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Abstract
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construct a dynamic model of runs where debt and beliefs evolve endogenously. This
allows to capture a funding cost channel and a beliefs channel which are absent from
models with a single rollover date but matter for equilibrium outcomes. I find that
opacity reduces run likelihood and inefficiency if and only if fundamentals are strong;
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regulator should commit to disclosure except at large levels of opacity.
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1 Introduction

Financial institutions issuing short-term debt collateralized by long-term assets are exposed

to bank run phenomena: creditors may demand to withdraw their funds and trigger costly

liquidations. Debt runs are prominent features of financial crises: during the turmoil of 2007-

2008, runs hit the asset-backed commercial paper market, the repo market, money market

mutual funds and banks such as Northern Rock and Bear Stearns.1

Many institutions managing opaque assets struggled during the crisis (Gorton (2008)).

This ignited a debate among both academics and policy makers about the impact of opacity

on financial fragility. One line of thinking, represented by Gorton and Ordoñez (2014)

and Dang, Gorton, Holmström, and Ordoñez (2017), advocates that opacity is actually a

desirable characteristic of the financial sector and should be fostered. On the other hand,

the policy responses to the crisis seemed to go in a different direction: regulators engaged in

a considerable effort to both gather and disclose more information about banks. This was

evidenced by the start of the Supervisory Capital Assessment Program (SCAP) in February

2009, a massive effort to submit all major banking institutions in the United States to

thorough stress tests. Gathering and disclosing information are two distinct decisions: the

regulator may collect information to have the option to reduce opacity by releasing it to the

public, but prefer ex post not to do so. In fact, there were concerns that fully releasing the

results of the SCAP stress tests might have a destabilizing effect.2

The present paper aims at answering the following questions: how does the accessibility

of information impact the resilience of financial institutions to debt runs? under which

circumstances should the regulator strive to collect information regularly? if the regulator

has incentives to withhold information in some states, should he commit ex ante to a policy

of full disclosure?

To do so, I modify the discrete time dynamic debt runs model of Acharya, Gale, and

Yorulmazer (2011) by allowing the bank’s assets to be opaque and information release to

be strategic. My model features an uninsured financial institution (“bank”) trying to roll

over its short-term debt until its assets mature. The bank cannot communicate credibly.

Instead, creditors have to rely on regulatory disclosures when deciding whether to renew

their credit to the bank. Because the bank assets can be complex and investigation is

costly, the regulator may not be able to constantly assess the soundness of the bank: the

frequency at which he can and wishes to obtain bank-specific information defines the degree

of transparency in the model. Opacity is defined as the opposite of transparency. In a regime

1 Gorton and Metrick (2012) document the run on the repo market, and Covitz, Liang, and Suarez
(2013) investigate the run on the ABCP market.

2Bernanke (2010) mentions these concerns; see also Goldstein and Sapra (2014).

2



of commitment (mandatory disclosure), the regulator conveys truthfully any information he

has to the bank’s creditors. Absent commitment (voluntary disclosure), the regulator finds

it optimal to only release good news.

Because of the simple structure chosen for the bank’s asset process, I am able to charac-

terize analytically the interest rates demanded by creditors to roll over the bank’s debt, and

the states in which they instead decide to run. Runs are assumed to entail deadweight liqui-

dation costs proportional to the fundamental value of the asset at the run time. Inefficiency

is then defined as the expected liquidation costs.

Constructing a dynamic framework where the cost of debt is endogenous allows to uncover

two channels that would not be apparent in a model with a single rollover date. First, I

capture a funding cost channel : a signal provided to a creditor has a contemporaneous effect

(it will trigger a run with some probability today), but also impacts the required interest

rate. Hence, it affects future debt levels and thereby future incentives to run. The efficiency

of an opacity level and a disclosure policy depend on both the direct and the indirect effect.

Second, the model recognizes that the disclosure policy of the regulator impacts the beliefs

dynamics, which in turn impact future rollover decisions. When the regulator does not

commit to disclosure, short-term funding costs are lower in good times. However, the lack

of commitment generates systematically depressed beliefs, potentially leading to a larger

probability of bank failure at longer horizons. A model with a single rollover date would

obliterate this beliefs channel and the costs it entails; when in fact, all the costs associated

with non-commitment are due to the fact that it generates worse beliefs.

The interaction between the information structure, debt dynamics and beliefs dynamics

is rich. Short-term debt yields are determined by the number of default states tomorrow

under the given information structure, not by the expected value of the collateral computed

under the beliefs generated by this structure: yields do not primarily reflect the current

expected collateral quality. Two results of the paper relate to this intuition. First, there

need not necessarily be a warning sign of a run in the time-series of short-term returns:

yields may remain low while risk builds in the background. Second, there are situations in

which the expected collateral value is always larger under one disclosure regime, but the

bank nevertheless faces larger financing costs under this regime, and therefore fails only in

the seemingly better scenario.

At the policy level, the main results are the following. First, I find that opacity reduces

run probability and inefficiency only when fundamentals are strong enough: in situations

where the regulator believes that the economy is healthy and likely to remain so for a long

time, collecting and releasing information about banks is detrimental; in other situations, the

regulator wants to implement transparency. Second, opacity may decrease run probability
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but increase inefficiency: the objective of the regulator is not to minimize the probability

of a bank failure, but rather the expected costs associated with liquidation. Under trans-

parency, runs may occur more frequently but they are concentrated on bad banks, for which

liquidation is less inefficient. Third, voluntary disclosure is more efficient than mandatory

disclosure except at large levels of opacity: this implies that the regulator should commit to

disclose stress test results as soon as his access to information is relatively easy. Thus, my

model shows that whether stress test results should be systematically disclosed depends on

the degree of asset opacity.

Relation to the literature. The game-theoretic study of bank runs traces back to the

seminal paper of Diamond and Dybvig (1983): in the bad equilibrium, agents “panic” about

the run decision of others, leading to an outcome where all creditors run on the bank and force

an inefficient liquidation. Building on the global games literature pioneered by Carlsson and

van Damme (1993) and Morris and Shin (1998), Rochet and Vives (2004) and Goldstein and

Pauzner (2005) provide bank run models where the equilibrium is unique and runs arise as the

result of both a coordination failure and concerns about the fundamentals. In these models,

the coordination problem comes from the fact that creditors are dispersed and must decide

simultaneously whether to withdraw their funds. Models of dynamic debt runs provide a

related but distinct approach. There, the coordination problem is intertemporal in the sense

that an agent may withdraw his funds because of concerns about future rollover decisions of

other creditors. He and Xiong (2012) and Schroth, Suarez, and Taylor (2014) provide such

models and use them to quantify the impact of factors such as maturity mismatch, leverage

and liquidation costs on run likelihood, with a focus on the 2007 run on ABCP.

As Acharya, Gale, and Yorulmazer (2011), my paper highlights the importance of the

specific nature of the information structure to the outcome of the rollover problem. In a

broader framework, Kamenica and Gentzkow (2011) show how one can optimally design

information structures (i.e. select signals3) to maximize non-linear functions of some agent’s

beliefs, what they call Bayesian persuasion. Finding the optimal opacity level and disclosure

policy in the present model can be seen as a Bayesian persuasion problem, because it means

choosing ex ante which signals about the fundamental to show to investors, and the non-

linear function of their belief is the rollover decision. Papers linking explicitly the Bayesian

persuasion approach to the research on stress tests include Goldstein and Leitner (2017),

Inostraza and Pavan (2017) and Quigley and Walther (2017).

While the models of dynamic debt runs mentioned above assume full information, there

is also a significant body of literature on banking under opacity. Alvarez and Barlevy (2014)

3By “selecting signals” one means of course selecting ex ante a random variable, rather than being able
to show or conceal the realization of a given signal.
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develop a network model of banking where imposing mandatory disclosure of losses can

only improve welfare when contagion concerns are strong. de Faria e Castro, Martinez, and

Philippon (2016) study the interaction between the fiscal capacity of the government and

optimal disclosure policies. When deposit insurance can be provided at a low social cost,

a disclosure policy that would be suboptimal absent insurance because of the run risk it

implies may become desirable. In a model of coordination failures à la Goldstein and Pauzner

(2005), Bouvard, Chaigneau, and de Motta (2015) investigate how a regulator endowed with

perfect information about aggregate and idiosyncratic shocks on the banking sector should

communicate with the public. My model does not distinguish between these shocks, but

introduces the possibility that the regulator herself has no information: this generates a

different commitment problem. Additionally, their model features a single rollover date and

threfore does not capture the funding cost channel and the beliefs channel described above.

Finally, Monnet and Quintin (2017) map the need for transparency to the degree of a bank’s

asset liquidity and show that opacity is preferable when secondary markets are shallow.

My paper also bears a connection with the series of papers by Gorton and Pennacchi

(1990), Dang, Gorton, and Holmström (2013), Dang, Gorton, and Holmström (2015), Gorton

and Ordoñez (2014) and Dang, Gorton, Holmström, and Ordoñez (2017). These authors

focus on the notion of information sensitivity. A security is information insensitive when

agents have no incentive to acquire costly signals about it. Because of their capped payoff,

debt contracts are natural candidates for information insensitivity, and more so if collateral

is opaque. If, in addition, the expected value of collateral is large enough, debt is risk-free

and of constant value: it can be used as money. Therefore bank should be “secret keepers”

(Dang, Gorton, Holmström, and Ordoñez (2017)). Deterring information acquisition with

opaque collateral also ensures that information is always symmetrical. This prevents market

freezes due to adverse selection issues (Dang, Gorton, and Holmström (2015)). One can

similarly define the information sensitivity status of debt in my model and map this status

to the current state of the world, the degree of opacity, and the disclosure regime.

2 The Model

Time is discrete: t = 0, 1, 2, . . .. The model features an uninsured financial institution

(“bank”) whose short-term debt must be refinanced by successive creditors until its asset

reaches maturity.4

4A significant part of the short-term debt of financial institutions is not insured, and even bank deposits
are typically insured only up to some limit. Moreover, ex-post liquidity assistance may not be systematical
but contingent to some criteria (see for instance Santos and Suarez (forthcoming)). For simplicity, I consider
uninsured debt, but it is straightforward to amend the model solution to the case where the institution is
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2.1 The Bank

2.1.1 Asset side

The bank holds a long-term asset. For tractability purposes, its maturity is modelled as a

random time ζφ. ζφ is assumed to be independent of all other variables and geometrically

distributed with parameter φ ∈ (0, 1).5 At time ζφ, the asset delivers its payoff, agents receive

their payments, and the world ends. The asset does not pay anything before maturity.

The asset side of the bank is modelled by a Markov chain (yt)t≥0 with two states: yG > yB.

