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Abstract

We study linear quantile regression models when regressors and/or dependent vari-

able are not directly observed but estimated in an initial first step and used in the

second step quantile regression for estimating the quantile parameters. This general

class of generated quantile regression (GQR) covers various statistical applications, for

instance, estimation of endogenous quantile regression models and triangular struc-

tural equation models, and some new relevant applications are discussed. We study

the asymptotic distribution of the two-step estimator, which is challenging because

of the presence of generated covariates and/or dependent variable in the non-smooth

quantile regression estimator. We employ techniques from empirical process theory to

find uniform Bahadur expansion for the two step estimator, which is used to establish

the asymptotic results. We illustrate the performance of the GQR estimator in a sim-

ulation exercise and an empirical application based on auctions.
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1 Introduction

1.1 Background

Econometric analysis often requires the use of regressors that are not directly observed

but have been estimated in a preliminary first step. A rich literature exists on estimation

and inference in models with generated regressors. Pagan (1984) and Mammen, Rothe &

Schienle (2012) study parametric and non-parametric regression with generated covariates,

respectively, while Hahn & Ridder (2013) and Mammen, Rothe & Schienle (2016) study

asymptotic properties of semiparametric estimators. Murphy & Topel (1985) studies two

step estimators in parametric context and points out that ignoring the effect of first step

estimation leads to incorrect asymptotic standard errors.

While these models are concerned with the characterization of the conditional mean, a

more complete picture of the conditional distribution of a dependent variable is provided

by quantile regression (QR) models. Since the seminal work of Koenker & Bassett (1978),

quantile regression is widely used in both empirical studies and theoretical statistics for

analysing conditional quantile functions in linear and nonlinear response models. Quantile

regression applications using generated regressors abound in literature, most prominently

related to models with endogenous covariates. Chernozhukov & Hansen (2005, 2006, 2008)

develop identification and estimation for QR models in the presence of endogeneity. Another

popular approach to deal with endogeneity uses the estimated reduced form residuals as con-

trol variables in quantile regression. This technique has been applied in endogenous censored

quantile regression models by Blundell & Powell (2007) and Chernozhukov, Fernández-Val &

Kowalski (2015). Estimation of quantile treatment effects or quantile parameters in triangu-

lar simultaneous equation models using the control variable approach have been considered

in Chesher (2003), Koenker & Ma (2006), Lee (2007), Imbens & Newey (2009), and Cher-

nozhukov, Fernández-Val, Newey, Stouli & Vella (2017).

There are, however, few references that develop a general theory for quantile models

with generated covariates and systematically study its statistical properties. The only relat-

ed work seems to be Chen, Galvao, & Song (2018), who consider estimation and inference

of quantile regression when regressors are generated. However, they seem to implicitly as-

sume that using various first stage estimators does not cause dependence among them and

obtain asymptotic results under independence, while our framework does not require such

an assumption. They also do not consider generated dependent variable as permitted here.
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1.2 Motivation

We consider quantile regression models when either the regressors or the dependent variable

(or both) are generated, and study its asymptotic behaviour. An example giving rise to gen-

erated dependent variable is quantile specifications with some constant slope parameters, as

in the setup of Zou & Yuan (2008). Their composite quantile regression (CQR) method can

be used to estimate the constant and quantile-varying parameters together, but its asymp-

totic properties have been studied for estimation of the constant parameters only. To focus

on the quantile parameters, as an alternative to CQR, the constant slope parameters can

be estimated by linear regression in a first step. Estimation of the quantile-varying slope

parameters, thereafter, involves quantile regression with the dependent variable generated as

a function of the constant slope parameters. Also, removing some parameters through the

first step estimation may alleviate the computational burden of the CQR method caused by

a large number of variables. Another example arises in quantile models where the dependent

variable is transformed based on some transformation parameter, like Box-Cox transforma-

tion, to induce some desirable properties for statistical inference. In this example, a joint

estimation of quantile varying transformation and slope parameters is computationally diffi-

cult, in addition to a numerical problem being that the objective function is not defined for

all parameter values and observations (meaning estimation occurs by omitting such values).

Estimating the transformation parameter in a first step will avoid such numerical problem

and involve a linear quantile regression, ensuring a better performance of the numerical

algorithm used to compute the estimator.

It is well known that the first step estimates impact the overall asymptotic behaviour

of the final estimator, understanding which is crucial for obtaining consistent standard er-

rors which can be used for constructing correct confidence intervals. The wide range of

quantile regression applications that give rise to generated regressors or dependent variable

obtained from estimation in a preliminary step suggest the need for a systematic analysis of

their impact on the statistical properties of the QR estimator. The classical way in which

asymptotic analysis is carried out for two step estimators with smooth objective functions

relies on a Taylor expansion based technique for the second stage estimates, as applied in

Murphy & Topel (1985). However, such methods are not applicable for the QR estimator,

since it is difficult to differentiate the QR estimator1. Finding the asymptotic variance of

such an estimator is not a trivial task and requires alternative techniques.

1This could be done in principle by applying the Implicit Function Theorem to the first-order condition
that defines the estimator. However, the QR estimator is not always unique and the QR objective function
is not twice differentiable, preventing the use of this approach.
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1.3 Contributions of the paper

We propose a two-step estimator for QR models with generated variables, which we call

the generated quantile regression (GQR) estimator. We study the asymptotic property of

the GQR estimator using techniques from asymptotic analysis for quantile regression and

empirical process theory. A Bahadur expansion of the GQR estimator is derived, with

precise stochastic order of the remainder term, which holds uniformly with respect to the

first step parameter and the quantile levels. Using the Bahadur expansion approach, under

the assumption that the first stage estimation is asymptotically normal and some other

regularity conditions, we establish asymptotic normality and obtain explicit expression for

the asymptotic variance of the proposed GQR estimator. To the best of our knowledge, this

is the first work that analyses quantile regression with generated variables without being

tailored to any specific application, and systematically handles the associated issues for

asymptotic analysis.

The application of the GQR estimator is illustrated through three motivating examples

- quantile regression involving constant slope parameters, a variant for endogenous quantile

regression model, and a Box-Cox power transformed quantile regression. In particular, the

GQR estimator can be an alternative to Zou & Yuan (2008)’s composite quantile regression

method for estimating QR models with some constant slope parameters. A simulation exer-

cise based on this example illustrates the validity of the asymptotic normality result. Further

analysis of QR models when some slope parameters are known to be constant shows that

the GQR estimator produces an efficiency gain, except in the extreme tails, over the stan-

dard QR estimator. Finally, an empirical application based on auction models in quantile

framework confirms that the GQR estimator improves the estimation of quantile parameters

as compared to an unconstrained estimation using standard quantile regression.

The rest of the paper is organised as follows. Section 2 introduces the baseline model

and the GQR estimator, and presents three applications to motivate the framework. Section

3 carries out the asymptotic analysis and presents the Bahadur expansion results and the

central limit theorem for the GQR estimator. The asymptotic results are applied to the

motivating examples in Section 4. Section 5 compares the efficiency of the GQR estimator

with the standard QR estimator using the constant slope QR model example. Section 6

presents simulation results while Section 7 reports results of the empirical application to

first price auctions. Proofs of the main results are given in the Appendices.
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2 Quantile regression with generated variables

We consider the following linear quantile specification.

Y (θ) = X(θ)′β(U); U |X(θ) ∼ U [0, 1], (2.1)

where, provided that τ 7→ X(θ)′β(τ) is strictly increasing and continuous in τ , X(θ)′β(τ) is

the τ -quantile of Y (θ) conditional on X(θ). Here, Y (θ) and X(θ) are functions of a vector

of parameters θ, which includes elements that generate the dependent variable Y , or the

regressor X, or both. The true value of the parameter θ in (2.1), denoted by θ0, is not

known but estimated. Hence, we propose a two-step estimation of the above quantile model.

First step: Estimation of θ0. It is assumed that a consistent estimator θ̂ is available.

For the sake of generality, any estimation method is allowed at this stage, provided it satisfies

an expansion typical of regular estimators, see for example Newey & McFadden (1994). As

discussed for the examples, a suitable choice of θ̂ can be done case by case.

Second step: Estimation of quantile parameter. The quantile parameter estimate

β̂(τ) in (2.1) is given by

β̂(τ) = β̂(τ ; θ̂) = argmin
β

1

n

n∑

i=1

ρτ

(
Yi(θ̂)−Xi(θ̂)

′β
)
, (2.2)

where ρτ (u) = (τ − I (u < 0)) u is the check function of Koenker & Bassett (1978).

2.1 Motivating examples

The general framework of quantile regression with dependent variable and/or covariates

obtained as a function of parameters estimated in a first step finds wide application in

economics and statistics. We present three applications. The asymptotic results for these

applications are discussed in a later section.

2.1.1 Quantile regression with constant slope

Consider the quantile regression (QR) model

QY (τ |X) = β0 (τ) + β1 (τ)X1 + β2 (τ)X2 (2.3)
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and assume that β1 (τ) = β1 for all τ , ie β1 (·) is constant. This model can be estimated

using Zou & Yuan (2008)’s composite quantile regression (CQR) method as follows:

(
β̂1, β̂0(τ1), β̂2(τ1), · · · , β̂0(τK), β̂2(τK)

)
= arg min

b1,b0k,b2k;
k=1,··· ,K

K∑

k=1

n∑

i=1

ρτk (Yi −X1ib1 − b0k −X2ib2k) ,

for 0 < τ1 < τ2 < · · · < τK < 1. This could lead to an intractable system due to very large

number of variables, especially with more quantile parameters and quantile levels. Moreover,

Zou & Yuan (2008) studies the asymptotic properties of the CQR estimator for estimation of

constant slope parameters and compares efficiency with least squares, while the asymptotic

behaviour for quantile varying slope parameters remains unstudied. As an alternative to

Zou & Yuan (2008), consider a two step estimation of this model as described below.

As there exist uniform variables Ui independent of Xi such that Yi = QY (Ui|Xi), it holds

Yi = β0 + β1X1i + β2X2i + εi

where βk = E [βk (Ui)], k = {0, 1, 2}, and εi = β0 (Ui) − β0 +
(
β2 (Ui)− β2

)
X2i (since

β1 = β1 = β1 (Ui)). It follows that the βk’s can be estimated using OLS, that is,

(
β̂0, β̂1, β̂2

)
= arg min

b0,b1,b2

n∑

i=1

(Yi − b0 − b1X1i − b2X2i)
2 . (2.4)

Set β̂1 = β̂1. A two step estimator of (β0 (τ) , β2 (τ)) is then

(
β̂0 (τ) , β̂2 (τ)

)
= argmin

b0,b2

n∑

i=1

ρτ

(
Yi − β̂1X1i − b0 − b2X2i

)
. (2.5)

Hence, in this example, the first step parameter is θ ≡ β1, and the dependent variable is

generated as Yi(β1) = Yi − β1X1i.

2.1.2 Endogeneity in quantile regression - control variable approach

Control variable approach views endogeneity bias as an omitted variable bias and proceeds

by estimating the ‘control variable’ which is the reduced form residual, conditional on which

error becomes independent of the regressors (see Blundell & Powell (2003)).

Consider the two stage quantile regression model with endogeneity

Y = X ′β (U) + η′λ (U) ,

X = Z ′γ + η
(2.6)
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where η, U ∼ U[0,1] and Z are independent, η being centered with a finite variance. Then

if QY |X,η (τ |X, η) = X ′β (τ) + η′λ (τ) is increasing in τ for all admissible X and η, the

coefficients β (·) and λ (·) can be estimated from the first stage least squares estimation of

the control variable η,

η̂i = Xi − Z ′
iγ̂, γ̂ =

(
N∑

i=1

ZiZ
′
i

)−1 N∑

i=1

ZiXi. (2.7)

The second stage estimator is

[
β̂′ (τ) , λ̂′ (τ)

]′
= argmin

β,λ

N∑

i=1

ρτ (Yi −X ′
iβ − η̂′λ) = argmin

β,λ

N∑

i=1

ρτ (Yi −X ′
iβ − (Xi − Z ′

iγ̂)
′λ) .

(2.8)

Hence, in this example, the first step estimator is θ ≡ γ, and the second stage involves

quantile regression of Yi on generated regressors, Xi(θ) ≡
[
X ′

i, (Xi − Z ′
iγ)

′]′.

2.1.3 Box-Cox power transformation

Box & Cox (1964) proposes finding a transformation parameter λ such that with the follow-

ing transformation on the original observations Y ,

Y (λ) =





Y λ−1
λ
, if λ 6= 0,

log Y, if λ = 0,
(2.9)

Y (λ) is normally distributed with conditional variance σ2, and E[Y (λ)|X] = X ′β. The

desirous property for quantile regression is linearity, that is,

QY (λ)(τ |X) = X ′β(τ).

The Box-Cox quantile regression literature has mostly focussed on finding a quantile

dependent transformation parameter (see, for instance, Powell (1991), Chamberlain (1994),

Buchinsky (1995), Machado & Mata (2000) and Fitzenberger, Wilke & Zhang (2009)). Ow-

ing to the equivariance property of quantiles, this leads to minimization of the non-linear

function
∑n

i=1 ρτ

(
Yi − (λX ′

iβ + 1)1/λ
)
. Quantile varying λ adds flexibility to the model, but

joint estimation of (λ(τ), β(τ)) requires effort, see Koenker (2017). Also, a basic numerical

problem is that (λX ′
iβ + 1) needs to be positive for all λ and all observations.

A constrained estimation with a constant λ has obvious computational and numerical

benefits. Mu & He (2007) considers constancy of λ(τ). In the empirical application of
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Buchinsky (1995) studying transformation of log wages over 25 years, λ(τ) seems to be

constant for all quantiles except the highest. A simpler approach would, therefore, involve

estimating λ̂ separately in a first step and thereafter performing linear quantile regression

using the transformed Y for estimating β(τ). λ̂ can be estimated from the linear regression

Y (λ) = X ′β + ε. A consistent estimator for λ̂ is Amemiya (1974)’s nonlinear IV (NIV)

estimator,

(
λ̂NIV , β̂NIV

)
= argmin

ℓ,b

(
n∑

i=1

(Yi (ℓ)−X ′
ib)W

′
i

)
Ω

(
n∑

i=1

Wi (Yi (ℓ)−X ′
ib)

)
, (2.10)

where Wi always contains Xi as well as additional instruments (Amemiya & Powell (1981)

recommends using squares and cross-products of Xi’s). Set λ̂ = λ̂NIV . The dependent

variables Yi(λ̂) is, then, generated using equation (2.9). β(τ) is estimated from quantile

regression of Y (λ̂) on X,

β̂ (τ) = argmin
b

n∑

i=1

ρτ

(
Yi(λ̂)−X ′

ib
)
. (2.11)

3 Asymptotic analysis

Our main assumptions are as follows:

Assumption 1 (First step estimator) There exists a function ψ(z) such that the esti-

mator of the true θ0 is asymptotically linear:

√
n
(
θ̂ − θ0

)
=

1√
n

n∑

i=1

Ψ(zi) + oP(1), E [ψ(z)] = 0, E [ψ(z)ψ(z)′] <∞.

