary across funds. This hetero-

geneity cannot be captured with a simple average—instead, it requires that we estimate the entire

cross-sectional distributions characterized by their densities ϕ∗
ac and ϕ∗

bc.

Measuring fund heterogeneity is important for several reasons. The alpha distribution ϕ∗
ac

determines how many funds deliver positive alphas—a key quantity to test the equilibrium pre-

dictions of asset management models. It is also useful for hedge fund investors who only select a

handful of funds because of multiple frictions (Bollen, Joenväärä, and Kauppila, 2021). The alpha

distribution allows these investors to determine the range of performance outcomes when selecting

funds. In other words, ϕ∗
ac has a natural Bayesian interpretation as it provides prior information

about individual fund alphas (e.g., Jones and Shanken, 2005; Pástor and Stambaugh, 2002).

5To see how leverage changes the alpha and beta components across funds consider a set of hedge funds with
access to the same active strategy whose average net exess return is equal to α∗ + b∗′λ = ac∗ + bc∗. For each fund i,
both ac∗i and bc∗i scale up with its leverage ratio πi: ac

∗
i = πiac

∗ and bc∗i = πibc
∗.
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The distribution ϕ∗
bc measures how many funds follow mechanical strategies. It also determines

whether funds with the same investment style have similar risk profiles. While this information

obviously matters for researchers and investors, it is also relevant for regulators. As discussed by

Brown, Lynch, and Petajisto (2010, ch. 12), hedge funds can contribute to systemic risk when they

liquidate positions, reduce liquidity provisions, or impose losses on counterparties. Contrary to a

simple average, ϕ∗
bc can identify clusters of funds with strong exposures to similar factors.

II.B. The Misspecification of Hedge Fund Models

II.B.1. The Prevalence of Misspecification

The theoretical decomposition in Equation (1) is important for defining the alpha and beta distri-

butions ϕ∗
ac and ϕ∗

bc. However, it does not provide guidance for estimating these distributions for

two reasons. First, we do not know the identity of the factors in ft. Second, data limitation and

overfitting issues favor models with a parsimonious number of factors.

Choosing appropriate factors is a daunting task as hedge funds invest in many countries and

asset classes (Lhabitant, 2007). They take nonlinear option positions that are difficult to capture

with a limited set of option factors (Karehnke and de Roon, 2020). Hedge funds also follow

multiple dynamic strategies in which the portfolio composition or leverage ratio respond to chang-

ing economic conditions (Avramov, Barras, and Kosowski, 2013; Bollen and Whaley, 2009; Ang,

Gorovyy, and van Inwegen, 2011). Based on this analysis, there is no hope of capturing the average

returns of all the alternative hedge fund strategies. As a result, the empirical return decomposition

is likely based on a misspecified model—that is, a model that omits some relevant factors in ft.
6

Misspecification also arises when measuring how hypothetical investors with different sophis-

tication levels value the alpha and beta components. Whereas the most sophisticated investors only

care about ac∗i , less sophisticated ones also value bc∗i because it provides exposure to alternative

strategies that are difficult to replicate (e.g., Agarwal, Green, and Ren, 2018). To evaluate hedge

funds from the viewpoint of a particular investor, we need a model that only includes the factors

that she can replicate. This model is therefore misspecified because it only includes a subset of ft.

6One could use holdings-based benchmarks to avoid specifying the factors (e.g., Grinblatt and Titman, 1993; Lo,
2008). However, these measures are still subject to misspecification when the fund exhibits time-varying betas (Ferson
and Khang, 2002). Another issue is that hedge funds generally do not disclose their portfolio weights.
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II.B.2. The Dual Impact of Misspecification

Misspecification has a dual impact on the estimation of the distributions ϕ∗
ac and ϕ∗

bc. First, the

estimation is imperfect. To see this point, suppose that we use a misspecified model k that only

includes the factors fk
I,t, but omits the factors fk

O,t (with ft = (fk′
I,t, f

k′
O,t)

′). From Equation (1), we

have E[ri,t] = ac∗i + bc∗i,I + bc∗i,O, where bc∗i,I = b∗′i,Iλ
k
I and bc∗i,O = b∗′i,Oλ

k
O are the beta components

due to the included and omitted factors under the true model (i.e., b∗i,I and b∗i,O are the true fund

exposures to fk
I,t and fk

O,t). The key question is how the omitted beta component bc∗i,O affects the

return decomposition obtained with the misspecified model, which we write as E[ri,t] = acki +bcki .

Regressing the omitted factors on the included factors, we have fk
O,t = αk

O + Ψk
O,If

k
I,t + uk

O,t

and λk
O = αk

O + Ψk
O,Iλ

k
I , where αk

O is the vector of factor alphas, Ψk
O,I is the matrix of slope

coefficients, and uk
O,t is the vector of errors. We can split the omitted beta component into two

parts: bc∗i,O = b∗′i,Oα
k
O+b∗′i,OΨ

k
O,Iλ

k
I , where the split depends on the correlation between the included

and omitted factors (captured by Ψk
O,I). The first part, which arises from the component of fk

O,t

that is orthogonal to fk
I,t, is absorbed by acki . The second part, which arises from the component of

fk
O,t that is spanned by fk

I,t, is absorbed by bcki . As a result, we have:

acki = ac∗i + b∗′i,Oα
k
O = αk

i , (2)

bcki = bc∗i − b∗′i,Oα
k
O = bk′i,Iλ

k
I , (3)

where αk
i and bki,I = b∗i,I+Ψk′

O,Ib
∗
i,O are the coefficients from the regression of the fund return ri,t on

the factors fk
I,t included in model k (and a constant). Equations (2)–(3) reveal that acki and bcki are

informative about the true components ac∗i and bc∗i . However, this information is polluted—if the

fund loads on alternative strategies with positive alphas, b∗′i,Oα
k
O is positive and the model-implied

alpha component is inflated (acki > ac∗i and bcki < bc∗i ). Misspecification produces an imperfect

estimation because we can only infer the pseudo-true distributions ϕk
ac and ϕk

bc, but not the true

ones ϕ∗
ac and ϕ∗

bc (Gourieroux, Monfort, and Trognon, 1984; White, 1982).

The second impact of misspecification pertains to estimation noise. When model k is misspec-

ified, the densities ϕk
ac and ϕk

bc are estimated with substantial noise. The simplest way to illustrate

this point is to focus on the average alpha Mk
1,ac =

∫ +∞
−∞ xϕk

ac(x)dx, where ϕk
ac(x) is the density
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evaluated at x. To estimate Mk
1,ac, we run the linear regression under model k for each fund:

ri,t = αk
i + bk′i,If

k
I,t + εki,t . (4)

We then compute the cross-sectional mean M̂k
1,ac =

1
n

∑
i âc

k
i =

1
n

∑
i α̂

k
i .

Contrary to the correctly specified case, the error terms εki,t in Equation (4) are strongly cross-

sectionally correlated because they all depend on the common omitted factors fk
O,t. Formally, we

have εki,t = ε∗i,t + b∗′i,Ou
k
O,t, where uk

O,t is the error vector of fk
O,t. Even if the hedge fund population

size n is large, the information is limited because the values of âcki (i = 1, ..., n) are all impacted

by the random realizations of the omitted component uk
O,t. It implies that M̂k

1,ac is estimated with

substantial noise, as discussed in detail in Section III.

II.C. A New Approach for Addressing Misspecification

II.C.1. Overview of the Approach

We develop a novel approach to estimate the entire alpha and beta distributions for any model. A

key feature of our approach is to explicitly account for the dual impact of misspecification. First,

it allows for an examination of multiple models to address the imperfect separation between alpha

and beta. Given the diversity in hedge fund strategies, several models can reasonably be used for

decomposing returns. By designing formal comparison tests, we identify models less prone to

misspecification and more able to capture the true distributions ϕ∗
ac and ϕ∗

bc.
7

Second, our approach comes with a full-fledged inferential theory to incorporate the estimation

noise caused by misspecification. We derive the asymptotic properties of the estimated distribu-

tions in a setting that accounts for the large population of hedge funds observed in the data (i.e.,

we let n to grow large). Using these results, we (i) conduct proper statistical inference on the

distributions for each model, and (ii) obtain valid tests for comparing models.

Our approach departs from previous studies that estimate the alpha distribution (e.g., Chen,

Cliff, and Zhao, 2017; Harvey and Liu, 2018). First, it does not assume that the model is correctly

specified—an important feature given the difficulty in modeling hedge fund returns. Second, it

provides a framework for estimating both the alpha and beta distributions. Third, it is flexible

7Another benefit of this comparison analysis is to measure how hypothetical investors with different sophistication
levels value hedge fund investments—an issue that we examine empirically in Section V.E.
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because it imposes no restrictions on the shape of these distributions. Fourth, it is simple and

fast as it does not rely on sophisticated and computer-intensive Gibbs sampling and expectation

maximization methods. Last but not least, it allows us to conduct statistical inference and formal

testing guided by econometric theory.

II.C.2. Comparing Models using the CAPM

The comparison of models ultimately hinges on their ability to capture alternative strategies. These

strategies, which are weakly correlated with the equity market, represent a defining feature of

hedge funds.8 Superior models capture the positive premia earned on alternative strategies and

thus deliver alpha components close to zero. In contrast, highly misspecified models are unable

to do so and produce larger alphas. To distinguish between these models, we use the CAPM as a

reference—that is, we formally compare the alphas under any proposed model k and the CAPM.

The CAPM is a natural reference for two reasons. First, it controls for the equity market risk

taken by hedge funds—an opener evaluation practice among academics and practitioners. Second,

it is the simplest and thus the least equipped model for capturing alternative strategies. To formalize

this point, we refer to the CAPM as model 0 and denote by f 0
I,t the market factor and by f 0

O,t the

set of alternative strategies. If f 0
I,t and f 0

O,t are uncorrelated (Ψ0
O,I = 0), we have α0

O = λ0
O. As a

result, the CAPM alpha entirely absorbs the beta component bc∗i,O due to the alternative strategies:

ac0i = ac∗i + b∗′i,Oα
0
O = ac∗i + b∗′i,Oλ

0
O = ac∗i + bc∗i,O . (5)

Building on this insight, our comparison analysis delivers a strong message. If the alpha distribu-

tions ϕk
ac and ϕ0

ac are identical, it implies that model k is as misspecified as the CAPM. In other

words, model k is unable to capture any of the alternative strategies followed by hedge funds.9

II.C.3. A Simple Illustrative Example

Before presenting our approach in more detail, we briefly illustrate its usefulness using a simple

example. We assume that the correct hedge fund model includes the market and three uncorrelated

8For instance, Carhart et al. (2014) define alternative (exotic) betas as exposures to risk factors that are uncorrelated
with global equity markets and have positive expected returns. They also note that "it is fair to characterize hedge funds
as providing considerable exposure to equity market risk and to alternative risk premiums.”

9Whereas we use the CAPM for the baseline analysis, our comparison tests can be applied to any pair of models.
We can therefore replace the CAPM with any model commonly used for performance evaluation (see Section V.A.1).
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alternative factors: E[ri,t] = α∗
i +b∗i,mλm+b∗i,1λ1+b∗i,2λ2+b∗i,3λ3, where λm is the equity premium,

and λj denotes the premium of each alternative factor j (j = 1, 2, 3), which we set equal to λm.

For each fund, the alpha component α∗
i is drawn from a normal N(µ∗

α, σ
∗2
α ), b∗i,m from a normal

N(µ∗
b , σ

∗2
b ), and b∗i,j from a normal N(µ∗

bj
, σ∗2

b ), where µ∗
bj

is positive to capture the view that hedge

funds load on alternative strategies (each draw is mutually independent). We further assume that

the first factor is more important by setting µ∗
b1
= µ∗

b and µ∗
b2
= µ∗

b3
= µ∗

b/3.

We consider a misspecified hedge fund (HF) model (model 1) that includes the market and two

out of the three alternative factors (f1 and f2). We compare this model with the CAPM (model

0), which only includes the market. For each model, we assume that we observe the fund alpha

and beta components without errors, leaving aside estimation noise for now. Given the above

assumptions, the alpha and beta densities are normal. Under the CAPM, we have

ac0i ∼ N(µ∗
α + (µ∗

b1
+ µ∗

b2
+ µ∗

b3
)λ, σ∗2

α + 3σ∗2
b λ2) , (6)

bc0i ∼ N(µ∗
bλ, σ

∗2
b λ2) , (7)

while the HF model produces the following densities:

ac1i ∼ N(µ∗
α + µ∗

b3
λ, σ∗2

α + σ∗2
b λ2) , (8)

bc1i ∼ N((µ∗
b + µ∗

b1
+ µ∗

b2
)λ, 3σ∗2

b λ2) . (9)

To begin, we plot in Panel A of Figure 1 the two alpha densities using the following parameter

values: µ∗
α = 0%, σ∗

α = 1.4%, λ = 7.5%, µ∗
b = 0.3, and σ∗

b = 0.4.10 The comparison of ϕ0
ac

and ϕ1
ac reveals that the magnitude of the alpha components decreases substantially under the HF

model (ϕ1
ac moves to the left towards zero). This difference arises because the HF model captures

two alternative strategies (out of three) and thus produces a sharper identification of ac∗i and bc∗i .

The implications for performance evaluation are economically important. Under the CAPM, the

average alpha reaches 3.8% per year. Under the HF model, the average drops to 0.8% per year and

moves closer to the true average µ∗
α equal to zero.

10We express µ∗
α, σ∗

α, and λ in percent per year. For simplicity, we set µ∗
α equal to zero and calibrate σ∗

α using the
the value reported by Barras, Gagliardini, and Scaillet (2022, Table VI). We further set λ equal to the average market
return and µb, σb equal to the cross-sectional mean and volatility of the market betas in our sample of hedge funds.
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In addition to reducing the magnitude of the alphas, the HF model also produces a lower dis-

persion as it absorbs the variation due to factors 1 and 2 (the term 2σ∗2
b λ2). However, this result

depends on the specific assumptions in our simple example—in particular, we assume that funds

choose similar factor exposures regardless of their true alphas (i.e., we set corr[α∗
i , b

∗
i,j] = 0). If

we relax this assumption, a lower average does not necessarily come with a lower dispersion. In

the empirical analysis, we simply let the data speak—our approach is nonparametric and thus does

not require any assumptions on the joint distributions of α∗
i and b∗i,j .

Next, we repeat the analysis for the two beta densities ϕ0
bc and ϕ1

bc. Consistent with intuition,

Panel B is the mirror image of Panel A as the magnitude of the beta components rises under the

HF model (ϕ1
bc moves to the right away from zero). We can go one step further and decompose

bc1i as bc1i,m + bc1i,1 + bc1i,2, where bc1i,m is the beta component due to the market, and bc1i,1, bc
1
i,2 are

the beta components due to the two additional factors in the HF model. We can then determine the

economic importance of these factors using their densities ϕ1
bc1

and ϕ1
bc2

, which are both normal:

bc1i,1 ∼ N(µ∗
b1
λ, σ∗2

b λ2) and bc1i,2 ∼ N(µ∗
b2
λ, σ∗2

b λ2). This analysis identifies factor 1 as the most

relevant—its contribution to hedge fund returns equals 2.3% per year on average and is positive

for 77% of the funds. In contrast, these values are only equal to 0.8% and 60% for factor 2.

Please insert Figure 1 here

III. Methodology

III.A. Estimation Procedure

We consider a total of K models indexed by k (k = 0, . . . , K − 1), where model 0 denotes the

CAPM. Each model k is allowed to be misspecified as it includes the factors fk
I,t but omits the

factors fk
O,t. We are interested in (i) the density ϕk

ac of the alpha component, (ii) the density ϕk
bc of

the beta component, and (iii) the density ϕk
bc,j of the beta component due to each factor j included

in model k. We summarize the shape of each of these densities with the following characteristics:

(i) the cross-sectional mean and standard deviation, denoted by Mk
1 and Mk

2 , (ii) the proportion of

funds with a return component below a given value a, denoted by P k(a), and (iii) the quantile at a

given percentile level u, denoted by Qk(u) = (P k)−1(u).

To estimate the distribution characteristics of each density, we need to estimate the fund com-

ponents acki = αk
i , bcki = bk′i,Iλ

k
I , and bcki,j = bki,I,jλ

k
I,j , where bki,I,j and λk

I,j is the beta and premium
13



associated with factor j in model k. For each fund, we compute these values by running the time-

series regression in Equation (4). We interpret this regression as a random coefficient model (e.g.,

Hsiao, 2003) in which αk
i and bki,I are not fixed parameters, but random realizations from a contin-

uum of funds in order to invoke cross-sectional limits.11 We also assume that at least one omitted

factor is strong in the sense that it has a pervasive impact on the cross-section of fund returns.12

This mild assumption, which delivers a well-defined convergence rate for the distribution charac-

teristics, is supported by the diagnostic criterion of Gagliardini, Ossola, and Scaillet (2019) (see

Section IV.C). The least-square estimate γ̂k
i = (α̂k

i , b̂
k′
i,I)

′ is given by

γ̂k
i = (Q̂k

x,i)
−1 1

Ti

∑
t

Ii,tx
k
t ri,t , (10)

where Ii,t is an indicator variable equal to one if ri,t is observable, Ti =
∑

t Ii,t, x
k
t = (1, fk′

I,t)
′, and

Q̂k
x,i =

1
Ti

∑
t Ii,tx

k
t x

k′
t . We then compute the alpha and beta components for each fund as

âcki = α̂k
i , (11)

b̂c
k

i = µ̂i − α̂k
i , (12)

b̂c
k

i,j = b̂ki,I,jλ̂
k
I,j , (13)

where b̂c
k

i is the empirical counterpart of bcki = E[rit]− acki , µ̂i =
1
Ti

∑
t Ii,tri,t is the average fund

return, and λ̂k
I,j =

1
Ti

∑
t Ii,tf

k
I,j,t is the empirical average of fk

I,j,t.

Next, we account for the unbalanced nature of the hedge fund sample. Following Barras,

Gagliardini, and Scaillet (2022) and Gagliardini, Ossola, and Scaillet (2016), we introduce a formal

selection rule 1χ
i equal to one if the following conditions are met: 1χ

i = 1
{
τi,T ≤ χ1,T ,CNi ≤ χ2,T

}
,

where τi,T = T/Ti, CNi =

√
eigmax

(
Q̂k

x,i

)
/eigmin

(
Q̂k

x,i

)
is the condition number of Q̂k

x,i, and

χ1,T , χ2,T denote the two threshold values. The first condition τi,T ≤ χ1,T excludes funds for which

the sample size is too small. The second condition CNi ≤ χ2,T excludes funds for which the time-

series regression is subject to multicollinearity problems (e.g., Belsley, Kuh, and Welsch, 2004).

11Barras, Gagliardini, and Scaillet (2022) and Gagliardini, Ossola, and Scaillet (2016) use the same sampling
scheme to measure mutual fund performance and test the arbitrage pricing theory in a large cross-section of assets.

12More formally, an omitted factor is strong if the largest eigenvalue of the residual covariance matrix of hedge fund
returns does not vanish as the population size n grows large. In contrast, a factor is weak if its loading vanishes at a
rate 1/

√
T (Gagliardini, Ossola, and Scaillet, 2019). Our formulation allows for weak factors in both fk

I,t and fk
O,t.
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Both thresholds χ1,T and χ2,T increase with the sample size T—with more return observations,

we estimate the fund coefficients with greater accuracy, which allows for a less stringent selection

rule. Applying this selection rule, we work with a population size equal to nχ =
∑n

i=1 1
χ
i .

The final step is to compute the distribution characteristics using the vector of estimated compo-

nents. We compute the mean, standard deviation, proportion, and quantile of the alpha distribution

as M̂k
1 = 1

nχ

∑
i 1

χ
i âc

k
i , M̂k

2 =
(

1
nχ

∑
i 1

χ
i (âc

k
i )

2 − ( 1
nχ

∑
i 1

χ
i âc

k
i )

2
)1/2

, P̂ k(a) = 1
nχ

∑
i 1

χ
i 1{âc

k
i ≤

a}, and Q̂k(u) = (P̂ k)−1(u). To obtain the characteristics of the distributions of the beta compo-

nents, we use the same formulas after replacing âcki with b̂c
k

i or b̂c
k

i,j .

III.B. Properties of the Distribution Characteristics

We begin our theoretical analysis by examining the properties of the distribution characteristics

M̂k
1 , M̂k

2 , P̂ k(a), and Q̂k(u). The following proposition derives the asymptotic distribution of the

estimated characteristics of the alpha distribution ϕk
ac as the numbers of funds n and observations T

grow large. To capture the large cross-sectional dimension of the hedge fund population observed

in the data, we require that n is larger than T .

Proposition 1. As n, T → ∞, such that T/n → 0, we obtain the following properties for the
estimated characteristics of ϕk

ac under the misspecified model k:

√
T
(
M̂k

s −Mk
s

)
→d N(0, V [Mk

s ]) , (14)
√
T
(
P̂ k(a)− P k(a)

)
→d N(0, V [P k(a)]) , (15)

√
T
(
Q̂k(u)−Qk(u)

)
→d N(0, V [Qk(u)]) , (16)

where s ∈ {1, 2} and →d denotes convergence in distribution. The variance terms are given by

V [Mk
s ] =

(
ηk′Ms

⊗ E ′
1(Q

k
x)

−1
)
Ωk

ux

(
ηkMs

⊗ (Qk
x)

−1E1

)
, (17)

V [P k(a)] =
(
ηk′P (a) ⊗ E ′

1(Q
k
x)

−1
)
Ωk

ux

(
ηkP (a) ⊗ (Qk

x)
−1E1

)
, (18)

V [Qk(u)] = V [P k(Qk(u))]/ϕk
ac(Q

k(u))2 , (19)

where ηkMs
= E

[(
∂M

k
s

∂E[g
k
i ]

)′
∂g

k
i

∂ac
k
i

b∗i,O

]
, E[gki ] is the vector of uncentered moments with gki =

(acki , (ac
k
i )

2)′, ⊗ denotes the Kronecker product, Qk
x = E[xk

t x
k′
t ], Ω

k
ux = lim

T→∞
V

[
1√
T

∑
t

uk
O,t ⊗ xk

t

]
,

ηkP (a) = E[b∗i,O|acki = a]ϕk
ac(a), b

∗
i,O and uk

O,t denote the vectors of betas and residuals associated
with the omitted factors fk

O,t, and ϕk
ac(a) is the probability density evaluated at a.

Proof. See the appendix.
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To save space, we refer the reader to the appendix for the theoretical analysis of the distributions

ϕk
bc and ϕk

bc,j whose estimated characteristics have the same properties as in Proposition 1. These

results allow for formal tests on the shape of the alpha or beta distribution. Denoting the generic

estimated characteristic by Ĉk ∈ {M̂k
s , P̂

k(a), Q̂k(u)}, we can test the null hypothesis:

H0 : C
k = υ, (20)

where υ is a given scalar. For instance, we can test whether the proportion of positive-alpha funds

equals 50% (υ = 0.5), or whether the average beta component due to any factor j is null (υ = 0).

