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Abstract

There is no general consensus on how welfare analysis should be carried out for individ-
uals that violate the Weak Axiom of Revealed Preference. Some proposed solutions ignore
data where violations occur, not accounting for possibly important pieces of information.
We study procedures that elicit welfare relation from dataset, denoted as Welfare Methods.
We adopt a model-free approach and propose a series of normative principles. In particular,
we propose a property called Informational Responsiveness. It states that a welfare method
that ranks A and B should not ignore relevant observations; namely those where either A or
B is chosen and both are available. In our main theoretical results we show the relevance
of Informational Responsiveness (Proposition 1) and we characterize a method that counts
revealed preference relations (Theorem 2).

We test the joint importance of Informational Responsiveness and Revealed Preference
using experimental data. We conduct a novel experiment in which subjects firstly face a
sequence of questions regarding time and risk outcomes and secondly report the welfare re-
lation over some of the alternatives. We find that welfare methods that violate Informational
Responsiveness have significantly worse performances in terms of both identification of the
reported best element and the entire welfare relation (Table 3).
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1 Introduction

This paper is concerned with the study of violations of the Weak Axiom of Revealed Preference1

and of how welfare analysis should be performed. If no violations are observed, welfare analysis
is trivial and the elicited preference relation is equivalent to the maximized one. However,
overwhelming evidence has been produced in both psychology and economics to show that
individuals often do not behave according to standard assumptions of rationality.2 Not only,
but the literature has proposed several models, often mutually exclusive, to explain the same
cognitive constraint.3 Each model provides a different way to construct a revealed preference
relation. Therefore, it is still an open question how welfare analysis, which is normally guided
by a well-defined preference relation, has to be performed in these cases.

We study welfare methods as family of maps that associate binary relations to behavioural
types.4 Few attempts have been made to study appealing properties of these maps. Our first
aim is to provide normative principles that can be guidelines for welfare analysis when standard
revealed preference does not apply. Importantly, all the properties can be strengthen or weakened
without losing their normative interpretation.5

First and foremost, we propose the following normative principle: a method that ranks
two alternatives A and B must use all the relevant feasible evidence about A and B. We call
this condition Informational Responsiveness.6 Its formalization exploits the potential pivotal
role of "important" (the term refers to situations where A is chosen and B is available or vice
versa) observations in the case of two alternatives being judged as indifferent.7 Formally, if A is
indifferent to B, more evidence in favour of A should turn the judgement in its favour. A violation
would imply that the welfare method is ignoring that particular evidence. The foundation of
this requirement lays in the idea that more information must bring to finer conclusions. In the

1WARP’s definition is as follows: if an alternative x is chosen when y is available then y is not chosen when x is
available. In general, Weak and Strong Axiom of Revealed Preference are not equivalent. Sen (1971) proved the
equivalence under certain conditions. Our experiment does not always meet these conditions, however a deeper
study of the Strong Axiom of Reveled Preference found no further information as presented in the Online Appendix.
Therefore, we focus on the simpler weak version.

2Violations regard not only WARP (Echenique et al., 2011) but also stochastic properties such as independence
from irrelevant alternatives (Tversky & Russo, 1969), weak stochastic transitivity (Tversky, 1969) and regularity
(Huber et al., 1982), (Iyengar & Kamenica, 2010).

3The existence of different models that explain similar situations regards, for instance, how individuals deal
with complex choice problem, in particular when the number of alternatives is high. Both in deterministic and
stochastic literature two main lines of models have been developed: (i) (degenerate) attention models has been
developed among many by Masatlioglu et al. (2012), Lleras et al. (2017), Manzini & Mariotti (2014a), Echenique
et al. (2018), Cattaneo et al. (2018); (ii) (uniform) attention models by Frick (2016), Fudenberg et al. (2015).

4In choice theory literature, individuals are often identified by their choices. Hence, those who make the same
choices are defined as to be of the same behavioral type.

5This feature is in line with the idea that an axiomatization should be satisfactory. In Krantz et al. (1971): "One
demand is for the axioms to have a direct an easily understood meaning in terms of empirical operations, so simple
that either they are evidently empirically true on intuitive grounds or it is evident how systematically to test them."

6To the best of our knowledge this property has been firstly introduced in voting theory by Goodin & List (2006)
under the denomination of "One Vote Responsiveness".

7In demand theory an analogous axiom is local non-satiation as it rules out "thick" indifference curves.
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literature of preference elicitation this principle has been highlighted by Rubinstein & Salant
(2012) when, commenting the Pareto approach proposed by Bernheim & Rangel (2009), they
wrote: "the resulting Pareto relation is typically a coarse binary relation that becomes even more
so as the behavioural data set grows."

We argue that the necessity of this axiom is related to its weakness, non-triviality, and
relevance. We show that structurally different welfare methods satisfy it (weakness) but some do
not (non-triviality). In such cases, we show that the violation can potentially lead to paradoxical
results (relevance). The following remark exposes with a simple example this latter argument in
favour of the necessity of Informational Responsiveness:

Remark 1. Suppose a dataset contains multiple observations over the binary comparison tx, yu
where x is chosen 99 times while y only once. The conclusion that x and y are either equally
valuable or incomparable would be paradoxical. We show that this result is due solely to the
violation of Informational Responsiveness.

Nonetheless, there are situations where Informational Responsiveness may not be optimal.
The following two remarks provide a brief theoretical and empirical discussion.

Remark 2. Sen (1971) and Arrow (1959) propose two main approaches to revealed preference:
one based on all possible subsets and one based only on binary sets. The former is the most
common8 and it is in line with Informational Responsiveness. However, the latter has also
received attention in the literature (Manzini & Mariotti, 2012) and it constitutes a theoretical
example of violation of our proposed requirement.

Remark 3. Iyengar & Kamenica (2010) propose an experimental setting where they investigate
choices in sets of 3 and 11 lotteries. They observe a violation of regularity,9 with the simplest
alternative (degenerate lottery) chosen only 16% of times in the small set and 63% of times in
the big set. This is just one of the many empirical examples of choice reversal that raises doubts
regarding which sets should be considered when performing welfare analysis.

Theoretically our work locates in the axiomatic approach recently proposed by Nishimura
(2017) and Horan & Sprumont (2016). However, it differs from both. Unlike the former our
primitives are choice observations and not preference relations and unlike the latter we propose
normative principles that deals with the problem of informational collection (informational
responsiveness) and arrangement (revealed preference approach).

We provide two main theoretical results:

8Sen (1971) lists three methods, however two his proposal are equivalent under the assumption of element-
valued choice function. The standard case is defined as: (i) xRy if and only if for some S , x P cpS q and y P S ; (ii)
xR̄y if and only if x P cptx, yuq.

9Regularity is a well-known necessary condition for Random Utility Models. It has been firstly introduced by
Marschak & Block (1960) and it is defined as ppx, S q ě ppx, T q when S Ď T .
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• We show that Informational Responsiveness is the key axiom that gives rise to a class
of methods that can infer the underlying deterministic utility of a variety of stochastic
models among which, for instance, i.i.d. Random Utility Model (Proposition 1 and 2);10

• We characterize both the simple and the revealed preference counting procedures (Theorem
1 and 2). In the latter case, we show that the procedure has two appealing properties: (i) in
certain cases it is equivalent to the Minimum Swaps Methods (Proposition 3) proposed
by Apesteguia & Ballester (2015); (ii) it can be used as foundation for other important
methods such as Graph Centrality (e.g. Eigenvector Centrality) methods and the Transitive
Core method proposed by Nishimura (2017).

In the second part of the paper we test our theory using new experimental data. We answer
the following two questions that constitute together the premise and the testing of our theoretical
analysis.

• Premise: Do individuals consistently reveal welfare in different choice problems, e.g. in
time or risk preferences, with attraction effect or choice overload?

• Test: If not, how should we measure welfare when individuals violate the Weak Ax-
iom of Revealed Preference? Particularly: is Informational Responsiveness effective in
discriminating welfare methods? And how important are revealed preference relations?

To the best of our knowledge, our experimental design is a novelty. We use a choice
elicitation design divided in two parts: Time and Risk. Subjects are asked to choose among
delayed payment plans and lotteries. They are paid for one random decision for each part.11 As
in Manzini & Mariotti (2010) we collect the entire choice function12 regarding four alternatives,
that we call MAIN alternatives. This is a crucial element for two reasons: (1) full observability is
usually a necessary requirement for testing axioms of choice;13 (2) it guarantees that part of the
dataset is completely symmetric with respect to the MAIN alternatives. The remaining questions
are either neutral or they contain asymmetric dominance14 and choice overload problems.15 The
reasoning behind this structure is to test if information contained in questions that are potentially
doomed by behavioural effects can be important to define the welfare relation of the subjects.

10The result can be easily generalized to the family of stochastic choice models that satisfy the property of
Acyclicity or Item Acyclicity proposed by Fudenberg et al. (2015).

11This payment structure is standard; see Hey & Carbone (1995), Agranov & Ortoleva (2017).
12Namely, we collect answers about all the non-empty subsets with more than two elements. In our case there

are six binary sets, four ternary sets and one quaternary set.
13For instance, the result [WARPô SARP] relies on the full observability of all non-empty subsets, Sen (1971).
14The behavioural effect known as asymmetric dominance deals with ternary sets where one alternative is clearly

dominated by one of the other and while the remaining ones have similar value. A typical observation in this
environment is attraction effect, see Huber et al. (1982) and Natenzon (2019).

15With choice overload we intend a situation where the number of alternatives in a choice set makes difficult
for the decision maker the evaluation of all of them. This effect has been investigated empirically by Iyengar &
Kamenica (2010) and theoretically, among many, by Masatlioglu et al. (2012), Lleras et al. (2017), Frick (2016)
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Dataset asymmetry represents a challenge to the answer of our first question. The comparison
of consistency of choice among different and non-symmetric parts of the dataset is a well-known
problem.16 We address this problem developing a new index of rationality that is robust to the
structure of the dataset. We make use of the perturbation parameter of the logit model to match
via Monte Carlo simulation the average number of WARP violations in each part of the dataset.
Although the strong assumptions and limitations of the index our evidence shows that there is a
connection between preference revelation and the index of rationality.