Assumption 2 (Model) (Xi, Yi) are i.i.d. There exists a compact set Θ with a non empty

interior containing θ0 such that Xi (θ) = h (Xi, θ) and Yi (θ) = g (Yi, Xi, θ) are continuous

and differentiable with respect to θ in Θ for all (Yi, Xi). It holds moreover that

sup
θ∈Θ

∥∥∥∥
∂g (Y,X, θ)

∂θ

∥∥∥∥ <∞.

In the next Assumption F (y|x, θ) and f (y|x, θ) stands for the c.d.f. and p.d.f. of Y (θ)

given X (θ), fX (·|θ) being the p.d.f. of X (θ). The set X (θ) is the support of X (θ). All

p.d.f. are defined with respect to the Lebesgue measure. The set Θ is as in Assumption 2.
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Assumption 3 (Smoothness) (i) X (θ) lies in R
d for each θ and X (θ) is a compact subset

of Rd with non empty interior. fX (x|θ) > 0 over the interior of X (θ) and vanishes at its

boundaries. fX (x|θ) is continuously differentiable with respect to θ. (ii) the p.d.f. f (y|x, θ)
of Y (θ) given X is continuously differentiable in (y, x, θ) with f (y|x, θ) > 0 for all (y, x, θ)

such that (x, θ) ∈ ⋃
θ∈Θ

{X (θ)×θ} and y is in the interior of the support of F (·|x, θ).

Asymptotically linear estimators in Assumption 1 refer to the class of extremum esti-

mators as considered in Newey & McFadden (1994). Examples include MLE, NLS, and the

GMM class. It implies
√
n-consistency of the first step estimator and is key to the derivation

of the asymptotic normality result for the second-step estimator. The triangular structure

imposed by Assumption 2 ensures that X(θ) is not a function of Y and therefore remains

exogenous; it is useful in the example of Section 2.1.1. Assumption 3-(ii) is a high level

assumption that can be derived from Assumption 2 and the quantile regression slope β (·)
since g (Y,X, θ0) = X (θ0)

′ β (U). It implicitly requests a monotone g (·, X, θ) with non zero

derivatives, as f (·|x, θ) may diverge otherwise. Indeed, if ∂g (y, x, θ) /∂y > 0 and f (y|x) is
the p.d.f. of Y given X (assuming X (θ) = X for the sake of the brevity of this discussion),

it holds

f (y|x, θ) = 1
∂g
∂y

[g−1 (y, x, θ) , x, θ]
f
[
g−1 (y, x, θ) |x

]

which may not be bounded if ∂g (y, x, θ) /∂y vanishes. Assumption 3-(ii) then holds if f (y|x)
is continuously differentiable in (x, y) and g (y, x, θ) twice differentiable with respect to y

and θ with bounded partial derivatives. Assumption 3-(i) is similar, but note that the

transformation X (θ) = h (X, θ) does not need to be one to one, as X (θ) may have a smaller

dimension than X.

The QR estimator of the slope coefficient is an estimator of β
(
τ ; θ̂
)
where

β (τ ; θ) = argmin
β

E [ρτ (Y (θ)−X ′ (θ) β)] .

Assumption 3 ensures that the objective function above is strictly convex for all θ, so that

β (τ ; θ) is the unique solution of the first order condition

0 = E [{I (Y (θ) ≤ X ′ (θ) β)− τ}X (θ)] = E [{F (X ′ (θ) β|X, θ)− τ}X (θ)]

This together with the Implicit Function Theorem implies that β (τ ; θ) is differentiable with

respect to θ, as established in the following Proposition.
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Proposition 1 Under Assumptions 2 and 3, β (τ ; θ) is continuously differentiable with re-

spect to θ for any θ ∈ Θ and 0 < τ < 1. It holds moreover

∂β (τ ; θ0)

∂θ
= H (τ ; θ0)

−1D (τ ; θ0)

where

H (τ ; θ0) = E [f (X ′ (θ0) β (τ ; θ0)|X, θ0)X (θ0)X
′ (θ0)]

D (τ ; θ0) = − ∂

∂θ
[E [{F (X ′ (θ) β|X, θ)− τ}X (θ)]]

∣∣∣∣
θ=θ0,β=β(τ ;θ0)

.

Proof of Proposition 1: See proof section.

The matrix H (τ ; θ0) plays an important role in the asymptotic distribution of standard

QR estimators, see below and Koenker (2005). The existence of its inverse is established

in Lemma 2 of the Proof Section. The matrix D (τ ; θ0) is specific to two stage estima-

tion. With known θ0, a linear representation for
√
n
(
β̂ (τ ; θ0)− β (τ, θ0)

)
can be found

in Koenker (2005) Section 4.3, among others. But estimating the parameter θ induces

some important changes compared to a known θ0 and requires finding an expansion for
√
n
(
β̂
(
τ ; θ̂
)
− β

(
τ, θ̂
))

. The approach used here builds on a Bahadur expansion which

holds uniformly in θ and τ . For this purpose define

Ŝ (τ ; θ) =
1√
n

n∑

i=1

[I (Yi (θ) ≤ X ′
i (θ) β (τ ; θ))− τ ]Xi (θ) , (3.1)

J (τ ; θ) = τ (1− τ)E [Xi (θ)X
′
i (θ)] (3.2)

Ê (τ ; θ) =
√
n
(
β̂ (τ ; θ)− β (τ ; θ)

)
−
(
−H−1 (τ ; θ) Ŝ (τ ; θ)

)
. (3.3)

Note that Ŝ (τ ; θ) /
√
n is the score of the objective function for a given θ. Ŝ (τ ; θ) is centered

for 0 < τ < 1 with variance J (τ ; θ). Ê (τ ; θ) is the Bahadur remainder term which is studied

in the next Proposition.

Proposition 2 Under Assumptions 1-3 it holds for any compact parameter set Θ and C > 0

sup(τ,θ)∈[τ ,τ ]×Θ

∥∥∥Ê (τ ; θ)
∥∥∥ = OP

(
log3/4 n
n1/4

)
, (3.4)

sup(τ,θ)∈[τ ,τ ]×B(θ0,Cn−1/2)

∥∥∥H−1 (τ ; θ) Ŝ (τ ; θ)−H−1 (τ ; θ0) Ŝ (τ ; θ0)
∥∥∥ = OP

(
log1/2 n
n1/4

)
(3.5)

where 0 < τ ≤ τ < 1 and B (θ0, ̺) = {θ; ‖θ − θ0‖ ≤ ̺}.
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Proof of Proposition 2: See proof section.

Propositions 1 and 2 give the next Theorem, which states a Central Limit Theorem for the

two step estimator of the slope coefficient. Note that in absence of the parameter θ, the

rate of convergence is the same as that for usual quantile regression estimator, as derived in

Theorem 4.1 of Koenker (2005).

Theorem 1 Under Assumptions 1-3, it holds for any τ in (0, 1)

√
n
(
β̂ (τ)− β (τ)

)
d→ N (0, V (τ))

where

V (τ) = H (τ ; θ0)
−1 [J (τ ; θ0) +D (τ ; θ0)CΨS (τ) + C ′

ΨS (τ)D
′ (τ ; θ0)

+D (τ ; θ0)CΨΨD
′ (τ ; θ0)]H (τ ; θ0)

−1 ,

CΨΨ = E [Ψ (Z)Ψ′ (Z)] , CΨS (τ) = E [Ψ (Z)X ′ (θ0) {I [Y (θ0) ≤ X ′ (θ0) β (τ ; θ0)]− τ}] .

Proof of Theorem 1. Proposition 1 yields that

√
n
(
β̂
(
τ ; θ̂
)
− β (τ ; θ0)

)
=

√
n
(
β̂
(
τ ; θ̂
)
− β

(
τ, θ̂
))

+
√
n
(
β
(
τ ; θ̂
)
− β (τ ; θ0)

)

=
√
n
(
β̂
(
τ ; θ̂
)
− β

(
τ, θ̂
))

+

(
∂β (τ ; θ0)

∂θ
+ oP (1)

)√
n
(
θ̂ − θ0

)

=
√
n
(
β̂
(
τ ; θ̂
)
− β

(
τ, θ̂
))

+

(
∂β (τ ; θ0)

∂θ

)′
1√
n

n∑

i=1

Ψ(Zi) + oP (1) (3.6)

where the last line holds thanks to Assumption 1. Equation (3.6) and Proposition 2 give

√
n
(
β̂ (τ)− β (τ)

)
= H−1

(
τ ; θ̂
)
Ŝ
(
τ ; θ̂
)
+

(
∂β (τ ; θ0)

∂θ

)′
1√
n

n∑

i=1

Ψ(Zi) + oP (1)

= H−1 (τ ; θ0) Ŝ (τ ; θ0) +

(
∂β (τ ; θ0)

∂θ

)′
1√
n

n∑

i=1

Ψ(Zi) + oP (1) ,

(3.7)

where the last line results from (3.5) since Assumption 1 and taking C large enough ensure

that θ̂ belongs to B
(
θ0, Cn

−1/2
)
with high probability. Since ∂β(τ ;θ0)

∂θ
= H(τ ; θ0)

−1D(τ ; θ0)

from Proposition 1, the Limit distribution of Theorem 1 follows from the Multivariate CLT.�
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Remark 1. As Propositions 1 and 2 hold uniformly in τ , the expansion (3.7) also does.

Since Functional Central Limit Theorems for Ŝ (τ ; θ0) can be applied, (3.7) can be used to

obtain a Functional Central Limit Theorem for the two step quantile regression estimator.

Remark 2. The order of the oP (1) remainder term in (3.7) can be made more precise,

strengthening the smoothness Assumptions 2 and 3 to ensure that β (τ ; θ) is twice contin-

uously differentiable using the Implicit Function Theorem as in Proposition 1. Indeed, if

β (τ ; θ) is twice continuously differentiable with respect to θ, the oP (1) remainder term in

(3.6) is an OP

(
n−1/2

)
and the order of the oP (1) remainder term in (3.7) follows from (3.4)

and is OP

(
n−1/4 log3/4 n

)
.

Remark 3. The proof can be easily modified for the case where θ depends upon τ .

4 Examples revisited

In this section, we apply the asymptotic theory results of Section 3 to the motivating exam-

ples introduced in Section 2.1.

4.1 Quantile regression with constant slope

For the quantile regression model (2.3), the constant paramater β1(·) is estimated using least

squares regression, and the quantile parameters (β0(·), β2(·)) are estimated using the gener-

ated dependent variable Yi(β̂1) = Yi − β̂1X1i via the two-step quantile regression estimator

of (2.5). Asymptotic normality of the first step OLS estimator is well established. Denote

X = [1, X1, X2]
′. Assume that E[ε2XX ′] is finite and E[XX ′] is full rank and finite. The

OLS estimator is asymptotically linear:

√
n
(
β̂ − β

)
=

n∑

i=1

[
E

−1 [XX ′]Xiεi
]
/
√
n+ oP(1).

Denoting i22 = [0, 1, 0], the asymptotic variance of β̂1 is given by

V(β1) = i22
(
E

−1[XX ′]E[ε2XX ′]E−1[XX ′]
)
i′22. (4.1)

For the second step quantile regression, the dependent variable is generated as Y (β̂1) =

Y − β̂1X1, and the regressors are denoted as X̃ = [1, X2]
′. Asymptotic normality of the

quantile parameters β(τ) = (β0(τ), β2(τ))
′ follows directly from Theorem 1:
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√
n

[
β̂0 (τ)− β0 (τ)

β̂2 (τ)− β2 (τ)

]
d−→ N (0, V (τ)) .

The terms of V are obtained from Theorem 1 by replacing θ0 ≡ β1, β(τ) ≡ (β0(τ), β2(τ))
′,

X(θ0) ≡ X̃ = [1, X2]
′and Y (θ0) ≡ Y (β1) = Y −β1X1. Denoting the first τ -derivative of β(τ)

as β(1)(τ), V (τ) comes as follows:

V (τ) = H(τ)−1 {J(τ) +D(τ)V(β1)D(τ)′ + C(τ)′D(τ) + C(τ)D(τ)′}H(τ)−1,

where H(τ) = E

[
X̃X̃ ′

β
(1)
0 (τ) + β

(1)
2 (τ)X2

]
, J(τ) = τ(1− τ)E

[
X̃X̃ ′

]
,

D(τ) = −E

[
X1X̃

β
(1)
0 (τ) + β

(1)
2 (τ)X2

]
and

C(τ) = E

[
g(X)

{∫ τ

0

(β0(t) + β2(t)X2) dt− τ (β0(τ) + β2(τ)X2)

}]
,

(4.2)

with g(X) = X̃ [0, 1, 0]E−1 [XX ′]X.

4.2 Endogeneity in quantile regression - control variable approach

The endogenous quantile regression model in (2.6) is estimated in two steps. The first step

uses OLS estimator of (2.7) to estimate γ̂. This is used to generate the control variable

η̂ = (Xi − Z ′
iγ̂), which is included as a regressor in the quantile regression estimator of

(2.8) for estimating the quantile parameters δ(τ) ≡ (β(τ)′, λ(τ)′)′. Denote the generated

regressors as X(γ) =
[
X ′, (X − Z ′γ)′

]′
. We assume that E [ηη′|Z] = σ2I and E (ZZ ′) is

finite. The OLS estimator is asymptotically linear:

√
n (γ̂ − γ) =

n∑

i=1

[
E

−1 [ZZ ′]Ziηi
]
/
√
n+ oP(1).

The asymptotic normality of the quantile parameters δ(τ) follows directly from Theorem 1,

√
n
[
δ̂ (τ)− δ (τ)

]
d−→ N (0, V (τ)) ,

where

V (τ) = H(τ)−1
{
J(τ) +D(τ)σ2

E
−1[ZZ ′]D(τ)′ + C(τ)′D(τ) + C(τ)D(τ)′

}
H(τ)−1.
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The terms of V (τ) are given by

H(τ) = E

[
X(γ)X(γ)′

X(γ)′δ(1)(τ)

]
, J(τ) = τ(1− τ)E [X(γ)X(γ)′] , D(τ) = −E

[
X(γ)Zλ(τ)

X(γ)′δ(1)(τ)

]

C(τ) = E [X(γ) (I (Y ≤ X(γ)′δ(τ))− τ) η′Z ′
E

−1[ZZ ′]] .