Proposition 1 reveals two important insights about inference under misspecification. First, the

estimated characteristics converge towards their respective parameter values. Asymptotically, we

are able to estimate the alpha distribution ϕk
ac under model k without bias, even though we use as

inputs noisy versions of the fund components (i.e., we use âcki instead of acki ). Under misspec-

ification, Proposition 1 therefore provides a theoretical justification for the common practice of

reporting cross-sectional summary statistics (e.g., boxplots) based on estimated coefficients with-

out any bias adjustment.13 Second, the variance of the estimators is large because the convergence

rate is equal to 1/
√
T (and not 1/

√
n)—a result that formalizes our previous point that misspecifi-

cation amplifies estimation noise. This result is a priori surprising because the characteristics are

all computed as cross-sectional averages (we sum across n funds, not across T periods).

None of these properties hold when the model is correctly specified—a setting examined in

detail by Barras, Gagliardini, and Scaillet (2022). In this case, the estimated distribution charac-

teristics must be adjusted for the error-in-variable (EIV) bias that arises because we use as inputs

noisy versions of the fund coefficients. In addition, the characteristics are estimated with greater

precision because the convergence rate is equal to 1/
√
n (instead of 1/

√
T ).

The strong impact of misspecification on inference stems from the properties of the fund error

terms. The estimation error on the alpha component âcki involves the term ε̄ki = ε̄∗i + b∗′i,Oū
k
O, where

ε̄ki , ε̄∗i , and ūk
O denote the time-series averages of εki,t, ε

∗
i,t, and uk

O,t. The average ε̄∗i obtained with

the correct model is weakly correlated across funds, which implies that its impact on the estimated

characteristics vanishes with the population size n. It is not the case for the average error term ūk
O

13For instance, Almeida, Ardison, and Garcia (2020), Capocci and Hübner (2004), and Kosowski, Naik, and Teo
(2007) follow this practice when reporting the characteristics of the distribution of hedge fund alphas.
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due to the omitted factors because it affects all funds simultaneously. This term is noisy because it

converges to zero at the rate equal to 1/
√
T . As a result, the noise contained in ūk

O (i) slows down

the convergence rate of the estimated characteristics from 1/
√
n to 1/

√
T , and (ii) dominates in

magnitude the EIV bias, which makes any bias adjustment unnecessary.14

III.C. Comparison Tests Between Models

We now turn to the comparison tests based on the alpha distributions. We compare the distributions

ϕk
ac and ϕl

ac between two models k and l (k, l = 0, ..., K − 1). Our comparison framework is

highly flexible because we can apply it to both nested and non-nested models (models are nested

if one is included in the other). When we set l = 0, the comparison is made with respect to

the CAPM. We compute the differences in distribution characteristics between the two models as

∆M̂1 = M̂k
1 − M̂ l

1, ∆M̂2 = M̂k
2 − M̂ l

2, ∆P̂ (a) = P̂ k(a)− P̂ l(a), and ∆Q̂(u) = Q̂k(u)− Q̂l(u).

Proposition 2 derives the asymptotic distribution of each estimated difference as the numbers of

funds n and observations T grow large.

Proposition 2. As n, T → ∞ such that T/n → 0, we obtain the following properties for the
differences in the estimated characteristics of ϕk

ac and ϕl
ac under the misspecified models k and l:

√
T
(
∆M̂s −∆Ms

)
→d N (0, V [∆Ms]) , (21)

√
T
(
∆P̂ (a)−∆P (a)

)
→d N (0, V [∆P (a)]) , (22)

√
T
(
∆Q̂(u)−∆Q(u)

)
→d N (0, V [∆Q(u)]) , (23)

where s ∈ {1, 2}. The variance of the characteristic differences are equal to

V [∆M s] = V [Mk
s ] + V [M l

s]− 2Cov[Mk
s ,M

l
s] , (24)

V [∆P (a)] = V [P k(a)] + V [P l(a)]− 2Cov[P k(a), P l(a)] , (25)

V [∆Q(u)] = V [Qk(u)] + V [Ql(u)]− 2Cov[Qk(u), Ql(u)] , (26)

where V [Mk
s ], V [M l

s], V [P k(a)], V [P l(a)], V [Qk(u)], and V [Ql(u)] are obtained from Proposi-
tion 1. The covariance terms are given by

Cov[Mk
s ,M

l
s] =

(
(ηk′Ms

⊗ E ′
1(Q

k
x)

−1
)
Ωkl

ux

(
ηlMs

⊗ (Ql
x)

−1E1

)
, (27)

Cov[P k(a), P l(a)] =
(
ηk′P (a) ⊗ E ′

1(Q
k
x)

−1
)
Ωkl

ux

(
ηlP (a) ⊗ (Ql

x)
−1E1

)
, (28)

Cov[Qk(u), Ql(u)] =
Cov[P k(Qk(u)), P l(Ql(u))]

ϕk
ac(Q

k(u))ϕl
ac(Q

l(u))
, (29)

14Our Monte Carlo simulations calibrated on our sample of funds confirm these results in finite samples (see the
appendix). When the model is misspecified, the mean squared error (MSE) of each characteristic estimator (i) is
primarily driven by the variance (and not by the finite-sample bias), and (ii) decreases with T , but not with n.
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where Ωkl
ux = lim

T→∞
Cov

[
1√
T

∑
t u

k
O,t ⊗ xk

t ,
1√
T

∑
t u

l
O,t ⊗ xl

t

]
.

Proof. See the appendix.

The results in Proposition 2 provide simple comparison tests for each pair of models k and l.

We denote the generic estimated characteristic difference by ∆Ĉ ∈ {∆M̂s,∆P̂ (a),∆Q̂(u)}. We

can then test the null hypothesis that each characteristic difference equals zero:

H0 : ∆C = 0. (30)

Misspecification arises naturally in pairwise comparisons because competing models cannot be

all correct. Therefore, the impact of misspecification discussed in Proposition 1 carries over to

model comparisons. Proposition 2 shows that the comparison tests inherit the high estimation

noise caused by misspecification as each characteristic difference converges at a slow rate equal to

1/
√
T . In other words, the bar for detecting significant differences between models is considerably

higher when the tests are properly adjusted for misspecification.

Our approach departs from previous studies (e.g., Kan and Robotti, 2009; Kan, Robotti, and

Shanken, 2013) which derive comparison tests for misspecified models under a fixed number of

assets n (single asymptotics with n fixed and T → ∞). These tests require the inversion of the

entire covariance matrix of returns—an operation that cannot be performed with thousands of

hedge funds, but only hundreds of observations. To address this issue, we derive comparison tests

in which n grows large (double asymptotics with n and T → ∞). Another important difference

is that we do not focus on a single aggregate measure of asset alphas (e.g., Hansen-Jagannathan

distance), but instead focus on the disaggregated distribution to capture fund heterogeneity.

III.D. Estimation of the Asymptotic Variance Terms

Conducting inference requires consistent estimators of the variance terms in Propositions 1 and

2. For each distribution characteristic, the variance depends on the error term uk
O,t and betas b∗i,O

associated with the omitted factors. For instance, the estimated average M̂k
1 is more volatile when

the variance of the factor residuals V [uk
O,t] and the magnitude of the average betas E[b∗i,O] increase.

Because uk
O,t and b∗i,O are not observable, estimating V is not trivial.

To address this issue, we derive a consistent variance estimator based on the observed fund

residuals of each model ε̂ki,t = ri,t−xk′
t γ̂

k
i . The estimators of the asymptotic variances of

√
T (Ĉk−
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Ck) and
√
T (∆Ĉ −∆C) are given by

V̂ [Ĉk] =
1

n2
χT

∑
i

∑
j

∑
t

1χ
i τi,T Ii,t1

χ
j τj,T Ij,tâi,t(Ĉ

k)âj,t(Ĉ
k) , (31)

V̂ [∆Ĉ] =
1

n2
χT

∑
i

∑
j

∑
t

1χ
i τi,T Ii,t1

χ
j τj,T Ij,tâ

∆
i,t(∆Ĉ)â∆j,t(∆Ĉ) , (32)

where the terms âi,t(Ĉ
k) and â∆i,t(∆Ĉ) are functions of Ĉk and ∆Ĉ (see the appendix). The fol-

lowing proposition shows that V̂ [Ĉk] and V̂ [∆Ĉ] are consistent variance estimators as the numbers

of funds n and observations T grow large.

Proposition 3. As n, T → ∞ such that T/n → 0, we have

V̂ [Ĉk] →p V [Ĉk] , (33)

V̂ [∆Ĉ] →p V [∆Ĉ] , (34)

where →p denotes convergence in probability.

Proof. See the appendix.

IV. Data and Model Construction

IV.A. Hedge Fund Dataset

We collect the monthly net-of-fee returns of hedge funds between January 1994 and December

2020. We combine four databases (Barclayhedge, HFR, Morningstar, TASS) to mitigate the se-

lection bias that arises from the voluntary nature of information disclosure by hedge funds. We

remove the first 12 months of data for each fund to control for backfill bias. The appendix pro-

vides more detail on the construction of the dataset, which largely follows Joenväärä et al. (2021).

For comparison purposes, we also collect the monthly net-of-fee returns of actively managed U.S.

equity funds over the same period following Barras, Gagliardini, and Scaillet (2022).

Table I reports summary statistics for the equal-weighted portfolio of all hedge funds in our

sample, as well as three investment styles: (i) equity funds (long-short and market neutral), which

rely on discretionary or quantitative analysis to detect mispriced stocks, (ii) macro funds (global

macro and managed futures), which take directional bets across asset classes using broad economic

and financial indicators, and (iii) arbitrage funds (relative value and event driven), which exploit

various sources of mispricing primarily in the debt market. Overall, the results are similar to those

reported by Getmansky, Lee, and Lo (2015) between 1996 and 2014.
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To obtain reliable estimates of acki , bcki , and bcki,j in the unbalanced panel of hedge funds, we

apply the selection rule of Section III.A. Taking the same thresholds as Barras, Gagliardini, and

Scaillet (2022), we set the minimum number of return observations equal to 60 and the minimum

condition number for each model equal to 15. Empirically, the second threshold plays no role,

which implies that the sample of selected funds is identical across all models (nχ = 5,231 funds).

To address the concern that the results depend on the construction of the hedge fund database, we

consider alternative filters in the appendix.15 Consistent with intuition, we find that these changes

have the same impact across models. As a result, they leave the model comparison unchanged.

Please insert Table I here

IV.B. Hedge Fund Models

We apply our methodology to nine models examined in previous work. These models only include

tradable factors, which allows us to use the fund-by-fund regression in Equation (4) to compute

the alpha and beta components. Our selection focuses on omnibus models that aim at explaining

the return of any given hedge fund. We therefore do not include models whose factors vary with

each individual fund (e.g., Bollen and Whaley, 2009; O’Doherty, Savin, and Tiwari, 2016).

In addition to the CAPM, we consider four standard models. The chosen set is by no means

exhaustive but provides a good representation of the models commonly used for performance eval-

uation. We select the Carhart (1997) model and the Five-Factor model of Fama and French (2015),

which includes the market, size, value, momentum, profitability, and investment factors. We ex-

amine the well-known model of Fung and Hsieh (2004), which includes two equity factors (market

and size), two bond factors (term and default), and three option straddles (bond, commodity, and

currency). Finally, we consider the model of Asness, Moskowitz, and Pedersen (2013), which adds

to the CAPM two global value and momentum factors across international asset classes.

Next, we consider the models of Kozak, Nagel, and Santosh (2020) based on machine learning.

These authors apply lasso and ridge penalizations to form models with the highest out-of-sample

ability to explain the average returns of 50 characteristic-based equity portfolios.16 We use the two

15We change the fund selection rule by imposing 36 or 84 minimum return observations. We also apply the more
stringent backfill bias correction of Joenväärä et al. (2021), eliminating all the observations before the fund listing
date. Finally, we use the five filters proposed by Straumann (2009) to remove errors in reported fund returns.

16We thank Serhiy Kozak for providing us with the data and code. In principle, we could expand the set of candidate
factors using machine learning techniques. However, these techniques require a considerably large number of return
observations (Gu, Kelly, and Xiu, 2020), which is not the case for hedge fund datasets.
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models presented in their Table 4, which impose sparsity by selecting five factors only. The first

one is formed with the portfolios themselves, while the second one is formed with their principal

components. We also add the market to both models for consistency with the other models.

Finally, we consider two models that include five factors (referred to as additional factors):

illiquidity, betting against beta (BAB), variance (short position), carry, and time-series (TS) mo-

mentum. These factors are based on economic intuition and plausibly capture several strategies

followed by hedge funds.17 We consider the model of Joenväärä et al. (2021, JKKT), which extends

the Carhart (1997) model by including the illiquidity, BAB, and TS momentum factors. Building

on the work of Carhart et al. (2014) and Pedersen (2015), we examine another model (CP) which

replaces the five non-equity factors of Fung and Hsieh (2004) (bond factors and straddles) with

the five additional factors. Measuring the trading costs of these factors is difficult because it re-

quires timely price information on a wide range of markets. Given this uncertainty, we conduct

our baseline analysis using the original factor returns.

Table II reports summary statistics for the excess returns of the factors.18 We find that all but

one factor (bond term) deliver positive premia. Therefore, hedge funds boost their average returns

when they increase their factor betas. Unreported results also show that the factors capture distinct

strategies—only 11 pairwise correlations out of 153 are above 0.5 (in absolute value). Table III

provides a complete list of the nine models with the factors they include (see the appendix for

details on the data sources of the factors).

Please insert Tables II and III here

IV.C. Misspecification Statistics

Before moving to the main empirical results, we examine the misspecification of the nine models.

An intuitive statistic is the adjusted R2 of the fund-by-fund regression in Equation (4). A high

R2 is a signal of low misspecification because the omitted factors must have implausibly high

17The illiquidity factor of Pástor and Stambaugh (2003) captures marketwide changes in market liquidity. The
BAB strategy of Frazzini and Pedersen (2014) exploits the price distortions caused by leverage-constrained investors
on low- and high-beta stocks. The variance factor tracks the realized variance of the S&P 500. The global carry
and TS momentum factors of Koijen et al. (2018) and Moskowitz, Ooi, and Pedersen (2012) invest in assets with
high carry and positive 12-month returns across international asset classes. TS momentum departs from traditional
cross-sectional momentum, which only invests in assets with past returns higher than the cross-sectional average.

18We define the variance and straddle factors as short positions to obtain positive premia (i.e., these short positions
perform poorly in bad times when realized variance is high (Bakshi and Kapadia, 2003)).
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premia to substantially affect the fund return decomposition (see Cochrane, 2005, ch. 9). Table IV

shows that the average R2 is relatively low across all models—the values range between 20.4%

and 31.0%, leaving plenty of room for omitted factors.

In theory, a correct model could deliver a low R2 if hedge funds take large idiosyncratic posi-

tions to exploit their private information. In this case, a low R2 might capture skill, not misspec-

ification (Titman and Tiu, 2011). To address this issue, we compute the criterion of Gagliardini,

Ossola, and Scaillet (2019). As n and T converge to infinity, it is positive with probability one

if (i) the model is misspecified, and (ii) at least one omitted factor is strong (see the appendix).

We find that this criterion is systematically positive. This result confirms that all the models are

misspecified. It also validates our estimation assumption that one of the omitted factors is strong.

While misspecified, the nine models are likely to produce different return decompositions.

Table IV provides preliminary evidence consistent with this view. For each model k, we report the

relative importance of each component of the average fund return: (i) the alpha component âcki , (ii)

the beta component due to the market computed as b̂c
k

i,m = b̂ki,mλ̂m, and (iii) the beta component

due to the non-market (nm) factors (all factors but the market) computed as b̂c
k

i,Inm
= b̂k′i,Inm

λ̂k
Inm

.

For instance, the relative importance of the alpha component is equal to 47.1% on average under the

Carhart model but drops to 18.0% under the JKKT model. Interpreting these differences requires

formal comparison tests—a point we examine below.

Looking at the population of US equity mutual funds, we see that the average R2 is substan-

tially higher (above 80%). In addition, all models lead to the same conclusion that mutual fund

returns are driven by a single component—the equity market. In short, these results confirm that

accounting for misspecification is important for hedge funds but not for mutual funds.

Please insert Table IV here

V. Empirical Results

V.A. Hedge Fund Return Decomposition

V.A.1. Formal Model Comparison

We begin the empirical analysis with the formal model comparison. This analysis determines

whether some models do a better job than the CAPM at capturing the alternative strategies fol-

lowed by hedge funds. Applying our methodology, we compare the alpha distributions under each
22



proposed model and the CAPM. We explicitly test for differences in the mean and standard devia-

tion, proportions of negative- and positive-alpha funds, and quantiles at 10% and 90%. To compute

the standard deviation of the estimated differences, we replace T with Tχ = 1
nχ

∑n
i=1 1

χ
i Ti, where

T and Tχ are equal to 324 and 125 observations. As a result, we account for the increased noise

due to the unbalanced nature of the hedge fund panel.

The comparison tests reported in Table V reveal several new insights. We observe a striking

similarity between the CAPM and the four standard models (Carhart, Five-Factor, Fung-Hsieh,

and Asness-Moskowitz-Pedersen). Only one of the 24 characteristic differences is statistically

significant. Properly accounting for misspecification is key when interpreting these differences.

Suppose that we naively use the convergence rate of 1/
√
nχ, instead of the appropriate rate of

1/
√
Tχ under misspecification. In this case, we find that 75% of the 24 characteristic differences

are significant at the 5% level. Applying the correct procedure, we conclude that the standard

models are no better than the CAPM at capturing alternative hedge fund strategies.

Similarly, the machine learning models produce the same alpha distributions as the CAPM.

Whereas these models do a great job at explaining the average returns of characteristic-based

equity portfolios (Kozak, Nagel, and Santosh, 2020), they are not trained on strategies beyond

the equity space. Their limited success in the hedge fund population highlights the importance of

accounting for other asset classes, such as bonds, currencies, and commodities.

The only exceptions are the JKKT and CP models. The tests reveal highly significant differ-

ences relative to the CAPM. These differences hold after replacing the CAPM with any of the

standard and machine learning models. They also hold when accounting for factor trading costs

using estimates from previous studies (see the appendix). In short, the JKKT and CP models are

better equipped to capture alternative strategies and sharpen the fund return decomposition.

Please insert Table V here

V.A.2. Magnitude of the Alpha and Beta Components

We now turn to the return decomposition for the entire population. For each model k, we apply

our methodology to infer the main characteristics of (i) the distribution of the alpha components

ϕ̂k
ac, and (ii) the distribution of the beta components ϕ̂k

bc. We report these results in Table VI.

Both the CAPM and the standard models produce large alpha components. Panel A shows
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that the average alpha clusters around 2.8% per year, and the proportion of positive-alpha funds

is always above 70%. These results are in line with the previous literature which finds that hedge

funds deliver superior performance. Another takeaway from these models is that hedge funds are

only exposed to market risk. Panel B shows that the average beta component equals 2.6% under

the CAPM and remains unchanged as we include profitability, bond, or straddle factors. In short,

hedge funds deliver high alphas to investors, while being immune to alternative sources of risk.

The JKKT and CP models reverse these conclusions. For instance, the CP model delivers an

average beta component of 5.2%, which is twice as large as under the CAPM. At the same time, it

brings the average alpha down to 0.4% per year and the proportion of positive-alpha funds down

to 53.0%. These results highlight the importance of the additional factors included in the JKKT

and CP models. As discussed by Asness, Moskowitz, and Pedersen (2013) and Pedersen (2015),

there is ample anecdotal evidence that hedge funds hold illiquid assets, take levered positions, trade

equity options, buy cheap assets with high carry, and follow trends in asset prices.

To visualize these results, we plot in Figure 2 the densities of the two components for the

CAPM, the JKKT model, and the CP model. In line with our illustrative example in Figure 1,

these two models capture the premia of alternative strategies and thus produce (i) a shift of the

alpha distribution towards zero and (ii) a shift of the beta distribution away from zero.

Please insert Table VI and Figure 2 here

V.A.3. Economic Importance of Each Factor

Our previous analysis highlights the key role played by the additional factors. To measure their

economic importance separately, we break down the total beta component obtained with the CP

model into the respective contributions due to market, size, illiquidity, BAB, variance, carry, and

TS momentum. Using these estimated quantities, we then apply our methodology to infer the main

characteristics of the beta distribution ϕk
bc,j for each factor.

Table VII shows that the equity market is the most prevalent source of risk as 78% of the funds

have positive market betas. On average, the market contribution equals 2.3% per year, representing

44% of the total beta component. We also find that a majority of funds load positively on each of

the five additional strategies. They are therefore widely used by hedge funds to boost their returns.

Interestingly, individual funds do not load on all of them simultaneously. As shown in Panel B, the
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pairwise correlations between the factor components only range between -18% and 14%.

TS momentum, variance, and carry are the most important additional factors. Their average

contributions are all statistically significant and equal to 1.1%, 0.8%, and 0.4% per year. In the

top decile of funds with the highest exposures, these contributions reach 4.5%, 4.5%, and 2.7%

per year. The unique feature of the CP model is to include all three factors, which explains its

edge over the JKKT model. It consistently delivers lower average alphas and lower proportions of

positive-alpha funds (both in the population and for all investment categories). For this reason, we

primarily focus on the CP model for the rest of our analysis.

Please insert Table VII here

V.B. Hedge Fund Investment Styles

V.B.1. A Closer Look at Equity, Macro, and Arbitrage Funds

Whereas the CP model includes factors that plausibly capture several hedge fund strategies, it is

not designed for a particular style. Therefore, an important question is whether the superiority of

the CP model holds across categories. To examine this issue, we re-estimate the alpha and beta

distributions for equity, macro, and arbitrage funds under the CAPM, the JKKT model, and the CP

model. The other models deliver the same results as the CAPM and are thus not shown.

Table VIII confirms the strong differences between the CP model and the CAPM. Among

equity and arbitrage funds, the average alphas under the CP model are equal to 0.6% and 0.9% per

year (versus 2.4% and 2.8% for the CAPM). In the macro category, the difference is even larger

as the majority of funds deliver a negative alpha equal to -0.4% on average (versus 3.7% for the

CAPM). For completeness, we examine multi-strategy funds and funds of funds which could be

more difficult to model given their diversity. In both categories, the appendix shows that the CP

model still delivers a sharp reduction in alphas.

These results suggest that the additional factors in the CP model transcend style boundaries.

Carry provides a good illustration of this phenomenon. This strategy invests in cheap assets with

a high difference between spot and forward prices. As discussed by Pedersen (2015), carry is

routinely implemented by hedge funds, regardless of their investment styles. It is the case when

they buy value stocks, high interest rate currencies, or backwarded commodities. Consistent with
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this analysis, Table IX reveals that carry matters for all three categories. Its average beta component

is always positive and ranges between 0.34% (equity) and 0.56% (arbitrage) per year.