The meaning of yt is the following: if maturity occurs at time t (ζφ = t), the asset payoff is

yζφ . Assume that the asset is initially in the good state: y0 = yG. The transition matrix of

(yt) is

Λ =

(
λGG 1− λGG

λBG 1− λBG

)
. (1)

λGG represents the probability to stay in the good state from one period to the next, while

λBG can be interpreted as a recovery probability. Under the conditions λGG > 1
2

and λBG < 1
2
,

we have

V G ≡ E[yζφ |yt = yG, t < ζφ] > E[yζφ|yt = yB, t < ζφ] ≡ V B. (2)

(2) means that being in the state yG before maturity signals a high expected payoff at

maturity, so yG is indeed the “good state”.

2.1.2 Liability side

The initial capital structure of the bank is taken as given. The bank has raised an amount

D0 of short-term (i.e. one-period) debt D0.
6 Equity is the residual claim and is owned by

the banker. Since the asset does not pay anything before maturity, short-term debt must

be refinanced: to do so, the bank has access to a pool of potential short-term creditors (see

section 2.2). No other sources of financing are available.

Short-term debt can stop being rolled over in two cases. (i) (strategic default) The bank

can decide to default on the debt, in which case its asset is liquidated at a fraction of its

current expected value. The strategic default time is denoted ζs. (ii) (rollover freeze) If debt

is too high, there is no short-term debt contract that compensates adequately for default

bailed out with some exogenous probability when a run occurs.
5The expected maturity is E[ζφ] = 1

φ .
6Explicit motivations for short-term debt include Calomiris and Kahn (1991) and Diamond and Rajan

(2001). Brunnermeier and Oehmke (2013) show how debt maturities can endogenously shorten in response
to dilution concerns. Carré and Klossner (2018) provide a global games model for the short-term leverage
choice of a bank whose debt provides liquidity but creates rollover risk.
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risk. No creditor accepts to roll over the debt, forcing the bank into liquidation. The time

at which this happens is denoted ζz.

Important details on the liquidation procedure are given in section 2.4.3. Let ζ` =

min{ζs, ζz} be the liquidation time. I will use the convention ζl =∞ when liquidation does

not occur prior to maturity. Finally, define the end date as

ζf = min{ζ`, ζφ}. (3)

It is convenient to introduce the following assumption.

Assumption 1. D0 > V B.

This condition ensures that the bank is insolvent when the bad state is revealed, which

triggers liquidation.

2.2 Creditors

The bank has access to an unlimited pool of risk-neutral and competitive creditors.

I assume that all the short-term debt is held by a single investor at each period, and

that the investor entering the debt contract at date t exits forever the pool of creditors after

receiving his payment at t+ 1.

Given an amount of debt to roll over at time t, the bank offers a contract with a promised

repayment at time t + 1, the face value F . The risk-free rate is normalized to zero. Hence,

since creditors compete to obtain the debt contract, the equilibrium face value is such that

a creditor makes zero profit on average. If no face value satisfies the zero profit condition,

liquidation occurs (i.e. ζz is reached). I use the convention F = ∅ in that case, since the

bank cannot offer any acceptable face value.

2.3 The Regulator

There is a regulator who may obtain information about the bank’s asset and can disclose

them to creditors. When the regulator does not commit to reveal all its information, he

selects his disclosure policy to minimize inefficiency. Note that since creditors make zero

expected profit in equilibrium, the regulator’s objective is in fact to maximize the banker’s

equity value: see the equilibrium definition in section 2.5.3. The next section describes the

information structure and provides details about the constraints under which the regulator

operates.
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2.4 Information Structure

2.4.1 Asset Opacity

I make the following assumptions. First, the bank observes (yt) but cannot credibly com-

municate any information to investors. Second, at each time t, the regulator observes the

current state of the chain, yt, with probability p, independently of everything else.

It will be convenient to define the dummy variables

ωt =

1 if the regulator observes yt

0 otherwise.
(4)

By assumption, (ωt)t≥0 is an i.i.d. sequence of Bernoulli variables with parameter p. p

characterizes the degree of opacity of the asset. When p = 1, there is full information, while

p = 0 corresponds to the extreme case of a fully opaque asset.

Agents in the pool of creditors cannot make any direct observation and rely on the

regulator’s disclosures.

The motivation for this particular modelling of opacity is the following. One wants to

capture the fact that it is not feasible for the regulator to monitor the bank at all times,

because of the excessive costs this would imply. As Bernanke (2010) noted, “The SCAP

represented an extraordinary effort on the part of the Federal Reserve staff and the staff of

other banking agencies. In a relatively short time, the supervisors had to gather and evaluate

an enormous amount of information”.

Considering an exogenous ωt allows to maintain tractability; and letting p < 1 incorpo-

rates the regulator’s constraints into the model as desired.

2.4.2 Disclosure Regimes

At each time t, the regulator has the opportunity to disclose information to the pool of

creditors after the realization of ωt. Disclosure takes the form of an announcement δt:

δt =


∅ “I did not observe the asset value ”

yG “I observed the asset value and yt = yG ”

yB “I observed the asset value and yt = yB ”.

(5)

I compare two disclosure regimes: voluntary and mandatory.

Under mandatory disclosure, the regulator is compelled by law to announce the truth.

That is, he has been able to credibly commit to communicate any information he has. In
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that case, disclosure is mechanical:

δt =

yt if ωt = 1

∅ if ωt = 0.
(6)

Under voluntary disclosure, the regulator can conceal news. That is, he can claim to

be uninformed while he is. Formally, it means he can play δt = ∅ when ωt = 1. However,

if a state is announced, is must be accompanied with evidence. Hence, it is impossible to

announce that a state has been observed when it is not the case. Formally, it means that

δt = yi implies ωt = 1 and yt = yi for i = G,B. These assumptions on the voluntary

disclosure regime are borrowed from Dye (1985).

The equilibrium under voluntary disclosure will feature a sanitization strategy :7 the

regulator discloses the good state and conceals the bad state. That is, he plays δ = δS,

where

δSt ≡

yG if ωt = 1 and yt = yG

∅ otherwise
(7)

is the sanitization strategy.

Denote (F It )t≥0 the filtration of the investors:

F It = σ
(
(δs)s≤t, ζ`I{ζ`≤t}, ζφI{ζφ≤t}

)
, (8)

(FRt )t≥0 the filtration of the regulator:

FRt = σ
(
(ωs, ysI{ωs=1})s≤t, ζ`I{ζ`≤t}, ζφI{ζφ≤t}

)
, (9)

and (FBt )t≥0 the filtration of the bank, which observes everything but cannot communicate

information credibly.

2.4.3 Liquidation

If liquidation occurs at time t (t < ζφ), the value αV is recovered, where α ∈ [0, 1] and V =

E[yζφ|F It ] is the fundamental value of the asset computed under the outsiders’ information

set at time t.

In case of a strategic liquidation under asymmetric information, the liquidation decision

has a signalling content and we need to specify the beliefs of outsiders. For simplicity, I

focus on equilibria where the bank’s decision to liquidate at t when δt = ∅ is interpreted as

7See Shin (2003).
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the fact that the bank has observed the bad state (yt = yB). When δt 6= ∅, (payoff-relevant)

information is symmetric because announcements of states are trustworthy. Hence, there is

no signalling problem in that case.

1− α is a measure of illiquidity as it represents the fraction of asset value destroyed due

to premature liquidation.8 Because of the deadweight cost (1 − α)V , liquidation is never

efficient in this model; the inefficiency is large for good banks (i.e. V high) and small for

bad banks (i.e. V low).9

2.5 Equilibrium

2.5.1 Debt Dynamics

Assume we are at time t < ζf with a level of debt Dt. The bank has promised the face value

Dt+1 to the current creditor. The actual payment, D̃t+1, satisfies:

D̃t+1 =


min{yt+1, Dt+1} if ζφ = t+ 1

min{αVt+1, Dt+1} if ζφ > t+ 1 and ζ` = t+ 1

Dt+1 otherwise.

(10)

In the first case, maturity occurs at time t+ 1 and the asset delivers the payoff yt+1. In the

second case, the bank is liquidated at the value αVt+1 where Vt+1 = E[yζφ|F It+1]. In the third

case, the banker is able to roll its debt over. That is, she obtains the financing necessary to

repay Dt+1 in full.

Lemma 1. The break-even condition of lenders is equivalent to the property that (D̃t∧ζf )t≥0

is a (F It )-martingale.

(All proofs are relegated to the Appendix).

2.5.2 Quantities of Interest

My goal is to understand how asset opacity and disclosure regimes impact the likelihood of

debt runs and their inefficiency. In this section, I explain how these quantities are measured

in the model. I then define formally the equilibrium.

8 If the bank is the first-best user of the asset, transferring its control rights to another party reduces its
value (Shleifer and Vishny (1992)).

9The typical situation in 3-dates models of runs is that premature liquidations are efficient when the
fundamental is very low and inefficient otherwise. The common conclusion is that the deadweight cost of
liquidating good banks is larger.
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The probability of a run is simply

P ≡ P(ζ` < ζφ). (11)

Now note that because lenders make zero profit on average, the bank bears the costs of

inefficient runs. Optimality for the bank coincides with a social planner’s optimality in the

model, that is, maximizing the expectation of the payoff U of the asset. This quantity is

given by

U ≡ αVζlI{ζ`<ζφ} + yζφI{ζφ≤ζ`}. (12)

Equivalently, the measure of inefficiency is the expected deadweight cost

I ≡ E[(1− α)yζ`Iζ`<ζφ ] = V G − E[U ]. (13)

Saying that the banker maximizes equity value is equivalent to saying that she maximizes

E[U ] or minimizes I.

We are now ready to define the equilibrium.

2.5.3 Equilibrium concept

Definition 1. Given a disclosure policy δ, a consistent bank policy is a promised face value

schedule F and a time of strategic liquidation ζs such that

i) Ft is Markov in (Dt, qt) where qt ≡ E[yt|F It ] ; Dt+1 = Ft and the process (D̃t) associated

with (Dt) is a (F It )-martingale. F is required to satisfy

(M) Ft is non-decreasing in Dt and non-increasing in qt
10,

(NP) F ≤ K for some constant K > yG.

ii) ζs is FBt -adapted, and, given F , it minimizes I.

An equilibrium is (δ, F, ζs) such that

i) given δ, (F, ζs) is a consistent bank policy that minimizes I.

ii) δ is FRt -adapted and given (F, ζs) it minimizes I.11

10Recall the convention F = ∅ when there is no acceptable face value. The meaning of the monotonicity
condition is then that if F (D1) = ∅ and F (D2) ∈ R, D1 > D2.

11Under mandatory disclosure, δ is mechanical and is de facto not an equilibrium object.
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The implicit assumption here is that the banker commits to an interest rate schedule at

date 0. Otherwise, the banker would convey signalling information when offering a face value

to creditors. In particular due to the specification of out-of-equilibrium beliefs, this would

complicate significantly the formalization of the game without bringing additional insights.