4.3 Box-Cox power transformation

The box-cox transformation parameter of (2.9) is estimated using the nonlinear IV (NIV)

estimator of (2.10). The conditional quantile model for the generated dependent variable

Y (λ̂) is assumed linear in parameters, which are estimated using the QR estimator of (2.11).

Amemiya (1974) establishes the limiting behaviour of the NIV estimator. Assume that

E
[
(Y (λ)−X ′β)2WW ′] is finite and Ω is full rank and finite.

Note that if β is a K-dimension vector, then the NIV estimator estimates (K + 1) pa-

rameters, denoted by θ = [λ, β′]′. Denote the (K + 1) order square matrix,

G = E

[
W
∂Y (λ)

∂λ
,−WX ′

]
.

Then, the NIV estimator is asymptotically linear:

√
n
(
θ̂ − θ

)
=

n∑

i=1

[
− (G′ΩG)

−1
G′ΩWi(Yi(λ)−X ′

iβ)
]
/
√
n+ oP(1).

The asymptotic variance of λ̂, denoted by V(λ), is the first term of the asymptotic variance-

covariance matrix for θ̂. Denoting i11 = [1,0K×1], where 0K×1 is a K-dimension row vector

of zeros,

V(λ) = i11

(
(G′ΩG)

−1
G′ΩE [(Y (λ)−X ′β)WW ′] ΩG (G′ΩG)

−1
)
i′11.

Asymptotic normality for the quantile estimates obtained from QR of Y (λ̂) on X follows

directly from Theorem 1.

√
n
(
β̂(τ)− β(τ)

)
d−→ N (0, V (τ)) ,

where

V (τ) = H(τ)−1 {J(τ) +D(τ)V(λ)D(τ)′ + C(τ)′D(τ) + C(τ)D(τ)′}H(τ)−1.
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The terms of V (τ) are given by

H(τ) = E

[
XX′

X′β(1)(τ)

]
, J(τ) = τ(1− τ)E [XX ′] , D(τ) = −E

[
Xf(X ′β|X, λ)∂Y (λ)

∂λ

]

C(τ) = E
[
g(X)

{∫ τ

0
X ′β(t)dt− τX ′β(τ)

}]
,

where g(X) = X [1,0K×1]
(
− (G′ΩG)−1G′ΩW

)
.

5 GQR vs QR: Analysis for constant slope example

To compare the asymptotic variance of the GQR estimator with that of the standard QR

estimator, we analyse the constant slope QR model of Section 2.1.1 with the following true

model parameters: for the model in (2.3),

X1 ∼ U [1, 5] X2 ∼ U [3, 10], β0(τ) = eτ , β1(τ) = β1 = 1 ∀τ, β2(τ) = 2τ 2. (5.1)

The two step GQR estimator, which estimates the constant slope parameter β1 and the

quantile parameters (β0(τ), β2(τ)) separately, has asymptotic variance given by (4.2). The

asymptotic variance for the standard QR estimator, where all three coefficients are estimated

together in a single step quantile regression of Y on X’s, is given by

V (τ)QR = H(τ)−1
QRJ(τ)QRH(τ)−1

QR (5.2)

where denoting X = [1, X1, X2]
′,

H(τ)QR = E

[
XX ′

β
(1)
0 (τ) + β

(1)
1 (τ)X1 + β

(1)
2 (τ)X2

]
, J(τ)QR = τ(1− τ)E [XX ′]

Remark. For the GQR estimator, if the covariates X1 and X2 are independent, as consid-

ered here, it holds that

(i) The covariance between first and second step estimates is zero: C(τ) = 0.

(ii) The first step estimation has an effect on the second-step variance for the intercept,

β̂0(τ), but not for the slope parameter β̂2(τ), as H(τ)−1D(τ) in (4.2) evaluates to

[−E[X1], 0]
′.

Proofs are straightforward using basic matrix algebra. The outline is presented in Appendix

3.
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Asymptotic variance for β̂0(·). Under the above remark, the asymptotic variance of

β̂0(·) for GQR is obtained using (4.2) as follows:

V (τ)
β̂0(·)
GQR = [1, 0]H(τ)−1J(τ)H(τ)−1[1, 0]′ + E

2[X1]V(β1) (5.3)

where H(τ), J(τ) are given by (4.2). For the true model parameters and distribution con-

sidered here, this evaluates to

V (τ)
β̂0(·)
GQR =

τ(1− τ)

(ac− b2)2
(
c2 − 2bcE[X2] + b2E[X2

2 ]
)
+ E

2[X1]V(β1) (5.4)

where

a = E

[
1

β
(1)
0 (τ) + β

(1)
2 (τ)X2

]
=

1

28τ
ln

(
eτ + 40τ

eτ + 12τ

)
,

b = E

[
X2

β
(1)
0 (τ) + β

(1)
2 (τ)X2

]
=

1

7× 16τ 2

(
28τ − eτ ln

(
eτ + 40τ

eτ + 12τ

))
,

c = E

[
X2

2

β
(1)
0 (τ) + β

(1)
2 (τ)X2

]
=

1

448τ 3

(
728τ 2 − 28τeτ + e2τ ln

(
eτ + 40τ

eτ + 12τ

))

E[X2] = 13/2, E[X2
2 ] = 139/3, E[X1] = 3.

The first step asymptotic variance V(β1) is given by (4.1), and for the model parameters

considered here, evaluates to

V(β1) = i22 (E[XX
′]) i′22E

[
ε20
]
+ i22

(
E

−1[XX ′]E[X2
2XX

′]E−1[XX ′]
)
i′22E

[
ε22
]

=
3

4
E
[
ε20
]
+

139

4
E
[
ε22
]
=

3

4
×
(
1

2
(e2 − 1)− (e− 1)2

)
+

139

4
×
(
4

5
−
(
2

3

)2
)

where εi =
(
βi (U)− βi

)
, i = 0, 2.

The asymptotic variance of β̂0(·) for the standard QR is given by the first element of

(5.2), which, for the model parameters and distribution assumed in this exercise, evaluates

to

V (τ)
β̂0(·)
QR =

τ(1− τ)

(ac− b2)2
(
c2 − 2bcE[X2] + b2E[X2

2 ]
)
+

τ(1− τ)(bf − dc)2

(ac− b2)2 a2Var(X1)
(5.5)
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where Var(X1) = 4/3, (a, b, c) are as in (5.4) and

d = E

[
X1

β
(1)
0 (τ) + β

(1)
2 (τ)X2

]
=

3

28τ
ln

(
eτ + 40τ

eτ + 12τ

)

f = E

[
X1X2

β
(1)
0 (τ) + β

(1)
2 (τ)X2

]
=

3

7× 16τ 2

(
28τ − eτ ln

(
eτ + 40τ

eτ + 12τ

))
.

Comparing (5.4) and (5.5), we find that the first part of the asymptotic covariance for

both GQR and QR is a common quantile varying component. GQR has a constant additional

component which depends on the first step asymptotic variance, while the additional part

for QR is again quantile-dependent. The following graph plots this additional component

for both GQR and QR.

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500
QR
GQR

(0.32,115.5) (0.97,115.5)

Figure 1: Additional covariance GQR vs QR

As can be seen from Figure 1, for the tails the additional variance part of QR is less than

that of GQR, while the opposite is true for all other quantile levels. Hence, there isn’t a clear

efficiency gain of one method over the other - it depends on the quantile level. But, from

our calculations for this example, it is clear that the GQR asymptotic covariance is less for

most quantile levels while QR shows improvement for the tails, which is especially extreme

for the right tail. Also, the GQR adds a constant contribution to the variance, while QR is

very quantile dependent. For the simplicity of analysis here, we considered X1 and X2 to

be independent. In real applications, this may not be true. But the relationship between

the asymptotic covariances of GQR and QR remains similar, as we verify in the empirical

application.
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Asymptotic variance for β̂2(·). Under the remark noted above, for independent X1 and

X2, the asymptotic variance of β̂2(·) is same for GQR and QR.

V (τ)
β̂2(·)
GQR = V (τ)

β̂2(·)
QR = [0, 1]H(τ)−1J(τ)H(τ)−1[0, 1]′ = [0, 0, 1]H(τ)−1

QRJ(τ)QRH(τ)−1
QR[0, 0, 1]

′

where (H(τ), J(τ)) and (H(τ)QR, J(τ)QR) are obtained from (4.2) and (5.2), respectively.

For the true model parameters and distribution considered here, this evaluates to

V (τ)β̂2(·) =
τ(1− τ)

(ac− b2)2
(
b2 − 2abE[X2] + a2E[X2

2 ]
)

(5.6)

where (a, b, c) are as in (5.4).

6 Monte Carlo Simulation

This section reports results of a simulation exercise based on the quantile regression with

constant slope model described in Section 2.1.1, the asymptotic results of which are obtained

in Section 4.1. The purpose of the simulation is to illustrate the performance of the pro-

posed two-step estimator and validate the asymptotic normality result derived in Theorem

1. Besides bias-root mean squared error (RMSE) and coverage rate analysis of the GQR

estimator, its performance is also compared with the standard quantile regression (QR) es-

timator where all parameters - both the constant and quantile varying ones - are estimated

together by quantile regression. Finally, to see the impact of first step estimates on the over-

all variance, we compare the GQR estimator with the infeasible quantile regression (i-QR)

estimator that uses the true value of the unknown parameter instead of its estimate.

Data generating process. In the quantile model of equation (2.3),

QY (τ |X) = β0 (τ) + β1 (τ)X1 + β2 (τ)X2,

the true parameters are taken as in (5.1). Observations are generated as Yi = β0(Ui) +

β1X1i + β2(Ui)X2i, where (X1i, X2i) are uniform random variables as in (5.1), Ui is a [0, 1]-

uniform random variable and i = 1, · · · , n. The simulation experiment is performed for the

sample sizes of n = 100 and n = 1000. The number of simulation replications is set to 1000.

Estimation of quantile parameters. The estimation of quantile parameters is performed

using the proposed GQR estimator, the i-QR estimator and the standard QR estimator.

The GQR estimator uses the generated dependent variables Yi(β̂1) = (Yi − β̂1X1i), where
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β̂1 is estimated from first step using OLS, in the quantile regression estimator of equation

(2.5). The i-QR estimator uses the unknown dependent variable Y ∗
i (β1) = Yi − β1X1i for

quantile regression based estimation of the quantile parameters. The standard QR estimator

estimates all coefficients together by quantile regression of Y on X’s.

Estimation of asymptotic variance. We estimate asymptotic variance of the quantile

parameters for the GQR, the i-QR, and the QR estimator, to compare the efficiency of the

estimators and to validate the GQR asymptotic variance result obtained in Theorem 1. The

estimation of asymptotic variance for quantile regression follows two common approaches:

kernel based estimation following Powell (1991) or some form of bootstrap. We have used

Buchinsky (1994)’s design matrix bootstrap, extensively used in empirical applications for

quantile regression involving large samples, see, for instance, Buchinsky (1994) and Abrevaya

(2002). Buchinsky (1995) and Koenker & Hallock (2001) compare various quantile regression

variance estimators and conclude that with enough bootstrap replications, the method works

satisfactorily. The bootstrapped standard errors are also used in finding confidence intervals

of the GQR quantile estimates and comparing them with the nominal levels expected for

normal distribution.

For B = 1000 bootstrap replications, each of size of m (drawn with replacement from

the overall sample size of n), we get (b = 1, · · · , B) bootstrap quantile estimates at each

quantile level. When n = 1000, the bootstrap sample size is m = 300, while for n =

100, we have m = n. This follows the so-called m out of n bootstrap technique which

provides significant computational advantage when sample size is large. Following Buchinsky

(1994), the sample covariance of these estimates, rescaled by (m/n), constitutes a valid

estimator of the covariance matrix of the quantile regression estimator. Hence, the estimate

for asymptotic covariance V (τ) with quantile parameters β(·) and the bootstrap estimates

denoted by β̂b(τ), b = 1, · · · , B, is given by

V̂ (τ) = n
(m
n

) 1

B

B∑

b=1

(
β̂b(τ)− β̂b

A(τ)
)(

β̂b(τ)− β̂b
A(τ)

)′
, (6.1)

where β̂b
A(τ) is the average of the B bootstrap estimates. The choice of bootstrap replications

and sample size are consistent with Buchinsky (1995) and Andrews & Buchinsky (2000). We

estimate V̂ (τ) from (6.1) for each of the 1000 simulations and report the average.

Results. The estimation results for the quantile parameters, along with comparisons of

the GQR, standard QR and i-QR estimation methods, are presented in Tables 1-6. The first

step least squares regression gives the mean of β̂1 as 1.007 (with average standard deviation
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= 0.3953) for a sample size of 100, and 1.001 (with average standard deviation = 0.1242)

for a sample size of 1000, respectively. The fact that OLS is unbiased is expected but the

standard deviation is meaningful as it gives an idea of how much the first step impacts the

overall variance.

Table 1: Bias and RMSE of β̂0(·) for n = 100 and 1000

n = 100 n = 1000

τ Bias RMSE Bias RMSE
0.2 GQR 0.0320 1.4076 −0.0004 0.4357

QR 0.0328 0.9152 0.0135 0.2868
i-QR 0.0108 0.6971 −0.0124 0.2256

0.4 GQR 0.1374 1.9558 −0.0126 0.6405
QR 0.0125 2.0384 0.0272 0.6662
i-QR 0.1546 1.5300 −0.0137 0.4960

0.6 GQR 0.1654 2.5208 −0.0486 0.8433
QR 0.0470 2.8203 0.0409 0.9770
i-QR 0.0922 2.2092 0.0252 0.7233

0.8 GQR 0.0581 2.7213 −0.0481 0.8440
QR −0.1241 3.0094 0.0129 1.0336
i-QR 0.0412 2.4851 0.0006 0.7875

Table 1 shows the Bias-RMSE for β̂0(·) using all three estimation methods, for varying

n. It can be seen that all methods of estimation have low biases, and the RMSE falls with

increasing sample size. But while all estimation procedures have similar biases, the RMSE

with GQR is greater than that of QR for the first quantile, and the opposite is true for the rest

of the quantiles, as expected from the analysis in Section 5. Also, the RMSE with GQR are

greater than those of the i-QR method at each quantile, with substantial difference in some.

This is as expected from theory: the asymptotic variance for i-QR is given by H−1JH−1 but

when the first step is not known but estimated, the first step estimate’s variance increases

the overall variance (by H−1DV(β1)D′H−1, from (4.2), with C(τ) = 0). Table 2 reports the

Bias-RMSE results for the slope parameter β̂2(·). The analysis in Section 5 shows that when

X1 and X2 are independent, the variance of β̂2(·) is unaffected by first step estimation so

that it is the same for GQR, i-QR, as well as QR, methods. It can be seen in Table 2 that

the bias and RMSE are similar for all three methods of estimation and the RMSE falls with

increase in sample size.