Our main objective (second question) is to evaluate welfare methods in view of our theoretical
results. A the end of the experiment we ask subjects, in a non-incentived way, to rank the four
MAIN alternatives. We consider this relation as a benchmark for evaluating how welfare
methods perform on the dataset. The reliability of the reported welfare relation is empirically
strong.17 Our main findings are the following.

First, we find that a good proportion of subjects never violate WARP in time preferences
(37%). Conversely, and in line with the literature (Agranov & Ortoleva, 2017), almost no subjects
satisfy WARP in risk preferences (6%). The average number of violations of WARP reflects
this finding: the average in time is 11.26 while in risk is 24.65 (the difference is significant with
p « 0), and robust if we focus only on subjects that violated WARP at least once.

Second, we observe that methods that satisfy Informational Responsiveness outperform the
other welfare methods. A relevant example of this latter is the method proposed by Bernheim
& Rangel (2009). When asked to uniquely identify the best reported alternative this method is
outperformed by 30% in time and 50% in risk.18 When limited to a set identification exercise,
more in line with its conservative approach, it is still outperformed by 15% in time and 20%
in risk. These results are robust when we limit ourselves to the non-empty subsets of MAIN
alternatives. Similarly, when asked to uniquely identify the entire welfare relation, Bernheim &
Rangel method is outperformed by 20% in time and 25% in risk preferences.

Third, we compare the identification power of the simple counting, that satisfy a stronger
version of Informational Responsiveness, with the counting revealed preference procedure. We
find that it is outperformed by 6% in time and 4% in risk. This suggests on one hand that our
property is not sufficient and that a stronger version could have negative effects; on the other
hand that revealed preferences play an important role in the identification process.

Four, we analyse these results using a measure of completeness for models developed by

16See Andreoni et al. (2013) for a survey of the literature.
17The reliability of the reported ranking is confirmed by the following statistics: in time preferences 69 out of

70 rational subjects reported the correct optimal alternative and 61 out of 70 reported correctly the entire welfare
relation. This statistic is repeated in risk preferences with respectively 10 out of 12 subjects reporting the correct
optimal alternative and 9 out of 12 the correct welfare relation. Two subjects reported the opposite ranking to the
one they rationally employed in their choices. This probable mistake does not affect our results since every method
will clearly fail to identify these subjects.

18These percentages are calculated on the total number of subjects. For example, in Time the method proposed
by Bernheim & Rangel (2009) uniquely identifies the correct best alternative of 59% of the subjects while the
counting revealed preference method of 87%.
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Fudenberg et al. (2019). The main advantage of this measure is to provide a power of methods
with respect to the most naive and most sophisticated method. The idea is as follows: subjects
that are not identified by the most sophisticated method are considered an irreducible error;
while subjects that are identified by the most naive method are considered as trivial. All the
methods analysed are ranked using not the total proportion of identified subjects but only the
proportion of non-trivial and "feasible to be identified" subjects. We confirm that methods
that satisfy Informational Responsiveness and are based on standard revealed preference are
significantly more complete.

Five, we directly test Informational Responsiveness. We apply an optimal weighting algo-
rithm on the dataset in order to maximize the identification process. We find that, when asked
to maximize a combination of the best reported element and the entire welfare relation, the
algorithm gives strictly positive weights to all sets with only one exception (negative weights)
happening in time preferences for sets potentially doomed by asymmetric dominance.

1.1 Related Literature

The theoretical part of the paper is related to the small literature on welfare methods: Green &
Hojman (2007), Salant & Rubinstein (2008), Bernheim & Rangel (2009), Rubinstein & Salant
(2012), Manzini & Mariotti (2014b), Apesteguia & Ballester (2015), Horan & Sprumont (2016),
Nishimura (2017). We also contribute to order theory through the characterization of counting
procedures for datasets with multiple observations and missing data is a novelty. This result is
connected with two axiomatizations of counting procedures in tournaments (Rubinstein, 1980)
and directed graph (van den Brink & Gilles, 2003). Finally, our results can be applied through
the law of large numbers to a variety of stochastic choice models including: i.i.d. Random
Utility models (Marschak & Block, 1960), Luce model and Additive Perturbed Utility models
(Fudenberg et al., 2015).

The index of rationality based on the perturbation of a data generating process such as the
logit model is connected with the literature on rationality indexes and power measures. The
most prominent example is the Selten measure (Selten, 1991) of which a special case is the
Bronars hypothesis (Bronars, 1987). Our index, being robust to the dataset structure, overcomes
a problem common to other indexes such as Afriat’s index (Afriat, 1973), minimum number of
observations to remove to rationalize the data (Houtman & Maks, 1985), number of violations
of consistency axioms (Swofford & Whitney, 1987) and (Famulari, 1995), minimum number of
swaps (Apesteguia & Ballester, 2015).

The experimental part firslty related to the few choice elicitations experiments such as
Manzini & Mariotti (2010) and Barberá & Neme (2017). Secondly it is related to the literature on
stochastic choice and choice deferral. Our design shares some features with existent experiments.
Nonetheless none of the following papers have focused on welfare analysis and therefore all of
them have key differences with ours. Some are restricted to binary comparisons: Agranov &
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Ortoleva (2017), Hey & Carbone (1995), Danan & Ziegelmeyer (2006), Hey (2001), Cavagnaro
& Davis-Stober (2014), Sopher & Narramore (2000), Chabris et al. (2009). Others collect data
only on particular sets: Harbarugh et al. (2001) elicited choices from 11 different sets with
cardinality from 3 to 7; Iyengar & Kamenica (2010) elicited choices from sets of either 3 or
11 gambles; Haynes (2009) collected response times but he elicited choices only from sets of
either 3 or 10 prizes; Iyengar & Lepper (2000) elicited choices from sets of either 6, 24 or 30
alternatives; Sippel (1997) elicited 10 choices from budget sets regarding 8 alternatives.

1.2 Structure of the paper

The paper’s structure is as follows: in Section 2 we introduce the framework and present the
theoretical results. We also describe the welfare methods that will be analysed subsequently. In
Section 3 we present in details the experimental design. The main experimental results as well
as the index of rationality are presented in Section 4. All of them are divided with respect to
time and risk preferences. The Appendix contains details regarding proofs and independence
of the axioms. More details regarding the experimental design such as: parametrization of the
alternatives, orders of the questions and questionnaire are contained in the Online Appendix.

2 Theory

Let X be a finite set of alternatives and X the set of all non-empty subsets of X. Denote O as
the set of all possible pairs px, Aq where A Ď X and x P A. A dataset D assigns a non-negative
integer to each pair; we write Dpx, Aq “ 1 to say that x has been chosen from A one time.19 We
denoteD as the set of all possible datasets.

Denote as RpXq the set of all complete20 and reflexive binary relations on X. A welfare
method is a function f : D Ñ RpXq that maps each dataset into a welfare relation. Welfare
methods will be the objects of our analysis.

We denote xRD
f y to say "x is weakly better than y on the dataset D by a welfare method f ".

As an abuse of notation we write xRD`px,Aq
f y to define the weak preference over a dataset D to

which we have added an observation where x is chosen from A.

It is useful to define two counting measures. The simple counting, denoted Cx, and the
counting revealed preference relations, denoted Cxy.

Cx “
ÿ

AĎX

Dpx, Aq Cxy “
ÿ

AQx,y

Dpx, Aq

19A dataset D can be seen as the frequency version of a stochastic choice function.
20Completeness is defined as follows: for all D P D, for all x, y P X, either xRD

f y or yRD
f x. Even if not directly

stated as an axiom, Completeness plays a crucial role in all proofs and it is assumed throughout all the paper.
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The counting choice method CC is defined as follows:

xRD
CCy if and only if Cx ě Cy

So far we haven’t assumed neither acyclicity nor transitivity.21 The reason is that this allows
us to define the counting procedure applied on standard revealed preference relation as a welfare
method denoted as CRP. The reader may note that generally if a generic welfare relation P is
cyclic then in some sets it has no maximal elements. Its inclusion is driven by the following
arguments: (1) CRP is the foundation for other important methods; (2) the acyclicity of PD

CRP
can itself be empirically tested and if the condition holds CRP can be used effectively as welfare
method.

The counting revealed preference method CRP is defined as follows:

xRD
CRPy if and only if Cxy ě Cyx

2.1 Informational Responsiveness

One feature of welfare methods we want to capture is that they should use all relevant data to
discriminate between x, y. As relevant we intend all data where x, y are observed by the decision
maker and one of them is chosen. In order to formally state this idea we split in two parts a
well-known condition known as Positive Responsiveness. This assumption is stated as follows:
"if x is weakly better than y [xRy] and we observe x chosen from one more choice set then x
becomes strictly better than y [xPy]".22 This axiom is strong for two reasons: (1) the antecedent
is concerned with both I and P (respectively the symmetric and asymmetric part of R); (2) x can
be chosen from any possible choice set.

We weaken this axiom allowing choices to be only weakly positive signals of welfare and
limiting the welfare relevant sets to those where x is chosen and y is available. Following these
considerations we define two axioms. Note that all axioms we state hold for all A Ď X, D P D
and for all x, y P X.

Axiom 1 (Informational Responsiveness [IR]23).

xID
f y & x, y P A ñ xPD`px,Aq

f y

This is the main axiom of the paper; and the one that we test in our experiment. In the next
section we argue that this axiom is a necessary condition for the function f . The violation of

21A binary relation P is acyclic if there exists no sequence of elements pxiq
n
i“1 such that x1Px2P . . . xnPx1. A

binary relation P is transitive if for all x, y, z P X, xPy and yPz imply xPz.
22May’s Theorem contains exactly this formulation of the axiom (May, 1952).
23The consequent of this axiom is technically incomplete. We should define it when we both add and remove

observations. The complete version is xPD`pA,xqy and yPD´pA,xqx.
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this condition implies that a method f does not consider the observation px, Aq as relevant for
welfare.