With the formulation of the text, all the signalling is contained in the disclosure decision.

Requiring that Ft is Markov in (Dt, qt) is to simplify the exposition. We could just demand

that Ft is (F It )-adapted; but since qt encapsulates all the relevant information about the

asset payoff, the bank has nothing to gain to condition its face value to other F It -measurable

variables.

Condition (NP ) rules out Ponzi schemes, and, as usual, the constraint F ≤ K is never

binding in equilibrium.12 This is a consequence of the following useful lemma:

Lemma 2. In a consistent bank policy, an insolvent bank is necessarily forced into liquida-

tion.

This is the standard result that insolvency implies illiquidity (of course, the converse is

not true). Hence, since K > yG, the bank would be ran upon before debt can reach K, so

the constraint F ≥ K does not bind.

3 Model Solution

The first step towards solving the model is to establish that the bank never wishes to force

liquidation:

Lemma 3. The bank never liquidates strategically in a consistent bank policy for α ∈ [0, 1):

ζs =∞.

(In the extreme case α = 1, there is no cost associated with liquidation. Thus, when

yt = yG is observed, the bank is indifferent between holding the asset or liquidating it.) The

intuition behind this result is the following. Since debt comes at a zero expected cost for

the bank, the banker has no incentive to incur the deadweight liquidation cost today: she is

always better off waiting.

12In the sense that the banker never actually sets F at K. But of course the constraint binds in a dynamic
sense since it rules out Ponzi schemes. Also note that absent requirement (NP ), there is a Ponzi equilibrium
where each lender is simply betting against maturity, i.e. hoping he is not the last in line (this is made
possible by the random maturity assumption). Of course, the actual asset value is irrelevant in that case.
See e.g. Blanchard and Watson (1982).
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3.1 Voluntary Disclosure

We now characterize the policy of the regulator in the voluntary disclosure case.

Lemma 4. The regulator follows the sanitization strategy δS (defined in (7)) in equilibrium.

This result is very intuitive. When the regulator observes the good state, it is clearly in

his best interest to communicate it to investors. When the regulator observes the bad state,

it is always best to conceal it. Even if creditors understand that the regulator may be hiding

information, their updated belief about the probability of the good state cannot be worse

than if the regulator had revealed the bad state.13

3.1.1 State Variables

Suppose we are at time t < ζφ and current debt is D. From Lemma 4, we know that the

regulator discloses only ∅ or yG in equilibrium. Let τ be the time elapsed since the last

disclosure of yG:

δt−τ = yG, δt−τ+1 = ∅, δt−τ+2 = ∅, . . . , δt = ∅. (14)

Given the stationarity of the problem, the data of (D, τ) contains all the relevant information

for decision making and we can select (D, τ) as the state variable:

Remark 1. Any face value schedule F in a consistent bank policy is Markov in (D, τ). Due

to Lemmas 3 and 4, what remains to be determined in order to find the equilibrium is which

F (D, τ) are compatible with a consistent bank policy, and which one maximizes the banker’s

equity value.

The full characterization of the equilibrium is in section 3.2.5. The next sections explain

how to get there.

3.1.2 Beliefs Dynamics

The banker offers a face value to rollover its debt, and investors play second by either

accepting or rejecting the offer. Hence, what matters is the outsiders’ beliefs about the

asset. The probability to be in state yG, under F It , sums up the outsiders’ beliefs: denote

it q. Initially we have q = 1, and immediately after any disclosure q = 1 as well, because

disclosure only occurs when the regulator observes yG. Now assume no disclosure at t = 1.

Either the state was bad and observed (probability p(1−λGG)) or the state was not observed

(probability 1 − p). So non-disclosure happens with probability 1 − p + p(1 − λGG). And

13I simplify the strategic disclosure problem to the maximum in order to focus on the comparison between
voluntary and mandatory disclosure regimes.
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non-disclosure in the good state happens with probability (1−p)λGG. Hence, the probability

to be in state yG after one non-disclosure period is

q1 =
(1− p)λGG

1− p+ p(1− λGG)
. (15)

And the probability to be in state yG at t = 2 is

γ1 = q1λ
GG + (1− q1)λBG. (16)

Recall that τ is the time elapsed since the last disclosure. Let

qk(t) = P(yt = yG|τ = k, ζφ > t) (17)

be the value of q after k periods of non-disclosure and

γk(t) = P(yt+1 = yG|τ = k, ζφ > t) (18)

be the probability to be in state yG tomorrow after k periods of non-disclosure. These

quantities only depend on t to the extent that t must be smaller than the maturity time.

Hence, we can drop the dependency in t. Also for notational simplicity, the subscript k will

be denoted τ . Using Bayesian updating, as in the case k = 1 detailed above, we obtain

recursively:

qτ+1 =
(1− p)γτ

1− p+ p(1− γτ )
, (19)

γτ = qτλ
GG + (1− qτ )λBG. (20)

To each τ corresponds one qτ ; Figure 1 provides a graphical representation. Note that qτ

decreases to a limit weight q∗V , which bears an economic interpretation, discussed in section

3.2.2.

3.1.3 Fundamental Value

Let V (q) be the fundamental value of the asset when the probability to be in state yG is q.

Let y = (yG yB) be the vector of states, and q = (q 1− q)T be the vector of weights on the

two states. By assumption the asset has not matured at time t = 0, and the probability of

the maturity being ζφ = t + 1 for t ≥ 0 is (1 − φ)tφ. At time t + 1, the weights on the 2

states are given by the vector Λt+1q, so the expected asset value conditional on t+ 1 = ζφ is
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yΛt+1q. Therefore

V (q) =
∑
t≥0

E[yt|ζφ = t+ 1]P(t+ 1 = ζφ)

=
∑
t≥0

(1− φ)tφyΛt+1q

= φyΛ(Id2 − (1− φ)Λ)−1q. (21)

Note that V is affine in q:

V (q) = qV G + (1− q)V B. (22)

V can also be expressed as a function of τ , the time since last disclosure:

Vτ ≡ V (qτ ). (23)

3.1.4 Debt Capacity

Definition 2. The debt capacity is the maximal amount of debt financing that can be obtained

by pledging the assets under management as collateral. Under a consistent bank policy, it

depends on the state τ and is defined by

C(τ) = inf{D ≥ 0, F (D, τ) = ∅}. (24)

By definition, if debt exceeds debt capacity during the lifespan of the asset, it is no longer

possible to find investors to roll debt over. In my model, this forces a premature liquidation,

because no other sources of financing are available: a run occurs. Hence, debt capacity

coincides here with a run threshold.

Definition 3. The fair pricing function in state τ , mτ , is the mapping that associates to

any promise F the expectation of the actual payment, under the creditors’ information. In

a consistent bank policy,

mτ (F (D, τ)) = D (25)

holds in state (D, τ).

Of course, mτ , an inverse of F , is also an equilibrium object and remains to be determined,

jointly with the debt capacities. In general, we have the following relationship:

C(τ) = sup
F≥0

mτ (F ). (26)
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That is, today’s debt capacity is the maximum amount of financing that a promise of F

tomorrow can buy.

The first key observation towards the analytical characterization of debt capacities is the

following:

Lemma 5. Assume we are in state τ and let χ1, . . . , χk be the possible states of the world

tomorrow, and C(χi) the maximum available financing in state χi. Then today’s debt capacity

satisfies

C(τ) = max{mτ (C(χ1)), . . . ,mτ (C(χk))}. (27)

This means that we do not need to consider all promises, as suggested by equation (26),

but only the maximal viable promises in tomorrow’s states of the world. The intuition

is the following. When the banker increases the face value from F to F + dF , two cases

are possible. If the states χi in which there is default are unchanged, then the expected

repayment under F +dF must be larger: mτ (F +dF ) > mτ (F ). By contrast, if the increase

in face value creates an additional default state, the expected repayment decreases because

of the deadweight liquidation cost. Hence, as F increases, mτ (F ) increases, except when a

new default state is created, in which case it jumps downwards. When is χi a default state?

It is precisely when the face value is larger than C(χi). Hence Lemma 5.

I now proceed and describe tomorrow’s states of the world in my model (from the point

of view of outsiders). There are always four:

– χ1: the asset has just matured (ζφ = t+ 1), in the good state yG.

– χ2: the asset has just matured (ζφ = t+ 1), in the bad state yB.

– χ3: the asset has not matured (ζφ > t+ 1), and a disclosure was made (τ = 0).

– χ4: the asset has not matured (ζφ > t+ 1), no disclosure was made (τ → τ + 1).

From Lemma 5, we obtain

C(τ) = max{mτ (C(0)),mτ (C(τ + 1)),mτ (y
G),mτ (y

B)}. (28)

The second key observation in determining the debt capacities is that there is only “one

kind of good news”: the observation of yG. In order to sustain today’s debt capacity, one

must promise a face value that will be paid in better states of the world, because in worst

states, less financing is available than today. Hence, we can directly map the C(τ) to C(0),

and C(0) to yG: through a simple choice of asset process, we have been able to obtain an
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analytically tractable functional equation for debt capacity. The following derivations make

these intuitions formal.

From condition (M), C(τ +1) ≤ C(τ), and since mτ (F ) ≤ F always holds, equation (28)

reduces to:

C(τ) = max{mτ (C(0)),mτ (y
G),mτ (y

B)}, (29)

for τ ≥ 1 and

C(0) = max{m0(y
G),m0(y

B)}. (30)

yB is the worst state of the world, so in equilibrium the banker can make a risk-free promise:

mτ (y
B) = yB. (31)

Let us now deal with the pricing of bonds with face value yG and C(0), respectively.

– In case the asset matures tomorrow, there will be full payment in the good state

(state χ1) and payment of yB in state χ2. Otherwise, there will be liquidation, since

C(τ) < yG. The liquidation value will be either V0 (in state χ3) or Vτ+1 (in state χ4).

So

mτ (y
G) = φ(γτy

G + (1− γτ )yB) + α(1− φ)(pγτV0 + (1− pγτ )Vτ+1). (32)

– Payments in states χ1 to χ4 are respectively C(0), yB, C(0), αVτ+1. So

mτ (C(0)) = φ(γτC(0) + (1− γτ )yB) + (1− φ)(pγτC(0) + α(1− pγτ )Vτ+1). (33)

Notice that mτ was a priori unknown. But equation (32) provides a necessary expression

for mτ (y
G), which determines C(0) thanks to (30) and (31). In turn, mτ (C(0)) is determined

by equation (33). (29) concludes the characterization of the debt capacities in all states. We

have thus proven the following.

Proposition 1. The equilibrium debt capacities in the voluntary disclosure case are charac-

terized analytically by equations (29) to (33).

Figure 2 provides a graphical representation.

3.1.5 Endogenous Bond Yields

Proposition 1 says that we know the debt capacities in all states, and so we also know the

default states, which means that the equilibrium fair pricing functions mτ are determined.