Tables 3-4 compare the estimated asymptotic standard errors with their true values as

a means of validating our asymptotic variance result. The true asymptotic variance of β̂0(·)
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Table 2: Bias and RMSE of β̂2(·) for n = 100 and 1000

n = 100 n = 1000

τ Bias RMSE Bias RMSE
0.2 GQR 0.0148 0.1362 0.0017 0.0397

QR 0.0053 0.1235 −0.0034 0.0375
i-QR 0.0009 0.1242 −0.0003 0.0395

0.4 GQR −0.0089 0.2756 0.0014 0.0918
QR −0.0028 0.2759 −0.0073 0.0863
i-QR −0.0257 0.2692 −0.0003 0.0892

0.6 GQR −0.0371 0.3972 0.0066 0.1348
QR −0.0346 0.3948 −0.0177 0.1286
i-QR −0.0314 0.3897 −0.0097 0.1288

0.8 GQR −0.0425 0.4400 0.0036 0.1371
QR −0.0452 0.4308 −0.0148 0.1433
i-QR −0.0486 0.4481 −0.0082 0.1408

for GQR and i-QR are calculated using (5.4), where for the latter V(β1) = 0, while that

of QR is given by (5.5). The true asymptotic variance of β̂2(·) for all methods is given by

(5.6). The correctness of our asymptotic covariance result is verified by comparing V (τ)

with its bootstrapped estimate as given by (6.1) (mean of V̂ (τ) over the 1000 simulations

is reported). It can be seen in Table 3 that the true asymptotic SE of β̂0(·) is greater for

GQR than QR for τ = 0.2 and the trend changes for all other quantile levels, while it is

always greater than that of i-QR, which are as predicted by theory and discussed above.

Bootstrap estimation of asymptotic standard error works well even for small sample size of

100 (except for τ = 0.2 using GQR) and the estimation accuracy for GQR improves with

samples size (for QR and i-QR, the estimates are mostly similar for both sample sizes). Table

3 also reports the coefficient of variation (CoV) for V̂ (τ), which is the ratio of the standard

deviation to the mean of V̂ (τ) over the 1000 simulations. CoV measures the precision in

estimation of the asymptotic standard errors (or variability among the estimated values in

each run of the simulation). Looking at CoV, it is interesting to note that for GQR the

estimates of asymptotic SE have lesser variation across simulations relative to their mean

values, and CoV is very similar across quantiles, than that of i-QR or QR. This suggests

that the GQR asymptotic SE estimates are less dispersed around the mean than that of

i-QR or QR. The CoV falls for all methods with sample size; for sample size of 1000, it is

well within 10% for GQR and slightly greater than 10% for i-QR and QR. Table 4 confirms

that variance of β̂2(·) is unaffected by the two step procedure, as QR, i-QR and GQR yield
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identical true values, and similar bootstrapped estimates as well as CoV. Also, in Table 3

and, to a lesser degree in Table 4, we find a slight overestimation of the GQR variance and

underestimation of the QR one.

Table 3: Asymptotic standard error for
√
nβ̂0(·), B = 1000, simulations = 1000

n = 100 n = 1000

τ True Estimated CoV Estimated CoV
0.2 GQR 12.8272 15.2959 18.43% 13.8210 7.63%

QR 9.5117 10.5633 33.22% 9.2487 13.66%
i-QR 7.1905 7.8174 31.51% 7.0263 12.52%

0.4 GQR 19.1989 20.0756 18.03% 19.6835 7.80%
QR 21.2165 20.6893 24.49% 20.6343 11.01%
i-QR 15.9926 15.8358 24.46% 15.6959 10.73%

0.6 GQR 25.5869 25.7885 18.03% 25.8453 7.87%
QR 30.9088 28.9673 22% 29.7102 10.25%
i-QR 23.2778 22.5501 22.53% 22.8857 10.37%

0.8 GQR 27.2149 28.1044 19.08% 27.4708 8.55%
QR 33.2814 32.3425 22.83% 32.5182 10.29%
i-QR 25.0563 25.0403 22.82% 24.9103 10.3%

The true asymptotic standard error for GQR and QR are computed using (5.4)
and (5.5), respectively, while for i-QR, the first step variance=0 in the formula for
GQR. Mean over 1000 simulations of the bootstrapped asymptotic standard error
estimate of (6.1) is reported. CoV denotes coefficient of variation and indicates
the extent of variability in the estimates for each run of the simulation.

Tables 5-6 demonstrate that the 90%, 95% and 99% confidence intervals of the quantile

estimates obtained from GQR are close to that in theory for normal approximation. For τ =

{0.2, 0.4, 0.6, 0.8}, t-stat of the quantile parameters is computed using bootstrapped standard

errors and its absolute value is compared with the critical values for (1−α) confidence level

of the normal approximation, (1 − α) = 0.9, 0.95 and 0.99, to find if the true quantile

parameter is inside the corresponding confidence interval. Repeating the exercise for 1000

times, we find the percentage of times when the true parameter is inside the (1−α) confidence
interval. We also report the coverage rate from QR and i-QR methods. The GQR variance

overestimation as noted in Tables 3-4, especially for n = 100 and τ = 0.2, is consistent

with the high coverage rate corresponding to the 90% and 95% nominal confidence intervals

for GQR (and QR) for the starting quantile when n = 100, but it improves for n = 1000.

Overall, the empirical levels for confidence intervals are close to (1− α) and improves with

increasing sample size, which suggests that the estimation procedure gives accurate central

limit theorem based confidence intervals.
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Table 4: Asymptotic standard error for
√
nβ̂2(·), B = 1000, simulations = 1000

n = 100 n = 1000

τ True Estimated CoV Estimated CoV
0.2 GQR 1.2450 1.6212 25.13% 1.2617 11.48%

QR 1.2450 1.3722 33.06% 1.2084 12.56%
i-QR 1.2450 1.3328 32.32% 1.2183 12.44%

0.4 GQR 2.8129 2.8139 23.43% 2.7845 10.16%
QR 2.8129 2.7485 24.07% 2.7447 10.03%
i-QR 2.8129 2.7656 23.82% 2.7697 10.51%

0.6 GQR 4.1156 4.0434 21.58% 4.0755 9.63%
QR 4.1156 3.9354 21.50% 4.0237 9.37%
i-QR 4.1156 4.0175 22.66% 4.0526 10.06

0.8 GQR 4.4389 4.4844 22.36% 4.3899 10.07%
QR 4.4389 4.4241 21.47% 4.3901 9.92%
i-QR 4.4389 4.4241 23.14% 4.4223 10.65%

The true asymptotic standard error for all methods is given by (5.6). The
rest of explanation is as in Table 3.

Table 5: Confidence intervals: nominal vs. empirical, n = 100, simulations = 1000

CI for β0(·) CI for β2(·)
Nominal level 0.90 0.95 0.99 0.90 0.95 0.99

Empirical level for τ = 0.2 GQR 0.940 0.977 0.997 0.960 0.982 0.995
QR 0.949 0.978 0.996 0.923 0.970 0.991
i-QR 0.928 0.972 0.994 0.907 0.952 0.986

Empirical level for τ = 0.4 GQR 0.897 0.951 0.991 0.888 0.942 0.980
QR 0.899 0.948 0.987 0.888 0.940 0.987
i-QR 0.885 0.940 0.986 0.878 0.933 0.981

Empirical level for τ = 0.6 GQR 0.895 0.944 0.985 0.882 0.934 0.984
QR 0.893 0.936 0.981 0.883 0.940 0.976
i-QR 0.878 0.929 0.979 0.877 0.934 0.981

Empirical level for τ = 0.8 GQR 0.900 0.940 0.989 0.895 0.942 0.981
QR 0.905 0.950 0.984 0.890 0.942 0.986
i-QR 0.867 0.928 0.978 0.875 0.932 0.975
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Table 6: Confidence intervals: nominal vs. empirical, n = 1000, simulations = 1000

CI for β0(·) CI for β2(·)
Nominal level 0.90 0.95 0.99 0.90 0.95 0.99

Empirical level for τ = 0.2 GQR 0.897 0.952 0.992 0.906 0.954 0.989
QR 0.903 0.953 0.989 0.911 0.947 0.981
i-QR 0.884 0.940 0.985 0.893 0.939 0.983

Empirical level for τ = 0.4 GQR 0.885 0.933 0.987 0.882 0.944 0.984
QR 0.886 0.942 0.987 0.907 0.954 0.987
i-QR 0.901 0.947 0.988 0.895 0.946 0.986

Empirical level for τ = 0.6 GQR 0.886 0.952 0.985 0.891 0.937 0.981
QR 0.874 0.945 0.980 0.887 0.935 0.984
i-QR 0.893 0.946 0.985 0.893 0.942 0.986

Empirical level for τ = 0.8 GQR 0.902 0.952 0.991 0.899 0.941 0.986
QR 0.897 0.946 0.983 0.876 0.935 0.984
i-QR 0.892 0.946 0.990 0.883 0.942 0.989

7 Empirical Application

The two step estimation procedure of Section 2.1.1 can be useful in estimating auction models

as in the quantile regression approach of Gimenes (2017). In first price auctions, a quantile

regression specification for the private value generates a quantile regression specification for

the bid, see Gimenes & Guerre (2016). The linear regression approach of Haile, Hong &

Shum (2003) for estimating first price auction models uses the ‘homogenized bid’ technique,

which implies constant slope parameters in the bid quantile regression model. It is shown

here that the two approaches can be combined, as in the example of Section 2.1.1. We apply

the GQR estimator for the estimation of bid quantile specification containing both quantile-

constant and quantile-dependent slope parameters. In the first step, following Haile et al.

(2003), the constant slope parameter is estimated by regressing the bids on the observed

covariates. This is then used to generate the dependent variable for the quantile regression

for estimating the quantile parameters (as detailed in Section 2.1.1). The aim of our empirical

exercise is to see how imposing a constant slope for a given set of variables can improve the

estimation of the other slope functions.

We illustrate our proposed methodology using data from first price timber auctions con-

ducted by the US Forest Services (USFS) covering the western half of US in the year 1979.

This is the same data used by Lu & Perrigne (2008). The data consists of 214 first price

auctions with 2 bidders, and the covariates listed are appraisal value and timber volume (in

log).
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Bid homogenization. Figure 2 shows the bid quantile parameter estimates obtained from

quantile regression of bids on the covariates along with the corresponding linear regression

estimates. Figure 3 plots the 95% confidence interval of the difference of the QR and OLS

estimates for each quantile. If the interval contains zero, the corresponding parameter is

likely to be constant across quantiles, while zero lying outside the confidence interval suggests

potential misspecification of bid homogenization. Intercept and appraisal value quantile slope

coefficients seem to satisfy the assumption of constancy across quantiles, except for higher

quantiles of above 0.95 for appraisal value. However, the volume quantile parameter does

not seem to be constant.
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Figure 2: Bid quantile parameter estimates
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Figure 3: 95% CI for difference of QR and regression

Bid quantile estimation using GQR. The GQR estimator involves constrained esti-

mation assuming the intercept and appraisal value slope to be constant across quantiles,

while the volume parameter is considered to be varying with quantile levels. Table 7 reports

the result of linear regression of bids on the covariates. The first step estimates constitute

the intercept and appraisal value slope regression estimates, while the quantile estimates for

slope of volume is obtained through quantile regression of the generated dependent variable

(bidsi − (−1.07)− 1.01× appraisal valuei) on volumei. The second step GQR bid quantile

estimate for slope of volume is shown in Figure 4. For comparison purpose, we also plot the
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results of unconstrained estimation of quantile parameters of volume. Table 8 also reports

the bootstrapped standard error (SE) of the constrained and the unconstrained estimator

obtained from 10, 000 bootstrap replications.

Table 7: First step - bid regression

Intercept Appraisal value Volume R2

−1.07 1.01 4.07 0.77
(6.72) (0.04) (1.12)
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Figure 4: Second step - Bid QR estimates for volume

As can be seen in Figure 4 and Table 8, the GQR slope estimate is more regular than

that of the unconstrained estimation; the GQR estimates increase with quantile level, which

is consistent with an increasing bid conditional quantile function. The SE pattern observed

in Table 8 is as expected from the analysis in Section 5, although the covariates are no

longer independent: SE for the constrained estimator are similar across quantiles and lesser

than that for the unconstrained case except for the first three quantile levels. The SE

obtained for the unconstrained estimator varies quite a lot across quantiles and is quite high

for the higher quantiles, which are particularly important for auction models as winners

reside here. An intuitive explanation for the SE pattern observed here is as follows. The

asymptotic variance of the unconstrained estimator will have the form given by (5.2): in

the tails, while τ(1− τ) tends to make the quantile estimate more precise, the derivative of
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Table 8: Bootstrapped SE for constrained vs unconstrained quantile estimation of volume

Constrained (GQR) Unconstrained

τ Estimate SE Estimate SE
0.1 0.2837 1.0457 −0.1023 0.3050
0.2 0.4631 1.0735 0.1219 0.3492
0.3 0.9131 1.1677 −0.0491 0.8013
0.4 1.9080 1.2727 1.6894 1.5634
0.5 2.8312 1.2024 3.3503 1.3285
0.6 3.7115 1.1624 4.6088 1.2478
0.7 4.8065 1.1281 4.1329 1.4609
0.8 6.7040 1.3835 6.0770 2.5452
0.9 9.5601 1.6093 8.9608 4.5484

the quantile slope parameter has an opposite effect. In higher quantiles, as is typical with

quantile regression, the latter effect dominates making the quantile estimates in that region

less precise. The asymptotic variance of the GQR estimator will have the form of (4.2):

there will be a constant effect of the first step variance at each quantile level, but in addition

to the corresponding H−1JH−1 term which increases with τ for increasing slope parameter,

there is a negative quantile effect due to the covariance term being negative in τ for an

increasing slope parameter. So, the net quantile-dependent effect is reduced. Hence, at

lower quantile levels, the SE of the GQR estimator is greater than that of the unconstrained

one because of the constant contribution of first step variance. But at higher quantiles, SE of

the unconstrained estimator is much greater. The exact comparison of asymptotic variance

will, however, depend on the model specifics.