Table IX also shows that variance transcends style boundaries. Its average return contribu-

tion among equity and arbitrage funds is equal to 1.1% per year. The economic importance of

variance reflects the option strategies followed by these funds. For instance, mortgage, fixed in-

come volatility, and merger arbitrage activities all involve taking short option positions (Duarte,

Longstaff, and Yu, 2006; Mitchell and Pulvino, 2001). In addition, the variance factor captures

unexpected increases in asset correlations (Driessen, Maenhout, and Vilkov, 2009). As such, it

signals crisis times when equity and arbitrage funds suffer from less effective hedging strategies

and tighter funding constraints (Buraschi, Kosowski, and Trojani, 2014).

At the same time, some factors in the CP model cater to specific styles. For instance, TS

momentum plays a key role for macro funds—its average contribution reaches 3.10% per year.

This result is consistent with the intuition that global funds rely on past returns to determine their

asset allocation and exploit trends caused by behavioral biases, frictions, or slow-moving capital.19

Another example is BAB which primarily matters for arbitrage funds. These funds extensively use

leverage to exploit price distortions in capital markets (Ang, Gorovyy, and van Inwegen, 2011). It

is therefore plausible that some of these distortions originate from the leverage constraints faced

by traditional investors and captured by the BAB strategy.

Please insert Table VIII and Table IX here

V.B.2. The Heterogeneity Across Funds

The return decomposition within styles in Table VIII uncovers a large fund heterogeneity. Starting

with the alpha distribution, we see that the CP model produces a cross-sectional volatility between

6.8% (arbitrage) and 11.0% (macro) per year. Similarly, the beta distribution covers a wide interval

as its volatility ranges between 4.9% (arbitrage) and 9.6% (macro) per year. These values are

similar to those obtained in the entire population—Table VI reports a volatility of 9.2% and 7.6%

per year for the alpha and beta distributions.20 The rationale for forming groups is to summarize

19Managed futures funds (a subset of macro funds) are well known for following trends. Unsurprisingly, the ap-
pendix shows that the average contribution of TS momentum for these funds is even higher (3.7% per year).

20This heterogeneity may partly be driven by misclassification. First, data providers use different style classifica-
tions that need to be reconciled when creating the aggregate database (see the appendix). Second, the methodology
used by each provider (e.g., clustering) and the information provided by funds could introduce classification noise.
Third, the reported styles are not frequently updated and may therefore not always reflect the actual fund strategies.
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the information conveyed by factor models and identify funds with similar performance and risk

levels. Meeting this objective is however difficult for hedge funds given their diverse strategies.

It might be surprising that the CP model always produces a higher dispersion in alphas than the

CAPM. A priori, the CAPM should generate a higher variance because its alpha absorbs the disper-

sion due to the omitted factors (the term 2σ∗2
b λ2 in our example in Figure 1). Whereas this effect is

at play, it is more than offset by the reduction in variance due to the negative cross-sectional corre-

lation between the alpha and beta components. This correlation arises because poorly performing

funds load aggressively on alternative strategies—possibly to hide their lack of skill. To elaborate,

consider the worst-performing macro funds under the CP model. These funds load heavily on the

five additional factors to boost their returns. Unreported results show that their average beta com-

ponent is three times larger than in the population (16.1% versus 5.2% per year). By controlling for

these factor exposures, the CP model uncovers the strong underperformance of these funds—the

10%-quantile equals -8.2% per year (versus -4.0% only under the CAPM).

V.B.3. Benchmarking Using Style-Specific Models

A natural question is whether models formed with style-specific factors can sharpen the decom-

position of hedge fund returns. Our previous analysis reveals the existence of a trade-off. On the

one hand, these models may capture the prevalent strategies in each style and be less prone to mis-

specification. On the other hand, the observed heterogeneity calls against using rigid style models

which assume that all funds follow similar strategies. Heterogeneity may also increase the list of

candidate style factors to choose from and thus the risk of data mining.

In this context, the common approach of peer benchmarking is problematic for hedge funds.

This approach uses as benchmark a style index that includes all funds in a given investment cat-

egory (e.g., Hunter et al., 2014; Buraschi, Kosowski, and Sritrakul, 2014). Using a style index

produces substantial misspecification because it imposes a constant beta component for all funds

with the same style—a restriction that is inconsistent with the heterogeneity reported in Table VIII.

It implies that any fund with a beta component lower than average is mechanically credited with a

lower alpha. Another issue is that hedge fund style indices are not investible given the numerous

constraints that prevent investors from forming diversified hedge fund portfolios.21

21Investability is less problematic for mutual funds. As noted by Kandel, Hunter, and Wermers (2014): “Even the
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The above trade-off suggests that models with style-specific factors are likely to perform better

on homogeneous categories with well-defined strategies. For instance, Duarte, Longstaff, and Yu

(2006) show the benefits of using these models for explaining the returns of fixed income arbitrage

funds (e.g., swap spread, yield curve arbitrage). In contrast, finding appropriate style factors to

cover the three broad categories examined here is more challenging. As a simple illustration, we

consider a style-based version of the CP model in which we replace the carry and TS momentum

factors with their style-specific counterparts. For each category, the appendix shows that these

replacements decrease the ability of the CP model to capture hedge fund returns.

V.C. The Implications of Fund Heterogeneity

V.C.1. Hedge Fund Selection

The large heterogeneity in alphas implies that investors face substantial uncertainty in their fund

selection process. One possible approach for reducing this uncertainty is to use fund characteristics

to improve the detection of positive-alpha funds. To examine this issue, we focus on a sophisticated

investor who evaluates performance using the CP model and has access to two sets of character-

istics. The first set proxies for managerial incentives and includes management fees, performance

fees, and a high-water mark dummy. The second set proxies for managerial flexibility and includes

a lockup period dummy and a notice period dummy. For each characteristic, we sort funds in two

groups and apply our methodology to estimate their respective alpha distributions.

Panel A of Table X reports the results for the first set of characteristics. We find that sorting

funds on each proxy for managerial incentives increases the likelihood of selecting positive-alpha

funds. For instance, close to 60.0% of the funds that charge high performance fees produce a

positive alpha equal to 1.1% per year on average. In contrast, the average alpha is negative among

funds with low performance fees (-1.5%) as only 39.2% of them deliver positive alphas.

Panel B documents similar patterns for lockup and notice periods. Funds with higher flexibility

tend to perform better, possibly because they can invest in illiquid assets and exploit arbitrage

opportunities that take time to be profitable. In short, all five characteristics are useful for partially

discriminating between inferior and superior funds. This result emphasizes the importance of

least sophisticated investor always has a fallback strategy of equally-weighting (or value-weighting) all funds in the
group every period; this tradeable strategy is quite simple.”
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managerial incentives and flexibility as determinants of fund performance, which is in line with

previous studies by Agarwal, Daniel, and Naik (2009), Aragon (2007), and Joenväärä et al. (2021).

Please insert Table X here

V.C.2. Models of Active Management

The observed heterogeneity has also implications for the models of Berk and Green (2004) and

Gârleanu and Pedersen (2018)—two popular equilibrium models of active management. In the

model of Berk and Green (2004), skilled funds have bargaining power because they are in short

supply. As investors compete for performance, they drive the alphas of all funds towards zero

and eliminate any heterogeneity (after an adjustment period due to learning). This prediction

holds quite well for mutual funds—Barras, Gagliardini, and Scaillet (2022) find that the standard

deviation of the alpha distribution only equals 1.4% per year. However, it is at odds with the alpha

volatility of 9.2% per year obtained with the CP model.

In contrast, the model of Gârleanu and Pedersen (2018) predicts that alphas vary across funds

in equilibrium. In this model, skilled funds deliver positive alphas because they must compensate

investors for the costs of searching funds. At the same time, unskilled funds deliver negative

alphas as they charge fees to unsophisticated investors. Modeling the equilibrium of the hedge

fund industry using search models is intuitive given the complex process for evaluating hedge

funds (Lhabitant, 2007). If the results in Table VI reflect equilibrium outcomes, an open question

is whether these costs are sufficiently large to match the heterogeneity observed in the data.

V.D. Return Decomposition Over Time

V.D.1. Hedge Funds versus Mutual Funds

The universe of hedge funds has expanded substantially since 1994. As a result, the average return

decomposition may be subject to notable time trends. Using the CP model, we track the evolution

of (i) the average alpha component M̂k
1,ac = 1

nχ

∑nχ

i âcki , (ii) the average beta component due to

the market M̂k
1,bc,m = 1

nχ

∑nχ

i b̂c
k

i,m, and (iii) the average beta component due to the non-market

(nm) factors (all factors but the market) M̂k
1,bc,Inm

= 1
nχ

∑nχ

i b̂c
k

i,Inm
. We start the analysis at the

end of 2003 and estimate each cross-sectional average using the entire return history for each fund

up to that point in time. As we move forward in time, we expand the set of return observations
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and add new hedge funds once they satisfy the fund selection rule. For comparison purposes, we

conduct the same analysis for mutual funds using the traditional Carhart model.

Figure 3 identifies two sources of convergence between hedge funds and mutual funds. First,

performance becomes increasingly similar—at the end of 2020, the gap in average alphas drops

to 1.6%. Understanding the drivers of this trend is an important topic for hedge fund researchers.

One intuitive explanation is the presence of scalability constraints. As a result of the growth of

the hedge fund industry, it becomes increasingly difficult to maintain the same performance level.

Bollen, Joenväärä, and Kauppila (2021) find support for this explanation, but also suggest that

central bank interventions might have reduced the profitability of hedge fund strategies. Second,

hedge funds load increasingly on the equity market. At the end of 2020, M̂k
1,bc,m reaches its highest

level at 2.3% per year. Whereas it remains smaller than for mutual funds (7.8%), it follows the

same trend after the 2008 crisis. This trend is relevant for investors eager to capture hedge fund

alphas. Given the sizable market exposure of hedge funds, they need a proper hedging strategy to

maintain their optimal allocation to the equity market.

Please insert Figure 3 here

V.D.2. Differences Between Models

Next, we examine the differences between models over time. We compute the difference in average

alphas between (i) the CAPM and the Fung-Hsieh model, (ii) the CAPM and the CP model, (iii)

the Fung-Hsieh and CP models. Figure 4 reveals that the CP model always delivers smaller alphas

as hedge funds consistently use non-market factors to boost their returns. The average contribution

of these factors captured by M̂k
1,bc,Inm

represents at least 52% of the average hedge fund return

between 2003 and 2020. We also see that the Fung-Hsieh model does a better job at capturing

returns than the CAPM early on. However, this ability progressively vanishes after the 2008 crisis.

The gap produced by the CP model slightly narrows over time as M̂k
1,bc,Inm

falls from 4.4% to

2.9% per year. We find little evidence that hedge funds reduce their factor exposures over time.

Instead, the decrease in M̂k
1,bc,Inm

is caused by the reduction in alternative factor premia.22 An open

question is whether this trend will continue. On the one hand, variance, carry, and TS momentum

have high Sharpe ratios—an observation made by Dew-Becker et al. (2017), Koijen et al. (2018),

22For instance, the premium on carry drops from 8.8% to 6.8% per year between 2003 and 2020.
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and Moskowitz, Ooi, and Pedersen (2012). As a result, investors should have incentives to exploit

these factors and drive down their returns. On the other hand, Ilmanen et al. (2021) go back to 1926

and find little evidence of arbitrage activities that permanently reduce alternative factor premia.

The large difference between the Fung-Hsieh and CP models may be surprising as one might

expect the straddles to overlap with the variance factor. Conceptually, there are two reasons why

this is not the case. First, a straddle position benefits from trends but not necessarily from variance.

For example, consider a highly volatile period for an asset during which the ending price is the

same as the starting price. In this case, the payoff of the straddle is zero, whereas the payoff of the

variance factor is large. Second, the straddles in the Fung-Hsieh model cover the bond, currency,

and commodity markets. In contrast, the variance factor focuses on the equity market.

Please insert Figure 4 here

V.E. The Sophistication of Hedge Fund Investors

V.E.1. Impact of Sophistication on Hedge Fund Valuation

In addition to sharpening the estimation of the distributions ϕ∗
ac and ϕ∗

bc, our comparison analysis

measures how hypothetical investors with different sophistication levels value hedge funds. We

first consider a sophisticated investor able to replicate all the factors in the CP model. The valuation

of this investor is given by the alpha under the CP model. We can formalize this intuition using the

stochastic discount factor (SDF) framework. Writing the investor SDF mk
t as a linear function of

the CP factors, we have αk
i = (1+rf )E[mk

t ri,t], where rf is the risk-free rate. A positive αk
i signals

that the investor can increase his overall utility by investing in the fund (e.g., Chen and Knez, 1996;

Ferson, 2013).23 Next, we consider a less sophisticated investor who can only invest in the equity

market. Her hedge fund valuation is given by the CAPM alpha: α0
i = (1 + rf )E[m0

t ri,t], where

m0
t is a linear function of the market.

Table VI shows that the average valuation is close to zero for the CP investor (0.4% per year),

but substantially higher for the CAPM investor (2.9%). This valuation gap is consistent with

intuition. Whereas both investors value the alpha component ac∗i , the CAPM investor also values

23See also Almeida, Ardison, and Garcia (2020) and Karehnke and de Roon (2020) for a recent application of the
SDF framework in which investors have nonlinear preferences (i.e., mt is a nonlinear function of the factors).
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the beta component due to all the strategies she cannot replicate. This component, denoted by bc∗i,O

in Equation (5), includes the contributions of the TS momentum, variance, and carry factors.24

V.E.2. Measuring Sophistication Using Flows

As a final exercise, we study the sophistication of real-world hedge fund investors. Our analysis

builds on the premise that investors learn about funds by observing past returns. As they update

their valuation over time, they reallocate capital accordingly. If this mechanism is at play, fund

flows contain information about investor preference for alpha and beta. With misspecified models,

the learning process is likely to be noisier than for mutual funds. To address this issue, we compare

the entire distributions of the alpha and beta components between low- and high-flow funds.

We proceed in three steps. First, we follow Barras, Scaillet, and Wermers (2010) and partition

our data into non-overlapping subperiods of five years, beginning with 1996 to 2000 and ending

with 2016 to 2020. For each subperiod, we include all funds that pass the fund selection rule and

compute their average monthly flows and return decomposition obtained with the CP model (âcki ,

b̂c
k

i,m, b̂c
k

i,Inm
). Second, we sort funds into flow quintiles (from low to high) and pool these five-

year records together across all time periods. Third, we apply our methodology to compute the

distributions of the alpha and beta components for each (pooled) flow quintile.

Panel A of Table XI reveals that flows are primarily directed into funds with positive contem-

poraneous alphas. In the high-flow group, the alpha is equal to 3.3% per year on average and

positive for 70.4% of the funds.25 In the low-flow group, these numbers drop substantially (-0.6%

and 45.2%). In spite of these differences, the evidence is consistent with our premise that learning

about fund alphas is quite noisy—we observe a large overlap between the alpha distributions.

If real-world investors are unsophisticated, they not only chase alphas, but also past or market-

adjusted returns. In other words, they also direct capital into funds that load aggressively on the

market and alternative factors (i.e., funds with high b̂c
k

i,m and b̂c
k

i,Inm
). Panels B and C do not

support this interpretation. For the two sets of factors, the average beta components are actually

larger in the low-flow group than in the high-flow group. In short, the overall evidence suggests

24This point is well summarized by Cochrane (2011): “I tried telling a hedge fund manager, ‘You don’t have alpha.
Your returns can be replicated with a value-growth, momentum, currency and term carry, and short-vol strategy.’ He
said, ‘Exotic beta is my alpha. I understand those systematic factors and know how to trade them. My clients don’t.”’

25If the hedge fund industry is subject to capacity constraints, the cumulative flows into positive-alpha funds could
explain why the average hedge fund alpha decreases over the period 2003-2020 (see Figure 3).
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that real-world investors chase alphas more aggressively than betas and are therefore closer to the

CP investor than the CAPM investor in terms of sophistication.

Please insert Table XI here

VI. Conclusion

Decomposing hedge fund returns is challenging because models are likely misspecified—that is,

they omit relevant factors for capturing hedge fund strategies. Model misspecification makes the

estimation of the alpha and beta components both imperfect and noisy. To mitigate these chal-

lenges, we develop a new approach to estimate and compare the distributions of the alpha and beta

components across models. Our approach improves the imperfect separation between alpha and

beta contributions by identifying models less prone to misspecification. It also explicitly accounts

for estimation noise based on a full-fledged asymptotic theory in a large cross-section of funds.

Our comparison analysis yields several insights. We find that the standard models are similar to

the CAPM and thus ill-equipped for separating alpha and beta. In contrast, several economically

motivated factors—primarily, TS momentum, variance, and carry—capture the returns of hedge

funds in all investment categories. Including these factors increases the relative importance of

the beta component and uncovers a gradual convergence in performance towards mutual funds.

Another important finding is the large heterogeneity observed across funds. This result has several

implications for the use of benchmarks based on style information, the role of uncertainty in the

fund selection process, and the predictions of equilibrium models of active management.

Our methodology is flexible and can be applied in other situations where models are misspec-

ified. For instance, it can be used to further improve the decomposition of hedge fund returns in

more specialised investment categories. It can also be applied to international mutual funds for

which the set of trading strategies is substantially larger than for traditional US equity funds.

33



References

Agarwal, V., N. D. Daniel, and N. Y. Naik. 2009. Role of managerial incentives and discretion in hedge fund perfor-
mance. Journal of Finance 64:2221–56.

Agarwal, V., T. C. Green, and H. Ren. 2018. Alpha or beta in the eye of the beholder: What drives hedge fund flows?
Journal of Financial Economics 127:417–34.

Almeida, C., K. Ardison, and R. Garcia. 2020. Nonparametric assessment of hedge fund performance. Journal of
Econometrics 214:349–78.

Ang, A., S. Gorovyy, and G. B. van Inwegen. 2011. Hedge fund leverage. Journal of Financial Economics 102:102–
26.

Aragon, G. O. 2007. Share restrictions and asset pricing: Evidence from the hedge fund industry. Journal of Financial
Economics 83:33–58.

Asness, C. S., A. Ilmanen, R. Israel, and T. J. Moskowitz. 2015. Investing with style. Journal of Investment Manage-
ment 13:27–63.

Asness, C. S., T. J. Moskowitz, and L. H. Pedersen. 2013. Value and momentum everywhere. Journal of Finance
68:929–85.

Avramov, D., L. Barras, and R. Kosowski. 2013. Hedge fund return predictability under the magnifying glass. Journal
of Financial and Quantitative Analysis 48:1057–83.

Bakalli, G., S. Guerrier, and O. Scaillet. 2021. A penalized two-pass regression to predict stock returns with time-
varying risk premia. Working paper. Forthcoming in the Journal of Econometrics.

Bakshi, G., and N. Kapadia. 2003. Delta-hedged gains and the negative market volatility risk premium. Review of
Financial Studies 16:527–66.

Barras, L., P. Gagliardini, and O. Scaillet. 2022. Skill, scale, and value creation in the mutual fund industry. Journal
of Finance 77:601–38.

Barras, L., O. Scaillet, and R. Wermers. 2010. False discoveries in mutual fund performance: Measuring luck in
estimated alphas. Journal of Finance 65:179–216.

Belsley, D. A., E. Kuh, and R. E. Welsch. 2004. Regression diagnostics: Identifying influential data and sources of
collinearity. Wiley.

Berk, J., and R. Green. 2004. Mutual fund flows and performance in rational markets. Journal of Political Economy
112:1269–95.

Berk, J. B., and J. H. van Binsbergen. 2015. Measuring skill in the mutual fund industry. Journal of Financial
Economics 118:1–20.

Bollen, N. P., J. Joenväärä, and M. Kauppila. 2021. Hedge fund performance: End of an era? Financial Analysts
Journal 77:109–32.

Bollen, N. P. B., and R. E. Whaley. 2009. Hedge fund risk dynamics: Implications for performance appraisal. Journal
of Finance 64:985–1035.

Brown, S., A. Lynch, and A. Petajisto. 2010. Hedge funds, mutual funds, and ETFs. In V. V. Acharya, T. F. Coole,
M. P. Richardson, and I. Walter, eds., Regulating Wall Street: The Dodd-Frank Act and the New Architecture of
Global Finance, 351–66. Wiley.

Buraschi, A., R. Kosowski, and W. Sritrakul. 2014. Incentives and endogenous risk taking: A structural view on hedge
fund alphas. Journal of Finance 69:2819–70.

Buraschi, A., R. Kosowski, and F. Trojani. 2014. When there is no place to hide: Correlation risk and the cross-section
of hedge fund returns. Review of Financial Studies 27:581–616.

Capocci, D., and G. Hübner. 2004. Analysis of hedge fund performance. Journal of Empirical Finance 11:55–89.
Carhart, M. 1997. On persistence in mutual fund performance. Journal of Finance 52:57–82.
Carhart, M., U.-W. Cheah, G. D. Santis, H. Farrell, and R. Litterman. 2014. Exotic beta revisited. Financial Analysts

Journal 70:24–52.
Chen, Y., M. Cliff, and H. Zhao. 2017. Hedge funds: The good, the bad, and the lucky. Journal of Financial and

Quantitative Analysis 52:1081–109.
Chen, Z., and P. J. Knez. 1996. Portfolio performance measurement: Theory and applications. Review of Financial

Studies 9:511–55.
Cochrane, J. H. 2011. Presidential address: Discount rates. Journal of Finance 66:1047–108.
Dew-Becker, I., S. Giglio, A. Le, and M. Rodriguez. 2017. The price of variance risk. Journal of Financial Economics

123:225–50.
Diez de los Rios, A., and R. Garcia. 2010. Assessing and valuing the nonlinear structure of hedge fund returns. Journal

of Applied Econometrics 26:193–212.
Driessen, J., P. J. Maenhout, and G. Vilkov. 2009. The price of correlation risk: Evidence from equity options. Journal

of Finance 64:1377–406.
Duarte, J., F. A. Longstaff, and F. Yu. 2006. Risk and return in fixed-income arbitrage: Nickels in front of a steamroller?

Review of Financial Studies 20:769–811.

34



Fama, E. F., and K. R. French. 2015. A five-factor asset pricing model. Journal of Financial Economics 116:1–22.
Ferson, W. E. 2013. Ruminations on investment performance measurement. European Financial Management 19:4–

13.
Ferson, W. E., and K. Khang. 2002. Conditional performance measurement using portfolio weights: Evidence for

pension funds. Journal of Financial Economics 65:249–82.
Ferson, W. E., and R. W. Schadt. 1996. Measuring fund strategy and performance in changing economic conditions.