Axiom 2 (Choice non-negativeness [CNN]).

xID
f y ñ xRD`px,Aq

f y & xPD
f y ñ xPD`px,Aq

f y

Notice that this axiom is satisfied when choice observations are summed and weighted but
all are weakly positive signal of the welfare of chosen elements.

Finally, let ΠpXq be the set of all the permutations π : X Ñ X. For all π:

Axiom 3 (Neutrality [NEU]).

xRD
f y ô πpxqRπpDqf πpyq

This axiom is standard in the literature and it asserts that a welfare method cannot, a priori,
favour or punish some alternatives over others.24 Since our theory does not rely on any additional
information about alternatives or models, Neutrality seems to be a reasonable assumption.

2.2 Weakness, Non-Triviality and Relevance of IR

We claim that IR should be considered a necessary condition for welfare methods due to three
features: Weakness, Non-Triviality and Relevance.25 Weakness depends on the fact that the
antecedent constrains the mapping only at the indifference. Non-Triviality is stated as follows:
"there exist some welfare methods proposed by the literature that violate IR". In Figure 1, at
the end of this section, we show how CNN and NEU are trivial axioms; while IR is not since
it is violated by both the welfare methods proposed by Bernheim & Rangel (2009) and by
Horan & Sprumont (2016). Finally, we say that a method is Relevant if it avoids "paradoxical"
situations. We show how IR avoids two particular cases: (i) indisputable preferences are failed
to be identified; (ii) the welfare relation becomes coarser and coarser when the number of
observations increase.26

To show the Relevance of IR we consider a case in which the resulting preference order is
indisputable and show that it can be inferred only by methods that satisfy such property. Suppose
an individual evaluates the alternatives according to a utility function u : X Ñ R``. At the act of
choice, this utility is perturbed by an additive error component such that the choice depends on
the random utility Upxq “ upxq` εpxq where εpxq is identically, independently and continuously

24For an analysis of non-neutral methods see Apesteguia & Ballester (2015).
25The necessity regards the normative principle. Our version of IR requires that only one observation is needed to

break the indifference relation. The reader may want to define a weaker property where more than one observation
is needed, still respecting the normative principle, but allowing for a more conservative welfare analysis.

26A binary relation is coarser than another one if it has a lower number of asymmetric parts.
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distributed. The probability that x is chosen from a set A Ď X will be Prrx “ argmaxxPAUpxqs.
Furthermore, suppose that the dataset is restricted to multiple observations on a single set A; we
denote this dataset dataset asA. We show that given this particular restriction on the dataset,
our three axioms can correctly identify the underlying deterministic utility u and consequently
the correct welfare relation.

Proposition 1. Given an i.i.d. RUM, a resulting collection of observations on a datasetA and
a method that satisfies IR, NEU and CNN then xRAy if and only if upxq ě upyq.

Proof. See Appendix A.1. �

A crucial part of the proof relies on the constraint posed on the domain A Ă D. This
restriction could seem extremely severe. A more general result can be proved for a larger set
of datasets at the cost of requiring the resulting binary relation to be transitive. Nonetheless, a
weaker restriction has to be maintained. Particularly, a dataset D P D is homogeneous, denoted
as hompDq, if any S Ď X with the same cardinality is observed the same number of times, which
is assumed to be large.

Proposition 2. Given an i.i.d. RUM, a resulting collection of observations over a dataset
hompDq and a method g that satisfies IR, NEU, CNN and Transitivity then xRhompDqy if and only
if upxq ě upyq.

Proof. See Appendix A.2.27 �

A brief comment on these results is needed to explain the role of the constraint on the
dataset structure. The axioms required to identify the underlying utility function have to be
satisfied on the restricted family of datasets and not in general. In Proposition 2 we require
Transitivity which is generally not satisfied by CRP. Nonetheless, CRP satisfies Transitivity on
the particular datasets we consider and therefore it can identify the underlying utility. Formally,
we say CRP is not a transitive method28 when it is defined as a map fromD to RpXq. However,
it is transitive when it is defined as map from hompDq to RpXq.

2.3 Counting Procedures

So far, we have sustained the necessity of IR using counting procedures on particular domains.
Now, we want to provide a general characterization of these procedures. In reality researchers
deal with dataset that may have missing data or multiple observations. These features are
embedded in our definition of dataset since the mapping D P D may assign a zero value to all

27We prove this result for a collection of observations from an i.i.d. RUM; however the result can be extended to
a larger family of stochastic models.

28There exists a dataset D P D such that RD
CRP is not transitive.
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elements in a particular set (missing data) or assign different strictly positive values to more than
one element (multiple observations). The following axioms are needed:

Axiom 4 (Independence [IND]).

@ z , x, y xRD
f y ô xRD`pz,Aq

f y

This axiom implies that the welfare relation between x and y does not depend on any
observation where an element z is chosen. This is a strong axiom. In our experimental analysis
we see that this axiom is rejected as necessary condition; namely there exist some methods that
do not satisfy it and perform well.

Axiom 5 (Stability [ST]).

@ z P X xPD
f y ñ  yPD`pz,Aq

f x

This axiom deals with the excessive sensitivity of the welfare method around the indifference.
It states that one single observation cannot completely reverse the judgement. The stated version,
limited to one observation, is the strongest possible given our structure. One may think of weaker
versions that allow a reversal for observations that are considered of particular importance
without changing the normative principle of this axiom. As for IND; our experimental analysis
shows the non necessity of this axiom. It will be also interesting to note that the method proposed
by Bernheim & Rangel (2009) trivially satisfies this axiom.

Axiom 6 (Strong Informational Responsiveness [SIR]).

xID
f y ñ xPD`px,Aq

f y

Axiom 7 (Connection [CON]).

@ z P X & @ A + tx, yu xRD
f y ô xRD`pz,Aq

f y

These two axioms are important because they are the difference between the simple counting
and the counting revealed preference procedure. Namely, CC satisfies SIR but not CON; while
CRP satisfies IR and CON but not SIR. We are now ready to prove our two main results
regarding counting procedures.

Theorem 1. A welfare method satisfies ST, IND, SIR and NEU if and only if it is the simple
counting method - [CC].

Proof. See Appendix A.3. �
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Few axiomatizations29 of the simple counting have been provided but none of them deal
with the complex dataset that we study in this paper. To see how the complexity of the dataset
forces us to introduce ST, which is a novel axiom, consider a condition above mentioned called
Positive Responsiveness. Formally, it is defined as SIR X CNN. We show not only that this
axiom is not sufficient together with IND and NEU but also that even adding transitivity [T] we
cannot prove the statement without ST. The former case, perhaps less intuitive, is presented in
Appendix B when we deal with the independence of the axioms. The latter is presented in the
following example:

Example 1. For all x P X and D P D:

Qx ě Qy ô xRDy

where Qx “
ř

AQx
|A| ¨ Dpx, Aq.

This welfare method gives more weight to sets with higher cardinality therefore violating ST.
However, it is strictly monotonic in individual choices and since it maps into positive integers it
satisfies transitivity as well.

In the following theorem, we constrain the counting procedure over the revealed preference
relation. The reader may notice that IND is satisfied by this welfare method but implied by the
other axioms, hence redundant.

Theorem 2. A welfare method satisfies ST, IR, NEU and CON if and only if it is the counting
revealed preference method - [CRP].

Proof. See Appendix A.4. �

2.4 Methods

We describe concisely the remaining methods that we test in our experiment. This list is
comprehensive of all methods that, to be best of our knowledge, have been studied in the
literature and can fit our abstract framework.

The methods are denoted as follows: SEQ is the sequential method - Horan & Sprumont
(2016), BR is the Bernheim and Rangel method - Bernheim & Rangel (2009); MS is the
minimum swaps method - Apesteguia & Ballester (2015), EIG is the eigenvector centrality
method; TC is a variation of the transitive core method - Nishimura (2017); OW is the optimal
weighted method.

29Rubinstein (1980) proposes an axiomatization for tournaments while van den Brink & Gilles (2003) for
outdegree of digraphs.
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2.4.1 Sequential

The sequential method can be effectively tested only if the dataset is constrained on X and it has
one observation for each set.30 It works recursively such that the best element is the one chosen
from the universal set; the second best is the one chosen when the best alternative is removed;
and so on.

Formally, let the dataset be constrained to X and only one observation is collected for each
non-empty subset. We write xPD

SEQy for all y , x, if Dpx, Xq “ 1; then yPD
SEQz for all z , x, y if

Dpy, Xztxuq “ 1; again zPSEQw for all w , x, y, z if Dpz, Xztx, yuq “ 1 and so on.

2.4.2 Bernheim and Rangel

Bernheim & Rangel (2009) proposed the following method: x is (strictly) unambiguously better
than y if y is never chosen when x is available. The method is acyclic when constrained on X
and with no missing data.

Formally, xPD
BRy if and only if for all A Ď X such that x, y P A, we have Dpy, Aq “ 0.

2.4.3 Minimum swaps

The method has been proposed by Apesteguia & Ballester (2015). We denote it as MS and it
is defined as the preference relation P that minimize a swaps index;31 namely the number of
alternatives that are ranked above the chosen one according to P. It may happen that more than
one asymmetric binary relation P minimizes the above problem. In such case, we adopt the
convention of taking the intersection among all the minimizers.

There is a strict connection between CRP and MS as it has been noted by Apesteguia &
Ballester (2015).32 We show that if PD

CRP satisfies acyclicity then the transitive closure of
PD

CRP is equivalent to the asymmetric part of the minimum swaps relation PD
MS. This result

is empirically important since it defines an equivalence between the asymmetric part of these
methods for not-heavily irrational subjects; namely subjects that have an acyclic PD

CRP. In fact

30Horan & Sprumont (2016) suggest a way to extend the method over different datasets simply taking the
intersection of all possible resulting orderings. Even though we use this methodology to prove that this method
violates IR, we do not apply it empirically. The reader may note that this extension would not provide any additional
and positive information to the empirical analysis of this method.