In general, the unconstrained quantile regression involves fitting the model at each quan-

tile level, for estimating both the constant and the quantile-dependent model parameters,

and thus loses out on the information that some covariate effects are common across quan-

tiles. The GQR estimator utilizes the commonality information and improves upon efficiency,

except at the extreme tails. It is well noted in literature that for estimating quantile models

that have some common covariate effects, efficiency gain can be achieved by aggregating the

information across multiple quantiles, as in the combined quantile regression approach of

Zou & Yuan (2008).
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8 Conclusion

This paper presents a two step estimation method for estimating quantile regression mod-

els with generated covariates and/or dependent variable. The asymptotic properties of this

generated quantile regression (GQR) estimator is systematically studied using Bahadur ex-

pansion and the asymptotic normality result is obtained. The results are verified using

simulation and an application based on auctions is carried out. We mention some further ar-

eas of application. A key technical contribution of the paper is to provide Bahadur expansion

which holds uniformly with respect to first step parameter and quantile levels, which can be

utilised for developing specification tests (like those developed in Koenker & Machado (1999)

and Koenker & Xiao (2002)) as well as to obtain functional central limit theorem for the two

step quantile regression estimator. A further work is to prove the validity of bootstrap for

the estimation of asymptotic variance and develop the theory for bootstrapped confidence

interval.

A slightly different problem that can be studied using techniques developed here relates

to quantile specifications where a first step estimation impacts the quantile level for the

second stage quantile regression. Such specifications arise in Arellano & Bonhomme (2017)’s

method of quantile regression with “rotated” check function to correct for sample selection

in quantile regression models. A more challenging problem open for future research is to

relax the assumption of
√
n-consistency in both the steps of estimation and consider models

where they may be different, like in quantile regression models for panel data where the first

step within estimator is usually
√
n-consistent and the quantile estimator is

√
nT -consistent.
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Appendix 1. Proof section

Notations. The notation ≍ is defined as: sequences {xn} and {yn} satisfy xn ≍ yn if

|xn|/C ≤ |yn| ≤ C|xn|, for some C > 0 and n large enough. ||·|| is the Euclidean norm. The

largest eigenvalue in absolute value for a symmetric matrix A is ||A|| = supu∈B(0,1) ||Au|| =
supu∈B(0,1) |u′Au|. Also, for any matrix or vector B, ||AB|| ≤ ||A|| ||B||. We denote

||f(·|·)||∞=supy,x |f(y|X)|. And the notation ≻ denotes that, for two symmetric matrices

A1, A2, A1 ≻ A2 if and only if A1 − A2 is a positive definite symmetric matrix.

Define

Q (β; τ, θ) = E [ρτ (Y (θ)−X ′ (θ) β)]− E [ρτ (Y (θ))] .

As ρτ (·) is almost everywhere differentiable with bounded derivatives, β 7→ Q (β; τ, θ) is

differentiable with first derivative

Q(1) (β; τ, θ) = E [{I (Y (θ) ≤ X ′ (θ) β)− τ}X (θ)]

= E [{F (X ′ (θ) β|X, θ)− τ}X (θ)] .

HenceQ (·; τ, θ) is twice continuously differentiable with respect to β, with a second derivative

Q(2) (β; τ, θ) = E [f (X ′ (θ) β|X, θ)X (θ)X ′ (θ)]

=

∫
f (x′β|x, θ) xx′fX (x|θ) dx.

Let B(θ) be the set of β′ such that 0 < F (x′ (θ) β|x, θ) < 1 for some inner x of X (θ),

B (θ) =
{
β; there is an inner x of X (θ) such that y (θ|x) < x′β < y (θ|x)

}

where y (θ|x) = F−1 (0|x) and y (θ|x) = F−1 (1|x). The next Lemma describes some key

properties of Q(2) (β; τ, θ) and Q (β; τ, θ). Note that Proposition 1 follows from Lemma 2-

(ii).

Lemma 2 Under Assumption 3 it holds

(i) Q(2) (β; τ, θ) is continuous with respect to its three arguments, with

∥∥Q(2) (β1; τ, θ)−Q(2) (β0; τ, θ)
∥∥ ≤ C ‖β1 − β0‖

for all β0 and β1, θ ∈ Θ and τ ∈ [0, 1].
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(ii) Q(2) (β; τ, θ) is strictly positive for all β ∈ B(θ), θ ∈ Θ and τ ∈ [0, 1].

(iii) For θ ∈ Θ and τ ∈ (0, 1), Q (β; τ, θ) has a unique minimizer β (τ ; θ) which is continu-

ously differentiable in θ and τ with

∂β (τ ; θ)

∂θ′
= H (τ ; θ)−1D (τ ; θ) ,

∂β (τ ; θ)

∂τ
= H (τ ; θ)−1

E [X (θ)] ,

where H (τ ; θ) and D (τ ; θ) are as in Proposition 1.

Proof of Lemma 2. (i) directly follows from Assumption 3 and the Lebesgue Domi-

nated Convergence Theorem. For (ii), Assumption 3 gives that, for each β in B(θ), there is

an open subset O = Oβ,θ of X (θ) such that

Q(2) (β; τ, θ) �
∫

O
xx′dx.

Hence, H(τ ; θ) = Q(2) (β(τ ; θ); τ, θ) has an inverse. For (iii), observe that Q (β; τ, θ) is

bounded away from −∞, so that it has local minimizers which must satisfy the first order

condition

0 = Q(1) (β; τ, θ) = E [{F (X ′ (θ) β|X, θ)− τ}X (θ)] . (A1.1)

Hence these minimizers must lie in B(θ) as outside this set it holds F (X ′ (θ) β|X, θ) = 1 a.s,

or F (X ′ (θ) β|X, θ) = 0 a.s. Now, if there are two such local minimizers β0 (τ ; θ) and β1 (τ ; θ),

convexity implies that all βπ (τ ; θ) = (1− π) β0 (τ ; θ) + πβ1 (τ ; θ), 0 ≤ π ≤ 1, must be global

minimizers, contradicting thatQ(2) (βπ (τ ; θ) ; τ, θ) is strictly positive asQ
(1) (βπ (τ ; θ) ; τ, θ) =

0 for all π in [0, 1]. The rest of (iii) follows from (i), (ii) and the Implicit Function Theorem.�

Proof of Proposition 1. follows from Lemma 2-(iii). �

Proof of Proposition 2-(i). This proof conducts a uniform order study of the Bahadur

error term (3.4). Define the following

Ln(γ, τ ; θ) =
n∑

i=1

{
ρτ

(
Yi(θ)−Xi(θ)

′
(
γ√
n
+ β(τ ; θ)

))
− ρτ (Yi(θ)−Xi(θ)

′β(τ ; θ))

}
,

such that √
n
(
β̂(τ ; θ)− β(τ ; θ)

)
= argmin

γ
Ln(γ, τ ; θ).
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In what follows, we write

α̂(τ ; θ) ≡ −H−1 (τ ; θ) Ŝ (τ ; θ) (A1.2)

Ŝ (τ ; θ) =
1√
n

n∑

i=1

si(τ ; θ). (A1.3)

It follows from equation (3.3) that

Ê(τ ; θ) = argmin
ǫ

Ln(α̂(τ ; θ), ǫ, τ ; θ), where

Ln(γ, ǫ, τ ; θ) = Ln(γ + ǫ, τ ; θ)− Ln(γ, τ ; θ)

.

(A1.4)

Consider the following decomposition of Ln(γ, ǫ, τ ; θ).

Ln(γ, ǫ, τ ; θ) = L
0
n(γ, ǫ, τ ; θ) + Rn(γ, ǫ, τ ; θ), where

L
0
n(γ, ǫ, τ ; θ) = Ŝ(τ ; θ)′(γ + ǫ) +

1

2
(γ + ǫ)′H(τ ; θ)(γ + ǫ)− Ŝ(τ ; θ)′γ − 1

2
γ′H(τ ; θ)γ

= Ŝ(τ ; θ)′ǫ+
1

2
ǫ′H(τ ; θ)(ǫ+ 2γ).

(A1.5)

L
0
n(γ, ǫ, τ ; θ) is the quadratic approximation of Ln(γ, ǫ, τ ; θ) and Rn(γ, ǫ, τ ; θ) is the re-

mainder term. A uniform order for Ê(τ ; θ) relies on a uniform order study for the re-

mainder term Rn(γ, ǫ, τ ; θ), using concepts of maximal inequality under bracketing condi-

tions given in Massart (2007), and on linearization techniques to study Ê(τ ; θ) given in

Hjort & Pollard (2011). The remainder term is Rn(γ, ǫ, τ ; θ) = Ln(γ, ǫ, τ ; θ)−L
0
n(γ, ǫ, τ ; θ) =∑n

i=1 Ri(γ, ǫ, τ ; θ), where

Ri(γ, ǫ, τ ; θ) =

{
ρτ

(
Yi(θ)−Xi(θ)

′
(
γ+ǫ√
n

+ β(τ ; θ)

))
− ρτ

(
Yi(θ)−Xi(θ)

′
(
γ√
n
+β(τ ; θ)

))}

− si(τ ; θ)√
n

′
ǫ− 1

2
ǫ′
H(τ ; θ)

n
(ǫ+ 2γ).

(A1.6)

Define also

Ri(γ, ǫ, τ ; θ) = Ri(γ, ǫ, τ ; θ) +
1

2
ǫ′
H(τ ; θ)

n
(ǫ+ 2γ), (A1.7)

R
1
i (γ, ǫ, τ ; θ) = Ri(γ, ǫ, τ ; θ)− E[Ri(γ, ǫ, τ ; θ)|Xi(θ)], (A1.8)

R
2
i (γ, ǫ, τ ; θ) = E[Ri(γ, ǫ, τ ; θ)|Xi(θ)]−

1

2
ǫ′
H(τ ; θ)

n
(ǫ+ 2γ), (A1.9)
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such that
Rn(γ, ǫ, τ ; θ) = R

1
n(γ, ǫ, τ ; θ) + R

2
n(γ, ǫ, τ ; θ), with,

R
j
n(γ, ǫ, τ ; θ) =

n∑

i=1

R
j
i (γ, ǫ, τ ; θ), j = 1, 2.

(A1.10)

We now present some intermediary results in Lemma 3, 4 and 5, on which the proof

depends.

Lemma 3 Under Assumption 3, for real numbers tγ,tǫ > 0 with tγ ≍ log1/2 n, tγ ≥ 1,

tǫ =
(
t log3/4 n

)
/n1/4 for some t > 0, such that (tγ + tǫ)

1/2/tǫ ≤ O
(
n1/4/ log1/2 n

)
, for large

n,

E

[
sup

(γ,ǫ,τ ;θ)∈B(0,tγ)×B(0,tǫ)×[τ ,τ ]×Θ

|R1
n(γ, ǫ, τ ; θ)|

]
≤ C

log1/2 n

n1/4
tǫ(tγ + tǫ)

1/2.

Lemma 4 Under Assumption 3, for real numbers tγ,tǫ > 0 defined as in Lemma 3, such

that tγ/tǫ = O
(
n/ log1/2 n

)
, for large n,

E

[
sup

(γ,ǫ,τ ;θ)∈B(0,tγ)×B(0,tǫ)×[τ ,τ ]×Θ

|R2
n(γ, ǫ, τ ; θ)|

]
≤ C

tǫ(tγ + tǫ)
2

n1/2
.

Lemma 5 Under Assumption 3,

sup
(τ,θ)∈[τ ,τ ]×Θ

∣∣∣
∣∣∣Ŝ(τ ; θ)

∣∣∣
∣∣∣ = OP(log

1/2 n).

Proofs of Lemma 3, 4 and 5 are provided in Appendix 2. In what follows,

tn = t
log3/4 n

n1/4
, t > 0 ,

and since (log n)/n = o(1), tn = o
(
log1/2 n

)
. tn plays the role of tǫ in the Lemmas, while tγ

is chosen such that tγ ≍ log1/2 n. Hence,

(tγ + tǫ)
1/2

tǫ
≍ n1/4 log1/4 n

t log3/4 n
=

1

t
O

(
n1/4

log1/2 n

)

tγ
tǫ

≤ C
n1/4 log1/2 n

t log3/4 n
≤ C

n1/2

log1/2 n
≤ C

n1/2n1/2

log1/2 n
= O

(
n

log1/2 n

)
,

for large n. These choices for tγ and tǫ satisfy the requirements for the Lemmas. Lemma

2-(ii), which proves existence of H−1 for all τ ∈ [τ , τ ] and θ ∈ Θ, implies that α̂(τ ; θ) is well
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defined with a probability tending to 1. Lemma 5 implies

sup
(τ,θ)∈[τ ,τ ]×Θ

||α̂(τ ; θ)|| = OP

(
log1/2 n

)
. (A1.11)

Consider ξ > 0 arbitrarily small. Then there exists a Cξ such that, for large n and some

ϕ > 0,

P

(
sup

(ǫ,τ,θ)∈B(0,tn)×[τ ,τ ]×Θ

|Rn(α̂(τ ; θ), ǫ, τ ; θ)| ≥
ϕt2n
4

)

≤ P

(
sup

(ǫ,τ,θ)∈B(0,tn)×[τ ,τ ]×Θ

|Rn(α̂(τ ; θ), ǫ, τ ; θ)| ≥
ϕt2n
4
, sup

τ,θ∈[τ ,τ ]×Θ

||α̂(τ ; θ)|| ≤ Cξ log
1/2 n

)

+ P

(
sup

τ,θ∈[τ ,τ ]×Θ

||α̂(τ ; θ)|| > Cξ log
1/2 n

)

≤ P

(
sup

(γ,ǫ,τ,θ)∈B(0,Cξ log
1/2 n)×B(0,tn)×[τ ,τ ]×Θ

|Rn(γ, ǫ, τ ; θ)| ≥
ϕt2n
4

)
+ ξ.

Since Rn = R
1
n + R

2
n from (A1.10), Lemmas 3 and 4, and Markov inequality give

P

(
sup

(γ,ǫ,τ,θ)∈B(0,Cξ log
1/2 n)×B(0,tn)×[τ ,τ ]×Θ

|Rn(γ, ǫ, τ ; θ)| ≥
ϕt2n
4

)

≤ C

t2n


E


 sup
(γ,ǫ,τ,θ)∈B(0,Cξ log

1/2 n)
×B(0,tǫ)×[τ ,τ ]×Θ

∣∣R1
n(γ, ǫ, τ ; θ)

∣∣


+ E


 sup

(γ,ǫ,τ,θ)∈B(0,Cξ log
1/2 n)

×B(0,tǫ)×[τ ,τ ]×Θ

∣∣R2
n(γ, ǫ, τ ; θ)

∣∣







≤ C

t2n



tn

(
Cξ log

1/2 n+ tn

)1/2
log1/2 n

n1/4
+
tn

(
Cξ log

1/2 n+ tn

)2

n1/2




=
C

tn

log3/4 n

n1/4

((
Cξ +

tn

log1/2 n

)1/2

+

(
log n

n

)1/4(
Cξ +

tn

log1/2 n

)2
)
.