Journal of Finance 51:425–61.
Frazzini, A., and L. H. Pedersen. 2014. Betting against beta. Journal of Financial Economics 111:1–25.
Fung, W., and D. A. Hsieh. 2004. Hedge fund benchmarks: A risk-based approach. Financial Analysts Journal

60:65–80.
Gagliardini, P., E. Ossola, and O. Scaillet. 2016. Time-varying risk premium in large cross-sectional equity data sets.

Econometrica 84:985–1046.
———. 2019. A diagnostic criterion for approximate factor structure. Journal of Econometrics 212:503–21.
———. 2020. Estimation of large dimensional conditional factor models in finance. In Handbook of Econometrics,

219–82. Elsevier.
Gârleanu, N., and L. H. Pedersen. 2018. Efficiently inefficient markets for assets and asset management. Journal of

Finance 73:1663–712.
Getmansky, M., P. A. Lee, and A. W. Lo. 2015. Hedge funds: A dynamic industry in transition. Annual Review of

Financial Economics 7:483–577.
Gourieroux, C., A. Monfort, and A. Trognon. 1984. Pseudo maximum likelihood methods: Theory. Econometrica

52:681–700.
Grinblatt, M., and S. Titman. 1993. Performance measurement without benchmarks: An examination of mutual fund

returns. Journal of Business 66:47–68.
Gromb, D., and D. Vayanos. 2010. Limits of arbitrage. Annual Review of Financial Economics 2:251–75.
Gu, S., B. Kelly, and D. Xiu. 2020. Empirical asset pricing via machine learning. Review of Financial Studies

33:2223–73.
Haddad, V., S. Kozak, and S. Santosh. 2020. Factor timing. Review of Financial Studies 33:1980–2018.
Harvey, C. R., and Y. Liu. 2018. Detecting repeatable performance. Review of Financial Studies 31:2499–552.
Hsiao, C. 2003. Analysis of Panel Data. Cambridge University Press.
Hunter, D., E. Kandel, S. Kandel, and R. Wermers. 2014. Mutual fund performance evaluation with active peer

benchmarks. Journal of Financial Economics 112:1–29.
Ilmanen, A. S., R. Israel, R. Lee, T. J. Moskowitz, and A. K. Thapar. 2021. Factor premia and factor timing: A century

of evidence. Journal of Investment Management 19:15–57.
Joenväärä, J., M. Kauppila, R. Kosowski, and P. Tolonen. 2021. Hedge fund performance: Are stylized facts sensitive

to which database one uses? Critical Finance Review 10:1–70.
Jones, C., and J. Shanken. 2005. Mutual fund performance with learning across funds. Journal of Financial Economics

78:507–52.
Kan, R., and C. Robotti. 2009. Model comparison using the Hansen-Jagannathan distance. Review of Financial Studies

22:3449–90.
Kan, R., C. Robotti, and J. Shanken. 2013. Pricing model performance and the two-pass cross-sectional regression

methodology. Journal of Finance 68:2617–49.
Karehnke, P., and F. de Roon. 2020. Spanning tests for assets with option-like payoffs: The case of hedge funds.

Management Science 66:5969–89.
Kelly, B., and S. Pruitt. 2013. Market expectations in the cross-section of present values. Journal of Finance 68:1721–

56.
Koijen, R. S. J., T. J. Moskowitz, L. H. Pedersen, and E. B. Vrugt. 2018. Carry. Journal of Financial Economics

127:197–225.
Kosowski, R., N. Naik, and M. Teo. 2007. Do hedge funds deliver alpha? A Bayesian and bootstrap analysis. Journal

of Financial Economics 84:229–64.
Kozak, S., S. Nagel, and S. Santosh. 2020. Shrinking the cross-section. Journal of Financial Economics 135:271–92.
Lhabitant, F.-S. 2007. Handbook of Hedge Funds. Wiley.
Lo, A. 2008. Where do alphas come from? A measure of the value of active investment management. Journal of

Investment Management 6:1–29.
Merton, R. C. 1987. A simple model of capital market equilibrium with incomplete information. Journal of Finance

42:483–510.
Mitchell, M., and T. Pulvino. 2001. Characteristics of risk and return in risk arbitrage. Journal of Finance 56:2135–75.
Moskowitz, T. J., Y. H. Ooi, and L. H. Pedersen. 2012. Time series momentum. Journal of Financial Economics

104:228–50.
O’Doherty, M. S., N. E. Savin, and A. Tiwari. 2016. Hedge fund replication: A model combination approach. Review

35



of Finance 21:1767–804.
Pástor, L., and R. F. Stambaugh. 2002. Mutual fund performance and seemingly unrelated assets. Journal of Financial

Economics 63:315–49.
———. 2003. Liquidity risk and expected stock returns. Journal of Political Economy 111:642–85.
Pástor, L., R. F. Stambaugh, and L. A. Taylor. 2015. Scale and skill in active management. Journal of Financial

Economics 116:23–45.
———. 2017. Do funds make more when they trade more? Journal of Finance 72:1483–528.
Patton, A., and T. Ramadorai. 2013. On the high frequency dynamics of hedge fund risk exposures. Journal of Finance

68:597–635.
Pedersen, L. H. 2015. Efficiently Inefficient. Princeton University.
———. 2018. Sharpening the arithmetic of active management. Financial Analysts Journal 74:21–36.
Straumann, D. 2009. Measuring the quality of hedge fund data. Journal of Alternative Investments 12:26–40.
Titman, S., and C. Tiu. 2011. Do the best hedge funds hedge? Review of Financial Studies 24:123–68.
White, H. 1982. Maximum likelihood estimation of misspecified models. Econometrica 50:1–25.

36



TABLE I. Summary Statistics for the Equal-Weighted Portfolio of Hedge Funds
This table provides summary statistics for the equal-weighted portfolio of all existing funds at the start of
each month in the entire population and three investment categories: (i) equity funds (long-short, market
neutral), (ii) macro funds (global macro, managed futures), and (iii) arbitrage funds (relative value, event
driven). We report the annualized mean and standard deviation, skewness, kurtosis, and quantiles at 10%
and 90% of the portfolio excess return. The statistics are computed using monthly data between January
1994 and December 2020.

Moments Quantiles

Mean Std Dev. Skewness Kurtosis 10% 90%

All Funds 5.45 5.49 -0.31 4.51 -1.58 2.34

Equity 6.73 8.70 -0.47 5.32 -2.56 3.30
Long-Short 7.24 9.68 -0.44 5.31 -2.90 3.68
Market Neutral 3.07 2.72 -0.58 5.75 -0.66 1.13

Macro 5.05 5.79 0.24 3.30 -1.66 2.50
Global Macro 4.40 6.12 0.40 3.57 -1.68 2.59
Managed Futures 4.09 6.73 0.47 3.74 -1.79 2.92

Arbitrage 5.40 4.96 -2.16 14.57 -0.97 1.83
Relative Value 4.90 4.47 -2.46 18.03 -0.78 1.60
Event Driven 6.08 6.11 -1.74 11.79 -1.30 2.35
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TABLE II. Summary Statistics for the Hedge Fund Factors
This table provides summary statistics for the factors used in the construction of the nine hedge fund mod-
els. Panel A reports the statistics for the US equity market and the standard factors used for performance
evaluation. The size, value, momentum, investment, and profitability factors are computed using US equity
data. The global value and momentum factors are constructed across multiple international asset classes.
The term and default factors are computed using US bond data. The bond, commodity, and currency strad-
dles are computed using option data on bonds, commodities, and currencies. Panel B reports the statistics
for the additional hedge fund factors. The illiquidity and betting-against-beta (BAB) factors are computed
using US equity data. The variance factor is computed using index option data on the S&P500. The carry
and time-series (TS) momentum factors are constructed across multiple international asset classes. We de-
fine the straddle and variance factors as short positions to obtain positive premia. We report the annualized
mean and standard deviation, skewness, kurtosis, and quantiles at 10% and 90% of the excess returns of the
factors. The statistics are computed using monthly data between January 1994 and December 2020.

Panel A: Market and Standard Factors
Moments Quantiles

Mean Std Dev. Skewness Kurtosis 10% 90%

Market 8.81 15.48 -0.64 4.26 -5.15 6.02
Size 1.61 10.83 0.38 7.54 -3.49 3.69
Value 0.20 10.88 0.05 5.84 -3.30 3.47
Momentum 4.67 17.15 -1.42 12.88 -5.07 5.50
Investment 2.11 7.04 0.67 5.09 -2.14 2.70
Profitability 3.77 9.38 -0.47 13.49 -2.03 2.90
Global Value 1.30 6.19 -0.64 12.25 -1.72 1.76
Global Momentum 3.26 7.55 -0.30 5.46 -2.25 2.69
Term -0.18 0.89 -0.03 4.22 -0.35 0.29
Default 0.01 0.77 1.90 17.66 -0.20 0.19
Straddle on Bonds 16.00 57.86 -1.85 8.99 -19.68 17.73
Straddle on Commodities 2.99 50.38 -1.32 6.07 -19.71 15.74
Straddle on Currencies 11.27 69.02 -1.56 6.64 -23.36 20.15

Panel B: Additional Factors
Moments Quantiles

Mean Std Dev. Skewness Kurtosis 10% 90%

Iliquidity 6.52 12.97 -0.27 4.49 -3.60 4.99
BAB 8.58 13.77 -0.36 6.10 -3.58 5.21
Variance 38.10 23.80 -4.57 29.76 -1.03 7.61
Carry 6.85 4.96 0.01 3.98 -1.10 2.34
TS Momentum 11.11 12.56 0.16 3.16 -3.54 5.71
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TABLE III. The Set of Hedge Fund Models
This table summarizes the set of nine hedge fund models chosen for the empirical analysis. This set includes
the CAPM as reference model as well as three distinct groups. The first group includes the standard mod-
els used in previous work, namely the Carhart, Five-Factor, Fung-Hsieh, and Asness-Moskowitz-Pedersen
(AMP) models. The second group includes the two machine learning models of Kozak, Nagel, and Shan-
tosh (KNS) formed with five characteristic-based equity portfolios and five principal components of these
portfolios. The final group includes two models formed with the additional hedge fund factors. The first one
is the model of Joenväärä et al. (2021) (JKKT). The second one combines the factors proposed by Carhart
et al. (2014) and Pedersen (2018) (CP).

Model List of Included Factors

Reference Model
CAPM Market

Standard Models
Carhart Market, Size, Value, Momentum
Five-Factor Market, Size, Value, Investment, Profitability
Fung-Hsieh Market, Size, Term, Default, Straddles (Bonds, Commodities, Currencies)
AMP Market, Global Value and Momentum

Machine Learning Models
KNS1 Market, Five Characteristic-Based Equity Factors
KNS2 Market, Five Principal Component Equity Factors

Additional Models
JKKT Market, Size, Value, Momentum, Illiquidity, BAB, TS Momentum
CP Market, Size, Illiquidity, BAB, Variance, Carry, TS Momentum
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TABLE IV. Model Misspecification Statistics
This table provides misspecification statistics for the CAPM, the four standard models (Carhart, Five-Factor,
Fung-Hsieh, AMP), the two machine learning models (KNS1, KNS2), and the two models with the addi-
tional factors (JKKT and CP). For each model, we measure the relative importance of the three components
of the average fund return: (i) the alpha component (Alpha), (ii) the beta component due to the market (Beta
Mkt), and the beta component due to the non-market factors (Beta Non-Mkt). These proportions, which are
averaged across all funds, sum up to 100%. We also compute the average adjusted R2 of the time-series
regression of the fund return on the factor returns. We conduct this analysis for the entire hedge fund popu-
lation (first four columns) and for the entire mutual fund population (last four columns).

Hedge Funds Mutual Funds

Relative Importance (%) Relative Importance (%)

Alpha Beta Mkt Beta Non-Mkt R2 Alpha Beta Mkt Beta Non-Mkt R2

CAPM 52.75 47.25 0.00 20.43 -15.23 115.23 0.00 81.34

Carhart 47.14 46.60 6.26 25.28 -17.16 110.57 6.58 88.98
Five-Factor 49.04 46.65 4.31 24.85 -16.38 110.27 6.11 88.99
Fung-Hsieh 54.10 40.56 5.34 30.24 -14.96 107.78 7.18 85.88
AMP 47.08 47.37 5.55 24.36 -15.37 115.01 0.36 84.55

KNS1 52.52 48.24 -0.76 24.47 -17.41 114.58 2.84 83.40
KNS2 64.01 51.03 -15.04 26.39 -6.27 115.99 -9.73 87.09

JKKT 17.97 44.28 37.75 31.01 -20.01 110.20 9.81 89.65
CP 6.64 41.19 52.17 30.26 -24.33 109.06 15.27 87.15
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TABLE V. Formal Model Comparisons
This table compares the CAPM with the four standard models (Carhart, Five-Factor, Fung-Hsieh, AMP),
the two machine learning models (KNS1, KNS2), and the two models with the additional factors (JKKT
and CP). We compute the differences in characteristics between the cross-sectional distributions of the
alpha components under the CAPM and each model. We report the differences in the annualized mean and
standard deviation, the proportions of funds with negative and positive alphas, and the annualized quantiles
at 10% and 90%. Figures in parentheses denote the standard deviation of the estimated differences. ∗∗∗, ∗∗,
∗ indicate that the null hypothesis of equal characteristics is rejected at the 1%, 5%, and 10% levels.

Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Carhart -0.31 (0.40) -0.19 (0.31) 2.27 (2.50) -2.27 (2.50) -0.02 (0.40) -0.60∗ (0.34)
Five-Factor -0.21 (0.46) 0.02 (0.34) 2.41 (3.01) -2.41 (3.01) -0.01 (0.50) -0.18 (0.40)
Fung-Hsieh 0.08 (0.60) -0.20 (0.35) 0.52 (3.88) -0.52 (3.88) 0.28 (0.56) -0.15 (0.47)
AMP -0.31 (0.42) 0.06 (0.37) 2.50 (2.44) -2.50 (2.44) -0.17 (0.37) -0.34 (0.45)

KNS1 -0.01 (0.39) 0.43 (0.29) 1.59 (1.78) -1.59 (1.78) -0.26 (0.29) 0.19 (0.38)
KNS2 0.63 (0.49) 0.20 (0.31) -2.47 (2.65) 2.47 (2.65) 0.58 (0.41) 0.65 (0.47)

JKKT -1.93∗∗∗ (0.67) 0.41 (0.50) 14.76∗∗∗ (4.01) -14.76∗∗∗ (4.01) -2.32∗∗∗ (0.66) -1.98∗∗∗ (0.68)
CP -2.56∗∗∗ (0.76) 2.13∗∗∗ (0.50) 19.82∗∗∗ (4.27) -19.82∗∗∗ (4.27) -4.22∗∗∗ (0.73) -1.42∗ (0.76)
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TABLE VI. Decomposition of Average Fund Returns
This table shows the decomposition of average fund returns under the CAPM, the four standard models
(Carhart, Five-Factor, Fung-Hsieh, AMP), the two machine learning models (KNS1, KNS2), and the two
models with the additional factors (JKKT and CP). Panel A reports the characteristics of the cross-sectional
distribution of the alpha components under each model. We report the annualized mean and standard devi-
ation, the proportions of funds with negative and positive alphas, and the annualized quantiles at 10% and
90%. Figures in parentheses denote the standard deviation of the estimated characteristics. Panel B reports
the characteristics of the cross-sectional distribution of beta components under each model.

Panel A: Distribution of the Alpha Components
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

CAPM 2.93 (0.94) 7.01 (0.48) 27.15 (5.49) 72.85 (5.49) -3.95 (0.67) 10.06 (0.67)

Carhart 2.62 (0.84) 6.82 (0.31) 29.42 (5.08) 70.58 (5.08) -3.97 (0.57) 9.46 (0.55)
Five-Factor 2.72 (0.89) 7.03 (0.31) 29.55 (5.23) 70.45 (5.23) -3.96 (0.63) 9.87 (0.54)
Fung-Hsieh 3.01 (0.74) 6.81 (0.29) 27.66 (3.60) 72.34 (3.60) -3.67 (0.47) 9.90 (0.51)
AMP 2.62 (0.92) 7.08 (0.28) 29.65 (5.62) 70.35 (5.62) -4.12 (0.59) 9.71 (0.54)

KNS1 2.92 (0.87) 7.44 (0.42) 28.73 (5.13) 71.27 (5.13) -4.21 (0.63) 10.24 (0.60)
KNS2 3.56 (0.86) 7.21 (0.37) 24.68 (4.33) 75.32 (4.33) -3.37 (0.55) 10.70 (0.62)

JKKT 1.00 (0.73) 7.42 (0.31) 41.90 (4.80) 58.10 (4.80) -6.27 (0.60) 8.07 (0.38)
CP 0.37 (0.86) 9.15 (0.40) 46.97 (5.31) 53.03 (5.31) -8.17 (0.77) 8.64 (0.44)

Panel B: Distribution of the Beta Components
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

CAPM 2.62 (0.83) 4.37 (0.67) 22.54 (9.57) 77.46 (9.57) -0.71 (0.61) 8.01 (0.73)

Carhart 2.94 (0.81) 4.30 (0.52) 17.99 (5.68) 82.01 (5.68) -0.65 (0.42) 8.20 (0.72)
Five-Factor 2.83 (0.84) 4.48 (0.51) 20.61 (5.62) 79.39 (5.62) -1.06 (0.41) 8.32 (0.75)
Fung-Hsieh 2.55 (0.78) 4.39 (0.52) 22.58 (5.98) 77.42 (5.98) -1.23 (0.44) 7.96 (0.67)
AMP 2.94 (0.84) 4.66 (0.49) 18.98 (5.41) 81.02 (5.41) -0.96 (0.43) 8.56 (0.73)

KNS1 2.64 (0.80) 5.14 (0.57) 23.04 (5.71) 76.96 (5.71) -1.37 (0.56) 8.38 (0.86)
KNS2 2.00 (0.82) 4.47 (0.49) 27.53 (7.96) 72.47 (7.96) -1.61 (0.59) 7.28 (0.69)

JKKT 4.56 (0.83) 5.90 (0.42) 13.90 (2.20) 86.10 (2.20) -0.50 (0.28) 11.12 (0.74)
CP 5.19 (0.93) 7.64 (0.49) 15.91 (2.17) 84.09 (2.17) -1.17 (0.35) 12.78 (1.11)
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TABLE VII. Economic Importance of the Hedge Fund Factors
This table measures the economic importance of each factor in the CP model as a driver of average fund
returns. Panel A reports the characteristics of the cross-sectional distribution of the beta components due to
each factor. We report the annualized mean and standard deviation, the proportions of funds with negative
and positive contributions, and the annualized quantiles at 10% and 90%. Figures in parentheses denote the
standard deviation of the estimated characteristics. Panel B reports the cross-sectional correlation between
the beta components for each pair of factors.

Panel A: Distribution of the Beta Components for Each Factor
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Market 2.29 (1.27) 3.84 (1.19) 21.62 (6.13) 78.38 (6.13) -0.55 (0.15) 6.99 (2.05)
Size 0.23 (0.26) 1.01 (0.32) 38.23 (4.26) 61.77 (4.26) -0.31 (0.03) 1.02 (0.53)
Illiquidity 0.05 (0.07) 1.26 (0.29) 44.94 (3.25) 55.06 (3.25) -0.75 (0.24) 0.85 (0.38)
Betting Against Beta 0.35 (0.25) 2.22 (0.69) 35.14 (3.80) 64.86 (3.80) -1.30 (0.44) 2.23 (0.90)
Variance 0.78 (0.25) 5.17 (0.70) 36.74 (1.89) 63.26 (1.89) -3.08 (0.54) 4.53 (0.87)
Carry 0.43 (0.17) 2.56 (0.46) 39.21 (2.38) 60.79 (2.38) -1.89 (0.37) 2.73 (0.51)
Time-Series Momentum 1.06 (0.32) 4.03 (0.78) 42.86 (1.51) 57.14 (1.51) -1.35 (0.34) 4.49 (0.72)

Panel B: Correlations Between the Beta Components
Size Illiquidity BAB Variance Carry TS Mom

Market -0.08 -0.01 -0.01 -0.03 -0.02 -0.18
Size -0.07 -0.00 -0.06 0.06 0.05
Illiquidity -0.09 0.14 -0.02 0.08
Betting Against Beta -0.07 0.03 -0.05
Variance 0.04 -0.09
Carry -0.13
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TABLE VIII. Decomposition of Average Fund Returns – Investment Categories
This table shows the decomposition of average fund returns under the CAPM and the two models with the
additional factors (JKKT and CP) across investment styles. Panel A reports the characteristics of the cross-
sectional distributions of the alpha and beta components across equity funds (long-short, market neutral).
We report the annualized mean and standard deviation, the proportions of funds with negative and positive
alphas, and the annualized quantiles at 10% and 90%. Figures in parentheses denote the standard deviation
of the estimated characteristics. Panels B and C repeat the analysis for macro funds (global macro, managed
futures) and arbitrage funds (relative value, event driven).

Panel A: Equity Funds
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Distribution of the Alpha Components
CAPM 2.40 (1.06) 7.09 (0.48) 30.23 (6.31) 69.77 (6.31) -4.52 (0.83) 9.54 (0.96)
JKKT 1.12 (0.81) 6.98 (0.31) 42.98 (5.48) 57.02 (5.48) -5.73 (0.75) 7.77 (0.66)
CP 0.58 (0.96) 9.08 (0.49) 47.38 (5.46) 52.62 (5.46) -7.84 (1.02) 8.53 (0.79)

Distribution of the Beta Components
CAPM 4.18 (1.16) 5.19 (0.70) 12.94 (8.25) 87.06 (8.25) -0.14 (0.74) 10.66 (1.39)
JKKT 5.46 (1.18) 5.75 (0.54) 10.59 (2.37) 89.41 (2.37) -0.10 (0.43) 12.19 (1.41)
CP 6.00 (1.31) 7.58 (0.61) 13.69 (2.77) 86.31 (2.77) -0.75 (0.56) 13.71 (1.77)

Panel B: Macro Funds
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Distribution of the Alpha Components
CAPM 3.71 (1.72) 8.04 (0.78) 25.73 (6.47) 74.27 (6.47) -4.26 (0.89) 12.41 (2.14)
JKKT -0.14 (1.42) 9.14 (0.65) 51.52 (7.66) 48.48 (7.66) -9.25 (1.43) 8.70 (0.75)
CP -0.39 (1.65) 11.04 (0.70) 51.83 (7.02) 48.17 (7.02) -10.91 (1.58) 10.26 (1.00)

Distribution of the Beta Components
CAPM 1.01 (1.08) 3.70 (0.68) 43.44 (21.78) 56.56 (21.78) -1.76 (1.29) 5.44 (0.66)
JKKT 4.87 (1.11) 7.49 (0.74) 20.32 (3.33) 79.68 (3.33) -1.57 (0.44) 12.86 (1.30)
CP 5.11 (1.33) 9.62 (0.79) 23.74 (3.89) 76.26 (3.89) -2.60 (0.63) 14.18 (1.35)

Panel C: Arbitrage Funds
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Distribution of the Alpha Components
CAPM 2.81 (1.24) 5.61 (0.44) 24.74 (9.71) 75.26 (9.71) -2.79 (1.31) 8.67 (0.63)
JKKT 1.97 (0.89) 5.70 (0.29) 31.03 (8.00) 68.97 (8.00) -3.66 (0.92) 7.60 (0.50)
CP 0.87 (1.06) 6.81 (0.44) 41.64 (9.30) 58.36 (9.30) -5.48 (1.20) 7.62 (0.49)

Distribution of the Beta Components
CAPM 2.31 (0.98) 3.02 (0.66) 13.63 (8.51) 86.37 (8.51) -0.08 (0.45) 5.88 (1.22)
JKKT 3.14 (0.81) 3.57 (0.42) 11.60 (3.04) 88.40 (3.04) -0.09 (0.32) 7.28 (1.03)
CP 4.25 (0.98) 4.90 (0.56) 10.86 (2.29) 89.14 (2.29) -0.10 (0.33) 9.42 (1.37)
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TABLE IX. Economic Importance of the Hedge Fund Factors – Investment Categories
This table measures the economic importance of each factor in the CP model as a driver of average fund
returns across investment styles. Panel A reports the characteristics of the cross-sectional distributions of
the beta components due to each factor across equity funds (long-short, market neutral). We report the
annualized mean and standard deviation, the proportions of funds with negative and positive contributions,
and the annualized quantiles at 10% and 90%. Figures in parentheses denote the standard deviation of
the estimated characteristics. Panel B and C repeat the analysis for macro funds (global macro, managed
futures) and arbitrage funds (relative value, event driven).