31Formally, the swaps index is defined as follows:

IspD, Pq “
ÿ

px,AqPO

|ty P A : yPx & px, Aqu|

32Apesteguia & Ballester (2015) introduced the following property: A collection of observations satisfies
P-Monotonicity if xPy implies Cxy ą Cyx. They then established the following result:

Theorem. If a collection of observations satisfies P-Monotonicity, then P is the unique minimum swaps preference.
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we observe that almost all subjects are of this type: on the entire dataset we find only one subject
with a cycle in time preferences and four in risk preferences.

Proposition 3. If PD
CRP is acyclic, then xP˚D

CRPy ô xPD
MSy; with P˚ being transitive closure of P

Proof. See Appendix A.5. �

2.4.4 Eigenvector centrality

This method uses the definition of centrality in networks in order to define an order of alternatives.
Firstly, we construct the weighted revealed preference graph using Cxy. The eigenvector
centrality of the nodes in the graph constitutes a complete and transitive ranking that measures
the importance of each alternative.

2.4.5 Transitive core

This method has been recently proposed by Nishimura (2017). We introduce a variation of his
original proposal which was in line with Bernheim & Rangel (2009). Instead, we found his
approach on the CRP method. The transitive core method, denoted as TC is defined as follows:

xRD
TCy ô

$

&

%

zRD
CRPx ñ zRD

CRPy

yRD
CRPz ñ xRD

CRPz
@ z P X

2.4.6 Optimal Weights

To define this method we divide the dataset in five parts, i P Γ: binary sets [B], ternary
sets [T], quaternary set [Q], sets with asymmetric dominance [AD], big sets [BIG]. For
each part the revealed preference is collected creating, for each x, y P X, a vector Cxy “

pCB
xy, CT

xy, CQ
xy, CAD

xy , CBIG
xy q. The weights vector is w “ pwB, wT , wQ, wAD, wBIGq. We define the

method OW as follows:

xRD
OWy if and only if OWxy ě OWyx

where OWxy “
ř

iPΓ
wiCi

xy.

Weights are calculated optimizing the sum of two measures: (1) expected identification of
maximal element; (2) unique identification of the entire welfare relation. The former measures
the expected number of subjects for whom the method can identify the reported best element;
the latter measures the number of subjects for whom the method uniquely identify the entire
reported welfare relation.33

33The optimality problem is performed using different objective functions in Subsection 4.5.
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Given the definitions of identification procedures in Section 4.3, the optimization problem is
as follows:

max
wPr´0.4,1s5

EI`WRI

where

xRD
fi y ô w ¨Cxyippartq ě w ¨Cyxippartq

2.4.7 Summary

Figure 1 summarizes the characteristics of the methods. Notice that, OW have missing properties.
The reason is that since the optimal weights depend on both the dataset and the reported welfare
relation we cannot say, a priori, if this method will satisfy some of the properties. If weights
are negative then CNN is violated; if some of them are zero then both IR and SIR are violated.
ST is almost always violated since the only case where it is satisfied is when OW is reduced to
the CRP method. If this method satisfy IR then it would be evidence of the necessity of this
property; we deal with this problem in Subsection 4.5.

It is important to notice that throughout the empirical analysis we substitute incompleteness
with indifference. These process, that allows a consistent comparison across methods, can
undermine the theoretical foundations of some of these methods. Particularly, MS and TC are
affected; although differently. Both methods satisfy IR; however MS satisfies it even when
indifferences are introduced; while TC does not. Therefore, we treat MS with indifferences and
TC with incompleteness. Hence, TC satisfies both transitivity [T] and quasi-transitivity [QT];
while MS satisfies only QT.

It is not trivial to show that TC satisfies IR. The statement is denoted as Claim 1 and the
proof can be found in Appendix A.6.
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Figure 1: Summary of the properties of welfare methods.

3 Experimental design

The experiment follows a standard choice elicitation design, e.g. Manzini & Mariotti (2010),
Barberá & Neme (2017). The complete instructions and screenshots are presented in the Online
Appendix. Subjects received instructions both on screen and on paper such that they could
consult them during the experiment.

The experiment is divided in three parts: (1) Choice elicitation part; (2) Questionnaire;
(3) Raven Test. The choice elicitation part has 50 questions; half regarding choice among
lotteries (Risk Preference Elicitation) and half regarding choice among delayed payment plans
(Time Preference Elicitation); no question was repeated. At the beginning of each part subjects
answered three trial questions in other to make them familiar with the experimental environment.

For both Time and Risk the alternatives were divided in two groups: four MAIN alternatives,
that are presented in Table 1 and Table 2, and some "confounding" alternatives that are described
in Online Appendix. Each individual solved all the 11 choice problems involving the MAIN
alternatives. The other questions were set in order to obtain particular information about
rationality: Monotonicity, Impatience,34 Stochastic Dominance; and about possible behavioural
effects: choice overload, compromise effect, attraction effect. The position of the alternatives
were randomized. The subjects could face two orders of questions and also we inverted Time
and Risk elicitation such that we had a total of four treatments.35

After the choice elicitation part subjects were asked, non-incentivized, to rank the four

34By Impatience we intend the violation of discounting models. The term "impatience" has been used by
Fishburn & Rubinstein (1982) to denote Axiom A3.

35Given the high number of questions we apply a "structural randomization". Namely, we divide questions in
groups by similarity and then we completely randomize with the constraints that similar questions could not appear
clustered together.
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0 3 6 9 12
160 0 0 0 0

110 50 25 0 0

50 50 50 50 0

0 15 40 170 0

50 0 1 0 50

65 25 0.8 0.2 57
90 25 0.5 0.5 57.5

300 5 0.2 0.8 64

Degenerate (D)

Safe (S)

Fifty-Fifty (50)

Risky (R)

NOTES -- The amounts are described in Token. The exchange rate was fixed at 20:1 pounds for
Delayed Payment Plans and 10:1 pounds for Lotteries.

Table 2: LIST OF MAIN LOTTERIES

ALTERNATIVES TOKEN PROBABILITIES EV

Constant (K)

Increasing (I)

Table 1: LIST OF MAIN DELAYED PAYMENT PLANS

One Shot (OS)

Decreasing (D)

MONTHS
ALTERNATIVES

MAIN alternatives. No indifferences were permitted, hence the reported welfare relation is
always a linear order.36 Subsequently, subjects filled a questionnaire containing questions about
the comprehension of the experimental design and criteria of choice in both time and risk. The
questionnaire is presented and analysed in Section 4 of the Online Appendix. Finally, two
well-known test of cognitive abilities were presented: (i) Frederick Test - (Frederick, 2005); (ii)
a selection of ten Raven matrices. Response times were collected for each question in the choice
elicitation part and the cognitive abilities tests.37

The average reward was about 19 £ per subject and the experiment lasted on average 1:15
hours. The reward was measured in Token with an exchange rate of 1:10 for lotteries and
1:20 for delayed payment plans. Subjects received no feedback about their earnings during the
experiment. At the end of the experiment computers randomly picked from chosen delayed
payment plans and lotteries, this latter was played out, and in a last screen informed subjects of
their earnings in each part.

All sessions were conducted at University of St. Andrews between June and September 2019.
Subjects were recruited voluntarily among undergraduate and postgraduate students. Eleven
sessions were run for a total of 145 subjects. No subject participated in more than one session.
The earnings had been paid via bank account at the end of the experiment and in successive dates
in the future as specified both by the instructions and by the experimenter. The experiment was
completely anonymous and all subjects signed a consent form where they agreed in providing
UK bank account number and sort code.

36A linear order is a complete, transitive and antisymmetric binary relation.
37Since this experiment is part of a larger project, the analysis of cognitive abilities, response times and structural

axioms is treated in a compendium paper.
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4 Results

4.1 CRP and BR

We begin showing the main result of the paper. Table 3 presents the identification power of
CRP and BR as fraction of subjects for whom the methods can correctly identify either the
reported best element or the entire welfare relation. As the reader may note in Figure 1, the
only difference between these methods is that the latter does not satisfy IR. CRP performs
significantly better along all dimensions both in time and risk preferences. Notably, BR is a
lowest bound for the identification since when a violation is observed data are simply ignored.
This means that the difference is performed on subjects that violate the Weak Axiom of Revealed
Preference and therefore is not trivial.

METHODS WRI UI EI WRI UI EI
CRP 0.61 0.87 0.88 0.24 0.59 0.61

BR 0.42 0.59 0.74 0.06 0.14 0.43

RISK

Table 3: CRP & BR - IDENTIFICATION

NOTES -- CRP is the counting revealed preference method; BR denotes Bernheim & Rangel method.
The numbers represent the fraction of subjects for whom the two welfare methods provide the following
three identification: (1) "WRI" - Welfare Relation Identification and it refers to the unique identification
of the entire reported welfare relation; (2) "UI" - Unique Identification of the reported best element; (3)
"EI" - Expected Identification of the reported best element.

TIME

4.2 Premise: do individuals consistently reveal welfare?

Figure 2 presents the distribution of WARP violations in time, risk and random behaviour.38 Two
observations catch the eye: (i) subjects violate WARP less in time than in risk and the difference
is statistically significant (p « 0); (ii) subjects do not behave randomly, again significantly
(p « 0).

The difference is not based only on the presence of a higher number of rational individuals
in time. If we restrict our test on those subjects that violate WARP at least once we find that
the difference is still highly significant (p « 0). This suggests a fundamental difference in the
behaviour of the agents in the two environments.

The suspicions are confirmed in Figure 3 where we show a scatter plot of the number of
WARP violations. As the reader may notice the correlation is very low and driven mainly by a
small fraction of consistent individuals. Given this preliminary evidence, we will treat Time and

38Given that the questions of time and risk were slightly different a random subjects may have in general different
numbers of violations; however the difference is negligible. In order to provide a fair comparison we focus solely
on the MAIN alternatives since they account for most of subjects’ choices.
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Figure 2: Distribution of the violations of WARP.