We are then in a position to obtain the following.

17



Proposition 2. The equilibrium face value schedule is characterized by

F (D, τ) = min{F ≥ 0,mτ (F ) = D}. (34)

(Details and the explicit expression for mτ can be found in the Appendix). Notice that

the gross bond yield in state τ is R(D, τ) = F (D, τ)/D.

3.2 Mandatory Disclosure

The model solution under mandatory disclosure is both similar and simpler: there is no

disclosure policy and information is symmetric. I quickly repeat the analysis above in order

to obtain the debt capacities and bond yields under mandatory disclosure.

3.2.1 Beliefs Dynamics

Let again denote q the probability of the asset being in state yG (now the same for the

bank and outsiders) and τ be the time since the last disclosure of yG. As in the voluntary

disclosure case, there is a correspondence between τ and q. The updating rule is modified.

Here, q(τ = 0) = 1 and

qτ+1 = qτλ
GG + (1− qτ )λBG. (35)

Figure 1 provides a graphical representation.

Since asset observability is now independent from asset value, the weights on states after

τ periods without observation are simply given by the iterated transition matrix, Λτ+1. The

qualitative behaviour of qτ is the same as in the voluntary disclosure case. Here, it decreases

to the stationary weight

q∗M =
λBG

1 + λBG − λGG
, (36)

which is above the limit q∗V of qτ in the voluntary disclosure case. The intuition is that with

mandatory disclosure, no information does not mean a higher chance of bad news being

concealed. Under voluntary disclosure, a protracted lack of disclosure seriously hints at the

state being yB.

I again define γτ as the probability to be in state yG tomorrow given τ periods of non-

disclosure. Here, we simply have

γτ = qτ+1. (37)
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3.2.2 The Stationary Weights

There is an economic intuition behind q∗M , which represents (up to an affine transformation)

the asymptotic expected value of collateral, as the economy becomes information-less. If

even in the information-less economy, agents accept to roll over debt because the expected

value of collateral is high enough —q∗M large enough—, it is pointless to gather information.

It would even be inefficient, since the (rare) bad banks would be inefficiently closed. This is

one message of Gorton and Ordoñez (2014). But even if q∗M is large enough, the expected

value of the bond collateral in the information-less economy can be insufficient to ensure

information insensitivity when disclosure is strategic. Indeed, the absence of information

under voluntary disclosure is worse news than under mandatory disclosure. Formally, we

have the following:

Lemma 6. For any opacity parameter p ∈ (0, 1), the stationary weights (the probability to

be in the good state when the time since the last disclosure becomes large) satisfy q∗V < q∗M .

As a consequence, the expected value of the bond collateral in the information-less economy

is smaller in the voluntary disclosure case.

3.2.3 Fundamental Value

The formula for V (q) established above is still valid. We now have that the fundamental

value after τ periods without disclosure is Vτ ≡ V (q = qτ ), where the probability qτ is

computed assuming mandatory disclosure.

3.2.4 Debt Capacity and Endogenous Bond Yields

Using the same method as before, we obtain the parallel of Propositions 1 and 2:

Proposition 3. The equilibrium debt capacities in the mandatory disclosure case are char-

acterized analytically by equations (29) to (31), where the operator mτ is modified (see the

Appendix for its explicit expression). Again, the equilibrium face value schedule satisfies

F (D, τ) = min{F ≥ 0,mτ (F ) = D}. (38)

3.2.5 Equilibrium characterization

Collecting the results obtained so far, we can exhibit the equilibrium:

In the voluntary disclosure case, the equilibrium is (δ = δS, F, ζs = ∞) where F is given
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in Proposition 2. In the mandatory disclosure case, the equilibrium is (F, ζs =∞) where F

is given in Proposition 3.

4 Results

When necessary, I denote by Θ the set of parameters, and Θ−x this set without the variable

x. The notation is useful when we want to study comparative statics with respect to x.

Table 1. Baseline model parameters.

Variable Description Value

yG Good state 100

yB Bad state 0

p Opacity parameter 0.5

λGG Prob. of staying in the good state 97%

λBG Prob. of recovery 3%

φ Intensity of maturity 15%

α Asset liquidity parameter 85%

4.1 Opacity, Information Sensitivity and Rollover Risk

4.1.1 Notions of Information Sensitivity

The notion of information sensitivity is at the heart of a series of papers: Gorton and Pen-

nacchi (1990), Dang, Gorton, and Holmström (2013), Dang, Gorton, and Holmström (2015),

and Gorton and Ordoñez (2014). A security is information-insensitive when agents accept to

trade it without paying to obtain a costly signal about it, and has a high information sensi-

tivity when agents are ready to spend a lot to obtain a signal. Debt is a natural candidate to

information insensitivity because its payoff is constant over all the range of non-default states.

Adverse selection. In the papers of Dang et al., this property is desirable mainly because it

allows to sidestep adverse selection issues. Debt is liquid because agents are not concerned

that the next buyer knows more about the collateral than they do. In this context, opacity

is efficient since it makes debt information-insensitive in more states of the world.

Pooling. In Gorton and Ordoñez (2014), opacity permits the pooling of firms with good

collateral with firms with bad collateral. If the average quality of collateral is high enough,
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firms obtain credit from lenders who do not verify firm-specific collateral quality. This fi-

nancing is invested in positive NPV projects, and opacity is therefore desirable: it provides

insurance to banks in terms of their access to financing. To the contrary, when information

about a firm’s collateral is cheap, debt becomes information-sensitive: lenders verify collat-

eral quality and lend only conditional on good news. Firms with bad collateral are deprived

of credit and welfare is lower.

One can also define the notion of information sensitivity in my model:

Definition 4 Let (D, τ) be the state today, and F (D, τ) the promised face value due to-

morrow. I say that debt is information-insensitive if the full repayment of F (D, τ) does not

imply disclosure tomorrow. To the contrary, debt is information-sensitive if the absence of

disclosure tomorrow entails a run.

Endowed with this definition, it will be easier to understand how the information structure

– the degree of transparency and the disclosure policy – impact rollover risk and the price

of debt.

4.1.2 Rollover Risk, Funding Costs and the Information Structure

In this section, we back up formally the following claims.

• Transparency increases funding costs in good times; the reverse holds in bad times. As

long as debt remains information-insensitive, there are less default states under opacity.

This can backfire as conditions deteriorate: when debt becomes information-sensitive,

the release of good news is required to avoid a bank failure, but this release is unlikely

under opacity.

• Voluntary disclosure implies lower funding costs than mandatory disclosure as long

as debt remains information-insensitive. However, we will see (Lemma 7) that vol-

untary disclosure also systematically induces more pessimistic beliefs that mandatory

disclosure.

Figure 3 plots the gross yields R(D, τ) = F (D, τ)/D after τ = 1 period of non-disclosure

in the voluntary disclosure case. The plot is qualitatively similar for other values of τ . R(., τ)

exhibits upwards jumps, which correspond the the creation of an additional default state, as

explained in section 3.1.4. The jump points define regions, labelled II, IS, P and L in the

Figure, with the following economic interpretation.

In the information-insensitive region (II), debt is safe: the face value satisfies F (D, τ) ≤
C(τ + 1): it is below tomorrow’s debt capacity if there is no disclosure. Hence, unless the
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asset matures tomorrow in the bad state, debt will necessarily be rolled over. In the II

region, debt is money-like.

The information-sensitive (IS) region corresponds to face values F (D, τ) between C(τ+1)

and C(0): those are higher than tomorrow’s debt capacity if there is no disclosure. Hence, a

run will occur tomorrow in the case no disclosure is made. Since F (D, τ) ≤ C(0), however,

a run will not occur if the bank discloses yG tomorrow. Avoiding liquidation is contingent

on the disclosure of good news.

The region P (for “pre-liquidation”) corresponds to face values F (D, τ) above C(0):

liquidation will happen tomorrow unless the project matures in state yG. This means that

the bank can survive for one more period but not more. In order to incentivize lenders to

stay in the game, the bank has to offer very high yields.

Finally, the liquidation region L corresponds to levels of debt where a run occurs today,

for lack of an admissible face value to roll debt over: D > C(τ).

As Figure 4 shows, the behaviour of bond yields in the mandatory disclosure case is

qualitatively similar. Note that now, the bank can survive long periods of non-disclosure

(here τ = 7) because investors know that the regulator is genuinely uninformed. When the

probability to fall into the bad state is low, the asset still has a good chance to be in state

yG after several non-disclosure periods.

I now present a series of analytical results implied by the expression of yields found in

Section 3. In turn, a first set of economic conclusions are derived from these results.

Proposition 4. Let the superscript [p] designate a variable relative to the model solution for

opacity parameter p. The following holds:

(a) (safer information-insensitive debt) If regions II and IS both exist, short-term debt is

less risky in the II region.

(b) (opacity and information sensitivity) For high opacity, i.e. small values of p, debt can-

not be information-sensitive. In the voluntary disclosure case, when p→ 1, the information-

insensitive region shrinks: for any τ , (D, τ) can not be in the II zone for p close enough to 1.

(c) (bond yield discontinuity) Bond yields are discontinuous in the value of debt for a

given τ . As debt reaches the information-sensitivity threshold, yields jump upward.

(d) (opacity component of short-term spreads) For a given (D, q), short-term spreads can

vary with the opacity level:

(d1) If (D, q) is at the right of the information-sensitive region for opacity parameters p1
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and p2 with p1 < p2 then F [p1](D, q) > F [p2](D, q).

(d2) If (D, q) is in the information-insensitive region for opacity parameters p1 and p2 with

p1 < p2 then F [p1](D, q) ≤ F [p2](D, q), with equality if and only if disclosure is voluntary.

(e) (disclosure component of short-term spreads) For a given (D, q), voluntary disclosure

provides lower yields in the V -II region: F V (D, q) < FM(D, q).

Points (a) and (b) confirm that information-insensitive debt is safer, and that opacity can

increase the size of the information-insensitive region. This does not mean, however, that

opacity is always desirable. Indeed, when p = P(ωt = 1) is small, disclosures are rare, and τ

is large on average, meaning that qτ often takes low values, and the debt level may escape

the II zone. By contrast, under transparency (p close to 1), the II region is tiny and a

single period of non-disclosure can trigger default; but non-disclosure is very rare.

Point (d) contains the prediction that there is an opacity component in short-term

spreads. Spreads are primarily linked to future rollover decisions, not to the asset fun-

damental value. But rollover decisions occur at each node of the asset tree, whose structure

depends on disclosures. Therefore opacity matters: the model predicts that in good times

(D low, or q high) transparency increase spreads, while in crisis (at the right of the IS zone)

transparency decrease spreads.