Panel A: Equity Funds
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Market 3.67 (2.07) 4.53 (1.22) 14.54 (8.16) 85.46 (8.16) -0.19 (0.61) 9.33 (3.18)
Size 0.42 (0.57) 1.32 (0.42) 32.68 (11.70) 67.32 (11.70) -0.35 (0.11) 1.65 (1.04)
Illiquidity 0.14 (0.10) 1.49 (0.35) 44.13 (2.66) 55.87 (2.66) -0.85 (0.25) 1.27 (0.48)
Betting Against Beta 0.25 (0.21) 2.66 (0.80) 38.48 (3.90) 61.52 (3.90) -1.71 (0.55) 2.55 (1.05)
Variance 0.67 (0.25) 5.06 (0.70) 38.58 (2.19) 61.42 (2.19) -3.12 (0.54) 4.46 (0.85)
Carry 0.34 (0.17) 2.80 (0.46) 44.78 (2.67) 55.22 (2.67) -2.11 (0.41) 2.73 (0.52)
Time-Series Momentum 0.51 (0.17) 2.83 (0.55) 42.08 (2.04) 57.92 (2.04) -1.56 (0.46) 3.05 (0.74)

Panel B: Macro Funds
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Market 1.18 (0.62) 3.47 (1.10) 35.11 (4.40) 64.89 (4.40) -1.40 (0.35) 4.87 (1.62)
Size 0.07 (0.09) 0.83 (0.20) 50.59 (9.02) 49.41 (9.02) -0.43 (0.28) 0.64 (0.20)
Illiquidity -0.08 (0.10) 1.26 (0.31) 54.07 (3.37) 45.93 (3.37) -0.90 (0.37) 0.75 (0.28)
Betting Against Beta 0.21 (0.19) 1.99 (0.65) 40.83 (4.63) 59.17 (4.63) -1.30 (0.47) 1.84 (0.76)
Variance 0.22 (0.35) 6.56 (0.87) 49.41 (3.11) 50.59 (3.11) -4.73 (0.92) 4.55 (0.76)
Carry 0.41 (0.26) 2.79 (0.57) 41.89 (3.33) 58.11 (3.33) -2.43 (0.58) 3.23 (0.64)
Time-Series Momentum 3.10 (1.11) 5.83 (1.23) 24.43 (3.26) 75.57 (3.26) -0.73 (0.12) 10.22 (2.20)

Panel C: Arbitrage Funds
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Market 1.68 (0.90) 2.52 (0.75) 16.96 (6.38) 83.04 (6.38) -0.19 (0.21) 4.40 (1.44)
Size 0.16 (0.20) 0.60 (0.17) 32.82 (8.47) 67.18 (8.47) -0.11 (0.04) 0.56 (0.45)
Illiquidity 0.07 (0.12) 0.87 (0.18) 36.89 (7.20) 63.11 (7.20) -0.40 (0.06) 0.60 (0.32)
Betting Against Beta 0.61 (0.39) 1.76 (0.58) 25.35 (4.61) 74.65 (4.61) -0.68 (0.14) 2.15 (0.95)
Variance 1.47 (0.42) 3.34 (0.55) 21.90 (2.39) 78.10 (2.39) -0.78 (0.08) 4.59 (0.97)
Carry 0.56 (0.20) 1.91 (0.34) 29.67 (3.66) 70.33 (3.66) -0.86 (0.17) 2.37 (0.52)
Time-Series Momentum -0.30 (0.19) 1.53 (0.37) 62.12 (4.12) 37.88 (4.12) -1.64 (0.57) 0.82 (0.17)
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TABLE X. Fund Characteristics and Fund Selection
This table examines how the alpha component varies across groups of funds sorted on fund characteristics.
Panel A reports the characteristics of the cross-sectional distribution of the alpha component for groups
sorted on proxies of managerial incentives, which are management fees, performance fees, and a dummy
that takes a value of one if the fund has a high water mark provision. We set the cutoff levels at the usual 2%
for management fees and 20% for performance fees. We report the annualized mean and standard deviation,
the proportions of funds with negative and positive contributions, and the annualized quantiles at 10% and
90%. Figures in parentheses denote the standard deviation of the estimated characteristics. Panel B repeats
the analysis using proxies of managerial flexibility, which are two dummies that take a value of one if the
fund imposes a lockup period or a notice period.

Panel A: Managerial Incentives
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Low Management Fees 0.01 (0.81) 8.03 (0.38) 49.04 (5.91) 50.96 (5.91) -7.63 (0.84) 7.39 (0.48)
High Management Fees 1.28 (1.27) 11.41 (0.59) 41.72 (4.99) 58.28 (4.99) -10.08 (1.32) 11.31 (0.67)

Low Performance Fees -1.53 (0.98) 7.30 (0.41) 60.77 (7.43) 39.23 (7.43) -8.17 (1.18) 5.44 (0.50)
High Performance Fees 1.11 (0.90) 9.70 (0.41) 41.44 (5.08) 58.56 (5.08) -8.20 (0.80) 9.85 (0.51)

No High Water Mark -1.44 (1.35) 9.97 (0.74) 58.38 (5.48) 41.62 (5.48) -10.23 (1.20) 7.48 (0.83)
High Water Mark 1.17 (0.87) 8.82 (0.43) 41.55 (5.58) 58.45 (5.58) -7.39 (0.89) 9.36 (0.46)

Panel B: Managerial Flexibility
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

No Lockup Period 0.03 (0.85) 9.23 (0.39) 48.77 (5.27) 51.23 (5.27) -8.52 (0.87) 8.12 (0.51)
Lockup Period 1.77 (1.00) 8.86 (0.50) 37.40 (6.06) 62.60 (6.06) -6.26 (1.17) 10.08 (0.58)

No Notice Period -0.62 (1.45) 9.72 (0.56) 56.50 (6.22) 43.50 (6.22) -9.48 (1.22) 8.72 (1.11)
Notice Period 0.73 (0.87) 9.03 (0.41) 43.67 (5.63) 56.33 (5.63) -7.72 (0.90) 8.71 (0.49)
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TABLE XI. Fund Flows and Investor Sophistication
This table measures how investor flows contemporaneously respond to the different components of the
average fund return under the CP model: (i) the alpha component, (ii) the beta component due to the
market, and (iii) the beta component due to the non-market factors (size, illiquidity, BAB, variance, carry,
TS momentum). For each of the non-overlapping five-year periods between 1996 and 2020, we measure
the three components for all funds. We then rank them according to their average monthly net flows and
group them into quintiles (low, 2, 3, 4, high). Panel A reports the characteristics of the cross-sectional
distribution of the alpha components (pooled over all five-year periods) for the five flow groups. We report
the annualized mean and standard deviation, the proportions of funds with negative and positive alphas,
and the annualized quantiles at 10% and 90%. Figures in parentheses denote the standard deviation of the
estimated characteristics. Panels B and C repeat the analysis for the beta components due to the market and
the non-market factors.

Panel A: Distribution of the Alpha Components
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Low -0.57 (1.54) 10.71 (0.79) 54.84 (5.88) 45.16 (5.88) -10.53 (1.33) 9.55 (0.74)
2 0.39 (1.33) 9.03 (0.72) 47.82 (5.66) 52.18 (5.66) -9.01 (0.98) 9.15 (0.83)
3 1.52 (1.32) 8.42 (0.76) 41.49 (6.10) 58.51 (6.10) -7.18 (0.90) 10.33 (0.65)
4 2.92 (1.44) 8.85 (0.82) 34.57 (6.90) 65.43 (6.90) -5.97 (1.18) 13.00 (0.56)
High 3.25 (1.24) 9.87 (0.61) 29.61 (5.31) 70.39 (5.31) -4.92 (0.98) 13.18 (0.74)

Panel B: Distribution of the Beta Components (Market Factor)
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Low 2.32 (1.98) 4.19 (1.75) 18.19 (19.41) 81.81 (19.41) -0.53 (0.84) 8.37 (3.00)
2 3.15 (2.45) 5.09 (1.75) 14.25 (18.87) 85.75 (18.87) -0.17 (1.19) 10.34 (4.27)
3 2.91 (2.26) 4.94 (1.84) 15.85 (18.60) 84.15 (18.60) -0.17 (1.13) 9.48 (4.06)
4 2.40 (1.84) 4.42 (1.74) 19.96 (15.33) 80.04 (15.33) -0.33 (0.71) 8.29 (3.30)
High 1.95 (1.45) 3.90 (1.61) 23.07 (13.06) 76.93 (13.06) -0.46 (0.45) 7.31 (2.63)

Panel C: Distribution of the Beta Components (Non-Market Factors)
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Low 2.38 (0.90) 8.18 (3.58) 32.13 (8.54) 67.87 (8.54) -4.43 (1.93) 10.44 (3.66)
2 2.13 (0.83) 7.36 (3.03) 35.93 (12.43) 64.07 (12.43) -4.26 (1.59) 9.60 (3.57)
3 2.14 (0.81) 6.94 (3.28) 32.07 (11.95) 67.93 (11.95) -4.23 (2.02) 9.34 (3.59)
4 2.30 (0.78) 7.16 (3.19) 34.30 (8.29) 65.70 (8.29) -3.88 (1.79) 9.63 (3.59)
High 2.37 (0.81) 7.82 (3.09) 33.70 (6.23) 66.30 (6.23) -3.81 (1.70) 8.65 (3.46)
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Figure 1. Distributions of the Alpha and Beta Components – A Simple Example
This figure compares the average return decomposition obtained with a candidate hedge fund (HF) model
and the CAPM. Panel A plots the cross-sectional distributions of the alpha components (annualized) under
both models. In this simple example, the average fund returns are explained by four factors (the market and
three alternative factors 1, 2, and 3 with similar premia), and hedge funds load more aggressively on factor
1 than on factors 2 and 3. Whereas the CAPM omits factors 1, 2, and 3, the HF model only omits factor 3.
Panel B repeats the analysis for the beta components.
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Figure 2. Distributions of the Alpha and Beta Components
This figure compares the average return decomposition obtained witth the two models with the additional
factors (JKKT and CP) and the CAPM. Panel A plots the cross-sectional distributions of the alpha compo-
nents (annualized) under the three models. Panel B repeats the analysis for the beta components.
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Figure 3. Time-Variation in the Average Return Components
This figure compares the return decomposition for hedge funds and mutual funds. Panel A plots the evolu-
tion of the average return components (annualized) under the CP model: (i) the alpha component (Alpha),
(ii) the beta component due to the market (Beta Mkt), and the beta component due to the non-market factors
(Beta Non-Mkt), which are size, illiquidity, BAB, variance, carry, and TS momentum. At the end of each
month, we measure the three components of each fund using its entire return history up to that point and
take cross-sectional averages across all existing funds. The initial estimates cover the period 1994 to 2003,
while the last ones cover the entire period 1994 to 2020. Panel B repeats the analysis for mutual funds using
the traditional Carhart (1997) model, which includes size, value, and momentum as non-market factors.

−2

−1

0

1

2

3

4

5

6

7

8

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

Alpha
Beta Mkt
Beta Non−Mkt

(a) Hedge Funds

−2

−1

0

1

2

3

4

5

6

7

8

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

(b) Mutual Funds

50



Figure 4. Time-Variation in the Differences between Models
This figure plots the evolution of the differences in average alphas (annualized) between: (i) the CAPM and
the CP model, and (ii) the Fung-Hsieh model and the CP model. At the end of each month, we measure the
alpha of each fund under all three models, take cross-sectional averages across all existing funds, and then
compute the differences between models. The initial estimates cover the period 1994 to 2003, while the last
ones cover the entire period 1994 to 2020. The differences in the average beta components are not reported
because they are identical to the ones obtained with the alpha component (with opposite signs).
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— Internet Appendix —

Is it Alpha or Beta? Decomposing Hedge Fund
Returns When Models are Misspecified



This appendix is divided into four sections. Section I contains the proofs of the propositions dis-

cussed in the paper (including the regularity assumptions), provides the list of the terms for com-

puting the asymptotic variance of the different estimators, and shows how to extend the method-

ology from the distribution of the alpha components to the distribution of the beta components.

Section II presents the Monte-Carlo analysis for examining the properties of the estimators. Sec-

tion III describes the construction of the hedge fund dataset and the different factors. Section IV

reports additional empirical results on (i) the misspecification diagnostic criterion, (ii) model com-

parisons with different data filters, (iii) model comparisons with alternative reference models, (iv)

the impact of factor trading costs, (v) the return decomposition for multi-strategy funds and funds

of funds, (vi) the economic importance of the hedge fund factors across investment subcategories,

and (vii) the return decomposition under a style-based version of the CP model.

I. Methodology

I.A. Regularity Assumptions

To begin, we list the required assumptions underlying the results of Propositions 1 to 3. In partic-

ular, we need assumption A.7 to obtain non-zero asymptotic variances for the different estimators

and guarantee that the limiting Gaussian distributions are all well-defined. We use a generic uni-

variate function g = g(αi) to simplify the presentation and avoid vectorial notations, and apply

the compact notation g(1) and g(2) for its first- and second-order derivatives. We also omit the

superscript k to lighten the notation when clarity permits.

Assumption A.1. The individual effects γ∗
i =

(
α∗
i , b

∗′
i,I , b

∗′
i,O

)′, with i = 1, ..., n, are i.i.d. with
continuous distribution, E[∥b∗i,O∥2] < ∞, and are independent of the factors and the errors.

Assumption A.2. The observability indicator processes (Ii,t), with i = 1, ..., n, are i.i.d., such
that (Ii,t) is strictly stationary with mean τ−1

i for any given i, and independent of the individual
effects, the factors, and the error processes.

Assumption A.3. The factor process ft = (f ′
I,t, f

′
O,t)

′ is strictly stationary, such that E[∥fI,t∥8] <

∞ and satisfies the central limit theorem (CLT):
1√
T

∑
t

(uO,t ⊗ xt) →d N(0,Ωux), as T → ∞,

where Ωux = lim
T→∞

V

[
1√
T

∑
t

uO,t ⊗ xt

]
.

Assumption A.4. The error process (ε∗i,t) is such that
1

nT

∑
i,j

∑
t,s

E
[
E[ε∗i,tε

∗
j,s|fT , γ∗

i , γ
∗
j ]

2
]1/2 ≤

C, for a constant C and all n, T where ft = {ft, ft−1, . . .}.
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Assumption A.5. The trimming sequences χ1,T and χ2,T are such that χ1,T = O((log T )κ1) and
χ2,T = O((log T )κ2), for κ1, κ2 > 0.

Assumption A.6. The function g is twice differentiable, and such that E[|g(αi)|2] < ∞, E[|g(1)(αi)|8] <
∞, and E[|g(2)(αi)|4] < ∞.

Assumption A.7. For any pair of models k and l (k, l = 0, ..., K − 1), we have: (1) ηkMs
̸= 0 and

ηlMs
̸= 0, (2) ηkP (a) ̸= 0 and ηlP (a) ̸= 0, (3) ηkMs

(uk
O,t⊗xk

t )−ηlMs
(ul

O,t⊗xl
t) is not the zero process,

and (4) ηkP (a)(u
k
O,t ⊗ xk

t )− ηlP (a)(u
l
O,t ⊗ xl

t) is not the zero process.

I.B. Proofs of Propositions 1 and 2

We now prove Proposition 1 on the estimated characteristics of the alpha distribution under a given

model k. To simplify notation, we drop the superscript k for the proof. We have

α̂i = E ′
1Q̂

−1
x,i

1

Ti

∑
t

Ii,txtri,t = αi + E ′
1Q̂

−1
x,i

1

Ti

∑
t

Ii,txtεi,t

= αi +
τi,T√
T
E ′

1Q̂
−1
x,i

(
1√
T

∑
t

Ii,txtε
∗
i,t

)
+

τi,T√
T
E ′

1Q̂
−1
x,i

(
1√
T

∑
t

Ii,txtu
′
t

)
b∗i,O

=: αi +
1√
T
ηi,T . (A1)

By a second-order Taylor expansion,

g(α̂i) = g(αi) +
1√
T
g(1)(αi)ηi,T +

1

2T
g(2)(ᾱi)η

2
i,T , (A2)

where ᾱi is between α̂i and αi for all i. Thus, we get

√
T

(
1

n

∑
i

g(α̂i)1
χ
i − E [g(αi)]

)
(A3)

=
√
T

(
1

n

∑
i

g(αi)− E [g(αi)]

)
−
√
T
1

n

∑
i

g(αi) (1− 1χ
i ) (A4)

+
1

n

∑
i

1χ
i g

(1)(αi)τi,TE
′
1Q̂

−1
x,i

(
1√
T

∑
t

Ii,txtε
∗
i,t

)
(A5)

+
1

n

∑
i

1χ
i g

(1)(αi)τi,TE
′
1Q̂

−1
x,i

(
1√
T

∑
t

Ii,txtu
′
O,t

)
b∗i,O (A6)

+
1

2
√
Tn

∑
i

1χ
i g

(2)(ᾱi)η
2
i,T =: I1 + I2 + I3 + I4 + I5. (A7)

We control the five terms separately, the leading term being the fourth one and the others being

asymptotically negligible, i.e., of probability order op(1).
2



i) Proof that I1 = op(1). By Assumptions A.1 and A.6, and the standard CLT, we have I1 =

Op(
√

T/n). By using T/n = o(1), it follows I1 = op(1).

ii) Proof that I2 = op(1). We have E[|I2|] ≤
√
TE[|g(αi)|(1−1χ

i )] ≤
√
TE[|g(αi)|2]1/2P [1χ

i =

0]1/2, by the Cauchy-Schwarz inequality. By Lemma 7 in Gagliardini, Ossola, and Scaillet (2016),

P [1χ
i = 0] = O(T−b̄), for any b̄ > 0. From Assumption A.6, E[|I2|] = o(1).

iii) Proof that I3 = op(1). We have

E[I23 |fT , γ∗
i , Ii,T , i = 1, ..., n] (A8)

=
1

n2T

∑
i,j

∑
t,s

1χ
i 1

χ
j g

(1)(αi)g
(1)(αj)τi,T τj,TE

′
1Q̂

−1
x,iIi,txtE

′
1Q̂

−1
x,jIi,sxsE[ε∗i,tε

∗
j,s|fT , γ∗

i , γ
∗
j ]. (A9)

By using 1χ
i τi,T ≤ χ2,T and 1χ

i ∥Q̂
−1
x,i∥ ≤ Cχ1,T for a generic constant C (see Gagliardini, Ossola,

and Scaillet (2016), proof of Lemma 3), we get

E[I23 |fT , γ∗
i , Ii,T , i = 1, ..., n] ≤

Cχ2
1,Tχ

2
2,T

n2T

∑
i,j

∑
t,s

|g(1)(αi)| |g(1)(αj)| ∥xt∥∥xs∥ |E[ε∗i,tε
∗
j,s|fT , γ∗

i , γ
∗
j ]|.

(A10)

By the Cauchy-Schwarz inequality, we get

E[I23 ] ≤ Cχ2
1,Tχ

2
2,TE[|g(1)(αi)|8]1/4E[∥xt∥8]1/4

1

n2T

∑
i,j

∑
t,s

E
[
|E[ε∗i,tε

∗
j,s|fT , γ∗

i , γ
∗
j ]|2
]1/2

.

(A11)

From Assumptions A.3-A.6, we get E[I23 ] = o(1).

iv) Proof that I4 →d N
(
0, Vg

)
. We have

I4 =
1

n

∑
i

g(1)(αi)τiE
′
1Q

−1
x

(
1√
T

∑
t

Ii,txtu
′
O,t

)
b∗i,O + op(1) (A12)

= E ′
1Q

−1
x

1√
T

∑
t

xtu
′
O,t

(
1

n

∑
i

Ii,tτig
(1)(αi)b

∗
i,O

)
+ op(1), (A13)

where τi = E[Ii,t|γ∗
i ]

−1 by Assumption A.2. By Assumptions A.1 and A.2, the cross-sectional

average
1

n

∑
i

Ii,tτig
(1)(αi)b

∗
i,O converges in probability to the expectation E[Ii,tτig

(1)(αi)b
∗
i,O].

Moreover, we have the chain of equalities: E[Ii,tτig
(1)(αi)b

∗
i,O] = E[E[Ii,t|γ∗

i ]τig
(1)(αi)b

∗
i,O] =

3



E[g(1)(αi)b
∗
i,O]. This expectation is finite by Assumptions A.1 and A.6. Thus, we get

I4 = E ′
1Q

−1
x

1√
T

∑
t

xtu
′
O,tE[g(1)(αi)b

∗
i,O] + op(1). (A14)

Now, we use xtu
′
O,tE[g(1)(αi)b

∗
i,O] =

(
E[g(1)(αi)b

∗
i,O]

′ ⊗ Id+1

)
(uO,t ⊗ xt), where d denotes the

number of factors included in the model. Thus, we get

(
E[g(1)(αi)b

∗
i,O]

′ ⊗ E ′
1Q

−1
x

) 1√
T

∑
t

uO,t ⊗ xt →d N(0, Vg), (A15)

by Assumption A.3, and the result follows.

v) Proof that I5 = op(1). We have

1

n

∑
i

1χ
i g

(2)(ᾱi)η
2
i,T = E[g(2)(αi)η

2
i,T ] + op(1), (A16)

from Assumptions A.1-A.6, and the result follows.