Figure 3: Scatter plot of the violations of WARP.

Risk consistency and preference elicitation analysis separately.

We begin investigating how violations are distributed in different parts of the dataset, that
we call domains. In doing so we cannot rely simply on the number of violations of WARP
since they depend on the number of questions and the alternatives. In other words we face the
problem of: "... comparing the power of potentially different experimental designs. For a given
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choice setting, some experimental designs may be more likely to reveal violations of GARP
than others." - Andreoni et al. (2013). The problem can be rephrased as follows: suppose one
subject makes 10 inconsistent choices among 40 binary choices while another subject makes 10
inconsistent choices among 30 ternary choices. How can we compare these subjects in terms of
consistency?

A standard approach in evaluating consistency of individuals given different experiments is
to compare them with random behaviour - see Becker (1962) and Bronars (1987). The literature
has studied this problem starting from the notion of Selten measure (Selten, 1991) and has
applied it to empirical studies such as in Beatty & Crawford (2011) and Echenique et al. (2011).
We address the problem constructing a new index of consistency or "power index". We adopt
the approach of perturbing a data generating process to create inconsistencies and compare the
magnitude of the perturbation across domains.

As data generating process we build on the logit model as follows: let A “ tx, y, z, wu
be the set of MAIN alternatives ordered by a linear order ą and u a utility function with
upiq “ up jq ` 1 with i, j P A being consecutive elements in ą. Note that, only differences in
utility are important;39 however the parameter identification is not invariant to positive affine
transformations of u (not cardinal). The standard logit formula is the following:

ppx, Aq “
eupxq
ř

yPA
eupyq

As in Train (2009)40 we can modify the logit using a scale parameter λ connected to the
variance of the unobserved error (a subject who chooses randomly behaves as if λ “ 8 but given
our parameters for λ « 5 we substantially observe random behaviour); such that the formula
becomes:

ppx, Aq “
e

upxq

λ

ř

yPA
e

upyq

λ

The parameter λ can be also interpreted as the cost of acquiring information regarding the
utility of the elements, e.g. Caplin & Dean (2015) and Fudenberg et al. (2015).

39Since in some part of the dataset the domain is not symmetric, namely some alternatives are more present
than others. We adopt the convention of setting the utility difference of D and I (respectively S and R) equal to
two. This is based on the fact the most of the subjects indicate in the ordinal ranking that these alternatives are
divided by two positions; in particular either OS ą D ą K ą I or I ą K ą D ą OS . We also ignore confounding
alternatives since they account for a marginal part of the choice distribution in any sets where MAIN alternatives
are also present.

40An example of maximum likelihood estimate of the paraemter λ can be found in McKelvey & Palfrey
(1995). They show that in a game theoretical experimental (quantal response equilibria) setting subjects tend, with
experience, to make less noisy choices.
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We run a Monte Carlo simulation to estimate the parameter λ that match the average number
of violations of WARP that the subjects make in the different part of the dataset. We only
consider the MAIN alternatives since, as presented in Table 4 and 6, most of the violations,
and choices, regard these alternatives.41 Importantly this is not an estimation exercise (we do
not believe that, when aggregated, subjects can be studied using a logit model). We provide
an intuitive index that can be used for meaningful comparisons across domains. Given the
strong assumptions made we also report the percentage of rational individuals and the standard
deviation of our logit simulations such that the reader may have an idea of how close they are to
the real data. We now present and comment the consistency analysis in Time and Risk.

4.2.1 Time

Table 4 shows the mean and standard deviation of the number of WARP violations within
different parts of the dataset; as well as the percentage of rational individuals, namely those with
zero violations. Since these numbers are not comparable we look at the logit index. It shows that
questions with asymmetric dominance effect present a relatively higher number of violations.
The difference between BIG sets and MAIN sets is instead very small. To give an idea of how
measures of rationality can be misread, the reader may note that the percentage of rational
subjects in AD sets is biased by the fact that only four questions have this characteristic42

making highly probable for mildly irrational subjects to report zero violations.

BIG AD MAIN ALL** ALL
Mean 1.4897 0.8138 1.9586 10.0621 11.2621

Std 1.9189 1.4577 2.9009 14.2099 14.5263
Rational 54% 75% 59% 48% 37%

Logit - λ 0.555 0.787 0.515 0.569 -
Logit - std 1.6406 1.3738 2.0355 7.768 -

Logit - Rational 48% 74% 40% 16% -

Table 4: WARP VIOLATIONS - TIME

NOTES -- The mean of WARP violations is reported for different parts of the dataset: "BIG" denotes sets
with more than 8 elements; "AD" denotes sets with potential asymmetric dominance effect; "MAIN" denotes
the 11 non-empty subsets of the four main alternatives; "ALL" denotes the entire dataset. ALL** refers to
WARP violations in the entire dataset that regard only the four main alternatives. We also report the
following statistics: the information parameter of a logit model that match the data mean, the standard
deviation and percentage of rational subjects in the resulting distribution.

41This result is evidenced by the small difference between the violation in ALL** and ALL datasets. This
assumption is conservative; in fact in AD or BIG sets the identification of the parameter λ is lower than it would be.

42Since we ignore dominated alternatives, the simulation uses a dataset made of four binary sets of the type
tD, Iu. Considering dominated alternatives would force even more ad hoc evaluations of the utility functions.
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MAIN/BIG MAIN/AD  BIG/AD
Mean 3.2897 1.3724 1.9172

Std 4.6682 2.5568 2.8052
Rational 56% 73% 56%

Logit - λ 0.515 1.062 1.124
Logit - std 2.8921 2.0696 2.508

Logit - Rational 34% 66% 59%

Table 5: WARP VIOLATIONS - TIME

NOTES -- The mean of WARP violations is reported between difference
domains: "MAIN/BIG" denotes violations observed between MAIN and
BIG sets; "MAIN/AD" denotes violations between MAIN and AD sets;
"BIG/AD" denotes violations between BIG and AD sets. These numbers
are calculated, for instance, taking the total number of violations on MAIN
and BIG sets and subtracting the violations within the two domains.

Two observations are worth noting. (1) Higher is the number of sets and worse is the logit
approximation to the data. For instance, on the entire dataset we should observe 16% of rational
subjects while we observe 48% and the standard deviation is also significantly higher. (2) The
coefficient of variation is everywhere above one. This evidence suggests that there are at least
two different groups of subjects: one rational and the other irrational; importantly this latter has
been shown to behave not randomly.

Table 5 shows the number of violations of WARP between different domains; for instance
when x is chosen over y in one of the MAIN sets and y over x in a one of the BIG sets. The
results show that not only the level of rationality is similar between MAIN and BIG sets but
also the types of violations are similar. In fact, AD sets present a different behaviour from both
the other domains; namely to match the number of WARP violations between AD sets and
the other domains we would require a level of perturbation higher than all levels within the
domains. Furthermore, Table 5 confirms the presence of at least two groups of individuals since
the standard deviation of the logit simulations is everywhere below the standard deviation in the
data.

4.2.2 Risk

Table 6 reports the results regarding WARP violations within domains in risk preferences. Firstly,
the number of violations is everywhere higher than in time preferences across all the domains
and everywhere significantly (p « 0). In this case, the comparison between time and risk
environment is meaningful given the approximate symmetry of the datasets. This evidence
suggests that the difference in behaviour between the two environments is not due to particular
incidence of behavioural effects. The difference in the shape of the distribution expressed in
Figure 2 is confirmed by the coefficients of variation. In Time they are everywhere bigger than
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one, confirming that the left skewed shape is a common property across domains, while in Risk
they are almost everywhere smaller than one, confirming the uniform shape of the distribution
of WARP violations. Surprisingly, Table 6 shows that in BIG sets subjects have a more rational
behaviour compared to both AD and MAIN sets.43

BIG AD MAIN ALL** ALL
Mean 4.6690 1.2621 4.9862 21.7172 24.6552

Std 2.8700 1.4955 3.4237 13.6314 14.3170
Rational 15% 54% 14% 8% 6%

Logit - λ 0.756 1.003 1.009 0.774 -
Logit - std 2.9899 1.5672 2.6606 9.6465 -

Logit - Rational 22% 60% 7% 2% -

Table 6: WARP VIOLATIONS - RISK

NOTES -- See Table 4.

MAIN/BIG MAIN/AD  BIG/AD
Mean 9.0276 2.3241 2.3862

Std 5.9224 2.7267 2.5888
Rational 14% 44% 40%

Logit - λ 0.688 1.125 1.581
Logit - std 4.7995 2.2564 2.3141

Logit - Rational 9% 37% 32%

Table 7: WARP VIOLATIONS - RISK

NOTES -- See Table 5.

Thirdly, we confirm that when the number of sets increase data shows a percentage of rational
subjects higher than the logit simulation as well as a much higher standard deviation. Finally,
Table 7 shows a higher similarity in the behaviour of subjects in MAIN and BIG sets compared
to both MAIN/AD and BIG/AD sets. It is particularly interesting to notice the extremely high
logit index associated with violations between BIG and AD sets. Speculations would lead us
to conjecture that choice overload and asymmetric dominance, although both in the family of
behavioural effects, have very different implications on the consistency of behaviour in choice
among lotteries.

43This evidence may be related with attention models such Masatlioglu et al. (2012), Manzini & Mariotti (2014a),
Lleras et al. (2017) and Cattaneo et al. (2018), and could confirm previous experiments such as Iyengar & Kamenica
(2010). On the contrary models that assume more uniform stochastic choice in BIG sets such as Fudenberg et al.
(2015) and Frick (2016) seem to be not backed by the data.



24

4.3 Identification of reported welfare

This subsection contains the main results of the paper. We measure the power of identification of
different welfare methods in both time and risk using ALL dataset, MAIN sets and BINARY sets.
This latter is considered as a benchmark to understand how much information can be extracted
outside a dataset that does not present any potential behavioural effect. Two results emerge in
both Time and Risk: (1) methods that satisfy IR performs significantly better than BR; (2) the
identification power of methods that satisfy IR improves when more data are collected. This
result, as expected, is reversed in BR.