Point (e) contains the prediction that there is a disclosure component in short-term

spreads and states that for a given belief about the current state of the world, voluntary

disclosure allows the bank to borrow at better terms as long as debt is information-insensitive

under this disclosure regime. This does not mean, however, that voluntary disclosure is

always desirable. Indeed, voluntary disclosure systematically produces more pessimistic

beliefs than mandatory disclosure: see Lemma 7 in the next section, where we formalize the

comparison between the two disclosure regimes.

As Figures 3 and 4 show, the IS zone is in general tiny, and can also not exist. In

that case, the debt directly switches from being information-insensitive to being defaulted

upon, making the trade off between short-term protection and long-term exposure even

clearer. This occurs typically when the maturity of short-term debt is small compared to

the expected time before the next observation of the asset. In this situation, disclosure is

unlikely. An information-sensitive debt would therefore be defaulted upon with such a high

probability that no information-sensitive contract is feasible.

So far, the analysis was local, since I focused on the behaviour of short-term yields. The

model suggests that while opacity indeed makes debt safer and money-like in the short-run,

it may induce a high exposure to runs in the longer run, when q becomes too low, or D too
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high. The next sections attempt to quantify globally this trade-off, i.e. to study the impact

of opacity and disclosures on the run probability P and our inefficiency measure I.

4.2 Impact of the Disclosure Regime on Equilibrium Outcomes

4.2.1 Methodology

In order to understand how the nature of disclosure affects the dynamics of debt and our

quantities of interest — run probability and our measure of inefficiency — we need to compare

them all other things being equal. This is achieved in the following way. Consider some

ψ ≡
(
ζφ, (yt)t≤ζφ , (ωt)t≤ζφ

)
. (39)

ψ is the data of a maturity date ζφ, all the positions of the asset in the Markov chain before

ζφ, and all the observability shocks before ζφ. We can now compute, for the same ψ, the

equilibrium paths of debt (DV
t (ψ)), (DM

t (ψ)) and liquidation times (if any) ζV` (ψ), ζM` (ψ) in

the cases of voluntary and mandatory disclosure, respectively.

The fundamental value of the asset is identical at all times across both scenarios. The

same holds true for the information collected by the regulator. Moreover, if along ψ, yt = yG

for all t, the signals received by the creditors are also the same at all times across both

scenarios (at any t, they received either δt = yG, announcement of the good state, or δt = ∅,
announcement that the asset has not been observed by the regulator). Even in that case,

the debt and beliefs dynamics will be different across the two disclosure regimes considered.

This can lead to dramatically different outcomes, as shown in the next section.

Hence, we are able to isolate effects due the disclosure policy by fixing a history ψ and

computing the debt and beliefs dynamics along ψ in both disclosure regimes. Having defined

formally the comparison between regimes, the following result, announced in section 4.1.2,

is now clear:

Lemma 7. Along any ψ, qVt ≤ qMt for any t ≤ min{τVf , τMf } with equality only when ωt = 1

and yt = yG.

The lemma simply states that voluntary disclosure consistently produces depressed be-

liefs, because investors anticipate the possibility that the bank may conceal bad news. The

only case where the beliefs are the same under both disclosure regimes is when the bank has

just announced the good state.

We are also in a position to define the following:
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Definition 4. A voluntary disclosure-induced run (or credibility run) is a fundamental path

ψ that produces a run when disclosure is voluntary but no run under mandatory disclosure.

A mandatory disclosure-induced run is defined similarly.

The alternative name “credibility run” for a voluntary disclosure-induced run comes from

the fact that under voluntary disclosure, the regulator lacks credibility when she announces

no observation of the asset, even when this is actually the case. Because she has not taken any

commitment, the absence of news release is interpreted as very bad news by the creditors. In

situations where no observations are made for a protracted period of time (ωt = 0 for several

consecutive t), creditors rationally downgrade a lot their beliefs about the asset quality.

This potentially leads to a run that would have been avoided under mandatory disclosure.

Indeed, under mandatory disclosure, creditors are safe in the knowledge that the regulator

is genuinely uninformed, and not trying to conceal bad news.

4.2.2 Voluntary disclosure-induced and Mandatory disclosure-induced Runs

Figures 5 and 6 plot two sample paths of debt for both disclosure regimes, and the associated

beliefs dynamics: qt = P(yt = yG|F It ) is the probability to be in the good state under the

creditors’ information set. A black dot at time t indicates that the regulator has observed

the asset at time t: ωt = 1. Along both sample paths, the asset actually always was in

the good state: yt = yG for all t. As mentioned in the previous section, this means that

the fundamentals, the regulator’s information, and the signals received by the creditors are

identical in each example across the two disclosure regimes. All differences in outcomes

are explained by the difference in the commitment decision of the regulator, which leads to

different information structures and therefore different beliefs and debt dynamics.

Figure 5 depicts a credibility run. In the beginning, interest rates are lower under vol-

untary disclosure. This is because the bad state, should it occur, will not be revealed under

voluntary disclosure, but will be revealed under mandatory disclosure. Hence, voluntary

disclosure produces less default states and reduces the bank’s cost of financing, leading to a

slower growth of the stock of debt. But a run suddenly occurs: this is because news have

not been released for a protracted period of time, leading to a sharp decline in the creditors’

beliefs, as illustrated by the bottom panel: observe the plunge of qt between periods t = 10

and t = 14. In turn, this strong decline in beliefs leads to a strong decline in debt capacities.

By contrast, under mandatory disclosure, the bank is resilient to long non-disclosure

periods because creditors know that the regulator would be forced to reveal the bad state,

had it been observed.

Prior to τV` − 1, the yields Dt+1

Dt
are lower under voluntary disclosure, but it is under this
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disclosure regime that the bank undergoes a run. This means that one cannot unconditionally

map the current value of the short-term yield to the health of a financial institution: yields

are to a large extent determined by the opacity of the collateral and the disclosure policy;

and because they only reflect next period’s rollover risk, they can remain low even when the

probability of a run at a small horizon is very large.

Figure 6 shows a mandatory disclosure-induced run.

At τM` = 52, the bank undergoes a run under mandatory disclosure. Prior to that date,

good news were regularly released, producing consistently large values of qt and maintaining

the information-insensitive status of debt under voluntary disclosure. Similar to point (e)

in Proposition 4, the bank was therefore able to borrow at better terms under voluntary

disclosure.

Across both disclosure regimes, the fundamentals and the signals are identical at all times,

and the probability to be in the good state is in fact always weakly larger under mandatory

disclosure, but it is nevertheless under this disclosure regime that the bank undergoes a

run. The critical channel here is the endogenous refinancing cost: the funding cost channel.

Mandatory disclosure produces an information structure that generates more default states

in good times (even though it produces better average beliefs). This implies larger financing

costs, and the stock of debt grows faster. This can lead to a run that only occurs under

mandatory disclosure.14

As is apparent from these examples, two opposite forces are at play and it is not clear a

priori which one dominates, i.e. whether mandatory disclosure dominates voluntary disclo-

sure in terms of efficiency. This question is investigated in section 4.3.2.

4.3 Global Results

4.3.1 Impact of opacity on run probability and efficiency

In this section only, we abstract from the disclosure regime and ask whether opacity is

efficient. We compare the polar cases p = 0 and p = 1, where disclosure regimes are equiv-

alent. To obtain more compact expressions, assume symmetrical transition probabilities:

λ ≡ λBG = 1− λGG.

When p = 0, the only random variable actually observed is maturity. Hence, before

maturity, the paths of debt and beliefs about the current state are deterministic. Given an

14Note that debt became information-sensitive at t = 79 under voluntary disclosure, consistent with a
sharp decrease in qt (see bottom panel of Figure 6). This corresponds to an upward “jump” in the stock of
debt. A run was nevertheless avoided, because the required good news were indeed announced: ω80 = 1.
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initial debt D0, there is a deterministic t0(D0) such that liquidation always occurs at t0 if

maturity is not reached yet. t0 is obtained by computing the path of debt using the formulas

for bond yields derived above. t0, as a function of D0, is a non-increasing, piecewise constant

function.

t0 can be interpreted as a “time-to-crisis”. Until time t0 − 1, Effect 1 is at play and the

bond is money-like. The key point here is that the quasi-absence of risk in the beginning

is only due to the possibility to liquidate the asset in the future. The bond is not risky

because it will always be possible to run when the liquidation value approaches the debt

level. Short-term spreads are by no means informative about the longer-term risk of the

project and are low precisely because of the option to run.

Denote e1 the column vector (1 0)T, q0 = eT
1 Λt0e1 the probability to be in state yG at

time t0. Recall that V (q) stands for the fundamental value when the probability to be in

state yG is q.

Proposition 5. When p = 0, run probability and expected output are respectively given by

P(p = 0) = (1− φ)t0 , (40)

E[U ](p = 0) = yφΛ(Id2 − (1− φ)t0Λt0)(Id2 − (1− φ)Λ)−1e1

+ (1− φ)t0 αV (q0)︸ ︷︷ ︸
Liq. value of average bank.

. (41)

Conditional on yt = yG for all t, there is a deterministic time t1(D) such that liquidation

occurs at t1 as soon as ζφ > t1. This is because debt grows while the states remain the same.

Proposition 6. When p = 1, run probability and expected output are respectively given by

P(p = 1) = 1− φ1− (1− λ)t1(1− φ)t1

1− (1− λ)(1− φ)
, (42)

E[U ](p = 1) = α(1− φ)t1((1− λ)t1V G + (1− (1− λ)t1)V B) + α(1− (1− φ)t1)V B

+ φ

(1− λ)yG − αV B︸︷︷︸
Liq. value of bad bank.

+yBλ

 1− (1− φ)t1(1− λ)t1

1− (1− φ)(1− λ)
. (43)

Endowed with these analytical expressions, we can now efficiently explore the parameter

space and compare efficiency and run likelihood. We obtain the following result.15

15The result is only numerical in the sense that we can only compute the quantities of interest on a dis-
cretization of the parameter space. But for each parameter set, the computation is exact, due to Propositions
5 and 6.
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Numerical Result 1. For any parameter set Θ, there are λ∗(Θ−λ), φ∗(Θ−φ), α∗(Θ−α) and

D∗0(Θ−D0) such that I(p = 0) < I(p = 1) if and only if

. λ < λ∗

. φ > φ∗

. α > α∗

. D0 < D∗0.

The same result holds for the comparison of the run probabilities P(p = 0) and P(p = 1).

The intuition is the following. A small λ, a large φ, a large α or a small D0 all correspond

to situation with good fundamentals: the probability that the asset matures in the good state

is large, liquidation costs are low, or the initial stock of debt is a lot below debt capacity. In

those cases, debt is more likely to be information-insensitive, so the drawbacks associated

with opacity matter less.

Figure 7 provides a graphical illustration.

At this stage, it is important to note that our measure of inefficiency is not aligned with

the run probability. In other words, maximizing efficiency does not imply minimizing the

likelihood of runs: one can have I(p = 0) > I(p = 1) even if P(p = 0) < P(p = 1). This is

well illustrated by the following analytical result obtained in a special case:

Proposition 7. Consider the continuous-time limit of a short-term debt with vanishing

maturity and assume V B = 0.