For the proportion and quantile estimators, we proceed in a similar manner even if the indicator

g(α) = 1{α ≤ a} is not differentiable. To understand intuitively the asymptotic variance of the

proportion estimator, we can consider that the derivative of the indicator function is minus the Dirac

function g(1)(α) = −δ(α− a) in the sense of distribution theory. Thus, we have E[g(1)(αi)b
∗
i,O] =

−
∫

δ(α − a)m(α)dα = −m(a), where m(a) = E[b∗i,O|αi = a]ϕac(a). By plugging this expres-

sion in Equation (A15), we obtain the asymptotic distribution of the proportion estimator. The

asymptotic distribution of the quantile estimator is derived from that of the cdf estimator by means

of the Bahadur (1966) representation Q̂(u)−Q(u) = − 1

ϕac(Q(u))

(
P̂ (Q(u))− u

)
+ op(1).

Next, we turn to the proof of Proposition 2, which examines the difference in characteristics

between models. Whereas our empirical analysis focuses on the comparison between various mod-

els and the CAPM, the results in Proposition 2 are general and apply to any pair of models k and

l (which can be nested or non-nested). We can view Proposition 2 as a corollary of Proposition 1.

For each characteristic (moments, proportion, quantile), we simply need to work with g(α̂k
i )−g(α̂l

i)

substituted for g(α̂i), and apply the delta method to obtain the results.
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I.C. Proof of Proposition 3

In this section, we provide the theoretical arguments to show that the asymptotic variance esti-

mators are consistent. We focus on the estimation of the asymptotic variance of Proposition 1,

namely

Vg =
(
E[g(1)(αi)b

∗
i,O]

′ ⊗ E ′
1Q

−1
x

)
Ωux

(
E[g(1)(αi)b

∗
i,O]⊗Q−1

x E1

)
, (A17)

using the notations of appendix I.A. Because the arguments are similar for the consistency of the

estimators of the asymptotic variances in Proposition 2, we omit their lengthy developments.

The asymptotic variance Vg depends on the omitted factors and their loadings. We can still

estimate it without knowing them through the pseudo-residuals defined as ε̂i,t = ri,t − γ̂′
ixt, where

γ̂i = (Q̂x,i)
−1 1

Ti

∑
t Ii,txtri,t is the vector of coefficients of the time-series regression in Equa-

tion (4) of the paper. We build

V̂g =
1

n2T

∑
i

∑
j

∑
t

1χ
i τi,T Ii,t1

χ
j τj,T Ij,tâi,tâj,t , (A18)

where âi,t = E ′
1Q̂

−1
x g(1)(α̂i)ε̂i,txt, i = 1, ..., n.1 To simplify the presentation, we assume a scalar

omitted factor, and we treat vector xt as a scalar in some terms.2 The pseudo-residuals are

ε̂i,t = ri,t − γ̂′
ixt = ε∗i,t + b∗i,OuO,t − (γ̂i − γi)

′xt . (A19)

Then, we have V̂g = E ′
1Q̂

−1
x I6Q̂

−1
x E1, where

I6 :=
1

n2T

∑
i

∑
j

∑
t

1χ
i τi,T Ii,t1

χ
j τj,T Ij,tg

(1)(α̂i)ε̂i,tg
(1)(α̂j)ε̂j,txtx

′
t . (A20)

By using Equation (A19) of the pseudo-residuals, we can decompose I6 into six terms, the leading

1In the empirical analysis of the paper, we replace n with nχ to obtain conservative estimators of the variance.
This replacement has no effect on the asymptotic properties of the variance estimator derived in this section.

2For expository purpose, we only develop the case where both the error terms and the factors are independent
across time. When the error terms and/or the factors are correlated across time, we need to modify the estimator by
including weighted cross-terms at different dates (Newey and West, 1987).
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term being the second one and the other five ones being asymptotically negligible

I6 =
1

n2T

∑
i

∑
j

∑
t

1χ
i τi,T Ii,t1

χ
j τj,T Ij,tg

(1)(α̂i)ε
∗
i,tg

(1)(α̂j)ε
∗
j,txtx

′
t (A21)

+
1

T

∑
t

(
1

n

∑
i

1χ
i τi,T Ii,tg

(1)(α̂i)b
∗
i,O

)2

u2
O,txtx

′
t (A22)

+
1

T

∑
t

(
1

n

∑
i

1χ
i τi,T Ii,tg

(1)(α̂i)(γ̂i − γi)

)2

x4
t (A23)

+
2

n2T

∑
i

∑
j

∑
t

1χ
i τi,T Ii,t1

χ
j τj,T Ij,tg

(1)(α̂i)ε
∗
i,tg

(1)(α̂j)b
∗
j,OuO,txtx

′
t (A24)

− 2

n2T

∑
i

∑
j

∑
t

1χ
i τi,T Ii,t1

χ
j τj,T Ij,tg

(1)(α̂i)ε
∗
i,tg

(1)(α̂j)(γ̂j − γj)x
3
t (A25)

− 2

T

∑
t

(
1

n

∑
i

1χ
i τi,T Ii,tg

(1)(α̂i)b
∗
i,O

)(
1

n

∑
i

1χ
i τi,T Ii,tg

(1)(α̂i)(γ̂i − γi)

)
uO,tx

3
t (A26)

=: I61 + I62 + I63 + I64 + I65 + I66 . (A27)

We control the six terms separately.

i) Proof that I61 = op(1). We have

I61 =
1

n2

∑
i

∑
j

τiτjg
(1)(αi)g

(1)(αj)
1

T

∑
t

Ii,tIj,tε
∗
i,tε

∗
j,tx

2
t + op(1) (A28)

=
1

n2

∑
i

∑
j

g(1)(αi)g
(1)(αj)

1

T

∑
t

E[ε∗i,tε
∗
j,tx

2
t |γ∗

i , γ
∗
j ] + op(1) =: I611 + op(1) . (A29)

From the Cauchy-Schwarz inequality and the law of iterated expectations, we have

E[ε∗i,tε
∗
j,tx

2
t |γ∗

i , γ
∗
j ] = E[E[ε∗i,tε

∗
j,t|fT , γ∗

i , γ
∗
j ]x

2
t |γ∗

i , γ
∗
j ] ≤ E[E[ε∗i,tε

∗
j,t|fT , γ∗

i , γ
∗
j ]

2|γ∗
i , γ

∗
j ]

1/2E[∥xt∥4]1/2.

Thus, we get:

|I611| ≤ E[∥xt∥4]1/2
1

n2T

∑
i

∑
j

∑
t

|g(1)(αi)||g(1)(αj)|E[E[ε∗i,tε
∗
j,t|fT , γ∗

i , γ
∗
j ]

2|γ∗
i , γ

∗
j ]

1/2.

(A30)

By applying again the Cauchy-Schwarz inequality, we get

E[|I611|] ≤ E[∥xt∥4]1/2E[|g(1)(αi)|4]1/2
1

n2T

∑
i

∑
j

∑
t

E[E[ε∗i,tε
∗
j,t|fT , γ∗

i , γ
∗
j ]

2]1/2. (A31)
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From Assumptions A.3, A.4, and A.6, we get E[|I611|] = o(1) and thus I611 = op(1).

ii) Proof that I62 = E[g(1)(αi)b
∗
i,O]

2E[u2
O,txtx

′
t] + op(1). We have

I62 =
1

T

∑
t

(
1

n

∑
i

τiIi,tg
(1)(αi)b

∗
i,O

)2

u2
O,txtx

′
t + op(1) (A32)

=
1

T

∑
t

E[τiIi,tg
(1)(αi)b

∗
i,O]

2u2
O,txtx

′
t + op(1), (A33)

from Assumptions A.1 and A.2. Now, we have E[τiIi,tg
(1)(αi)b

∗
i,O] = E[g(1)(αi)b

∗
i,O], and this

expectation is finite by Assumptions A.1 and A.6. Further,
1

T

∑
t

u2
O,txtx

′
t = E[u2

O,txtx
′
t] + op(1),

and the conclusion follows.

iii) Proof that I63 = op(1). We have

I63 =
1

T

∑
t

(
1

n

∑
i

τiIi,tg
(1)(αi)(γ̂i − γi)

)2

x4
t + op(1) (A34)

=
1

T

∑
t

(
1

n

∑
i

τiIi,tg
(1)(αi)Q

−1
x,i

1

T

∑
s

Ii,sxsεi,s

)2

x4
t + op(1), (A35)

since supi 1
χ
i ∥Q̂

−1
x,i−Q−1

x,i∥ = Op(T
−c) for some c > 0 under Assumption A.5 (see Gagliardini, Os-

sola, and Scaillet, 2016, proof of Lemma 3 (iii), Equation (38)). Now, from Assumptions A.1 and

A.2, we have 1
n

∑
i τiIi,tg

(1)(αi)Q
−1
x,i

1
T

∑
s Ii,sxsεi,s = E[τiIi,tg

(1)(αi)Q
−1
x,i

1
T

∑
s Ii,sxsεi,s] + op(1).

By applying the law of iterated expectations, the conclusion comes from

E
[
τiIi,tg

(1)(αi)Q
−1
x,i

1
T

∑
s Ii,sxsεi,s

]
= 0, since E[εi,s|xT , Ii,T , γ

∗
i ] = 0.

iv) Proof that I64 = op(1). We have

I64 =
2

n2

∑
i

∑
j

τiτjg
(1)(αi)g

(1)(αj)b
∗
j,O

1

T

∑
t

Ii,tIj,tε
∗
i,tuO,txtx

′
t + op(1) (A36)

=
2

n2

∑
i

∑
j

g(1)(αi)g
(1)(αj)b

∗
j,O

1

T

∑
t

E[ε∗i,tuO,txtx
′
t|γ∗

i , γ
∗
j ] + op(1). (A37)

The result follows from the law of iterated expectations, and Assumption A.1 implying E[ε∗i,t|ft, γ∗
i , γ

∗
j ] =

E[ε∗i,t|ft] = 0.

7



v) Proof that I65 = op(1). We have

I65 = − 2

n2

∑
i

∑
j

τiτjg
(1)(αi)g

(1)(αj)(γ̂j − γj)
1

T

∑
t

Ii,tIj,tε
∗
i,tx

3
t + op(1) (A38)

= − 2

n2

∑
i

∑
j

g(1)(αi)g
(1)(αj)(γ̂j − γj)

1

T

∑
t

E[ε∗i,tx
3
t |γ∗

i , γ
∗
j ] + op(1). (A39)

The result follows from the law of iterated expectations, and Assumption A.1 implying E[ε∗i,t|ft, γ∗
i , γ

∗
j ] =

E[ε∗i,t|ft] = 0.

vi) Proof that I66 = op(1). We have

I66 = − 2

T

∑
t

(
1

n

∑
i

τiIi,tg
(1)(αi)b

∗
i,O

)(
1

n

∑
i

τiIi,tg
(1)(αi)(γ̂i − γi)

)
uO,tx

3
t + op(1) (A40)

= − 2

T

∑
t

E[g(1)(αi)b
∗
i,O]E

[
τiIi,tg

(1)(αi)Q
−1
x,i

1

T

∑
s

Ii,sxsεi,s

]
uO,tx

3
t + op(1). (A41)

The conclusion comes from E
[
τiIi,tg

(1)(αi)Q
−1
x,i

1
T

∑
s Ii,sxsεi,s

]
= 0, by applying the law of

iterated expectations and E[εi,s|xT , Ii,T , γ
∗
i ] = 0.

Finally, by using Q̂−1
x = Q−1

x + op(1) and E ′
1Q

−1
x E[g(1)(αi)b

∗
i,O]

2E[u2
O,txtx

′
t]Q

−1
x E1 = Vg, we

deduce that V̂g = Vg + op(1).

I.D. List of Terms for the Asymptotic Variance Estimators

To obtain the variance estimator for each characteristic in Proposition 1, we simply need to plug the

correct âi,t in Equation (A18). To mitigate the impact of outliers, we also winsorize the observed

values âi,t at 99%.

For the mean M1, we have

âi,t = E ′
1Q̂

−1
x,i ε̂i,txt. (A42)

For the standard deviation, we need to apply the delta method. Let us denote the derivative of

the standard deviation M2, w.r.t. E[αj
i ] by ∇jM2. We get ∇2M2 = (2M2)

−1, ∇1M2 = −M1/M2.

For the second moment E[α2
i ], we have âi,t = 2α̂iE

′
1Q̂

−1
x ε̂i,txt. We can build an estimate of the

variance of the standard deviation from a weighted sum of the contributions corresponding to the

8



moments of orders 2 and 1:

âi,t =
(
∇̂2M2 × 2α̂i + ∇̂1M2

)
E ′

1Q̂
−1
x,i ε̂i,txt, (A43)

where ∇̂2M2 is a plug-in estimate of the derivative of M2 w.r.t. E[α2
i ].

For the proportion P (a) at point a, we can approximate the Dirac function by a smooth bump,

namely a kernel function K, and take a vanishing bandwidth h. Hence, we can use

âi,t = −h−1K((α̂i − a)/h)E ′
1Q̂

−1
x,i ε̂i,txt, (A44)

where K is a kernel function such that K ≥ 0,
∫

K(u)du = 1,
∫

uK(u)du = 0, and
∫

u2K(u)du <

∞. In practice, we use a Gaussian kernel corresponding to the Gaussian density, and take the Sil-

verman rule of thumb for the bandwidth selection, namely h = 1.06M̂2n
−1/5
χ .

For the quantile Q(u) of level u, we can rely on the Bahadur (1966) representation, and use

âi,t = −h−1K((α̂i − Q̂(u))/h)ϕ̂ac(Q̂(u))−1E ′
1Q̂

−1
x,i ε̂i,txt. (A45)

Extending the above analysis to the characteristic differences in Proposition 2 is straightfor-

ward. For each estimated difference, we simply plug the appropriate âi,t redefined as âi,t =

âki,t − âli,t, where we obtain âki,t and âli,t for models k and l from the previous expressions in Equa-

tions (A42)-(A45).

I.E. Application of the Methodology to the Beta Component

Whereas our description of the methodology focuses on the distribution of the alpha component,

we can apply the same arguments to the distribution of the beta component. For each fund, we

simply need to replace the estimated alpha component âcki with the estimated beta component

b̂c
k

i = µ̂i − âcki , where µ̂i = 1
Ti

∑
t Ii,tri,t. Using this information, we can then compute the

different characteristics of the cross-sectional distribution (mean, standard deviation, proportion,

and quantile). We omit the detailed technical derivation of the asymptotic properties for the beta

component since it parallels closely the lines and arguments used in the previous subsections for

the alpha component. We can also adapt the regularity assumptions (Section I.A) to the case of the

9



beta component in a straightforward manner. The same remarks apply to the estimate b̂c
k

i,j of the

contribution associated with each factor j included in model k analysed the next section.

To compute the asymptotic variance terms for each distribution characteristic, we proceed as

follows. Since the residuals ε̂ki,t are centered (their time series average is zero), we get the identity

0 = 1
Ti

∑
t Ii,tri,t− âcki − b̂c

k

i , and thus b̂c
k

i =
1
Ti

∑
t Ii,tri,t− âcki . Hence, we can use this expression

to get b̂c
k

i − bcki = ( 1
Ti

∑
t Ii,tri,t−E[rit])− (âcki −acki ). We then compute the term âi,t to estimate

the asymptotic variance of each estimated characteristic (as per Equation (A18)).

We then use the following estimated quantities âi,t to build an estimate of the asymptotic vari-

ance based on the the average return and the pseudo-residuals ε̂ki,t inferred from the least-squares

regression:

âi,t = g(1)(b̂c
k

i )ri,t − E ′
1(Q̂

k
x)

−1g(1)(b̂c
k

i )ε̂
k
i,tx

k
t . (A46)

I.F. Application of the Methodology to the Factor Contribution

We can further apply our methodology to the cross-sectional distribution of the contribution as-

sociated with each factor j included in model k. For each fund, we simply need to replace the

estimated alpha component âcki with the estimated factor contribution b̂c
k

i,j = b̂ki,I,jλ̂
k
I,j , where λ̂I,j

is the empirical average of fk
I,t,j . Using this information, we can then compute the different char-

acteristics of the cross-sectional distribution (mean, standard deviation, proportion, and quantile).

To compute the asymptotic variance terms, we apply the delta method to obtain (b̂ki,I,j −

bki,I,j)λ
k
I,j + bki,I,j(λ̂

k
I,j − λk

I,j). We then compute the term âi,t to estimate the asymptotic vari-

ance of each estimated characteristic (as per Equation (A18)). This term depends on the residual

ε̂ki,t obtained from the regression of the fund return on the factors included in model k. Formally,

we have

âi,t = λ̂k
I,jE

′
j+1(Q̂

k
x)

−1g(1)(b̂c
k

i,j)ε̂
k
i,tx

k
t + b̂ki,I,jg

(1)(b̂c
k

i,j)f
k
I,t,j , (A47)

where Ej+1 is a vector with one in the j + 1 entry and zeros elsewhere.

II. Monte Carlo Analysis

II.A. Setup

We now conduct a Monte-Carlo analysis to evaluate the finite-sample properties of the estimated

characteristics of the alpha distribution when the model is misspecified. We consider a hypothetical
10



population of n funds with T return observations (n=1,000, 2,500, 5,000, 7,500, and 10,000; T=50,

100, 250, 500, and 1,000). Building on our example in Section II.C.3 of the paper, we model the

fund excess return as

ri,t = α∗
i + b∗i,mrm,t + b∗i,1f1,t + b∗i,2f2,t + b∗i,3f3,t + ε∗i,t , (A48)

where rm,t is the market excess return, f1,t, f2,t, and f3,t denote the excess returns of three un-

correlated factors that track alternative strategies, and ε∗i,t is the fund residual. For each fund, the

true alpha α∗
i is drawn from a normal N(µ∗

α, σ
∗2
α ), b∗i,m from a normal N(µ∗

b , σ
∗2
b ), and b∗i,j from

a normal N(µ∗
bj
, σ∗2

b ), where µ∗
bj

is positive to capture the exposure of hedge funds to alternative

strategies. We further assume that the first factor is a more important driver of hedge fund returns

by setting µ∗
b1
= µ∗

b and µ∗
b2
= µ∗

b3
= µ∗

b/3.

To construct the return time-series for each iteration, we need to draw values for the factors

and the fund residuals. We draw the market return rm,t from a normal N(λm, σ
2
m), and the returns

of the each alternative factor fj,t (j = 1, 2, 3) from a normal N(λj, σ
2
j ), where we set λj = λm and

σ2
j = σ2

m for simplicity. Finally, we draw ε∗i,t from a normal N(0, σ∗2
ε ).

We use our monthly dataset to calibrate the parameters of the model. We set λm and σ2
m equal

to the empirical average and variance of the equity market. We set µ∗
b and σ∗

b equal to the cross-

sectional average and volatility of the fund market betas. Finally, we calibrate µ∗
α, σ∗

α, and σ∗2
ε using

the values reported for mutual funds by Barras, Gagliardini, and Scaillet (2022).3 This calibration

yields the following values on a monthly basis: λ = 0.63%, σm = 4.36%, µ∗
b = 0.3, σ∗

b = 0.4,

σ∗
ε = 1.67%, µ∗

α = 0%, and σ∗
α = 0.13%.

In our simulations, we evaluate hedge fund performance using the CAPM. Given the above

assumptions, the CAPM is misspecified because it does not include the three alternative factors

(we have fI,t = rm,t and fO,t = (f1,t, f2,t, f3,t)
′). We conduct a total of S = 1,000 simulation

iterations. For each iteration s (s = 1, ..., S), we follow the following steps. First, we draw values

for α∗
i (s), b

∗
i,m(s), b

∗
i,1(s), b

∗
i,2(s), and b∗i,3(s) for each fund i (i = 1, ..., n). Second, we draw values

3The rationale for calibrating the values under the correct model using mutual fund data is that the issue of mis-
specification is far less severe than for hedge funds. We find that choosing alternative values does not change the
finite-sample properties of the estimators.
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for the factors

ft(s) = (rm,t(s), f1,t(s), f2,t(s), f3,t(s))
′ , (A49)

for t = 1, ..., T and the fund residuals ε∗i,t(s) for i = 1, ..., n and t = 1, ..., T . Third, we construct

the return time-series of each fund as

ri,t(s) = α∗
i (s) + b∗i,m(s)rm,t(s) + b∗i,1(s)f1,t(s) + b∗i,2(s)f2,t(s) + b∗i,3(s)f3,t(s) + ε∗i,t(s) . (A50)

Fourth, we estimate the CAPM alphas for each fund by regressing its return on the market:

α̂i(s) = E ′
1(Q̂x,i(s))

−1 1

T

∑
t

xt(s)ri,t(s) , (A51)

where E1 is a vector with one in the first position, xt(s) = (1, rm,t(s))
′, and Q̂x,i(s) =

1
T

∑
t xt(s)xt(s)

′.

Finally, we apply our approach to compute the distribution characteristics of the CAPM alpha dis-

tribution using as inputs the estimated alphas across funds α̂i(s) (i = 1, ..., n). We compute (i) the

cross-sectional mean and standard deviation, M̂1(s) and M̂2(s), (ii) the proportion of funds with

negative alphas P̂ (0)(s), and (iii) the quantiles at 10% and 90%, Q̂(0.1)(s) and Q̂(0.9)(s).4

For each estimated characteristic Ĉ ∈ {M̂1, M̂2, P̂ (0), Q̂(0.1), Q̂(0.9)}, we compute the mean

squared error (MSE) as

MSE(Ĉ) = bs2(Ĉ) + σ2(Ĉ) , (A52)

where bs(Ĉ) and σ2(Ĉ) denote the bias and variance of the estimator Ĉ. These terms are given by

bs(Ĉ) =
1

S

∑
s

Ĉ(s)− C , (A53)

σ2(Ĉ) =
1

S

∑
s

(
Ĉ(s)− 1

S

∑
s

Ĉ(s)

)2

, (A54)

where the population value C for each characteristic can be easily computed because the CAPM

alpha distribution is normally distributed.

4We do not examine the estimated proportion of positive alpha funds whose properties are identical to P̂ (0)(s).
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II.B. Main Results

In Table AI, we report the MSE, bias, and standard deviation of the five estimated characteristics

for the different combinations of T and n. We express the MSE in squared percent per month

(multiplied by 100). We express the bias and standard deviation in percent per year for the mean,

standard deviation, and quantiles, and in percent for the proportion of negative-alpha funds.