Using tn =
(
t log3/4 n

)
/n1/4 and since (log n)/n = o(1), we get

lim
n→∞

P

(
sup

(ǫ,τ,θ)∈B(0,tn)×[τ ,τ ]×Θ

|Rn(α̂(τ ; θ), ǫ, τ ; θ)| ≥
ϕt2n
4

)
= ξ +O

(
Cξ

1/2

t

)
. (A1.12)
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We now find a uniform order for Ê(τ ; θ). Consider Tn ≥ tn and ǫ = Tne, ||e|| = 1 so that

||ǫ|| ≥ tn. Since ρτ (·) is convex, from the definition in (A1.4), Ln (β(τ ; θ), ǫ, τ ; θ) is also

convex. Recall that from (A1.4) and (A1.5), Ln (β(τ ; θ), 0, τ ; θ) = 0 and Ln = L
0
n + Rn.

Then, using convexity property, we have

tn
Tn

Ln (α̂(τ ; θ), ǫ, τ ; θ) =
tn
Tn

Ln (α̂(τ ; θ), ǫ, τ ; θ) +

(
1− tn

Tn

)
Ln (α̂(τ ; θ), 0, τ ; θ)

≥ Ln

(
α̂(τ ; θ),

tnǫ

Tn

, τ ; θ

)
= Ln (α̂(τ ; θ), tne, τ ; θ)

= L
0
n (α̂(τ ; θ), tne, τ ; θ) + Rn (α̂(τ ; θ), tne, τ ; θ) .

Since from (A1.4), Ê(τ ; θ) = argminǫ Ln (α̂(τ ; θ), ǫ, τ ; θ), we have

{∣∣∣
∣∣∣Ê(τ ; θ)

∣∣∣
∣∣∣ ≥ tn

}
⊂
{

inf
ǫ;||ǫ||≥tn

Ln (α̂(τ ; θ), ǫ, τ ; θ) ≤ inf
ǫ;||ǫ||<tn

Ln (α̂(τ ; θ), ǫ, τ ; θ)

}

⊂
{

inf
ǫ;||ǫ||≥tn

Ln (α̂(τ ; θ), ǫ, τ ; θ) ≤ Ln (α̂(τ ; θ), 0, τ ; θ) = 0

}

⊂
{

inf
e;||e||=1

[
L

0
n (α̂(τ ; θ), tne, τ ; θ) + Rn (α̂(τ ; θ), tne, τ ; θ)

]
≤ 0

}

⊂
{

inf
||ǫ||=tn

L
0
n (α̂(τ ; θ), ǫ, τ ; θ)− sup

||ǫ||=tn

∣∣∣Rn

(
δ̂(τ ; θ), ǫ, τ ; θ

)∣∣∣ ≤ 0

}
.

Then, it follows for supremum of
∣∣∣
∣∣∣Ê(τ ; θ)

∣∣∣
∣∣∣ that

{
sup

(τ,θ)∈[τ ,τ ]×Θ

∣∣∣
∣∣∣Ê(τ ; θ)

∣∣∣
∣∣∣ ≥ tn

}
=

⋃

(τ,θ)∈[τ ,τ ]×Θ

{∣∣∣
∣∣∣Ê(τ ; θ)

∣∣∣
∣∣∣ ≥ tn

}

⊂
⋃

(τ,θ)∈[τ ,τ ]×Θ

{
inf

||ǫ||=tn
L

0
n (α̂(τ ; θ), ǫ, τ ; θ)− sup

||ǫ||=tn

|Rn (α̂(τ ; θ), ǫ, τ ; θ)| ≤ 0

}

⊂
{

inf
(τ,θ)∈[τ ,τ ]×Θ

inf
||ǫ||=tn

L
0
n (α̂(τ ; θ), ǫ, τ ; θ) ≤ sup

||ǫ||=tn

|Rn (α̂(τ ; θ), ǫ, τ ; θ)|
}
. (A1.13)

Under Assumption 3, there exists a C > 0 such that for all τ ∈ [τ , τ ] and θ ∈ Θ,

H(τ ; θ) ≻ CM ; where M = E [X(θ)X(θ)′] ,
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and for all u in R
P ,

u′Mu = E [u′X(θ)X(θ)′u] = E

[
(u′X(θ))

2
]

=

∫
(u′x)

2
fX(x|θ)dx ≥ C

∫

H
(u′x)

2
dx ≥ C ||u||2 ,

where the last bound uses the fact that u 7→
(∫

(u′x)2 dx
)1/2

is a norm and norm over RP are

equivalent. Hence, for any non-zero u ∈ R
P , M is a positive definite matrix. This implies

that if φ
M

is the smallest eigenvalue of M , then, φ
M
> 0. Since H(τ ; θ) ≻ CM , it follows

for the smallest eigenvalue of the positive definite symmetric matrix H(τ ; θ), denoted by

φ
n
(τ ; θ), that

inf
(τ,θ)∈[τ ,τ ]×Θ

φ
n
(τ ; θ) ≥ Cφ

M
+ oP(1); for some φ

M
> 0. (A1.14)

Consider inf(τ,θ)∈[τ ,τ ]×Θ inf ||ǫ||=tn L
0
n (α̂(τ ; θ), ǫ, τ ; θ). The definition of L0

n in (A1.5) and

the result obtained in (A1.14) give, for any ǫ with ||ǫ|| ≥ tn,

L
0
n (α̂(τ ; θ), ǫ, τ ; θ) =

1

2
ǫ′H(τ ; θ)ǫ ≥ 1

2
φ
n
t2n.

The above result, (A1.12) and (A1.13) give

lim
n→∞

P


 sup

(τ,θ)∈[τ ,τ ]
×Θ

∣∣∣
∣∣∣Ê(τ ; θ)

∣∣∣
∣∣∣ ≥ tn


 ≤ lim

n→∞
P


 sup

(ǫ,τ,θ)∈B(0,tn)
×[τ ,τ ]×Θ

|Rn (α̂(τ ; θ), ǫ, τ ; θ)| ≥
1

2
φ
n
t2n




≤ lim
n→∞

P


 sup

(ǫ,τ,θ)∈B(0,tn)
×[τ ,τ ]×Θ

|Rn (α̂(τ ; θ), ǫ, τ ; θ)| ≥
1

4
φt2n




= ξ +O

(
Cξ

1/2

t

)
.

The latter can be made arbitrarily small by choosing ξ arbitrarily small and t large enough.

Hence, recalling that tn =
(
t log3/4 n

)
/n1/4, we have,

sup
(τ,θ)∈[τ ,τ ]×Θ

∣∣∣
∣∣∣Ê(τ ; θ)

∣∣∣
∣∣∣ = OP

(
log3/4 n

n1/4

)
.

This proves Proposition 2-(i). Finally, note thatOP

(
log3/4 n
n1/4

)
=
(

log3/4 n
n1/4

)
OP(1) = o(1)OP(1) =

oP(1). �
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Proof of Proposition 2-(ii). Setting Zi (θ) = Yi (θ)−X ′
i (θ) β (τ ; θ),

Ŝ (τ ; θ)− Ŝ (τ ; θ0) =
1√
n

n∑

i=1

s̃i(τ ; θ), where

s̃i(τ ; θ) = [Xi(θ) {I(Zi(θ) ≤ 0)− τ} −Xi(θ0) {I(Zi(θ0) ≤ 0)− τ}]
≤ 2(Xi(θ) +Xi(θ0))

This implies that

∣∣∣∣
∣∣∣∣
s̃i(τ ; θ)√

n

∣∣∣∣
∣∣∣∣ ≤

C√
n
≍ n−1/2 ≡ ν ′′′

By Assumption 2, for C(1) < ∞ such that supθ∈Θ
∥∥ ∂
∂θ′

[Zi(θ)]
∥∥ ≤ C(1), Taylor inequality

gives |Zi(θ)− Zi(θ0)| ≤ C(1) ||θ − θ0||. Then, under Assumptions 1 and 3, we have

V ar

(
s̃i(τ ; θ)√

n

)

=
1

n
E
[
((X (θ0) τ −X (θ) τ) + (X (θ) I [Z (θ) ≤ 0]−X (θ0) I [Z (θ0) ≤ 0]))2

]

≤ 2

n
E
[
(X (θ0) τ −X (θ) τ)2 + (X (θ) (I [Z (θ) ≤ 0]− I [Z (θ0) ≤ 0])

+I [Z (θ0) ≤ 0] (X (θ)−X (θ0)))
2]

≤ C

n
‖θ − θ0‖2 +

C

n
E

[
I

(
− C√

n
≤ Z (θ0) ≤

C√
n

)]
≤ C

n
‖θ − θ0‖ = O

(
n−3/2

)
.

Hence, the standard deviation of s̃i(τ ; θ)/
√
n is σ′′′ ≍ n−3/4. Then arguing as in Steps 2-3 of

Lemma 3 (see Appendix 2),

E

[
sup

τ∈[τ ,τ ],||θ−θ0||≤C/
√
n

∣∣∣
∣∣∣Ŝ (τ ; θ)− Ŝ (τ ; θ0)

∣∣∣
∣∣∣
]
= O

(
n1/2σ′′′ log1/2 n+ (σ′′′ + ν ′′′) log n

)

= O

(
log1/2 n

n1/4
+

log n

n3/4
+

log n

n1/2

)

= O

(
log1/2 n

n1/4

(
1 +

log1/2 n

n1/2
+

log1/2 n

n1/4

))

= O

(
log1/2 n

n1/4

)
.
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Note that by Lemma 2 we have

sup
(τ,θ)∈[τ ,τ ]×B(θ0,Cn−1/2)

∥∥H−1 (θ; τ)−H−1 (θ0; τ)
∥∥ = O

(
n−1/2

)
;

sup
(τ,θ)∈[τ ,τ ]×B(θ0,Cn−1/2)

∥∥H−1 (θ; τ)
∥∥ ≤ C.

Markov inequality and Lemma 5, then, explain the order in (3.5). �

Appendix 2. Proof of intermediary Lemmas for Propo-

sition 2

Proof of Lemma 3: Bound for R
1
n(γ, ǫ, τ ; θ). In what follows, we treat quantities

varying with i as random variables. The proof of Lemma 3 proceeds in steps as follows.

Step 1. Variance of R(γ, ǫ, τ ; θ). Note that ρa(b) = (a − I(b < 0))b =
∫ b

0
(a − I(t < 0))dt.

Denoting

δ(γ; θ) = X(θ)′γ/
√
n, and Z(τ ; θ) = Y (θ)−X(θ)′β(τ ; θ), (A2.1)

and using definitions in (A1.6) and (A1.7), for a given θ ∈ Θ we have

R(γ, ǫ, τ ; θ) = ρτ (Z(τ ; θ)− δ(γ + ǫ; θ))

− ρτ (Z(τ ; θ)− δ(γ; θ))− δ(ǫ; θ) (I (Z(τ ; θ) ≤ 0)− τ)

=

∫ δ(γ;θ)+δ(ǫ;θ)

δ(γ;θ)

(I (Z(τ ; θ) ≤ t)− I (Z(τ ; θ) ≤ 0)) dt.

(A2.2)

Using Cauchy-Schwarz inequality,

R(γ, ǫ, τ ; θ)2 ≤ |δ(ǫ; θ)|
∣∣∣∣∣

∫ δ(γ;θ)+δ(ǫ;θ)

δ(γ;θ)

(I (Z(τ ; θ) ≤ t)− I (Z(τ ; θ) ≤ 0))2 dt

∣∣∣∣∣

≤ |δ(ǫ; θ)|
∣∣∣∣∣

∫ δ(γ;θ)+δ(ǫ;θ)

δ(γ;θ)

I (|Z(τ ; θ)| ≤ |t|) dt
∣∣∣∣∣ .

Under Assumption 3,

E[R2(γ, ǫ, τ ; θ)|X(θ)] ≤ |δ(ǫ; θ)|
∣∣∣∣∣

∫ δ(γ;θ)+δ(ǫ;θ)

δ(γ;θ)

{∫
I (|y −X(θ)′β(τ ; θ)| ≤ |t|) f(y|X, θ)dy

}
dt

∣∣∣∣∣ ,
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≤ ||f(·|·, ·)||∞ |δ(ǫ; θ)|
∣∣∣∣∣

∫ δ(γ;θ)+δ(ǫ;θ)

δ(γ;θ)

{∫
I (|y −X(θ)′β(τ ; θ)| ≤ |t|) dy

}
dt

∣∣∣∣∣ ,

≤ ||f(·|·, ·)||∞ |δ(ǫ; θ)|
∣∣∣∣∣2
∫ δ(γ;θ)+δ(ǫ;θ)

δ(γ;θ)

|t|dt
∣∣∣∣∣ ,

= ||f(·|·, ·)||∞ |δ(ǫ; θ)|
∣∣∣∣∣2
∫ δ(ǫ;θ)

0

|δ(γ; θ) + u|du
∣∣∣∣∣ (change of variable t=u+δ(γ; θ))

≤ ||f(·|·, ·)||∞ |δ(ǫ; θ)|
∣∣∣∣∣2
∫ |δ(ǫ;θ)|

0

(|δ(γ; θ)|+ |u|)du
∣∣∣∣∣ ,

≤ C||f(·|·, ·)||∞ |δ(ǫ; θ)|2 (|δ(γ; θ)|+ |δ(ǫ; θ)|) ≤ C||X(θ)||3
n3/2

||ǫ||2(||γ||+ ||ǫ||).

Under Assumption 3,

Var(R(γ, ǫ, τ ; θ)) ≤ E[R2(γ, ǫ, τ ; θ)] = E[E[R2(γ, ǫ, τ ; θ)|X(θ)]]

≤ E

[
C||X(θ)||3

n3/2
||ǫ||2(||γ||+ ||ǫ||)

]

=
C||ǫ||2(||γ||+ ||ǫ||)

n3/2

∫
||x||3fX(x|θ)dx ≤ C||ǫ||2(||γ||+ ||ǫ||)

n3/2
.