When φ > 1 − λGG, there exists α∗ such that for αmin := D0

V G
< α < α∗, P(α; p = 1) <

P(α; p = 0) and for α > α∗, P(α; p = 1) > P(α; p = 0).

When φ < 1− λGG, we always have P(α; p = 1) > P(α; p = 0).

However, I(p = 1;α) < I(p = 0;α) for any interior α.

According to Proposition 7, there are parameters such that a bank undergoes more runs

on average under transparency, but where the expected costs of premature liquidation are

nevertheless larger under opacity. The intuition is that under opacity, a bank can be hit by

a runs and nevertheless be healthy. With our assumption that runs on good banks are more

costly, it follows that the average cost of a run under opacity is larger.

It is interesting to link this result to the discussion of section 4.1.1, where we discussed

the argument of Gorton and Ordoñez (2014) that opacity provides insurance to banks in

their access to funding and may therefore be desirable. Proposition 7 says that opacity may

improve access to financing in the sense that it lowers the probability that creditors refuse
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to refinance the debt, but be less efficient. Intuitively, the pooling of good and bad banks

“backfires”, as some healthy institutions, for which credit is the most valuable, can be denied

credit.

4.3.2 Comparison between mandatory and voluntary disclosure

We now return to the general case of interior levels of opacity, p ∈ (0, 1). In that case, the

disclosure policy matters. When p /∈ {0; 1}, no closed-form expression of the quantities of

interest are available and I use Monte-Carlo simulations of the model. The main result of

this section is the following.

Numerical Result 2. Mandatory disclosure is more efficient than voluntary disclosure for

large values of p; the reverse holds for small values of p (“small” and “large” being relative

to the set of other parameters Θ−p).

This result can be made formal in the limit p→ 1:

Proposition 8. For any parameter set Θ, there exists p∗ (Θ−p) < 1 such that for any

p ∈ (p∗, 1) mandatory disclosure dominates voluntary disclosure in terms of efficiency and

run probability: IM < IV and PM < PV .

The intuition is the following. At low levels of opacity, non-disclosure (δt = ∅) is a very

negative signal on the asset quality, because it is probable that the regulator is concealing

bad news. Since the regulator does not have a way to credibly communicate that he is

genuinely uninformed when this is the case, runs become likely then. Credibility runs, as

described in section 4.2.2, are a significant possibility; since they can hit good banks, they

are also particularly inefficient. By contrast, at high levels of opacity, non-disclosure only

marginally downgrades the belief of creditors, and it allows the bank to borrow at better

terms. In turn, debt grows at a lower rate and it is less likely to reach the bank’s debt

capacity, reducing the probability of a premature liquidation.

We now look at two particular examples in order to make the economic discussion more

precise. For p = 1 (last column of Table 2) the two disclosure regimes are equivalent, and

the results can also be obtained with the closed-form formulas obtained in Section 4.3.1.
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Table 2. Opacity, Runs and Efficiency. D0 = 40.

p 0.2 0.5 0.95 1

E[Residual Claim] - Voluntary 43.8 43.8 44.2 44.7

E[Residual Claim] - Mandatory 44.3 44.6 44.7 44.7

P(Run under V and M) 0.096 0.103 0.130 0.151

P(Run only under V) 0.040 0.059 0.034 0

P(Run only under M) 0.033 0.037 0.020 0

P(Run under V) 0.136 0.162 0.164 0.151

P(Run under M) 0.129 0.141 0.150 0.151

Table 3. Liquidity, Runs and Efficiency. D0 = 40

α 0.7 0.8 0.9 0.95

E[Residual Claim] - Voluntary 41.3 43.1 44.4 44.8

E[Residual Claim] - Mandatory 43.2 44.3 44.8 45.0

P(Run under V and M) 0.142 0.118 0.096 0.091

P(Run only under V) 0.074 0.068 0.050 0.043

P(Run only under M) 0.029 0.030 0.040 0.042

P(Run under V) 0.216 0.186 0.146 0.135

P(Run under M) 0.172 0.147 0.137 0.133

Rows 1 and 2 give the expected residual claim under both voluntary and mandatory

disclosure. Given that debt payment is equal to D0 in expectation, this quantity is equal to

E[U ]−D0.

Row 3 gives the probabilities that a run occurs under both disclosure regimes.

Row 4 gives the probabilities that a run occurs only under mandatory disclosure. This

can happen in a situation where the bank can successfully weather a crisis under voluntary

disclosure: ωt = 1, yt = yB, δt = ∅ for some t and ωt′ = 1, yt′ = yG, δt′ = yG for some

ζφ ≥ t′ > t. By contrast, a run occurs at t under mandatory disclosure. This can also

happen if ωt = 1 sufficiently often so that debt grows at a slower rate under voluntary

disclosure, as illustrated in section 4.2.2.

Row 5 gives the probabilities of credibility runs, i.e. runs that occur only under voluntary

disclosure.

Rows 6 and 7 are the sum of rows 3 and 4, and 3 and 5 respectively, and show the total

run probability under each regime.
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Impact of varying the degree of opacity. Table 2 shows that the efficiency under full

transparency (column p = 1) is higher, although this regime may feature more runs. The

intuition is as in Effect 3 and Section 4.3.1: under full transparency, the bank is exposed to

the revelation of a bad shock. However, in the long term, the likely absence of information

will prevent the bank from keeping rolling debt over, while a transparent bank with the asset

in the good state could do it.

Another conclusion that can be drawn from Table 2 is that at high levels of opacity

(columns p ∈ {0.2, 0.5}), the disclosure regime matters significantly to the realized outcome

of the model: a significant fraction of runs are regime-specific, i.e. do not happen under

the same scenario for the other disclosure regimes. This sharp contrast at the path-wise

level gets dampened to some extent at the aggregate level: the differences in the expected

efficiency of both regimes are sizeable but remain quantitatively moderate. The whole of

Table 3 also supports these conclusions (recall that the baseline value of p is 0.5).

Impact of the liquidity parameter. A larger α increases debt capacities and decreases

run likelihood. Additionally, it reduces the deadweight loss upon liquidation for any given

fundamental value of the asset at the liquidation time. Hence, as illustrated by Table 3, low

liquidation costs imply both less runs and less inefficiency.

It is a somewhat woeful consequence of the intertemporal coordination problem that runs

are the most likely precisely when they are the most harmful.

Conclusion

Opacity and disclosure regimes matter to the outcome of the rollover game because they

shape the information tree, and therefore the short-term yields and the beliefs dynamics.

Starting from the good state, opacity provides protection in the short run, but is likely to

increase exposure at longer horizons — a tension which is amplified under voluntary disclo-

sure. At the aggregate level, the model predicts that opacity reduces run probability and

inefficiency only in situations where the fundamentals are strong anyways; that opacity may

decrease run probability but increase inefficiency; and indicates that mandatory disclosure

is more efficient than voluntary disclosure except at large levels of opacity.

Several extensions of the model appear interesting. First, relaxing the rigid structure of

the bank’s balance sheet should provide valuable additional insights; for instance, the bank

may also have long-term debt, or use cash reserves to manage its risk of run. Second, one

could introduce state-contingent regulation rather than fixing ex ante the disclosure regime.
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Third, the information structure could be refined by considering a richer set of signals about

the current asset value, in order to hone the modelling of the regulator’s strategy set. One

could then reformulate the model as an explicit Bayesian persuasion problem and compare

it to the existing Bayesian persuasion literature on stress tests. Finally, the bank could have

access to several investment opportunities, and may have moral hazard incentives to engage

into inefficient projects. Clearly, the bank’s portfolio decision and the regulator’s opacity

and disclosure choices would affect each other, giving rise to a potentially rich interaction.
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A Proofs

A.1 Lemma 1

By definition of (D̃t), E
[
D̃(t+1)∧ζf |F It

]
= E

[
D̃t+1|F It

]
= D̃t = D̃t∧ζf over {t < ζf}. And

D̃(t+1)∧ζf = D̃t∧ζf = Dζf over {t ≥ ζf}. Therefore E[D̃(t+1)∧ζf |F It ] = D̃t∧ζf .

A.2 Lemma 2

From Lemma 1, (D̃t∧ζf ) is a martingale, and it is bounded due to condition (NP ). Therefore

it is a closed martingale. Now consider a bank at t which is not forced into liquidation. This

means that ζf > t, and since (D̃t∧ζf ) is a closed (F It )-martingale, E[D̃ζf |F It ] = Dt. Now,

note that ζf = ζ` ∧ ζφ and that

D̃ζ`I{ζ`<ζφ} + D̃ζφI{ζ`≥ζφ} ≤ Vζ`I{ζ`<ζφ} + yζφI{ζ`≥ζφ}. (44)

Taking expectations and noting that the expectation of the right-hand side is the same

average of maturity values yζφ as Vt ≡ E[yζφ|F It ], we obtain

Dt = E[D̃ζf |F It ] ≤ Vt. (45)

The bank is solvent.

A.3 Lemma 3

Assume voluntary disclosure (the proof in the mandatory disclosure case is included in this

one). Consider a time t < ζf . If δt = ∅ and the banker decides to liquidate, she obtains

the value αV B < D0 < Dt and her equity is worth zero. Now, if δt 6= ∅, payoff-relevant

information is symmetric:

Vt ≡ E[yζφ|F It ] = E[yζφ |FBt ]

E[D̃ζf |F It ] = E[D̃ζf |FBt ]. (46)

Since (D̃t∧ζf ) is a closed martingale,

Dt = D̃t = E
[

lim
s→∞

D̃s∧ζf |F It
]

= E[D̃ζf |F It ]. (47)
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Combining (46) and (47), we obtain

αVt −Dt = E[αyζφI{ζφ≤ζ`} + αyζ`I{ζφ>ζ`} − D̃ζf |F It ]

= E[αyζφI{ζφ≤ζ`} + αyζ`I{ζφ>ζ`} − D̃ζf |FBt ]

< E[yζφI{ζφ≤ζ`} + αyζ`I{ζφ>ζ`} − D̃ζf |FBt ]. (48)

The first line is the payoff from liquidating today. The last line is the FBt -expected payoff

of never liquidating strategically.