Our identification exercise is threefold. Firstly, we uniquely identify the reported best
element. Secondly, since BR is a conservative approach, it is reasonable to imagine that this
method performs better in a set identification exercise; namely when the reported best element
is in the set of maximal elements. We assume that a risk-neutral policy maker has to pick from
the set of maximal elements endowed with a uniform distribution. Given this assumption, we
perform an expected identification exercise. Finally, we uniquely identify the entire reported
welfare relation.

Let N be the set of subjects and fipDq be the preference elicited by the welfare method f
given the choices of subject i over the dataset D. The reported welfare relation by subject i is
denoted as REPipąq. The proportion of correctly identified subjects given the three approaches
is as follows:

• Unique Identification [UI]:

#ti P N : maxrREPipąqs “ maxr fipDqsu
#N

• Expected Identification [EI]:

ř

iPN:maxrREPipąqsPmaxr fipDqs

1
#tmaxr fipDqsu

#N

• Welfare Relation Identification [WRI]:

#ti P N : REPipąq “ fipDqu
#N

Note that, the reported welfare relation is necessarily asymmetric. Hence, methods that
map into linear orders such as SEQ or EIG are theoretically favoured in the identification of
the entire welfare relation. To solve this issue we also investigate how close methods are to
identify reported welfare relation even when these are not perfectly identified. The similarity of
solutions is measures using the sum over all subjects of: (1) the cardinality of the symmetric
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difference between the resulting binary relations and the reported order;44 (2) the number of
times the asymmetric part of the reported order is reversed. Using both measures is crucial. The
symmetric difference considers equally the symmetric and asymmetric part of the binary relation,
hence punishing coarse methods such as BR. The "reverse asymmetry" measure allows us to
disentangle those differences that are in principle worse; namely when a subject reports x better
than y but the method ranks y better than x. This measure punishes particularly methods that
map in linear orders such as EIG and SEQ; while the conservative nature of BR creates a lowest
bound. This analysis, together with the three identification exercises, provide a comprehensive
picture of the identification power of each method.

4.3.1 Time

Table 8 shows that methods that satisfy IR perform significantly better than BR both uniquely
(30%) and in expectation (15%). It is crucial to notice that BR is a lowest bound in the
identification exercise since it identifies only those subjects that rationally reveal their best
element. Therefore, the 30% gap is not trivial because it is performed on irrational individuals.

ALL MAIN BINARY ALL MAIN BINARY

CRP 0.87 0.81 0.77 0.88 0.84 0.77

MS 0.87 0.81 0.79 0.88 0.85 0.80

EIG 0.87 0.83 0.81 0.87 0.83 0.81

TC 0.88 0.81 0.77 0.88 0.83 0.77

IR CC 0.81 0.83 0.77 0.84 0.86 0.81

SEQ - 0.83 - - 0.83 -

BR 0.59 0.67 0.77 0.74 0.79 0.77

OW 0.89 - - 0.89 - -

NOTES -- On the left we show the portion of subjects for whom each method uniquely identify the reported best
element. On the right, the expected portion of subjects for whom each method identify the reported best element. The
measure is expected because for some subjects methods may set identify the best element; in these cases we assume to
pick uniformly from the set of identified elements.

Table 8: UNIQUE & EXPECTED IDENTIFICATION - TIME

UNIQUE EXPECTED
METHODS

IR
 &

 C
R

P
N

o-
IR

The power of identification for methods that satisfy IR is increasing in the number of sets in
the dataset which suggests that individuals reveal information about welfare along all the dataset.
Only exception is CC. We interpret as evidence in favour of the importance of standard revealed
preference as foundation for welfare methods.

44The symmetric difference 4 between two binary relations R1, R2 is defined as follows: R1 4 R2 “ pR1zR2q Y

pR2zR1q. For instance, let R1 “ tpx, yq, py, xq, py, zq, px, zqu and R2 “ tpx, yq, py, zq, pz, yq, px, zquwe have R1 4R2 “

|tpy, xq, pz, yqu| “ 2.
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Finally, SEQ performs particularly well; the difference is only 4-6%. The reason is that the
best element of SEQ is the one chosen from the set with all the four main alternatives. It turns
out this choice is a good predictor of the reported best element, although the two elicitations are
not equivalent.

Table 9 shows the identification of the entire welfare relation. We present it together with
symmetric difference and reverse asymmetry measures.

ALL MAIN BINARY
- - - SD RA SD RA SD RA

CRP 0.61 0.57 0.59 180 78 191 73 220 110

MS 0.62 0.59 0.61 182 82 188 76 218 88

EIG 0.54 0.60 0.61 222 111 208 104 218 109

TC 0.61 0.58 0.59 180 73 188 68 234 71

IR CC 0.54 0.58 0.59 214 91 186 74 218 78

SEQ - 0.60 - - - 194 97 - -

BR 0.42 0.50 0.59 264 45 226 54 220 110

OW 0.66 - - 170 85 - - - -

METHODS

IR
 &

 C
R

P
N

o-
IR

NOTES -- On the left we show the portion of subjects for whom each method uniquely identify the entire reported welfare
relation. On the right, "SD" and "RA" denote respectively symmetric difference and reverse asymmetry.

Table 9: IDEN. WELFARE RELATION, SD & RA - TIME

ENTIRE IDEN. SD & RA
ALL MAIN BINARY

We confirm that methods that satisfy IR perform better than BR by 10-15%. The perfor-
mances of SEQ and EIG are positively biased by the feature that they do not allow indifferences.
In fact, observing the measure of RA we see that they significantly reverse more asymmetric
parts than the other methods. Since BR constitutes a lower bound in RA, and setting it to zero,
we can say that for the all dataset they perform worse than MS by respectively 30% and 65%.45

The monotonicity of the identification power in the size of the dataset is not straightforward.
However, if we observe the SD of methods that satisfy IR we notice that it is decreasing for any
method apart from EIG and CC. This latter result was expected; while the poor performance of
EIG is due to both the absence of indifference and the excessive weight posed by the method on
observations from big sets.

4.3.2 Risk

Table 10 shows that methods satisfy IR perform significantly better than BR both uniquely
(50%) and in expectation (20%). We also confirm that the power of identification is generally

45We consider MS since it the method that in this case maximizes the identification of the entire reported welfare
relation. We do not consider OW since it was, at least partly, designed for this purpose.
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(note that CC is still an exception) increasing in the size of the dataset.

The choice from the set of main alternatives is again a good predictor of the reported best
element since the loss of SEQ is only 4-8%.

ALL MAIN BINARY ALL MAIN BINARY

CRP 0.59 0.52 0.42 0.61 0.59 0.42

MS 0.59 0.52 0.46 0.61 0.60 0.50

EIG 0.61 0.61 0.51 0.61 0.61 0.51

TC 0.61 0.51 0.42 0.62 0.55 0.42

IR CC 0.55 0.56 0.42 0.57 0.61 0.50

SEQ - 0.55 - - 0.55 -

BR 0.14 0.25 0.42 0.43 0.49 0.42

OW 0.63 - - 0.63 - -

METHODS

IR
 &

 C
R

P
N

o-
IR

NOTES -- See Table 8.

Table 10: UNIQUE & EXPECTED IDENTIFICATION - RISK

UNIQUE EXPECTED

Table 11 again shows that methods that satisfy IR outperform BR in the entire identification
exercise by 15-20%. We also confirm that SEQ and EIG performances are only apparently
good; in fact when controlled for RA measure, and normalizing for the RA measure of BR, we
see that they perform worse than MS by respectively 25% and 17%.

The monotonicity in the identification power is confirmed both looking at SD and at the
identification process. It is interesting to notice that contrarily to time, the identification of
EIG is increasing in the size of the dataset. This suggests either that big sets are important
in identifying the entire welfare relation, or that binary sets are not important, or both. We
investigate and confirm this hypothesis in the last subsection.
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ALL MAIN BINARY
- - - SD RA SD RA SD RA

CRP 0.24 0.19 0.20 436 186 455 168 556 278

MS 0.24 0.20 0.21 440 190 452 179 569 241

EIG 0.30 0.27 0.23 446 223 448 224 576 288

TC 0.24 0.19 0.20 434 182 446 157 570 184

IR CC 0.21 0.19 0.20 453 200 452 185 569 218

SEQ - 0.25 - - - 478 239 - -

BR 0.06 0.10 0.20 592 86 545 115 556 278

OW 0.32 - - 421 210 - - - -

Table 11: IDEN. WELFARE RELATION, SD & RA - RISK

METHODS

NOTES -- See Table 9.

N
o-

IR
IR

 &
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R
P

ENTIRE IDEN. SD & RA
ALL MAIN BINARY

4.4 Completeness of the methods

In this section, we present the results related with the completeness of the methods. We borrow
the term "completeness" from Fudenberg et al. (2019). The authors use machine learning
to measure the amount of variation in the data that a theory can capture. The definition of
completeness aims to answer the following question: "How close is the performance of a given
theory to the best performance that is achievable in the domain?" Fudenberg et al. (2019). In our
framework, we define completeness, denoted as Comp f q for some welfare method f , as:

Comp f q “
εp fLq ´ εp f q
εp fLq ´ εp fUq

where εp fLq is the proportion of non-identified subjects by the method that defines a lower
bound on the domain; εp fUq is the best achievable residual proportion and εp f q is the residual
proportion of the model under study. In our framework, we set fL “ BR and fU “ OW. Table
12 shows the completeness of the methods using ALL sets across different types of identification
procedures in both Time and Risk.
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METHODS UNI. EXP. ENT. UNI. EXP. ENT.
CRP 0.93 0.93 0.79 0.92 0.90 0.69

MS 0.93 0.93 0.83 0.92 0.90 0.69
EIG 0.93 0.86 0.50 0.96 0.90 0.92
TC 0.95 0.93 0.79 0.96 0.95 0.69

CC 0.74 0.66 0.50 0.84 0.70 0.58

SEQ 0.81 0.59 0.75 0.84 0.60 0.73

BR 0.00 0.00 0.00 0.00 0.00 0.00
OW 1.00 1.00 1.00 1.00 1.00 1.00

Table 12: COMPLETENESS OF THE METHODS

NOTES -- This table reports the completeness of all methods in cases of unique (UNI.), expected (EXP.)
and entire (ENT.) identification procedures.