(A2.3)

Step 2. Brackets of {R(γ, ǫ, τ ; θ)}. Let F = {R(γ, ǫ, τ ; θ); (γ, ǫ, τ ; θ) ∈ B(0, tγ) × B(0, tǫ) ×
[τ , τ ]× Θ}. This step finds coverings of F with brackets [R,R], where the bracket [R,R] is

the set of all Rj such that R ≤ Rj ≤ R almost surely. Define for γ in R
P

R̃(γ, τ ; θ) =

∫ δ(γ;θ)

0

(I (Z(τ ; θ) ≤ t)− I (Z(τ ; θ) ≤ 0)) dt,

which is such that, from (A2.2),

R(γ, ǫ, τ ; θ) = R̃(γ + ǫ, τ ; θ)− R̃(γ, τ ; θ) (A2.4)

Let sgn(t) = I(t ≥ 0)− I(t < 0), such that with a change of variable u = t/sgn(δ(γ; θ)), we

have

R̃(γ, τ ; θ) =

∫ |δ(γ;θ)|

0

(I(Z(τ ; θ) ≤ sgn(δ(γ; θ))u)− I(Z(τ ; θ) ≤ 0))sgn(δ(γ; θ))du
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=

∫ |δ(γ;θ)|

0

|I(Z(τ ; θ) ≤ sgn(δ(γ; θ))u)− I(Z(τ ; θ) ≤ 0)|du

= |δ(γ; θ)|
∫ 1

0

|I(Z(τ ; θ) ≤ δ(γ; θ)v)− I(Z(τ ; θ) ≤ 0)|dv,

= |δ(γ; θ)|
∫ 1

0

|I(Z(τ ; θ) lies between 0 and δ(γ; θ)v)|dv, (A2.5)

where the second last line is obatined using change of variable v = u/|δ(γ; θ)|. Hence,

0 ≤ R̃(γ, τ ; θ) ≤ |δ(γ; θ)|. Then, using the definition of δ(γ; θ) in (A2.1), we get for all

γ ∈ B(0, tγ + tǫ),

|R̃(γ, τ ; θ)| ≤ ||X(θ)|| ||γ||√
n

≤ ν

4
, where ν ≍ tγ + tǫ√

n
. (A2.6)

It follows from (A2.4) and the result of Step 1 given in (A2.3) that

E

[
|R(γ, ǫ, τ ; θ)− E[R(γ, ǫ, τ ; θ)]|k

]
= E

[∣∣∣R̃(γ+ǫ, τ ; θ)− E

[
R̃(γ+ǫ, τ ; θ)

]
−

{
R̃(γ, τ ; θ)− E

[
R̃(γ, τ ; θ)

]}∣∣∣
k-2

|R(γ, ǫ, τ ; θ)− E [R(γ, ǫ, τ ; θ)]|2
]

≤
(
4× ν

4

)k−2

Var(R(γ, ǫ, τ ; θ)) ≤ k!

2
νk−2σ2, where σ2 ≍ t2ǫ(tǫ + tγ)

n3/2
.

(A2.7)

In order to find covering for F , we first define F̃t = {R̃(γ, τ ; θ); (γ, τ, θ) ∈ B(0, t)× [τ , τ ]×Θ}
and show that it is sufficient to find covering of F̃t, with set of brackets {[Rj, Rj], 1 ≤ j ≤
eh(tb;t)}, where tb ∈ (0, 1) denotes length of a bracket, satisfying,

E

[∣∣Rj −Rj

∣∣k
]
≤ k!

8

(
ν

2

)k−2

t2b , (A2.8)

h(tb; t) ≤ C log

(
nt

tb

)
. (A2.9)

Consider the following two coverings of F̃tγ and F̃tγ+tǫ

F̃tγ ⊂
⋃

1≤j≤eh(tb;tγ )

[
R1

j , R
1

j

]
, F̃tγ+tǫ ⊂

⋃

1≤j≤eh(tb;tγ+tǫ)

[
R2

j , R
2

j

]

If such coverings of F̃tγ and F̃tγ+tǫ exist, then for every (γ, ǫ, τ ; θ), R̃(γ, τ ; θ) ∈
[
R1

j1
, R

1

j1

]
,

R̃(γ + ǫ, τ ; θ) ∈
[
R2

j2
, R

2

j2

]
, for some j1 and j2, and from (A2.4), we have R(γ, ǫ, τ ; θ) ∈

[
R2

j2
−R

1

j1
, R

2

j2
−R1

j1

]
. Hence, F can be covered by eh

′(tb;t) brackets such that, using (A2.8)

38



and (A2.9),

h′(tb; t) = h(tb; tγ) + h(tb; tγ + tǫ) ≤ C log

(
n(tγ + tǫ)

tb

)
, and

E

[∣∣∣R2

j2
−R1

j1
−
(
R2

j2
−R

1

j1

)∣∣∣
k
]
= E

[∣∣∣
(
R

2

j2
−R2

j2

)
+
(
R

1

j1
−R1

j1

)∣∣∣
k
]

≤ 2k−1

(
E

[∣∣∣R2

j2
−R2

j2

∣∣∣
k
]
+ E

[∣∣∣R1

j1
−R1

j1

∣∣∣
k
])

≤ 2k−1k!

8

(
ν

2

)k−2

t2b =
k!

2
νk−2t2b .,

where the inequality in the second line of the above equation follows because, for a > 0,

b > 0, (a + b)k ≤ 2k−1(ak + bk). We now construct covering for F̃t. Lemma 2 proves that

β(τ ; θ) is continuously differentiable in µ = (τ, θ) over [τ , τ ] × Θ with bounded derivative.

Then from from Taylor’s inequality we get, for all µ1, µ2 in [τ , τ ]×Θ,

|x(θ)′β(µ1)− x(θ)′β(µ2)| ≤ C ||µ1 − µ2|| . (A2.10)

Also, given θ ∈ Θ, for all γ1, γ2 in R
P , we have

|δ(γ1; θ1)− δ(γ2; θ2)| ≤
C√
n
||γ1 − γ2|| . (A2.11)

Define r(q, δ) =
∫ 1

0
ρ(q, δv)dv, where

ρ(q, δ) = |I(q ≤ δ)− I(q ≤ 0)| = I (q ∈ (0, δ]) I (δ ≥ 0) + I (q ∈ [δ, 0)) I (δ < 0) .

So, from (A2.5), we see

R̃(γ, τ ; θ) = |δ(γ; θ)| r (Z(τ ; θ), δ(γ; θ)) .

Note that ρ(q, δ) is a step function which is 1 for q between 0 and δ, and 0 elsewhere, for

a given δ. Let ρ(q, δ) and ρ(q, δ) be smooth approximations of ρ(q, δ), constructed using

Friedrichs mollifier of the form

Φ(x) = C




e−1/(1−|x|2), if |x| < 1

0, if |x| ≥ 1
,

where C > 0 and chosen so that
∫ 1

−1
Φ(x)dx = 1 (see Stroock (2011), chapter 6 for details).

As such, for η > 0, the convolution procedure yields that there exist smooth approximation
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functions ρ(q, δ), ρ(q, δ), and an open set Dη ⊂ R
2 such that:

(i) 0 ≤ ρ(q, δ) ≤ ρ(q, δ) ≤ ρ(q, δ) ≤ 1 for all (q, δ) ∈ Dη, with ρ(q, δ) = ρ(q, δ) = ρ(q, δ) if

(q, δ) ∈ R
2\Dη,

(ii) sup(q,δ)∈Dη

(∣∣∣∂ρ(q,δ)∂q

∣∣∣+
∣∣∣∂ρ(q,δ)∂δ

∣∣∣+
∣∣∣∂ρ(q,δ)∂q

∣∣∣+
∣∣∣∂ρ(q,δ)∂δ

∣∣∣
)

≤ Cη−1/2, and,
∂ρ(q,δ)

∂q
=

∂ρ(q,δ)

∂δ
=

∂ρ(q,δ)
∂q

= ∂ρ(q,δ)
∂δ

= ∂ρ(q,δ)
∂q

= ∂ρ(q,δ)
∂δ

= 0, when (q, δ) ∈ R
2\Dη,

(iii) Dη ⊂ D′
η =

{
(q, δ) ∈ R

2; |q| ≤ Cη1/2 or |q − δ| ≤ Cη1/2
}

Define r(q, δ) =
∫ 1

0
ρ(q, vδ)dv, r(q, δ) =

∫ 1

0
ρ(q, vδ)dv and

R(γ, τ ; θ) = |δ(γ; θ)| r (Z(τ ; θ), δ(γ; θ)) , R(γ, τ ; θ) = |δ(γ; θ)| r (Z(τ ; θ), δ(γ; θ))

such that condition (i) implies

R(γ, τ ; θ) ≤ R̃(γ, τ ; θ) ≤ R(γ, τ ; θ). (A2.12)

We now bound R(γ1, µ1)−R(γ2, µ2) and R(γ1, µ1)−R(γ2, µ2).

|R(γ1, µ1)−R(γ2, µ2)| = ||δ(γ1; θ1)| r (Z(µ1), δ(γ1; θ1))− |δ(γ2; θ2)| r (Z(µ2), δ(γ2; θ2))|
= ||δ(γ1; θ1)| r (Z(µ1), δ(γ1; θ1))− |δ(γ2; θ2)| r (Z(µ2), δ(γ2; θ2))

+ |δ(γ2; θ2)| r (Z(µ1), δ(γ1; θ1))− |δ(γ2; θ2)| r (Z(µ1), δ(γ1; θ1))|

Hence,

|R(γ1, µ1)−R(γ2, µ2)| ≤ | |δ(γ1; θ1)− δ(γ2; θ2)| r (Z(µ1), δ(γ1; θ1))

+ |δ(γ2; θ2)| |r (Z(µ1), δ(γ1; θ1))− r (Z(µ2), δ(γ2; θ2))| |.

Using the definitions of Z(τ ; θ) and δ(γ; θ) given in (A2.1), the bounds on increments of

x(θ)′β(τ ; θ) and δ(γ; θ) obtained in (A2.10) and (A2.11), respectively, conditions (i, ii) and

Taylor’s inequality, we have, for all (γ1, µ1), (γ2, µ2) in B(0, t)×[τ , τ ]×Θ, where t = tγ+tǫ ≥ 1,

|R(γ1, µ1)−R(γ2, µ2)| ≤
C ||γ1 − γ2||√

n
+ C

tη−1/2

√
n

(
||µ1 − µ2||+

||γ1 − γ2||√
n

)

≤ C√
n

(
1 + tη−1/2

)
(||µ1 − µ2||+ ||γ1 − γ2||) .

Arguing similarly gives

∣∣R(γ1, µ1)−R(γ2, µ2)
∣∣ ≤ C√

n

(
1 + tη−1/2

)
(||µ1 − µ2||+ ||γ1 − γ2||) .
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From van de Geer (2000) there exists a covering of B(0, t)× [τ , τ ]×Θ by L balls B((γj, µj), η)

with centre (γj, µj) and radius η such that

L ≤ max

(
1,

CtP

ηP+d+1

)
, where γ ∈ R

P , µ = (τ ; θ) ∈ [τ , τ ]× R
d. (A2.13)

Note that for a ball of radius η with centre (γj, µj) and (γ2, µ2) inside this ball,

|R(γj, µj)−R(γ2, µ2)| ≤
C√
n

(
1 + tη−1/2

)
η,

∣∣R(γj, µj)−R(γ2, µ2)
∣∣ ≤ C√

n

(
1 + tη−1/2

)
η

Define

R′
j = R(γj, µj)−

C√
n

(
1 + tη−1/2

)
η, R

′
j = R(γj, µj) +

C√
n

(
1 + tη−1/2

)
η,

Rj = max (0, R′
j), Rj = min

(
ν

2
, R

′
j

)
. (A2.14)

Then, from (A2.12), for (γ, θ) in B((γj, µj), η), we have

R′
j ≤ Rj ≤ R̃(γ, θ) ≤ Rj ≤ R

′
j (A2.15)

This implies that {
[
Rj, Rj

]
, j = 1, · · · , L} is a covering of F̃t, with,

∣∣Rj −Rj

∣∣ ≤ ν

2
≍ t√

n
, (A2.16)

since 0 ≤ Rj ≤ Rj ≤ ν/2. We now bound E

[(
Rj −Rj

)2]
and E

[∣∣Rj −Rj

∣∣k
]
. The

definitions of δ(γ; θ), Z(τ ; θ) in (A2.1), conditions (i, iii), Assumption 3, (A2.15) and the

inequality (a+ b)2 ≤ 2(a2 + b2) yield

E

[(
Rj −Rj

)2] ≤ E

[(
R

′
j −R′

j

)2]
= E

[((
R(γj, µj)−R(γj, µj)

)
+
2C√
n

(
1 + tη−1/2

)
η

)2
]

≤ 2E
[(
R(γj, µj)−R(γj, µj)

)2]
+
C

n

(
1 + tη−1/2

)2
η2

≤ 2E
[(
R(γj, µj)−R(γj, µj)

)2]
+
C(1 + t)2(η + η2)

n

= 2E
[
δ2(γj; θj) (r(Z(µj), δ(γj; θj))− r(Z(µj), δ(γj; θj)))

2]+ C(1 + t)2(η + η2)

n
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≤ 2 ||γj||2
n

∫
||x||2

{∫ {∫ 1

0

I ((Z(µj), δ(γj; θj)v) ∈ Dη) dv

}
f(y|x, θ)dy

}
fX(x|θ)dx

+
C(1 + t)2(η + η2)

n

≤ C
(1 + t)2

n
(η + η2 + η1/2),

where the last inequality follows from Assumption 3 and condition (iii), since

∫ ∫ 1

0

I ((Z(µj), δ(γj; θj)v) ∈ Dη) dvf(y|x, θ)dy ≤
∫

I (y ∈ Dη + x(θ)′β(µj)) f(y|x, θ)dy

≤ C

∫
I (y ∈ Dη + x(θ)′β(µj)) dy = C(length of Dη) ≤ Cη1/2.

The above bound, together with (A2.16), gives for any integer k ≥ 2,

E

[∣∣Rj −Rj

∣∣k
]
= E

[∣∣Rj −Rj

∣∣2 ∣∣Rj −Rj

∣∣k−2
]
≤
(
ν

2

)k−2

E

[(
Rj −Rj

)2]

≤ k!

8

(
ν

2

)k−2

C
(1 + t)2

n
(η + η2 + η1/2).

Hence, (A2.8) holds if

η =
1

3C
min

((
n

(1 + t)2

)1/2

tb,

(
n

(1 + t)2

)
t2b ,

(
n

(1 + t)2

)2

t4b

)
.

Recall that t ≥ 1 and tb ∈ (0, 1). Then it follows from (A2.13)

L = eh(tb;t) ≤ max


1,

CtP

min

((
n

(1+t)2

)1/2
tb,
(

n
(1+t)2

)
t2b ,
(

n
(1+t)2

)2
t4b

)P+d+1




≤ max

(
1,
Cnt5

t4b

)P+d+1

,

such that for large n,

h(tb; t) ≤ max

(
0, (P + d+ 1) log

(
Cnt5

t4b

))
= C(log n+ 5 log t− 4 log tb)

≤ 4C(log n+ log t− log tb)+C log t ≤ 4C log

(
nt

tb

)
+C log

(
nt

tb

)
≤ C log

(
nt

tb

)
,
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which proves (A2.9). This completes our task of constructing covering for F̃t.

Step 3. Bound for E
(
sup(γ,ǫ,τ ;θ) |R1

n(γ, ǫ, τ ; θ)|
)
.