A.4 Lemma 4

First note that for p ∈ (0, 1), in a consistent belief system, qt = 0 after disclosure of the

bad state, qt = 1 after disclosure of the good state, and qt ∈ (0, 1) absent disclosure. Fix

such a belief system and show that the sanitization strategy is optimal. Due to discounting

(Blackwell (1965)) we can focus on one-shot deviations. Note that under F and for a given

D0, the event tree is discrete. This is because there are always at most 4 possible states

tomorrow, given the state today. Let us consider the choice between playing the sanitization

strategy δS at some node or something else, leaving the rest of the strategies unchanged. Let

O be the event tree following playing δS at this node and D the event tree following the other

move (the “deviation”). The deviation is either the regulator switching from concealing the

bad state to disclosing it, or concealing the good state instead of disclosing it. The former

case is equivalent to a strategic default enforced by the regulator, which is never optimal,

similarly to Lemma 3. Thus, focus on the latter case and relabel t = 0 the deviation time

(at which y0 = yG), and let y1, . . . , yn, . . . and J = ζφ be a possible realization of future

asset states and maturity. By condition (M) and induction, the face values F̃0, . . . , F̃n, . . .

associated with y0 undisclosed and the realizations y1, . . . , yn, . . . disclosed according to the

sanitization strategy satisfy F̃i ≥ Fi, where Fi are the face values in O. Let j be the

liquidation time in D. Three cases are possible. (i) j ≤ J − 1 and there is liquidation

at time j in O: then there is liquidation at time j in both O and D. Since due debt is

higher in D (F̃j−1 ≥ Fj−1), the residual claim is lower in D. (ii) j ≤ J − 1 and there is no

liquidation at time j in O: there, debt is lower, and the arguments of the proof of Lemma 3

allow to conclude that the expected residual claim at time j conditional on ζφ = J is higher

in the original tree. (iii) j ≥ J : the asset matures before liquidation both in O and D.

Since debt is lower in O, the expected residual claim is higher in O. Finally, note that the

expected profit at date t = 0 is an average of expectations of the residual claim conditional

on y0 = yG, y1, . . . , yj, ζφ = J . Cases (i), (ii) and (iii) above show that these quantities
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are higher in O for all J , j, y1, . . . , yj. Hence, it is optimal for the regulator to play the

sanitization strategy. The belief system consistent with this strategy is then the one given

in section 3.1.2.

A.5 Lemma 6

Voluntary disclosure case. In equations (19) and (20), we obtained the recursive relationship

qτ+1 =
(1− p)(qτλGG + (1− qτ )λBG)

1− p+ p(1− qτλGG − (1− qτ )λBG)
. (49)

A standard sequence analysis reveals that (qτ ) decreases to the root of G that lies in [0, 1],

with G ≡ G1 −G2 and

G1(q) ≡ q(1− p+ p(1− qλGG − (1− q)λBG)) (50)

G2(q) ≡ (1− p)λBG + q(1− p)(λGG − λBG). (51)

This root is the stationary weight in case of voluntary disclosure, q∗V , and satisfies

q∗V =
1− (1− p)λGG − (2p− 1)λBG −

√
(λBG)2 + 2λBG(λGG(p− 1)− 2p+ 1) + (1− (1− p)λGG)2

2p(λGG − λBG)
.

(52)

Mandatory disclosure case. The expression of q∗M in (36) results directly from considering

the fixed point of (35). We now set out to obtain the inequality q∗V < q∗M . Since G can only

be non-negative for q ≥ q∗V , it is sufficient to show that G(q∗M ; p) ≥ 0 (with obvious notation)

for any value of p. Direct calculation shows that

∂

∂p
G(q∗M ; p) (53)

has the same sign as 1 + λBG − 2λGG. In particular, it is of constant sign and we obtain

G(q∗M ; p) ≥ min{G(q∗M ; 0), G(q∗M ; 1)}. (54)

Since G(q∗M ; 0) = 0 and G(q∗M ; 1) > 0, we obtain G(q∗M ; p) ≥ 0 indeed.

A.6 Proposition 2

We know that in a consistent bank policy, mτ (F (D, τ)) = D. The banker picks the lowest F

that satisfies this equation, because expected liquidation costs are increasing in F . Hence,
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in equilibrium,

F (D, τ) = min{F ≥ 0,mτ (F ) = D}. (55)

In order to find F , we need to make mτ explicit. If F ≤ yB, the promise of F is never

defaulted upon: mτ (F ) = F . If F ≤ C(τ + 1), there is one default state (state χ2, see

section 3.1.4) and

mτ (F ) = φ(γτF + (1− γτ )yB) + (1− φ)F. (56)

If F ∈ (C(τ + 1), C(0)], there are two default states (χ2 and χ3) and

mτ (F ) = φ(γτF + (1− γτ )yB) + (1− φ)(pγτF + α(1− pγτ )Vτ+1). (57)

If F belongs to (C(0), yG], there are three default states (χ2, χ3 and χ4) and

mτ (F ) = φ(γτF + (1− γτ )yB) + α(1− φ)(pγτV0 + (1− pγτ )Vτ+1). (58)

A.7 Proposition 3

The probability of an announcement tomorrow is pγτ . The probability of no announcement is

1− p. Otherwise, state yB is disclosed (probability p(1− γτ )). First, if F ≤ yB, mτ (F ) = F .

If yB < F ≤ C(τ + 1), then

mτ (F ) = φ(γτF + (1− γτ )yB) + (1− φ)((1− p(1− γτ ))F + p(1− γτ )αV B). (59)

If C(τ + 1) < F ≤ C(0), then

mτ (F ) = φ(γτF + (1− γτ )yB) + (1− φ)(pγτF + (1− p)αV (τ + 1) + p(1− γτ )αV B). (60)

If C(0) < F ≤ yG, then

mτ (F ) = φ(γτF + (1− γτ )yB) + α(1− φ)(pγτV
G + (1− p)V (τ + 1) + p(1− γτ )V B). (61)

A.8 Proposition 4

Proofs are presented in the voluntary disclosure case, and work identically in the mandatory

disclosure case. I first need to introduce the

Lemma 8. Let τ be a fixed integer and 0 < p∗ < 1. If α < 1, there is Kτ > 0 such that for

all p ≤ p∗,

C [p](τ) ≥ αV [p]
τ +Kτ , (62)
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where the superscript [p] designates a variable relative to the model solution under the opacity

parameter p.

Proof. Promising yG entails costly liquidation tomorrow unless the asset matures. Hence,

m[p]
τ (yG) = φ(1− α)

(
γ[p]τ y

G + (1− γ[p]τ )yB
)

+ αV [p]
τ . (63)

We obtain the result by setting Kτ = φ(1− α)γ
[p∗]
τ , noting that C [p](τ) ≥ m

[p]
τ (yG).

We now come back to the proof of Proposition 4.

(a) Debt in the II region satisfies

D = φ(γτF + (1− γτ )yB) + (1− φ)F, (64)

with F ≤ C(τ + 1). Thus, the inverse yield verifies

D

F
≥ φγτ + φ(1− γτ )

yB

C(τ + 1)
+ 1− φ. (65)

Debt in the IS region satisfies

D = φ(γτF + (1− γτ )yB) + (1− φ)(pγτF + α(1− pγτ )Vτ+1), (66)

with C(τ + 1) < F ≤ C(0). From there,

D

F
≤ φγτ + φ(1− γτ )

yB

C(τ + 1)
+ (1− φ)

(
pγτ + α

(1− pγτ )Vτ+1

F

)
≤ φγτ + φ(1− γτ )

yB

C(τ + 1)
+ 1− φ, (67)

where the last inequality holds because of Lemma 8. We conclude by comparison with Equa-

tion (65).

(b) We first need to show that for p small, mτ (C(0)) < mτ (C(τ + 1)). This implies

that promising face values between C(τ + 1) and C(0) does not allow to roll over other debt

levels than the ones in the II zone: there is no IS zone. Given the expressions of mτ (C(0))

and mτ (C(τ + 1)), the desired inequality is equivalent to

pγ[p]τ C(0) + α(1− pγ[p]τ )V
[p]
τ+1 ≤ C [p](τ + 1). (68)

We conclude by letting p → 0 and using Lemma 8. For the case p → 1, recall that debt

40



capacity is always below the fundamental value from Lemma 2. In the voluntary disclosure

case, as p goes to 1, qτ+1 goes to 0, so the fundamental value goes to V B. Now let D > V B.

We have

m[p]
τ (C [p](τ + 1)) < C [p](τ + 1) ≤ V

[p]
τ+1 → yB, (69)

hence D can not be in the II zone for p close enough to 1.

(c) is a consequence of the fact that m(C(τ + 1) + ε) < m(C(τ + 1)) for ε close to 0

and α < 1. Recall that this is because the face value is only infinitesimally higher, but there

will be default in one more state of the world (the non-disclosure state), meaning that the

proportional cost 1−α now applies to an additional, non-zero probability, state of the world.

(d) (d1) Let p1 < p2, τ1, τ2 such that

q[p1]τ1
= q[p2]τ2

= q. (70)

The probability to be in state yG tomorrow is q′ = λGGq + λBG(1− q) = γ
[p1]
τ1 = γ

[p2]
τ2 . Then,

the probability to be in state yG tomorrow conditional on no disclosure under parameter p1

is (1−p1)q′
1−p1q′ . Using the expression of the yield in the IS region, we find

m[p1](F ) = φ(q′yG + (1− q′)yB)

+ (1− φ)

(
q′p1F + α(1− p1q′)

[
(1− p1)q′

1− p1q′
V G +

1− q′

1− p1q′
V B

])
. (71)

From there,

m[p1](F )−m[p2](F ) = (p2 − p1)q′(αV G − F ), (72)

which is negative for F close to C(0) by Lemma 8. Given that D = m[p1](F [p1]), we have

D < m[p2](F [p1]), from which we deduce that F [p1] > F [p2]. Indeed, (D, τ2) belongs to the IS

region under p2, and m[p2](.) is increasing over this region, and must satisfy D = m[p2](F [p2]).

(d2) This part of the proposition is clear from the expression of yields. There is equality

in the voluntary disclosure case, and strict inequality in the mandatory disclosure, because

increasing p increases the probability of having to disclose bad news.

(e) Let F V ≡ F V (D, q) and q′ be defined as above. We have

φ
(
q′F V + (1− q′)yB

)
+ (1− φ)F V = D. (73)
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For F ≤ F V ,

mM(F ) ≤ φ
(
q′F V + (1− q′)yB

)
+ (1− φ)

(
(1− q′)pyB + (1− (1− q′)p)F

)
< φ

(
q′F + (1− q′)yB

)
+ (1− φ)F

≤ φ
(
q′F V + (1− q′)yB

)
+ (1− φ)F V

= D. (74)

Hence, mM(F ) < D for F ≤ F V , implying that FM > F V .

A.9 Proposition 5

The first equality is because a run never happens before t0 and always happens at t0 if

maturity is not reached yet (ζl is either t0 or +∞). Thus P = P(ζφ > t0). To compute

expected output (see equation (12)) E[U ], write

E[U ] =

t0−1∑
t=0

φ(1− φ)tE[U |ζφ = t+ 1] + E[U |ζφ > t0]P(φ > t0). (75)

Note that

P(ζφ > t0) = (1− φ)t0 , (76)

and

E[U |ζφ > t0] = V (q0) (77)

by the Markov property and given that P(ζφ = t+ k|ζφ ≥ t) = P(ζφ = k). Then

E[U |ζφ = t+ 1] = yΛt+1e1, (78)

and the result obtains by computing the geometric sum.