The simulation results are in line with the theoretical analysis in Proposition 2. First, the

convergence rate of each estimator depends on T and not on n. As shown in the rightmost columns,

the standard deviation decreases when the sample period increases. In contrast, increasing the

population size does not produce more precise estimators because the omitted factors f1,t, f2,t, and

f3,t have an impact on the estimated alphas of all funds simultaneously.

Second, the bias of each estimator vanishes relatively quickly as we increase the sample sizes n

and T . As a result, it is smaller in magnitude than the standard deviation. To illustrate, we consider

the proportion estimator under the scenario where n = 5,000 and T = 100, which provides a

conservative analysis of our actual sample after trimming (i.e., we have nχ =
∑n

i=1 1
χ
i = 5,231

and Tχ = 1
nχ

∑n
i=1 1

χ
i Ti = 125). Whereas the bias of the estimated proportion equals 2.9%, its

standard deviation is around two times larger (5.7%).

Consistent with these results, we find that the MSE of the estimators (i) decreases with the

number of observations T , and (ii) is primarily driven by the standard deviation, and not the bias.

This analysis departs significantly from the well-specified case examined by Barras, Gagliardini,

and Scaillet (2022). In their Monte-Carlo simulations reported in the appendix, we see that the

standard deviation of the estimators decreases with the number of funds n. In addition, the bias

dominates the standard deviation and thus requires an error-in-variable bias adjustment procedure.

Please insert Table AI here

III. Data Description

III.A. Construction of the Hedge Funds Dataset

We use monthly net-of-fee returns of individual funds (including dead funds) across four data

providers (Barclayhedge, HFR, Morningstar, and TASS). The initial sample shown in Panel A of

Table AII contains 65,142 funds that classify themselves across four investment categories: equity

13



(long-short and market neutral), macro (global macro and managed futures), arbitrage (relative

value and event driven), and other (multi-strategy and funds of funds). To map the specific invest-

ment styles used by each database into one of the four categories above, we apply the mapping

proposed by Joenväärä et al. (2021).5 We convert the fund returns into USD using the exchange

rates at the end of the month retrieved from Bloomberg and remove monthly returns lower than

-90% and above 300%.

We apply a set of filters to the initial population. For each database, we include the fund if it: (i)

has more than 12 observations (in order to compute return correlations), (ii) reports continuously

to the database, (iii) exhibits less than three consecutive zero returns, (iv) has a non-zero return

volatility, and (v) reports in USD, EUR, GBP, or JPY. As shown in Panel B, these filters reduce the

total size of the population to 40,169 funds.

Next, we remove the duplicates for each database. We use the fund manager ID to cluster

funds based on a string matching approach based on the Jaro-Winkler distance (see Joenväärä,

Kosowski, and Tolonen, 2016). Within each of these clusters, we identify funds with pairwise

return correlations above 0.99, and keep one fund using the following priority rule: (i) maximum

number of observations, (ii) largest average size, (iii) USD as reporting currency, and (iv) onshore.6

Panel C shows that removing the duplicates reduces the total number of funds to 30,734.

Finally, we remove the duplicates across all four databases. To this end, we compute the

pairwise correlations across all funds in the aggregated dataset to identify groups of funds with

correlations above 0.99. For each group, we then keep one fund using the following priority rule:

(i) maximum number of observations, (ii) largest average size, (iii) USD as reporting currency, and

(iv) onshore. As shown in Panel D, the final sample size includes a total of 21,293 funds.

Please insert Tables AII here

III.B. Data Sources for the Factors

In this section, we provide additional information on the factors included in the standard models.

We download the market, size, value, momentum, investment, and profitability factors from Ken

5We also use an earlier version of their paper (Joenväärä, Kosowski, and Tolonen, 2016) to obtain the mapping for
long-short and market neutral funds.

6TASS does not provide information about the fund manager ID. To remove the duplicates in this database, we
therefore conduct a correlation analysis on the entire population to detect funds with correlations above 0.99.
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French’s website. For the bond factors, we use the FRED database. The term factor is defined as

the monthly change in the 10-year treasury constant maturity yield, and the default factor is defined

as the monthly change in the Moody’s Baa yield less the 10-year Treasury constant maturity yield.

These two series capture changes in yields and thus provide an approximation of the return of

the term and default strategies (using the duration formula). Data on the bond, currency, and

commodity straddles are obtained from David Hsieh’s website.

Turning to the description of the additional factors, we obtain the time series of the traded

liquidity factor from Lubos Pastor’s website. We obtain the return of the BAB strategy from the

website of AQR. For the variance factor, we do not directly observe quotes of traded variance

swaps on the S&P 500. Therefore, we use the FRED database to compute the difference between

the monthly sum of the daily squared S&P 500 returns and the squared VIX (at the start of the

month), divided by the squared VIX.7 In the presence of jumps, our computation provides an

approximation of the return of variance swaps (Martin, 2017). This approximation is quite accurate

given that our summary statistics are in line with those reported by Dew-Becker et al. (2017) using

actual swap quotes.8 We download the return of the time-series momentum strategy from the

website of AQR. For carry, we download the return time-series of the carry factors for equity,

bonds (level and slope), currency, and commodity from Ralph Koijen’s website. We then compute

the average return of these five strategies (scaled by their volatility) to obtain the carry factor.9

IV. Additional Results

IV.A. Misspecification Diagnostic Criterion

We now provide additional information on the misspecification diagnostic proposed by Gagliar-

dini, Ossola, and Scaillet (2019). This criterion computed for each model k is defined as

GOSk = µk
1(V̂ )− g(nχ, T ) . (A55)

7To compute the annualized statistics in Table II, we further divide the variance return by 10 to obtain similar
magnitude as the other factors.

8They find that the average monthly excess return of the one-month swap is equal to -25.7% over the period
1995-2013 (see their Table II). We find a monthly average of -31.7% over the period 1994-2020.

9Carhart et al. (2014) and Pedersen (2015) also consider factors for real asset, quality, credit, and catastrophe
bonds. We do not include them in the list of additional factors either because they are closely related to other factors
(e.g., quality is similar to profitability) or difficult to construct (e.g., catastrophe bonds).
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The first term µk
1 is the largest eigenvalue of the matrix V̂ = 1

nχT

∑
i 1

χ
i ε̄

k
i ε̄

k
′

i , where ε̄ki is of size

T and gathers the values ε̄ki,t/
√

1
T

∑
t (ε̄

k
i,t)

2 with ε̄i,t = Ii,tε̂
k
i,t. The second term g(nχ, T ) is the

penalization equal to nχ+T

nχT
ln(

nχT

nχ+T
). As n and T converge to infinity, the criterion is positive with

probability one if the model is misspecified and omits a strong factor. We find that all the models

are misspecified because the value of GOSk is always positive, both in the entire population and

in each investment category (equity, macro, and arbitrage).

IV.B. Impact of Data Filters on Model Comparisons

In this section, we examine how different data filters impact the comparisons of models. We begin

our analysis by changing the minimum number of observations. Our initial sample is free of

survivorship bias because it includes both living and dead funds. However, our fund selection rule

requires that each fund has a minimum number of return observations Tmin to estimate its alpha.

Our results could therefore be subject to survivorship bias if negative-alpha funds disappear early

(i.e., the reported alphas could be too high). At the same time, choosing a small Tmin increases the

severity of the reverse survivorship bias (Linnainmaa, 2013), which arises because some positive-

alpha funds may perform unexpectedly poorly and disappear early (i.e., the reported alphas could

be too low). To examine these issues, we repeat our CAPM-based comparison using two alternative

thresholds for Tmin equal to 36 and 84.

Next, we use different filters to construct the hedge fund database. We apply the backfill bias

correction proposed by Joenväärä et al. (2021), which eliminates all the return observations before

the fund listing date.10 We also apply the five filters proposed by Straumann (2009) and applied by

Almeida, Ardison, and Garcia (2020) to remove errors in reported hedge fund returns. These filters

are based on the number of returns equal to zero, the proportion of unique values, the repetition

of identical values, the occurrence of identical sequences of returns, and the presence of rounding

errors. Applying the filters of Straumann (2009) leads to a reduction in the number of selected

funds in the three main categories (equity, macro, arbitrage) from 15,567 to 13,877.

For each of these changes, we formally compare the alpha distribution of each proposed model

with that of the CAPM. The results in Table AIII show that the CAPM-based comparisons remain

10Whereas this alternative procedure provides a more stringent control of the backfill bias, it potentially discards
important information about the fund performance by eliminating a large number of observations—in some cases,
more than five years of data (see Aggarwal and Jorion, 2010; Fung and Hsieh, 2009, for a discussion)
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robust to all these changes. Whereas the standard and machine learning models are similar to

the CAPM, the JKKT and CP models produce sharp differences. These results are consistent

with intuition—changing the data filters affects all models uniformly. It therefore leaves their

differences unchanged.

Please insert Table AIII here

IV.C. Model Comparisons with Alternative Reference Models

In our baseline analysis, we use the CAPM as the reference model for the formal model compar-

isons. We now show that the superiority of the JKKT and CP holds when we replace the CAPM

with any of the four standard models and the two machine learning models. The outcome of these

formal comparisons is reported in Table AIV. For instance, Panel C shows that the CP model

produces a highly significant reduction in the average alpha and in the proportion of positive-alpha

funds relative to the Fung-Hsieh model (respectively equal to 2.6% per year and 19.3%).

Please insert Table AIV here

IV.D. Factor Trading Costs

In our baseline comparisons, we do not include the costs of trading the five alternative factors. To

address this issue, we approximate these costs using estimates from previous studies. The costs

of trading illiquidity, carry, and TS momentum are modest because these strategies are rebalanced

annually or implemented in futures markets. For illiquidity, we use a value of 4.5 bps equal to

the average cost estimate for size and value (Novy-Marx and Velikov, 2016). For carry and TS

momentum, we choose a value of 9.7 bps, which is equal to the average estimated costs of rolling

futures positions (Bollerslev et al., 2018). In contrast, the costs of trading the BAB and variance

factors are significantly higher. For BAB, we take the estimate of Novy-Marx and Velikov (2022)

equal to 60 bps. For variance, we use a value of 75 bps, which corresponds to the costs of trading

variance swaps (Dew-Becker et al., 2017).

Consistent with intuition, Table AV shows that accounting for trading costs increases the alpha

components. However, this increase is generally modest—the average alphas under the JKKT and

CP models equal 1.3% and 1.0% per year (versus 1.0% and 0.4% without trading costs). As a

result, these models still produce alpha distributions that depart significantly from the CAPM.

Please insert Table AV here
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IV.E. Return Decomposition for Multi-Strategy Funds and Funds of Funds

We estimate the distributions of the alpha and beta components for two additional categories—

multi-strategy funds and funds of funds. Consistent with our baseline results, Table AVI reveals

that the JKKT and CP model produce a sizable reduction in the alpha component and a sizable

increase in the beta component. In both categories, the decrease in fund alphas is particularly

strong under the CP model. For multi-strategy funds, the average alpha is 0.1% and only 50.7%

of the funds deliver positive alphas. Among funds of funds, the performance is even lower (-2.5%

for the average alpha and 23.1% for the proportion of positive-alpha funds). Whereas it is well

known that the alpha of these funds is hampered by their additional fees (e.g., Agarwal, Mullally,

and Naik, 2015), we find that the underperformance is worse than previously documented.

Please insert Table AVI here

IV.F. Economic Importance of Hedge Fund Factors within Investment Categories

We deepen the analysis of the economic importance of the hedge fund factors by splitting each

investment category into two subcategories. For the equity category, we have long-short and market

neutral funds. For the macro category, we have macro and managed futures funds. For the arbitrage

category, we have relative value and event driven funds. For each subcategory, we apply our

approach to estimate the cross-sectional distribution of the beta components due to each factor

included in the CP model.

Consistent with our baseline results, Table AVII provides substantial evidence that hedge funds

follow alternative strategies to boost their returns (e.g., Carhart et al., 2014). Across the six cat-

egories and the five alternative factors, the proportion of funds with positive betas is above 50%

in all but seven cases. The variation in factor loadings across subcategories is largely in line with

economic intuition. Managed futures funds, which are known to exploit market trends, load ex-

tensively on TS momentum—its average contribution to the beta component reaches 3.7% per

year. The BAB factor is particularly important among market neutral funds as it allows them to

take advantage of leverage flexibility, while maintaining a neutral exposure to the market and var-

ious industries (see Pedersen, 2015). Long-short equity funds are exposed to the variance factor,

possibly because it reduces the effectiveness of their hedging strategies (Buraschi, Kosowski, and

Trojani, 2014). This is also the case for relative value funds, which commonly use option-based
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strategies (Duarte, Longstaff, and Yu, 2006), and for event-driven funds, which take short put

positions when they engage in merger arbitrage (Mitchell and Pulvino, 2001).

Please insert Table AVII here

IV.G. The CP Model with Style-Specific Factors

In this section, we examine whether a style-based version of the CP model does a better job than the

original CP model at capturing hedge fund returns. To this end, we simply replace the global carry

and TS momentum factors with their style-specific counterparts. Implementing these changes is

straightforward because the website of AQR provides detailed data on the TS momentum strategy

across four asset classes (equity, bonds, currency, commodity). Similarly, the return time-series of

the carry factors for equity, bonds (level and slope), currency, and commodity are available from

Ralph Koijen’s website.

We construct the equity model by replacing the global carry and TS momentum factors with

the equity carry and TS momentum factors. In the macro model, we replace the global carry and

TS momentum factors with the equal-weighted average of the currency and commodity carry and

TS momentum factors. Finally, the arbitrage model includes the fixed income carry (level and

slope) and TS momentum factors.

The results in Table AVIII reveal that the style-based model does not perform as well as the

original CP model. In all three categories, we observe an increase in the fund alpha component (at

the expense of the beta component). For instance, the average alphas are equal to 0.8%, 1.2%, and

1.0% per year (versus 0.6%, -0.4%, and 0.9% per year under the CP model). These results suggest

that the three categories examined here are too broad to successfully fit a style-based version of the

CP model.

Please insert Table AVIII here
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TABLE AI. Finite-Sample Properties of the Estimated Characteristics of the Alpha Distribution
This table reports the Mean Squared Error (MSE), bias, and standard deviation of the different characteristic
estimators under the CAPM for different combinations for the numbers of funds n and return observations
T . In the simulations, the average fund returns are explained by four factors (the market and three alternative
factors 1, 2, and 3). The CAPM is misspecified because it omits factors 1, 2, and 3. We examine a total of
five characteristics, which are the mean, standard deviation, proportions of funds with negative alphas, and
quantiles at 10% and 90%. The bias and standard deviation are expressed in percent per year for the mean,
standard deviation, and quantiles, and in percent for the proportion of negative-alpha funds.

n\T 50 100 250 500 1000 n\T 50 100 250 500 1000 n\T 50 100 250 500 1000
1000 3.93 2.12 0.95 0.43 0.25 1000 0.13 -0.01 0.02 -0.02 0.02 1000 2.38 1.75 1.17 0.79 0.60
2500 4.11 2.19 0.87 0.45 0.22 2500 -0.01 -0.02 -0.04 0.02 0.04 2500 2.43 1.78 1.12 0.80 0.56
5000 4.24 2.03 0.94 0.45 0.24 5000 -0.01 -0.02 0.03 0.04 0.04 5000 2.47 1.71 1.16 0.80 0.59
7500 4.73 2.12 0.94 0.45 0.23 7500 0.02 0.06 0.02 0.02 0.04 7500 2.61 1.75 1.16 0.81 0.58

10000 4.39 2.31 0.81 0.42 0.23 10000 -0.13 -0.05 -0.04 0.03 0.01 10000 2.51 1.82 1.08 0.77 0.57

n\T 50 100 250 500 1000 n\T 50 100 250 500 1000 n\T 50 100 250 500 1000
1000 5.26 2.03 0.77 0.34 0.18 1000 2.00 1.00 0.45 0.19 0.11 1000 1.89 1.39 0.95 0.67 0.50
2500 4.97 2.08 0.67 0.34 0.18 2500 1.90 0.97 0.38 0.23 0.14 2500 1.88 1.44 0.91 0.66 0.48
5000 5.19 2.08 0.79 0.34 0.17 5000 1.96 1.01 0.45 0.22 0.12 5000 1.90 1.41 0.97 0.66 0.49
7500 5.42 2.17 0.77 0.34 0.18 7500 1.96 1.08 0.44 0.20 0.14 7500 1.99 1.40 0.96 0.67 0.48

10000 4.95 2.11 0.64 0.33 0.17 10000 1.83 0.98 0.39 0.22 0.12 10000 1.94 1.44 0.87 0.66 0.48

n\T 50 100 250 500 1000 n\T 50 100 250 500 1000 n\T 50 100 250 500 1000
1000 0.79 0.45 0.18 0.09 0.05 1000 4.38 2.90 1.31 0.70 0.23 1000 7.75 6.04 4.04 2.85 2.26
2500 0.92 0.46 0.17 0.08 0.04 2500 4.93 2.94 1.40 0.63 0.24 2500 8.22 6.07 3.86 2.69 1.93
5000 0.89 0.42 0.17 0.07 0.04 5000 5.01 2.95 1.28 0.53 0.22 5000 8.03 5.76 3.90 2.63 1.93
7500 1.00 0.45 0.17 0.07 0.04 7500 5.07 2.80 1.32 0.58 0.25 7500 8.60 6.07 3.91 2.65 1.91

10000 0.99 0.50 0.16 0.06 0.04 10000 5.35 3.14 1.42 0.58 0.34 10000 8.36 6.32 3.75 2.47 1.86

n\T 50 100 250 500 1000 n\T 50 100 250 500 1000 n\T 50 100 250 500 1000
1000 6.43 2.26 0.61 0.30 0.20 1000 -2.42 -1.28 -0.53 -0.25 -0.11 1000 1.85 1.27 0.77 0.60 0.52
2500 6.50 2.14 0.59 0.22 0.13 2500 -2.45 -1.26 -0.53 -0.26 -0.15 2500 1.84 1.22 0.75 0.50 0.40
5000 6.82 2.13 0.56 0.20 0.10 5000 -2.53 -1.31 -0.55 -0.25 -0.11 5000 1.86 1.16 0.71 0.47 0.36
7500 6.67 2.22 0.54 0.19 0.10 7500 -2.49 -1.33 -0.54 -0.24 -0.14 7500 1.85 1.20 0.70 0.46 0.36

10000 6.70 2.17 0.51 0.18 0.09 10000 -2.47 -1.31 -0.54 -0.25 -0.14 10000 1.88 1.19 0.67 0.45 0.33

n\T 50 100 250 500 1000 n\T 50 100 250 500 1000 n\T 50 100 250 500 1000
1000 18.60 8.70 3.89 1.76 0.98 1000 2.67 1.25 0.57 0.21 0.15 1000 4.43 3.31 2.30 1.58 1.18
2500 18.12 9.18 3.38 1.81 0.93 2500 2.44 1.21 0.44 0.31 0.20 2500 4.49 3.43 2.16 1.59 1.14
5000 18.72 8.77 3.94 1.83 0.96 5000 2.50 1.26 0.61 0.32 0.19 5000 4.55 3.32 2.30 1.59 1.16
7500 20.60 9.10 3.87 1.84 0.96 7500 2.53 1.43 0.58 0.28 0.21 7500 4.82 3.33 2.29 1.60 1.16

10000 18.32 9.35 3.20 1.75 0.94 10000 2.22 1.21 0.46 0.31 0.16 10000 4.63 3.46 2.10 1.56 1.15

Mean (True Value 3.75%)

MSE (x100) Bias (Annualized) Standard Deviation (Annualized)

90th Percentile (True Value -13.16%)
MSE (x100) Bias (Annualized) Standard Deviation (Annualized)

Probability < 0 (True Value 30.5%)
MSE (x100) Bias (Annualized) Standard Deviation (Annualized)

10th Percentile (True Value -5.67%)

MSE (x100) Bias (Annualized) Standard Deviation (Annualized)

Volatility (True Value 7.35%)
MSE (x100) Bias (Annualized) Standard Deviation (Annualized)
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TABLE AII. Construction of the Hedge Fund Dataset
This table summarizes the different steps for forming the consolidated hedge fund dataset. Panel A shows
the total number of funds in each database. Panel B provides the same information after imposing the
filters on each database. Panel C provides the same information after removing the duplicates within each
database. Panel D provides the same information after removing the duplicates across all databases.
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TABLE AIII. Formal Model Comparisons – Impact of Data Filters
This table compares the CAPM with the four standard models (Carhart, Five-Factor, Fung-Hsieh, AMP),
the two machine learning models (KNS1, KNS2), and the two models with the additional factors (JKKT
and CP) using different data filters. We compute the difference in characteristics between the cross-sectional
distributions of the alpha components under the CAPM and each model. Panel A reports the differences in
the annualized mean and standard deviation, the proportions of funds with negative and positive alphas, and
the annualized quantiles at 10% and 90% after imposing a minimum number of 36 observations. Figures
in parentheses denote the standard deviation of the estimated differences. ∗∗∗, ∗∗, ∗ indicate that the null
hypothesis of equal characteristics is rejected at the 1%, 5%, and 10% levels. Panels B to D repeat the
analysis after imposing (i) a minimum of 84 observations,(ii) a more stringent backfill bias procedure, and
(iii) filters to eliminate reporting errors.