E

[
sup

(γ,ǫ,τ ;θ)∈B(0,tγ)×B(0,tǫ)×[τ ,τ ]×Θ

∣∣R1
n(γ, ǫ, τ ; θ)

∣∣
]

= E

[
sup

(γ,ǫ,τ ;θ)∈B(0,tγ)×B(0,tǫ)×[τ ,τ ]×Θ

∣∣∣∣∣

n∑

i=1

(Ri(γ, ǫ, τ ; θ)− E[Ri(γ, ǫ, τ ; θ)|X(θ)])

∣∣∣∣∣

]

≤ E

[
sup

(γ,ǫ,τ ;θ)∈B(0,tγ)×B(0,tǫ)×[τ ,τ ]×Θ

∣∣∣∣∣

n∑

i=1

(Ri(γ, ǫ, τ ; θ)− E[Ri(γ, ǫ, τ ; θ)])

∣∣∣∣∣

]

+ E

[
sup

(γ,ǫ,τ ;θ)∈B(0,tγ)×B(0,tǫ)×[τ ,τ ]×Θ

∣∣∣∣∣E
[

n∑

i=1

(Ri(γ, ǫ, τ ; θ)− E[Ri(γ, ǫ, τ ; θ)]) |X(θ)

]∣∣∣∣∣

]

≤ 2E

[
sup

(γ,ǫ,τ ;θ)∈B(0,tγ)×B(0,tǫ)×[τ ,τ ]×Θ

∣∣∣∣∣

n∑

i=1

(Ri(γ, ǫ, τ ; θ)− E[Ri(γ, ǫ, τ ; θ)])

∣∣∣∣∣

]

Let ν, σ, and h(·; ·) be as defined in Step 2 by equations (A2.6), (A2.7) and (A2.9). Recall

that t = tγ + tǫ ≥ 1 and σ < 1 ≤ n(tγ + tǫ). Let us use the notation h(u; t) = h(u). Applying

Theorem 6.8 of Massart (2007), we get

E


 sup

(γ,ǫ,τ ;θ)∈B(0,tγ)
×B(0,tǫ)×[τ ,τ ]×Θ

∣∣∣∣∣

n∑

i=1

(Ri(γ, ǫ, τ ; θ)− E[Ri(γ, ǫ, τ ; θ)])

∣∣∣∣∣


 ≤ C

(
n1/2

∫ σ

0

h1/2(u)du+(ν+σ)h(σ)

)
.

From the discussion in Step 2 equation (A2.9), since σ < 1, for all u ∈ (0, σ], h(u; t) =

h(u) ≤ C log (n(tγ + tǫ)/u). Therefore, by Cauchy-Schwarz inequality, we have

n1/2

∫ σ

0

h1/2(u)du ≤ (nσ)1/2
(∫ σ

0

h(u)du

)1/2

≤ C(nσ)1/2
(∫ σ

0

log

(
n(tγ + tǫ)

u

)
du

)1/2

= C(nσ)1/2
(
σ

(
log

(
n(tγ + tǫ)

σ

)
+ 1

))1/2

≤ Cn1/2σ log1/2
(
n(tγ + tǫ)

σ

)
.

With the assumptions on the order of tγ and tǫ as stated in the statement of Lemma 3 and
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the order of σ obtained in (A2.7), it follows

log

(
n(tγ + tǫ)

σ

)
≤ C log

(
n7/4(tγ + tǫ)

1/2

tǫ

)
≤ C log

(
n7/4n1/4

log1/2 n

)
≤ C log n.

Hence, on substituting, we get

E

[
sup

(γ,ǫ,τ ;θ)∈B(0,tγ)×B(0,tǫ)×[τ ,τ ]×Θ

∣∣R1
n(γ, ǫ, τ ; θ)

∣∣
]
≤ C

(
n1/2σ log1/2 n+ (ν + σ) log n

)

≤ C
tǫ (tǫ + tγ)

1/2 log1/2 n

n1/4

(
1+ log1/2 n

(
1

n1/2
+

(tǫ + tγ)
1/2

tǫn1/4

))
≤ C

log1/2 n

n1/4
tǫ (tǫ+tγ)

1/2 ,

which proves Lemma 3. �

Proof of Lemma 4. The proof of Lemma 4 follows the same steps as in Lemma 3

and, hence, a sketch of the proof is provided here. Treating quantities varying with i as

random variables, the expressions for R(γ, ǫ, τ ; θ) given in (A2.2), R2(γ, ǫ, τ ; θ) from (A1.9)

and H(τ ; θ) gives

R
2(γ, ǫ, τ ; θ)

=

δ(γ; θ)+δ(ǫ; θ)∫

δ(γ; θ)

(F (X(θ)′β(τ ; θ)+t|X, θ)− F (X(θ)′β(τ ; θ)|X, θ)) dt− 1

2
ǫ′H(τ ; θ)(ǫ+ 2γ)

=

δ(γ; θ) + δ(ǫ; θ)∫

δ(γ; θ)

(F (X(θ)′β(τ ; θ)+t|X, θ) -F (X(θ)′β(τ ; θ)|X, θ) -tf (X(θ)′β(τ ; θ)|X, θ)) dt

=

δ(γ; θ) + δ(ǫ; θ)∫

δ(γ; θ)

t

{∫ 1

0

(f (X(θ)′β(τ ; θ) + vt|X, θ)− f (X(θ)′β(τ ; θ)|X, θ)) dv
}
dt.

Define

r(γ, τ ; θ) =

∫ δ(γ;θ)

0

t

{∫ 1

0

(f (X(θ)′β(τ ; θ) + vt|X, θ)− f (X(θ)′β(τ ; θ)|X, θ)) dv
}
dt

which implies that R2(γ, ǫ, τ ; θ) = r(γ + ǫ, τ ; θ)− r(γ, τ ; θ). Using the definition of δ(γ; θ) in

(A2.1) and because under Assumption 3 we have n0 > 0 such that |f(a+ b|x, θ)− f(a|x, θ)| ≤

44



n0 |b|, from Lemma 2, we have

∣∣R2(γ, ǫ, τ ; θ)
∣∣ ≤ n0

2

∣∣∣∣∣

∫ δ(γ;θ)+δ(ǫ;θ)

δ(γ;θ)

t2dt

∣∣∣∣∣ = C
∣∣δ(ǫ; θ)

(
3δ(γ; θ)2 + 3δ(γ; θ)δ(ǫ; θ) + δ(ǫ; θ)2

)∣∣

≤ C |δ(ǫ; θ)|
(
3 |δ(γ; θ)|2 +3 |δ(γ; θ)| |δ(ǫ; θ)|+ |δ(ǫ; θ)|2

)
≤ C |δ(ǫ; θ)| (|δ(γ; θ)|+ |δ(ǫ; θ)|)2

≤ C
||X(θ)||3 ||ǫ|| (||γ||+ ||ǫ||)2

n3/2
.

|r(γ, τ ; θ)| ≤ C |δ(γ; θ)|3 ≤ C
||X(θ)||3 ||γ||3

n3/2

(A2.17)

Thus, for all γ ∈ B(0, tγ + tǫ) and all (τ, θ) ∈ [τ , τ ]×Θ, we have

|r(γ, τ ; θ)| ≤ ν ′

2
; ν ′ ≍ (tγ + tǫ)

3

n3/2
.

From (A2.17), the variance of R2(γ, ǫ, τ ; θ) for all (γ, ǫ, τ, θ) in B(0, tγ)×B(0, tǫ)× [τ , τ ]×Θ

is obtained as follows under Assumption 3,

Var
(
R

2(γ, ǫ, τ ; θ)
)
≤ E

[
R

2(γ, ǫ, τ ; θ)2
]
≤
(
C
||ǫ|| (||γ||+ ||ǫ||)2

n3/2

)2 ∫
||x(θ)||3 fX(x|θ)dx

≤ C
||ǫ||2 (||γ||+ ||ǫ||)4

n3
≤ (σ′)

2
; σ′ ≍ tǫ (tγ + tǫ)

2

n3/2
.

Then arguing as in step 2 of Lemma 3 to construct brackets, we have

E

[
sup

(γ,ǫ,τ,θ)∈B(0,tγ)×B(0,tǫ)×[τ ,τ ]×Θ

∣∣R2
n(γ, ǫ, τ ; θ)− E

[
R

2
n(γ, ǫ, τ ; θ)

]∣∣
]

≤ Cn1/2σ′ log1/2
(
n(tγ + tǫ)

σ′

)
+ (σ′ + ν ′) log

(
n(tγ + tǫ)

σ′

)

It follows from (A2.17) and Assumption 3 that for all (γ, ǫ, τ, θ) in B(0, tγ)×B(0, tǫ)×[τ , τ ]×Θ,

∣∣E
[
R

2
n(γ, ǫ, τ ; θ)

]∣∣ =
∣∣nE

[
R

2
i (γ, ǫ, τ ; θ)

]∣∣ ≤ nE
[∣∣R2

i (γ, ǫ, τ ; θ)
∣∣]

≤ C

n1/2
E
[
||X(θ)||3 ||ǫ|| (||γ||+ ||ǫ||)2

]

=
C

n1/2
||ǫ|| (||γ||+ ||ǫ||)2

∫
||x(θ)||3 fX(x|θ)dx ≤ C

n1/2
tǫ (tγ + tǫ)

2 ,
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and using the conditions on orders of tγ and tǫ as specified in Lemma 3, such that tγ ≥ 1

and tγ/tǫ = O
(
n/ log1/2 n

)
, we have

E

[
sup

(γ,ǫ,τ,θ)∈B(0,tγ)×B(0,tǫ)×[τ ,τ ]×Θ

|R2
n(γ, ǫ, τ ; θ)|

]

≤ E

[
sup

(γ,ǫ,τ,θ)∈B(0,tγ)×B(0,tǫ)×[τ ,τ ]×Θ

(∣∣R2
n(γ, ǫ, τ ; θ)− E

[
R

2
n(γ, ǫ, τ ; θ)

]∣∣+
∣∣E
[
R

2
n(γ, ǫ, τ ; θ)

]∣∣)
]

≤ Cn1/2σ′ log1/2
(
n(tγ + tǫ)

σ′

)
+ (σ′ + ν ′) log

(
n(tγ + tǫ)

σ′

)
+

C

n1/2
tǫ (tγ + tǫ)

2

≤ C
tǫ (tγ + tǫ)

2

n
log1/2

(
n5/2

tǫ (tγ + tǫ)

)(
1 +

(tγ + tǫ)

tǫn1/2
log1/2

(
n5/2

tǫ (tγ + tǫ)

))
+

C

n1/2
tǫ (tγ+tǫ)

2 .

Recall that tǫ = t log3/4 n/n1/4 = o(log1/2 n) and tγ ≍ log1/2 n, such that tγ + tǫ ≍ log1/2 n.

It follows that, for large n, n5/2/ (tǫ (tγ + tǫ)) ≤ (C/t)
(
n1/4/log5/4 n

)
≤ Cn1/4/t, such that

log
(
n5/2/ (tǫ (tγ + tǫ))

)
≤ C log n. Similarly, (tγ + tǫ)/

(
tǫn

1/2
)
≤ C/ (n log n)1/4. Thus,(

(tγ + tǫ)/
(
tǫn

1/2
))

× log1/2
(
n5/2/ (tǫ (tγ + tǫ))

)
≤ C(log n/n)1/4 = o(1) and(

1 + (tγ + tǫ)/
(
tǫn

1/2
)
× log1/2

(
n5/2/ (tǫ (tγ + tǫ))

))
= 1 + o(1) = 1. Therefore, it follows,

E

[
sup

(γ,ǫ,τ,θ)∈B(0,tγ)×B(0,tǫ)×[τ ,τ ]×Θ

|R2
n(γ, ǫ, τ ; θ)|

]
≤ C

tǫ (tγ + tǫ)
2

n
log1/2 n+

C

n1/2
tǫ (tγ+tǫ)

2

≤ C
tǫ (tγ+tǫ)

2

n1/2
,

for large n, which proves Lemma 4. �

Proof of Lemma 5. The first order condition for Q(β, τ ; θ) gives

E [X(θ) {F (X ′(θ)β(τ ; θ)|X, θ)− τ}] = 0.

Let sℓi(τ ; θ) denote the ℓ
th entry of the vector si(τ ;θ)√

n
in (A1.3). Assumption 3 gives, uniformly

in (τ, θ) ∈ [τ , τ ]×Θ for all i,

|sℓi(τ ; θ)| ≤ ν ′′, where ν ′′ ≍ n−1/2

Var(sℓ(τ ; θ)) ≤ E
[
(sℓ(τ ; θ))

2] ≤ E

[
1

n
Xℓ(θ)

2

]
=

1

n

∫
x2fX(x|θ)dx ≤ (σ′′)

2
,

where σ′′ ≍ n−1/2.
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Hence, arguing as in Steps 2-3 of Lemma 3,

E

[
sup

(τ,θ)∈[τ ,τ ]×Θ

∣∣∣
∣∣∣Ŝ(τ ; θ)

∣∣∣
∣∣∣
]
= O

(
n1/2σ′′ log1/2 n+ (σ′′ + ν ′′) log n

)

≤ C

(
log1/2 n+

(
log n

n

)1/2

log1/2 n

)
= O

(
log1/2 n

)
.

Markov inequality, then, proves Lemma 5. �

Appendix 3. Proof of remark in Section 5

(i) In the expression for C(τ) in (4.2),
{∫ τ

0
(β0(t) + β2(t)X2) dt− τ (β0(τ) + β2(τ)X2)

}
will

have the form p(τ) + q(τ)X2. Recall that X̃ = [1, X2]
′, X = [1, X1, X2]

′ and g(X) =

X̃ [0, 1, 0]E−1 [XX ′]X, then,

C(τ) = E

[
([0, 1, 0]E−1 [XX ′]X) (p(τ) + q(τ)X2)

([0, 1, 0]E−1 [XX ′]XX2) (p(τ) + q(τ)X2) .

]

If X1 and X2 are independent, elementary matrix algebra gives that

[0, 1, 0]E−1 [XX ′]X =
1

D

{(
E[X1]E

2[X2]− E[X1]E[X
2
2 ]
)
+
(
E[X2

2 ]− E
2[X2]

)
X1

}
,

where D is the determinant of the matrix E[XX ′]. Plugging in this expression in C(τ)

and simplifying using independence of X1 and X2 proves the result.

(ii) Given the result in (i), the increase in variance of the quantile estimates due to first step

estimation, over standard quantile regression had the first step been known, is given

by (4.2) as H(τ)−1D(τ)V(β1)D(τ)′H(τ)−1. Using H(τ) and D(τ) as given in (4.2),

under independence of X1 and X2, the vector H(τ)−1D(τ) evaluates to [−E[X1], 0]
′.

Therefore, the additional variance due to two-step estimation is given by

H(τ)−1D(τ)V(β1)D(τ)′H(τ)−1 =

[
E

2[X1]V(β1) 0

0 0

]
.

This proves (ii). �
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