TIME RISK

Since BR and OW are respectively lower and upper bound for our identification analysis
they take respectively value zero and one. Methods that satisfy IR and are based on the revealed
preference approach have generally higher completeness than other methods. Note that, even
though we do not report completeness for the measures of symmetric difference and reverse
asymmetry in the entire identification approach, that favours SEQ over other methods, there
always exists at least a method among those that satisfy IR and are based on revealed preference
that is more complete than SEQ.

4.5 Informational Responsiveness & Optimal Weights

In Section 2 we propose IR as necessary condition for welfare methods. We can exploit one
implication of IR to directly test the axiom. Note that, in the family of weighted sums, if revealed
preferences receive strictly positive weights46 in any part of the dataset then IR is satisfied.
Hence, our construction of OW allows us to test whether IR binds in an optimal identification
problem.

4.5.1 Time

Table 13 shows the intervals of weights that guarantee optimality for different objective functions.
We generalize our previous analysis where the convention was to optimize the sum of expected
identification of the reported best element and unique identification of the entire welfare relation.
Since weights are often not unique, we report the minimum and maximum weights for which
there exists a system of weights that solve the optimization problem. This does not imply

46This implication is immediate. See Meyer & Mongin (1995) for a comprehensive study of affine aggregation.
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that any vector of weights that is in the cartesian product of the intervals guarantees optimal
identification. In the table, for completeness of information, we split the MAIN sets in three
parts: Binary sets, Ternary sets and Quaternary set.

IDENTIFICATIONS BIN TER QUA BIG AD

UI [0.6,1] [0.2,1] [0.1,0.2] [0.6,1] [-0.2,1]
EI [0.6,1] [0.2,1] [0.1,0.2] [0.6,1] [-0.2,1]

WRI [0.2,0.9] [0.3,1] [0.3,1] [0.4,1] [-0.2,-0.1]
SD [0.5,0.8] [0.6,1] [0.4,0.8] [0.4,0.7] -0.2

SD & RA 0.6 0.6 0.6 0.6 -0.2
EI & WRI 0.9 1 0.4 0.8 -0.2

Table 13: OPTIMAL WEIGHTS - TIME

TIME

NOTES -- The table contains intervals of weights that optimize the identification of different objectives. "UI" and "EI"
denote respectively unique and expected identification of the best element; "WRI" denotes entire welfare relation
identification; "SD" and "RA" denote respectively minimization of the sum of symmetric difference and [two times]
reverse asymmetry against the reported welfare relation; "EI & WRI" denotes the sum of EI and WRI. This latter is the one
used along the paper to define OW.

We observe that strictly positive weights are associated to any part of the dataset apart from
AD sets. This latter is found to be irrelevant in the identification of the reported best element
(weights can be negative, zero or positive), while they have negative weights when we identify
the entire welfare relation. This result is somewhat surprising since it shows that subjects
wrongly reveal their welfare in this part of the dataset. Nonetheless, it confirms the findings of
Section 4.2, where we show that subjects are not only more irrational in these sets (Table 4); but
also they have different behaviour (Table 5) if compared to MAIN and BIG sets.

We also find that binary sets are particularly important along all the possible objective
functions. This explains both the relatively good performance of methods on these sets (Table 8)
and the fact that the identification power of EIG decreases in the size of the sets as observed in
Table 9. This is due to the high weight put to bigger sets by the EIG method.

4.5.2 Risk

Table 14 shows that IR binds everywhere since strictly positive weights are attached to any
domain. There are two exceptions. Firstly, AD sets are irrelevant when we focus only on the
reported best element. This confirms the data in Table 7, where we show a different behaviour
between AD sets and the rest of the dataset.
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IDENTIFICATIONS BIN TER QUA BIG AD

UI [-0.2,0] [0.4,0.7] [0.7,1] [0.5,0.9] [-0.2,0.9]
EI -0.1 [0.3,0.8] [0.5,1] [0.4,0.9] [-0.2,0.9]

WRI [0.2,0.7] [0.4,1] [0.8,1] [0.3,0.8] [0.3,1]
SD 0.4 0.4 1 0.3 0.4

SD & RA 0.5 [0.4,0.5] [0.8,1] [0.4,0.5] [0.4,0.5]
EI & WRI [0.1,0.3] [0.4,0.5] [0.8,1] [0.4,0.6] [0.3,0.6]

Table 14: OPTIMAL WEIGHTS - RISK

RISK

NOTES -- See Table 13.

Secondly, when we focus only on the identification of the reported best element we observe
that binary sets receive weakly negative weights. These weights are also strictly positive but
close to zero in the other exercises. This again confirms the findings of previous sections. In
fact, in Table 10 we find that methods perform poorly on binary sets. We also found (Table 11)
that the EIG method has an increasing identification power in the size of the sets. Finally in
Table 11 we find that, throughout all methods, the differential of both symmetric difference and
reverse asymmetry between binary sets and MAIN and ALL dataset is positive and significant.

The low importance of binary sets is striking. Especially, if we compare the weights
associated with BIG sets where supposedly we should observe choice overload effect. This
seems to suggest that, in risk, the irrational behaviour in MAIN sets is mostly driven by binary
sets.47

5 Conclusion

In this paper, we axiomatically analyse welfare analysis. We propose normatively appealing
properties and show that they have important empirical implications. Particularly, we propose
a property called Informational Responsiveness. We show that it is a necessary condition to
avoid paradoxical welfare conclusions and to satisfy the principle that more data should lead to
finer conclusions. As a novelty we characterize the counting revea3aled preference procedure
on datasets with possibly multiple observations and missing data. We argue that Informational
Responsiveness together with a revealed preference approach are necessary conditions for an
effective welfare analysis.

In the second part of the paper, using a novel experimental design, we test our hypothesis
both in its premise and its conclusion. Firstly, we show that individuals repeatedly violate the
Weak Axiom of Revealed Preference both in time and risk preferences. We develop a new index
of rationality and show that inconsistency is a general phenomena, namely it is common to

47This evidence suggest further research on attentions in choice among gambles and it is in line with stochastic
models such as Manzini & Mariotti (2014a) and Cattaneo et al. (2018).
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sets with cardinality and with and without behavioural effects. Secondly, we find that welfare
methods that satisfy Informational Responsiveness and are based on a revealed preference
approach perform significantly better in identifying both the best reported element and the entire
reported welfare relation. The results are strong in both time and risk preferences and in any
part of the dataset. We show that these welfare methods are more complete theories in the
sense of Fudenberg et al. (2019). Finally, using an optimal weighting algorithm we directly test
Informational Responsiveness. We show that subjects reveal welfare in almost all part of the
dataset and therefore that welfare analysis is most effective when all data are used but they are
differently weighted according to the capacity of revealing welfare.
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A Proofs

A.1 Proposition 1

In the following proofs we omit the subscript f to ease the reading. By law of large numbers,
we have upxq ě upyq if and only if Cx ě Cy. We have to prove xRAy if and only if Cx ě Cy.
The only if part is trivial since the counting choice method satisfies all three axioms.

Take two elements x, y P A and divide the dataset in three disjoint parts: Cx, Cy have already
been defined and Cz “

ř

z,x,y
Dpz, Aq. Let’s first focus on this latter set, by NEU we must have

xIAy. Suppose to the contrary that xPAy and take a permutation π such that πpxq “ y, πpyq “ x
and πpzq “ z for all z , x, y. Then we have yPAx, however the dataset has not changed and
therefore we violate the definition of welfare method as a function.

The rest of the proof is by induction on Cx`Cy. The inductive base is proved for Cx`Cy “

2. Let Cx `Cy “ 1 and x is chosen; by IR and NEU we have xPAy. If Cx `Cy “ 2 and
Cx ą Cy then xPAy by CNN; if Cx “ Cy then xIAy by NEU. Suppose the statement holds
for Cx ` Cy “ n and we add an observation px, Aq. If Cx ´ Cy “ 1 then xPAy by IR and
the inductive hypothesis; if Cx ´Cy ą 1 then xPAy by CNN and the inductive hypothesis; if
Cx “ Cy then xIAy by N.

A.2 Proposition 2

By Transitivity, Completeness of R and the finiteness of X; we can make use of a result from
Krantz et al. (1971): there exists a real-valued function φ on X such that for all x, y P X; xRy if
and only if φpxq ě φpyq.

A corollary of this result goes as follows: let φ : X Ñ Rn´1, where |X| “ n, be a vector
valued function and φpxqz be the valued assigned to x when compared to z. Then by the previous
result φpxqz “ φpxqy for all y, z , x. The proof is trivial. Suppose the following is false; then we
may have φpxqy ą φpyqz ą φpzqx violating transitivity.

We are now ready to prove our Proposition. Given two generic elements x, y we can
partition the dataset in eight disjoint sets with the following cardinalities: Cxy, Cyx have already
been defined; Cx,´y “

ř

y<A
Dpx, Aq and similarly Cy,´x; B “ Bxy “ Byx “

ř

z,x,y

ř

x,yPA
Dpz, Aq;

Dxy “
ř

z,x,y

ř

xPA&y<A
Dpz, Aq and similarly Dyx; E “ Exy “ Eyx “

ř

z,x,y

ř

x,y<A
Dpz, Aq.