Panel A: Minimum Number of 36 Observations
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Carhart -0.35 (0.44) -0.33 (0.31) 2.00 (2.46) -2.00 (2.46) 0.00 (0.41) -0.46 (0.32)
Five-Factor -0.17 (0.50) 0.04 (0.33) 1.95 (2.89) -1.95 (2.89) -0.15 (0.50) -0.21 (0.39)
Fung-Hsieh 0.18 (0.63) -0.12 (0.35) -0.38 (3.78) 0.38 (3.78) 0.38 (0.57) 0.06 (0.47)
AMP -0.26 (0.45) -0.01 (0.35) 1.95 (2.41) -1.95 (2.41) -0.24 (0.38) -0.22 (0.43)

KNS1 0.06 (0.42) 0.69∗∗ (0.29) 0.89 (1.84) -0.89 (1.84) -0.41 (0.29) 0.56 (0.37)
KNS2 0.55 (0.53) 0.51∗ (0.30) -1.67 (2.68) 1.67 (2.68) 0.32 (0.42) 0.98∗∗ (0.46)

JKKT -1.77∗∗ (0.69) 0.26 (0.49) 12.51∗∗∗ (3.87) -12.51∗∗∗ (3.87) -2.25∗∗∗ (0.67) -1.75∗∗∗ (0.67)
CP -2.42∗∗∗ (0.78) 2.47∗∗∗ (0.49) 16.86∗∗∗ (4.06) -16.86∗∗∗ (4.06) -4.34∗∗∗ (0.74) -0.89 (0.73)

Panel B: Minimum Number of 84 Observations
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Carhart -0.32 (0.36) -0.17 (0.28) 1.81 (2.43) -1.81 (2.43) -0.15 (0.39) -0.72∗∗ (0.35)
Five-Factor -0.28 (0.42) 0.10 (0.31) 2.37 (2.94) -2.37 (2.94) -0.15 (0.51) -0.34 (0.42)
Fung-Hsieh 0.08 (0.55) -0.10 (0.34) 0.22 (3.70) -0.22 (3.70) 0.11 (0.59) -0.19 (0.49)
AMP -0.40 (0.41) 0.03 (0.33) 2.62 (2.41) -2.62 (2.41) -0.28 (0.38) -0.44 (0.52)

KNS1 -0.17 (0.34) 0.18 (0.26) 2.09 (1.70) -2.09 (1.70) -0.39 (0.30) 0.02 (0.39)
KNS2 0.61 (0.47) 0.07 (0.29) -2.90 (2.54) 2.90 (2.54) 0.48 (0.40) 0.54 (0.51)

JKKT -2.08∗∗∗ (0.64) 0.39 (0.48) 15.91∗∗∗ (4.00) -15.91∗∗∗ (4.00) -2.72∗∗∗ (0.67) -2.24∗∗∗ (0.70)
CP -2.64∗∗∗ (0.73) 1.89∗∗∗ (0.46) 22.03∗∗∗ (4.38) -22.03∗∗∗ (4.38) -4.20∗∗∗ (0.74) -1.71∗∗ (0.81)

Panel C: Stringent Backfill Bias Procedure
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Carhart -0.29 (0.42) -0.16 (0.35) 2.18 (2.70) -2.18 (2.70) 0.13 (0.48) -0.76∗∗ (0.34)
Five-Factor -0.14 (0.48) -0.02 (0.38) 2.01 (3.25) -2.01 (3.25) 0.09 (0.58) -0.26 (0.37)
Fung-Hsieh 0.10 (0.62) -0.26 (0.40) -0.56 (4.14) 0.56 (4.14) 0.45 (0.65) -0.32 (0.50)
AMP -0.26 (0.44) 0.07 (0.41) 2.07 (2.53) -2.07 (2.53) -0.03 (0.45) -0.46 (0.47)

KNS1 0.03 (0.39) 0.41 (0.32) 1.21 (1.84) -1.21 (1.84) -0.21 (0.34) 0.21 (0.36)
KNS2 0.61 (0.51) 0.26 (0.34) -2.87 (2.64) 2.87 (2.64) 0.74 (0.49) 0.56 (0.49)

JKKT -1.91∗∗∗ (0.69) 0.37 (0.54) 14.05∗∗∗ (4.19) -14.05∗∗∗ (4.19) -2.17∗∗∗ (0.72) -2.13∗∗∗ (0.71)
CP -2.54∗∗∗ (0.75) 2.27∗∗∗ (0.51) 19.21∗∗∗ (4.26) -19.21∗∗∗ (4.26) -3.99∗∗∗ (0.77) -1.52∗∗ (0.75)

Panel D: Filters for Removing Reporting Errors
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Carhart -0.30 (0.39) -0.21 (0.31) 2.30 (2.50) -2.30 (2.50) -0.13 (0.40) -0.58∗ (0.33)
Five-Factor -0.23 (0.46) -0.03 (0.34) 2.54 (2.97) -2.54 (2.97) -0.17 (0.52) -0.32 (0.39)
Fung-Hsieh 0.06 (0.60) -0.16 (0.35) 0.59 (3.85) -0.59 (3.85) 0.20 (0.58) -0.15 (0.50)
AMP -0.30 (0.42) 0.06 (0.38) 2.45 (2.52) -2.45 (2.52) -0.30 (0.36) -0.25 (0.48)

KNS1 -0.04 (0.39) 0.38 (0.29) 1.36 (1.86) -1.36 (1.86) -0.37 (0.30) 0.18 (0.38)
KNS2 0.60 (0.50) 0.14 (0.33) -2.38 (2.69) 2.38 (2.69) 0.47 (0.44) 0.61 (0.48)

JKKT -1.94∗∗∗ (0.68) 0.29 (0.51) 14.77∗∗∗ (4.06) -14.77∗∗∗ (4.06) -2.46∗∗∗ (0.68) -2.03∗∗∗ (0.72)
CP -2.56∗∗∗ (0.76) 1.84∗∗∗ (0.49) 20.39∗∗∗ (4.41) -20.39∗∗∗ (4.41) -4.36∗∗∗ (0.73) -1.39∗ (0.78)
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TABLE AIV. Formal Model Comparisons – Alternative Reference Models
This table compares the two models with the additional factors (JKKT and CP) with a set of alternative
reference models, which are the four standard models (Carhart, Five-Factor, Fung-Hsieh, AMP) and the
two machine learning models (KNS1, KNS2). Panel A computes the differences in characteristics between
the cross-sectional distributions of the alpha components under the Carhart model and each model (JKKT
and CP). We report the differences in the annualized mean and standard deviation, the proportions of funds
with negative and positive alphas, and the annualized quantiles at 10% and 90%. Figures in parentheses
denote the standard deviation of the estimated differences. ∗∗∗, ∗∗, ∗ indicate that the null hypothesis of
equal characteristics is rejected at the 1%, 5%, and 10% levels. Panels B to F repeat the analysis using the
other models.

Panel A: Carhart Model as Reference
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

JKKT -1.62∗∗∗ (0.52) 0.60∗ (0.32) 12.48∗∗∗ (3.23) -12.48∗∗∗ (3.23) -2.30∗∗∗ (0.45) -1.39∗∗∗ (0.47)
CP -2.25∗∗∗ (0.67) 2.33∗∗∗ (0.43) 17.55∗∗∗ (4.25) -17.55∗∗∗ (4.25) -4.20∗∗∗ (0.71) -0.82 (0.54)

Panel B: Five-Factor Model as Reference
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

JKKT -1.73∗∗∗ (0.60) 0.39 (0.33) 12.35∗∗∗ (3.69) -12.35∗∗∗ (3.69) -2.31∗∗∗ (0.51) -1.80∗∗∗ (0.47)
CP -2.36∗∗∗ (0.73) 2.11∗∗∗ (0.45) 17.42∗∗∗ (4.58) -17.42∗∗∗ (4.58) -4.21∗∗∗ (0.75) -1.24∗∗ (0.55)

Panel C: Fung-Hsieh Model as Reference
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

JKKT FH -2.01∗∗∗ (0.60) 0.61∗ (0.36) 14.24∗∗∗ (3.79) -14.24∗∗∗ (3.79) -2.60∗∗∗ (0.54) -1.83∗∗∗ (0.54)
CP FH -2.64∗∗∗ (0.72) 2.33∗∗∗ (0.46) 19.31∗∗∗ (4.47) -19.31∗∗∗ (4.47) -4.50∗∗∗ (0.72) -1.27∗∗ (0.58)

Panel D: Asness-Moskowitz-Pedersen Model as Reference
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

JKKT -1.62∗∗ (0.65) 0.35 (0.32) 12.25∗∗∗ (3.96) -12.25∗∗∗ (3.96) -2.14∗∗∗ (0.60) -1.64∗∗∗ (0.50)
CP -2.25∗∗∗ (0.73) 2.07∗∗∗ (0.42) 17.32∗∗∗ (4.36) -17.32∗∗∗ (4.36) -4.05∗∗∗ (0.74) -1.08∗∗ (0.52)

Panel E: Kozak, Nagel, and Shantosh (KNS1) Model as Reference
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

JKKT -1.92∗∗∗ (0.65) -0.01 (0.48) 13.17∗∗∗ (3.91) -13.17∗∗∗ (3.91) -2.05∗∗∗ (0.64) -2.17∗∗∗ (0.64)
CP -2.55∗∗∗ (0.74) 1.71∗∗∗ (0.48) 18.24∗∗∗ (4.25) -18.24∗∗∗ (4.25) -3.95∗∗∗ (0.74) -1.61∗∗ (0.63)

Panel F: Kozak, Nagel, and Shantosh (KNS2) Model as Reference
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

JKKT -2.56∗∗∗ (0.68) 0.21 (0.43) 17.22∗∗∗ (3.87) -17.22∗∗∗ (3.87) -2.90∗∗∗ (0.63) -2.63∗∗∗ (0.65)
CP -3.19∗∗∗ (0.72) 1.93∗∗∗ (0.46) 22.29∗∗∗ (3.93) -22.29∗∗∗ (3.93) -4.80∗∗∗ (0.71) -2.07∗∗∗ (0.64)
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TABLE AV. Factor Trading Costs
This table measures the impact of the costs of trading the additional factors (illiquidity, BAB, variance, carry,
TS momentum). Panel A reports the differences in characteristics between the cross-sectional distributions
of the alpha components under the CAPM and the two models with the additional factors (JKKT and CP)
after accounting for trading costs. We report the differences in the annualized mean and standard deviation,
the proportions of funds with negative and positive alphas, and the annualized quantiles at 10% and 90%.
Figures in parentheses denote the standard deviation of the estimated differences. ∗∗∗, ∗∗, ∗ indicate that the
null hypothesis of equal characteristics is rejected at the 1%, 5%, and 10% levels. Panels B and C report the
characteristics of the cross-sectional distribution of the alpha and beta components under the JKKT and CP
models. We report the annualized mean and standard deviation, the proportions of funds with negative and
positive alphas, and the annualized quantiles at 10% and 90%. Figures in parentheses denote the standard
deviation of the estimated characteristics.

Panel A: Comparison With the CAPM
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

JKKT -1.59∗∗ (0.70) 0.23 (0.53) 11.11∗∗ (4.44) -11.11∗∗ (4.44) -1.84∗∗∗ (0.70) -1.86∗∗∗ (0.67)
CP -1.96∗∗ (0.77) 1.79∗∗∗ (0.52) 14.57∗∗∗ (4.58) -14.57∗∗∗ (4.58) -3.26∗∗∗ (0.77) -1.13 (0.75)

Panel B: Distribution of the Alpha Components
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

CAPM 2.93 (0.94) 7.01 (0.48) 27.15 (5.49) 72.85 (5.49) -3.95 (0.67) 10.06 (0.67)
JKKT 1.34 (0.72) 7.24 (0.29) 38.25 (4.58) 61.75 (4.58) -5.79 (0.58) 8.19 (0.40)
CP 0.97 (0.87) 8.80 (0.33) 41.71 (5.26) 58.29 (5.26) -7.21 (0.74) 8.93 (0.51)

Panel C: Distribution of the Beta Components
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

CAPM 2.62 (0.83) 4.37 (0.67) 22.54 (9.57) 77.46 (9.57) -0.71 (0.61) 8.01 (0.73)
JKKT 4.22 (0.83) 5.71 (0.41) 14.83 (2.88) 85.17 (2.88) -0.58 (0.31) 10.78 (0.69)
CP 4.59 (0.94) 7.20 (0.47) 16.44 (2.71) 83.56 (2.71) -1.18 (0.36) 11.91 (1.00)
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TABLE AVI. Decomposition of Average Fund Returns – Multi-Strategy and Fund of Funds
This table shows the decomposition of average fund returns under the CAPM and the two models with
the additional factors (JKKT and CP) across multi-strategy funds and funds of funds. Panel A reports the
characteristics of the cross-sectional distributions of the alpha and beta components across multi-strategy
funds. We report the annualized mean and standard deviation, the proportions of funds with negative and
positive alphas, and the annualized quantiles at 10% and 90%. Figures in parentheses denote the standard
deviation of the estimated characteristics. Panel B repeats the analysis for funds of funds.

Panel A: Multi-Strategy
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Distribution of the Alpha Components
CAPM 2.48 (1.09) 6.68 (0.54) 32.23 (7.02) 67.77 (7.02) -4.29 (1.40) 9.15 (1.00)
JKKT 0.49 (0.83) 7.41 (0.53) 46.45 (4.67) 53.55 (4.67) -6.83 (1.23) 8.01 (0.80)
CP -0.11 (0.87) 7.79 (0.60) 49.29 (4.83) 50.71 (4.83) -8.06 (1.22) 7.66 (0.80)

Distribution of the Beta Components
CAPM 1.90 ( 0.81) 3.44 ( 0.44) 19.43 (13.61) 80.57 (13.61) -0.37 (0.76) 4.74 (1.14)
JKKT 3.89 (0.74) 4.65 (0.40) 10.43 (4.04) 89.57 (4.04) 0.00 (0.51) 8.13 (0.97)
CP 4.49 (0.80) 4.68 (0.52) 8.53 (3.46) 91.47 (3.46) 0.19 (0.55) 9.65 (1.09)

Panel B: Fund of Funds
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Distribution of the Alpha Components
CAPM 1.22 (1.39) 4.16 (0.26) 31.82 (16.99) 68.18 (16.99) -2.76 (1.23) 4.93 (1.11)
JKKT -1.28 (1.03) 4.42 (0.17) 66.08 (12.46) 33.92 (12.46) -5.39 (0.95) 2.74 (0.76)
CP -2.46 (1.08) 5.41 (0.28) 76.88 (7.96) 23.12 (7.96) -7.18 (1.18) 2.29 (0.70)

Distribution of the Beta Components
CAPM 1.75 (0.99) 2.56 (0.34) 14.15 (22.75) 85.85 (22.75) -0.14 (1.01) 4.37 (0.80)
JKKT 4.25 (0.94) 3.40 (0.18) 3.24 (1.28) 96.76 (1.28) 1.35 (0.67) 7.67 (0.84)
CP 5.42 (1.04) 4.49 (0.26) 3.52 (1.04) 96.48 (1.04) 1.66 (0.68) 9.49 (1.14)
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TABLE AVII. Economic Importance of Hedge Fund Factors – Investment Subcategories
This table measures the economic importance of each factor in the CP model as a driver of average fund
returns across investment subcategories. Panel A reports the characteristics of the cross-sectional distribu-
tions of the beta components due to each factor across long-short funds. We report the annualized mean and
standard deviation, the proportions of funds with negative and positive contributions, and the annualized
quantiles at 10% and 90%. Figures in parentheses denote the standard deviation of the estimated character-
istics. Panel B to D repeat the analysis for market neutral, global macro, managed futures, relative value,
and event driven funds.

Panel A: Long-Short
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Market 4.10 (2.30) 4.62 (1.14) 11.51 (8.94) 88.49 (8.94) -0.10 (0.87) 9.64 (3.33)
Size 0.47 (0.63) 1.39 (0.43) 30.94 (12.81) 69.06 (12.81) -0.35 (0.14) 1.77 (1.15)
Illiquidity 0.15 (0.11) 1.56 (0.37) 43.93 (2.68) 56.07 (2.68) -0.90 (0.26) 1.37 (0.51)
Betting Against Beta 0.22 (0.19) 2.79 (0.83) 39.32 (3.83) 60.68 (3.83) -1.92 (0.62) 2.63 (1.07)
Variance 0.77 (0.28) 5.25 (0.73) 36.92 (2.36) 63.08 (2.36) -3.14 (0.52) 4.64 (0.89)
Carry 0.34 (0.18) 2.94 (0.49) 45.24 (2.87) 54.76 (2.87) -2.23 (0.44) 2.84 (0.54)
Time-Series Momentum 0.51 (0.17) 2.99 (0.58) 44.10 (2.11) 55.90 (2.11) -1.66 (0.47) 3.19 (0.77)

Panel B: Market Neutral Funds
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Market 0.63 (0.34) 2.06 (0.55) 36.18 (4.04) 63.82 (4.04) -0.73 (0.06) 2.21 (0.81)
Size 0.05 (0.11) 0.49 (0.21) 45.12 (6.31) 54.88 (6.31) -0.35 (0.13) 0.53 (0.24)
Illiquidity 0.06 (0.05) 0.74 (0.27) 45.53 (3.44) 54.47 (3.44) -0.67 (0.29) 0.73 (0.33)
Betting Against Beta 0.48 (0.31) 1.42 (0.53) 32.52 (5.10) 67.48 (5.10) -0.53 (0.06) 1.96 (0.80)
Variance -0.08 (0.18) 3.32 (0.49) 50.41 (2.31) 49.59 (2.31) -3.04 (0.57) 2.16 (0.33)
Carry 0.35 (0.14) 1.52 (0.31) 41.46 (2.33) 58.54 (2.33) -1.36 (0.28) 1.96 (0.47)
Time-Series Momentum 0.58 (0.21) 1.24 (0.35) 27.64 (3.30) 72.36 (3.30) -0.61 (0.13) 2.13 (0.58)

Panel C: Macro Funds
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Market 1.97 (0.99) 3.87 (1.24) 27.58 (5.24) 72.42 (5.24) -0.97 (0.13) 6.79 (2.31)
Size 0.08 (0.04) 0.72 (0.22) 49.85 (5.26) 50.15 (5.26) -0.44 (0.22) 0.54 (0.20)
Illiquidity -0.01 (0.07) 0.85 (0.28) 50.29 (3.22) 49.71 (3.22) -0.71 (0.34) 0.71 (0.29)
Betting Against Beta 0.29 (0.21) 1.89 (0.63) 38.20 (4.36) 61.80 (4.36) -1.19 (0.40) 1.91 (0.78)
Variance 0.56 (0.27) 5.68 (0.73) 44.10 (2.60) 55.90 (2.60) -3.83 (0.70) 4.14 (0.69)
Carry 0.38 (0.23) 2.54 (0.54) 39.23 (2.89) 60.77 (2.89) -2.24 (0.51) 3.20 (0.67)
Time-Series Momentum 2.29 (0.82) 4.50 (1.08) 26.55 (2.87) 73.45 (2.87) -0.67 (0.08) 7.85 (1.91)

Panel D: CTA/Managed Futures Funds
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Market 0.60 (0.37) 3.03 (0.92) 40.60 (3.95) 59.40 (3.95) -1.77 (0.54) 3.22 (1.30)
Size 0.07 (0.14) 0.91 (0.19) 51.13 (11.18) 48.87 (11.18) -0.42 (0.26) 0.73 (0.18)
Illiquidity -0.13 (0.12) 1.49 (0.36) 56.82 (3.54) 43.18 (3.54) -1.06 (0.37) 0.79 (0.27)
Betting Against Beta 0.14 (0.18) 2.06 (0.66) 42.75 (4.81) 57.25 (4.81) -1.35 (0.45) 1.81 (0.73)
Variance -0.02 (0.45) 7.13 (0.98) 53.28 (3.46) 46.72 (3.46) -5.30 (1.00) 4.72 (0.71)
Carry 0.42 (0.30) 2.95 (0.60) 43.82 (4.08) 56.18 (4.08) -2.51 (0.65) 3.26 (0.66)
Time-Series Momentum 3.70 (1.32) 6.56 (1.34) 22.88 (3.73) 77.12 (3.73) -0.79 (0.21) 11.31 (2.84)

Panel E: Relative Value Funds
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Market 1.49 (0.76) 2.41 (0.72) 19.94 (5.58) 80.06 (5.58) -0.28 (0.15) 3.97 (1.34)
Size 0.10 (0.11) 0.49 (0.15) 36.93 (4.35) 63.07 (4.35) -0.12 (0.01) 0.42 (0.29)
Illiquidity 0.07 (0.12) 0.76 (0.18) 34.72 (7.32) 65.28 (7.32) -0.33 (0.06) 0.59 (0.35)
Betting Against Beta 0.58 (0.39) 1.69 (0.64) 27.61 (4.65) 72.39 (4.65) -0.71 (0.15) 2.19 (1.01)
Variance 1.32 (0.40) 3.13 (0.58) 23.45 (2.30) 76.55 (2.30) -0.93 (0.10) 4.35 (1.00)
Carry 0.73 (0.25) 1.76 (0.33) 22.81 (3.99) 77.19 (3.99) -0.48 (0.06) 2.53 (0.58)
Time-Series Momentum -0.27 (0.20) 1.48 (0.37) 61.59 (4.68) 38.41 (4.68) -1.52 (0.60) 0.82 (0.15)

Panel F: Event Driven Funds
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Market 2.05 (1.17) 2.68 (0.77) 10.97 (8.55) 89.03 (8.55) -0.02 (0.45) 5.02 (1.86)
Size 0.28 (0.39) 0.76 (0.18) 24.54 (17.15) 75.46 (17.15) -0.09 (0.14) 0.77 (0.59)
Illiquidity 0.07 (0.12) 1.06 (0.19) 41.26 (6.95) 58.74 (6.95) -0.48 (0.04) 0.64 (0.25)
Betting Against Beta 0.67 (0.40) 1.88 (0.49) 20.82 (5.90) 79.18 (5.90) -0.56 (0.09) 2.03 (0.80)
Variance 1.78 (0.48) 3.71 (0.50) 18.77 (3.32) 81.23 (3.32) -0.51 (0.17) 4.87 (0.97)
Carry 0.20 (0.17) 2.14 (0.34) 43.49 (4.29) 56.51 (4.29) -1.75 (0.33) 1.80 (0.38)
Time-Series Momentum -0.34 (0.19) 1.64 (0.36) 63.20 (3.71) 36.80 (3.71) -1.87 (0.57) 0.92 (0.18)
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TABLE AVIII. Decomposition of Average Fund Returns – Style-Specific Factors
This table shows the decomposition of average fund returns under a style-specific version of the CP model
across investment styles. The equity model replaces the global carry and TS momentum factors with the
equity carry and TS momentum factors. The macro model replaces the global carry and TS momentum
factors with the equal-weighted average of the currency and commodity carry and TS momentum factors.
The arbitrage model replaces the global carry and TS momentum factors with the fixed income carry and
TS momentum factors. Panel A reports the characteristics of the cross-sectional distributions of the alpha
and beta components across equity funds (long-short, market neutral). We report the annualized mean and
standard deviation, the proportions of funds with negative and positive alphas, and the annualized quantiles
at 10% and 90%. Figures in parentheses denote the standard deviation of the estimated characteristics.
Panels B and C repeat the analysis for macro funds (global macro, managed futures) and arbitrage funds
(relative value, event driven).

Panel A: Equity Funds
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Alpha Component 0.80 (0.91) 8.96 (0.47) 45.98 (5.28) 54.02 (5.28) -7.44 (1.05) 8.74 (0.77)
Beta Component 5.78 (1.25) 7.54 (0.62) 14.59 (2.89) 85.41 (2.89) -1.20 (0.53) 13.35 (1.81)

Panel B: Macro Funds
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Alpha Component 1.16 (1.95) 10.58 (0.54) 43.19 (7.83) 56.81 (7.83) -8.58 (1.44) 11.16 (1.48)
Beta Component 3.56 (1.58) 8.47 (0.63) 27.72 (6.14) 72.28 (6.14) -3.10 (0.80) 11.24 (1.29)

Panel C: Arbitrage Funds
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Alpha Component 0.97 (1.17) 6.82 (0.56) 41.21 (9.36) 58.79 (9.36) -5.60 (1.52) 7.86 (0.52)
Beta Component 4.15 (1.04) 4.74 (0.68) 11.60 (2.29) 88.40 (2.29) -0.19 (0.32) 9.18 (1.60)
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