42



A.10 Proposition 6

Note that liquidation occurs in two cases: either maturity is not reached at t1 or the state

switches to yB before t1. Therefore the probability that no run occurs, 1− P , satisfies

1− P = P(ζφ ≤ t1, ζl > ζφ)

=

t1−1∑
t=0

P(ζφ = t+ 1)P(ζl > t+ 1)

=

t1−1∑
t=0

φ(1− φ)t(1− λ)t

= φ
1− (1− λ)t1(1− φ)t1

1− (1− λ)(1− φ)
. (79)

And

E[U ] =

t1−1∑
t=0

φ(1− φ)tE[U |ζφ = t+ 1] + E[U |ζφ > t1]P(φ > t1). (80)

Now write

E[U |ζφ > t1]

= E[U |ζφ > t1, y0 = . . . = yt1 = yG]P(y0 = . . . = yt1 = yG)

+ E[U |ζφ > t1,∃k ≤ t1, yk = yB]P(∃k ≤ t1, yk = yB)

= (1− λ)t1αV G + (1− (1− λ)t1)αV B. (81)

Similarly,

E[U |ζφ = t+ 1]

= E[U |ζφ = t+ 1, y0 = . . . = yt+1 = yG]P(y0 = . . . = yt+1 = yG)

+ E[U |ζφ = t+ 1,∃k ≤ t, yk = yB]P(∃k ≤ t, yk = yB)

+ E[U |ζφ = t+ 1, y0 = . . . = yt = yG, yt+1 = yB]P(y0 = . . . = yt = yG, yt+1 = yB)

= yG(1− λ)t+1 + (1− (1− λ)t)αV B + λ(1− λ)tαV B. (82)

The result finally obtains by computing the geometric sums.
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A.11 Proposition 7

The dynamics of the model in continuous time are provided in the next section of the

Appendix. First, we need to show that for any α ∈
(
D0

V G
, 1
)
, I1(α) < I0(α) (with obvious

notation). Under our assumptions, we have

t1(α) =
1

pc
ln
αV G

D0

(83)

and

I1(α) = (1− α)e−(pc+φ)t1(α)V G. (84)

Moreover, we know that t0(α) is the unique solution to fα(t) = gα(t), where

fα(t) ≡ αV Ge−pct (85)

gα(t) ≡ D0e
φt+ φ

pc
(e−pct−1), (86)

and

I0(α) = (1− α)V Ge−(pc+φ)t0(α). (87)

Therefore, we need to show that t1 > t0 over
(
D0

V G
, 1
)
. Since fα decreases and gα increases,

it is sufficient to show that fα(t1(α)) < gα(t1(α)). This boils down to show

D0 < D0 exp

(
φ

pc
ln
αV G

D0

+
φ

pc

(
D0

αV G
− 1

))
, (88)

or

− ln
D0

αV G
+

D0

αV G
− 1 > 0 (89)

which holds true because lnx < x− 1 for x ∈ (0, 1).

Now, P1 < P0 is equivalent to saying that t0(α) < t(α) ≡ − 1
φ

lnP1(α). As before, this is

equivalent to fα (t(α)) < gα (t(α))) for α small, or

αV G

D0

< exp

(
(φ+ pc)t(α) +

φ

pc

(
e−pct(α) − 1

))
. (90)

Noting that the expressions only depend on the ratio φ/pc and x = αV G

D0
, we can assume

w.l.o.g. that pc = 1 and it is sufficient to study when the inequality

x < h(j(x)) (91)
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holds, with

j(x) = −1

φ
log

(
1

1 + φ
+

φ

1 + φ
e−(1+φ) log x

)
(92)

h(x) = exp
(
(1 + φ)x+ φ

(
e−x − 1

))
. (93)

j is increasing and

j−1(y) = exp

(
− 1

1 + φ
log

(
φ+ 1

φ
e−φy − 1

φ

))
. (94)

(91) is equivalent to j−1(y) < h(y), or, taking logs:

r(y) ≡ (1 + φ)y + φ
(
e−y − 1

)
> s(y) ≡ − 1

1 + φ
log

(
φ+ 1

φ
e−φy − 1

φ

)
, (95)

with 0 ≤ y ≤ yM ≡ 1
φ

log(1+φ). Now note that r(0) = s(0) = 0, r′(0) = s′(0) = 1, r′′(0) = φ,

s′′(0) = 1, r(y−M) < s(y−M) = +∞. Given these variations, it is now sufficient to show that

(r − s)′′ can only switch sign at most once. But

(r − s)′′′(y) = −φe−y − φ3eφy
1 + φ+ eφy

(1 + φ− eφy)3
< 0 (96)

for 0 ≤ y < yM . If φ < pc, r − s < 0 over (0, yM). When φ > pc, r − s is positive in the

neighborhood of 0 and negative close to yM , so there exists y0 with (r− s)(y0) = 0 and given

the variations of r−s given above, we have r−s > 0 over (0, y0) and r−s < 0 over (y0, yM).

This concludes the proof.

A.12 Proposition 8

From Proposition 4, point (b), we know that for p close enough to 1, the II zone disappears

in the voluntary disclosure case. This means that disclosure of yG is necessary to avoid

liquidation; the regulator cannot conceal the bad state, which is a default state under both

mandatory and voluntary disclosure. But there is a default state that exists only under

voluntary disclosure and has positive probability 1−p: the event that the regulator actually

did not observe the asset (ωt = 0). It is then immediate from the expressions of the debt

capacities and the bond yields in Propositions 1,2 and 3 that the voluntary debt capacity

is necessarily attained first, i.e. liquidation always occurs weakly after under mandatory

disclosure. Since it occurs strictly after with positive probability (the cases where ωt = 0),

we obtain that mandatory disclosure is both strictly more efficient and produces strictly less
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runs.

B Additional Material

B.1 Details on the Numerical Approach

The procedure to compare mandatory and voluntary disclosure is given in section 4.2.1.

The standard deviation of a random variable with support [a, b] is smaller than b−a
2

. The

variable I{ζ`<ζφ} takes values in {0; 1}) and the final payoff takes values in [0, yG]. Hence

the asymptotic standard deviation of the Monte-Carlo error is smaller than 1
2
√
N

for the run

probabilities and smaller than yG

2
√
N

for expected output. This allows to select the suitable

value for N given a desired level of confidence. I select 1% for a precision at the third

significative digit.

To obtain the numerical result 2, I run Monte-Carlo simulations of the model for param-

eter sets in a 10×64-point discretization of the p× (λGG×λBG×α) space, with a fixed value

of D0.

To obtain the numerical result 1, no Monte-Carlo simulation is required. I use a 10000-

point discretization of the α × φ × λ × D0 space and apply the closed-form formulas of

Propositions 5 and 6 at each point of the grid.

B.2 Debt Dynamics in the Continuous-Time Limit

In the limit of vanishing debt maturity, the Markov chain with transition matrix Λ becomes

a continuous-time Markov chain with infinitesimal generator

A =

(
−pc pc

pr −pr

)
. (97)

pcdt is the instantaneous probability to move from the good to the bad state. Let y be the

2× 1 vector of states: y = (yG, yB)T . To simplify, set yB = 0.

Taking the limit in the analytical expression of debt capacities, we obtain that C(τ) = αVτ

in both regimes.

Full transparency. Away from C = αV G, the only risk is the observation of the bad state,

which happens with probability pcdt. Hence we have

Dt = αV B + (D0 − αV B)epct. (98)
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Let

t1(α) =
1

pc
ln
α(V G − V B)

D0 − αV B
. (99)

t1 is the maximal time the bank can survive (even in the best scenario). Let ζc be the time

of jump to the bad state.

Case 1: t1 realizes before ζφ and ζc. Probability e−(pc+φ)t
1
. Liquidation happens at αV G

(repaying exactly creditors, leaving 0 to banker).

Case 2: ζφ realizes before t1 and ζc. Probability

φ

pc + φ

(
1− e−(pc+φ)t1

)
. (100)

Full repayment, yG realizes.

Case 3: ζc realizes first, probability

pc
pc + φ

(
1− e−(pc+φ)t1

)
. (101)

Liquidation at αV B.

Hence

P = 1− φ

pc + φ

(
1− e−(pc+φ)t1(α)

)
(102)

I = (1− α)

(
e−(pc+φ)t

1(α)V G +
pc

pc + φ

(
1− e−(pc+φ)t1(α)

)
V B

)
. (103)

Full opacity. Away from Ct, the only risk is that maturity occurs, in the bad state, so

dDt = φ(1− πt)Dtdt, (104)

with 1 − πt = P(yt = yB|y0 = yG) = PGB(t) = pc
pr+pc

− pc
pr+pc

e−(pc+pr)t. So the stock of debt

evolves according to

Dt = D0 exp

(
φat+

φa

b

(
e−bt − 1

))
(105)

with a = pc
pc+pr

and b = pc + pr. And

αVt = α(a− ae−bt)(V B − V G) + αV G. (106)
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Let t0(α) be the unique solution to αVt = Dt.

Case 1: ζφ realizes before t0. Then with probability πζφ , payoff realizes at yG (full repayment)

and with probability 1− πζφ , payoff realizes at yB = 0.

Case 2: ζφ realizes after t0. Then there is liquidation at αVt0 .

Hence

P = e−φt
0(α) (107)

I = (1− α)Vt0e
−φt0(α). (108)
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C Figures

Figure 1: Probability qτ to be in state yG after τ periods of non-disclosure.
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When no information arrives, outsiders’ perceived probability to be in the good state decreases and
goes to a limit weight. When disclosure is voluntary, the downgrade is much faster because the
regulator is increasingly likely to be concealing bad news. The limit weight on state yG is lower in
that case.
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Figure 2: Debt capacities under both regimes.
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Figure 3: Bond yields as a function of debt for τ = 1 under voluntary disclosure.
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Figure 4: Bond yields as a function of debt for τ = 7 under mandatory disclosure.
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Figure 5: Debt and beliefs dynamics in a voluntary disclosure-induced run.
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Figure 6: Debt and beliefs dynamics in a mandatory disclosure-induced run.
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Figure 7: Inefficiency as a function of the liquidity parameter α.
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Continuous-time version with φ = 0.1, pc = pr = 0.04 and D0 = 25.
Ĩ = 1

1−αI designates the expected value of the asset conditional on premature liquidation and
preserves the ordering between opacity and transparency given by I. Note that under I both
curves join at 0 when α = 1, in which case there is no loss of value upon liquidation.

For low α, the short-term protection of opacity lasts less because debt capacities are low.
Moreover runs, when they occur on good banks, are particularly harmful in terms of efficiency.
The reverse holds for α close to 1.
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