Let’s first focus on B and E. On these parts of the dataset, NEU implies xIDy. Suppose then
upxq ě upyq, then Cx,´y ě Cy,´x. Using Proposition 1, we have xRDy. Similarly, Cxy ě Cyx

implies xRDy by IR, CNN and NEU. Note that the premise of our result, namely upxq ě upyq
implies Cx,´y ą Cy,´x and Cxy ą Cyx, doesn’t hold for a generic domain D. However, it holds
on hompDq.
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To complete the proof we need to extend the argument to Dxy and Dyx. However, note that
upxq ą upyq implies Dyx ą Dxy and there are no constraints on how such observations should
influence the ranking between x, y since a third element is chosen. Hence, a method that attach
a positive value on the observations of the type Dxy, Dyx could led to upxq ą upyq and yPC x.
However, by the corollary of Krantz et al. (1971) result, which is based on Transitivity, we can
focus on Dx “

ř

z,x

ř

xPA
Dpz, Aq instead of Dxy. In other words, the value assigned by a method

to the observation pz, Aq with x P A and y < A must be equal to the one of the observation
py, Aq with x P A and z < A; otherwise this could potentially lead to cycles. Hence, suppose by
contradiction that upxq ą upyq and yRCD x; then it must be that the value attached to observations
in Dx is positive, since Dy ą Dx. However, we proved that xRCDy over the parts of the dataset
with cardinalities Cx,´y, Cy,´x,Cxy, Cyx, B, E. Suppose we add an observation px, Aq with y P A.
Clearly, Dy increase by a positive value. However, since we assumed yRCD x then CNN is
violated.

A.3 Theorem 1

The proof is by induction over the number of observations in the dataset. Denote |D| “
ř

AĎX

ř

zPX
Dpz, Aq. The induction base is proved for |D| “ 2. Let |D| “ 0; by NEU xIDy. If

|D| “ 1 then if Dpz, Aq “ 1 by IND we have xIDy; if Dpx, Aq “ 1 by SIR we have xPDy. Let
|D| “ 2. If z is chosen the previous result holds by IND. So, let’s x or y be chosen. Let the
observation px, Aq be added such that Cx “ 2. By ST we have yPD`px,Aqx. Suppose xID`px,Aqy,
by SIR we should have yPDx contradicting the result at |D| “ 1; hence xPD`px,Aqy. If we add an
observation py, Aq such that Cx “ Cy “ 1 then by ST and xPDy we have  yPD`py,Aqx. Suppose
xPD`py,Aq and let px, Bq be the other observation, by ST we should have  yPD´px,Bqx violating
the result at |D| “ 1 since Cy “ 1 and Cx “ 0. Hence, xID`py,Aqy.

Suppose the result holds for |D| “ n and add an observation from a generic set A. Suppose
Cx “ Cy. If Dpz, Aq “ 1 then by IND and the inductive hypothesis xID`pz,Aqy. If Dpx, Aq “ 1,
by inductive hypothesis we have yPDx and by ST  xPD`px,Aqy. But then since Cx “ Cy, there
exists a set B such that Dpy, Bq ą 0. By inductive hypothesis xPD`px,Aq´py,Bqy and by ST
 yPD`px,Aqx. Hence, xID`px,Aqy.

Suppose Cx ą Cy. If pz, Aq the result holds by IND and the inductive hypothesis. If px, Aq
then we may have two scenarios: either xIDy or xPDy. If xIDy by SIR we have xPD`px,Aqy.
If xPDy then by ST  yPD`px,Aqx. Suppose by contradiction xID`px,Aqy then by SIR yPDx
contradicting the inductive hypothesis. Hence xPD`px,Aqy. If py, Aq then by ST and the inductive
hypothesis we have  yPD`py,Aqx. Since Cx ą Cy there exists a set B such that Dpx, Bq ą 0;
hence suppose by contradiction that xID`py,Aqy; by SIR we have yPD`py,Aq´px,Bqx violating the
inductive hypothesis. Hence, xPD`py,Aq completing the proof.
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A.4 Theorem 2

The proof of this theorem is very similar to the one of the Theorem 2. We follow the same
structure. If |D| “ 0 we have xIDy by NEU. Let |D| “ 1, with one observation from set A.
If either x < A or y < A then by CON xIDy. If x, y P A and Dpz, Aq “ 1 is observed then by
NEU xIDy. If Dpx, Aq “ 1 and y P A then by IR we have xPDy. Let |D| “ 2. If z is chosen,
Cxy “ Cyx “ 0 and x, y are in both sets then by CON and NEU xIDy; if either x or y are not
in the set then xIDy by CON. If Cxy “ 1 then xPDy by CON and NEU. Let Dpx, Aq “ 1 and
Cxy “ 2 then by ST  yPD`px,Aqx; suppose by contradiction xID`px,Aqy, by IR we have yPDx
violating the result at |D| “ 1; hence xPD`px,Aqy. If Cxy “ Cyx “ 1 then by the argument in
Thm 2 using ST we have xID`px,Aqy.

Let |D| “ n. If pz, Aq is the added observation then the result follows by CON, NEU and
the inductive hypothesis. If px, Aq is added; let Cxy “ Cyx; by the argument in Thm 2 using
ST we have xID`px,Aqy. If Cxy ´Cyx “ 1 then by IR and the inductive hypothesis xPD`px,Aqy.
If cxy ´Cyx ą 1 then by ST and inductive hypothesis  yPD`px,Aqx. Suppose by contradiction
xID`px,Aqy, then by IR yPDx contradicting the inductive hypothesis. Hence xPD`px,Aqy. The
argument can be repeated using py, Aq completing the proof.

A.5 Proposition 3

Notice the following trivial fact:

dspD, Pq “
ÿ

px,AqPO

|ty P A : yPx & px, Aqu| “
ÿ

x,yPX

|tpx, Aq : y P A & yPxu|

Hence, the number of swaps can be rewritten as:

ÿ

x,yPX

Cyx when xPy

In general the maximum number of swaps is:
ř

x,yPX
Cxy`Cyx. Define a new measure ∆pC, Pq

that equivalently to the swaps distance defines the degree of similarity between a dataset and an
irreflexive order P:

∆pC, Pq “
ÿ

x,yPX

rCxy ´Cyxs when xPy
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We prove that for all P1, P2 the following holds

dspC, P˚1q ď dspC, P˚2q ô ∆pC, P˚1q ě ∆pC, P˚2q

The proof is algebraic. Note that, given xPy:

ÿ

x,yPX

rCxy `Cyxs “
ÿ

x,yPX

rCxy `Cyxs

ÿ

x,yPX

rCxy ´Cyxs

loooooooomoooooooon

∆pC, Pq

´
ÿ

x,yPX

Cxy “ ´
ÿ

x,yPX

Cyx

looomooon

dspC, Pq

Hence, if dspC, Pq increase by n P N , then it must be that ∆pC, P˚q decreases by 2n.

Denote P̂CRP the transitive closure of PCRP. We can prove the theorem showing that PCRP

maximizes ∆pC, Pq. If PCRP is acyclic and xPCRPzPCRPy and xICRPy, we have that if xP̂CRPy
then Cxy ě Cyx for all x, y P X. Hence, P̂CRP maximize ∆pC, PCRPq. In fact, suppose yPMSx,
then by transitivity of PMS, either zPMSx or yPMSz. Hence, since Cxy “ Cyx, Cxz ą Czx and
Czy ą Cyz, we must have that ∆pC, PMSq < ∆pC, P̂CRPq, contradicting the definition of PMS.

A.6 Claim 1

We prove that TC satisfies IR. The argument follows from Axiom 1, called Prudence, of
Nishimura (2017) and the definition of TC. The axiom is stated as: xRD

TCy implies xRD
CRPy.

Hence, xID
TCy implies xID

CRPy. The converse is true only if the definition of TC holds for all
z , x, y. Then, suppose we add an observation px, Aq with y P A such that xPD

CRPy. By definition
of TC, setting z “ y we have yRD

CRPy by reflexivity but  yRD
CRPx; hence  yRD

TCx. Clearly
xRD

CRPy still holds. Hence, xPD
TCy and IR is satisfied.

B Independence of the axioms

B.1 Proposition 2

NEU: Suppose CC applies to any element apart from y which is always at the bottom of the
ranking. This method satifies IR, CNN, T but not NEU.

CNN: Define xRhompDqy if and only if Hxy ě Hyx where Hxy “ a ¨Cxy´ b ¨Cx,´y with a “« 0.
This method satisfied T over hompDq when the dataset is the outcome of an i.i.d. RUM. It also
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satisfies IR when a ą 0 and NEU but not CNN. Note that, this method reverse the order defined
by the underlying utility of the RUM.

IR: If xIhompDqy for all x, y P X; then NEU, CNN and T are satisfied but not IR.

T: Define Fxy ě Fyx if and only if xRhompDqy where Fxy “ δ ¨Cxy ` Dxy with δ P <``. This
method satisfies IR, NEU, CNN but not T. In fact, take δ « 0 and a Luce Model with upxq “ 3,
upyq “ 2, upxq “ 1 and the dataset being 60 observations per each non-empty subsets of X with
at least two elements. The reader may note that Fxy ă Fyx.

B.2 Theorem 1

ST: Define Nxy “ Cxy ` δ
ř

A=y
Dpx, Aq and Nxy ě Nyx ô xRDy. This welfare method satisfies

NEU, IND, SIR but not ST.

SIR: The CRP method satisfies NEU, IND, ST but not SIR.

IND: Define Txy “
ř

A=y
Dpz, Aq with z , x and Cx ` Txy ě Cy ` Tyx ô xRDy. This welfare

method satisfies ST, SIR, NEU but not IND.

NEU: Take a welfare method that ranks xPDy for all x P X and all datasets; for all others x, z
the CC method applies. Note that SIR is satisfied since the antecedent is always false for y. ST,
IND are also satisfied while NEU is not.

B.3 Theorem 2

ST: Define Qxy “
ř

AQx,y
Dpx, Aq ¨ |A| and Qxy ě Qyx ô xRDy. This welfare method satisfies

CON, IR, NEU but not ST.

IR: Let xIDy for all x, y P X and all datasets; this welfare method satisfies CON, NEU, ST but
not IR; note that ST is satisfied vacuously.

CON: The CC method satisfies NEU, ST, IR but not CON.

NEU: Take a welfare method that ranks xPDy for all x P X and all datasets; for all others x, z
the CRP method applies. This welfare method satisfies ST, IR, CON but not NEU.


