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1 Introduction

A long tradition in labor economics and macroeconomics argues that factor-biased technical

change is at the core of the US labor market dynamics in the post-war era (Katz and Murphy,

1992; Hornstein et al., 2005). A more recent literature emphasizes the importance of workers’

occupational heterogeneity for the anatomy of new labor market phenomena, e.g. employ-

ment and wage polarization (Acemoglu and Autor, 2011). In this paper, we aim at furthering

our understanding of the heterogeneity in factor-biased technical change across occupations

by providing the first direct measures of capital-embodied technical change (CETC) as well

as of the elasticity of substitution between capital and labor at the occupational level.

CETC is a salient source of factor biased technical change (Krusell et al., 2000) and mate-

rializes as a decline in the relative price of capital to consumption (Hulten, 1992). CETC may,

at the same time, induce worker replacement in certain occupations, increase the demand of

certain occupations, or create new occupations altogether. A thorough assessment of these

effects is limited by the absence of data on the capital used in occupational production. Cur-

rent assessments are either narrow in their focus on particular equipment/technology (e.g.

Autor et al., 1998; Kehrig, 2018); or rely on auxiliary data (notably the task characteristics

of an occupation, e.g. Autor et al., 2003; Autor, 2015). We provide the first-available mea-

sures of occupational capital, that cover all equipment types available in the economy and

that are consistent with NIPA equipment and software aggregates. We document that the

bundle of capital used in different occupations is heterogeneous and this heterogeneity leads

to a substantial disparity in the decline of the user cost of capital. Despite such disparity in

CETC, it is the heterogeneity in factor substitutability that ultimately sets the direction of

the labor reallocation triggered by CETC. Using our estimates of the occupational elasticity

of substitution between capital and labor, we find that CETC explains 87% of the gross

labor reallocation across occupations observed in the US since 1984. In an economy with

a common elasticity of substitution, measured differences in occupational CETC can only

explain 14.5% of the observed labor reallocation.

Our first task is to discern the relevant channels through which CETC affects the labor

market. To do so, we summarize workers’ exposure to technical change through the cross-

price elasticity of occupational labor demand – that is, the response of occupational labor

demand to changes in the user cost of capital. This elasticity is only a function of (i) the

extent of labor substitutability to capital (ii) the own price elasticity of labor supply (iii) the

importance of capital for production, or its input share; and (iv) the demand elasticity for

occupational output, under the assumptions of constant returns and price-taking behavior
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(Hicks, 1932; Robinson, 1934). Our dataset allows inference of those four objects and so

pinpointing of the channels at the heart of occupational heterogeneity in worker’s exposure

to technical change. Our second task is the quantification of these channels. The cross-price

elasticity considers occupations in isolation and so misses important general equilibrium

forces that were at play in the reallocation of workers over the past 30 years. Hence, we

run the quantification in a general equilibrium model that is consistent with our concept of

exposure and features endogenous worker selection across occupations.

We start by constructing a novel dataset of occupational capital. Our dataset covers the

24 major equipment and software categories considered by the Bureau of Economic Analysis

(BEA) and 327 occupations in the Census classification, over the last 30 years in the US.

For each occupation, we construct capital requirements by equipment category, exploiting

information on the occupation-specific tools that workers use in their jobs. We measure

occupational tools in two separate years, 1977 and 2015. The Tools and Technology module

of the Occupational Information Network (O*NET) readily provides this information for

2015, but tool information in the earlier years is hard to come by. An important contribution

of our paper is to collect such information, applying Natural Language Processing (NLP)

algorithms over the description of occupations in the 1977 Dictionary of Occupational Titles

(DOT), the predecessor to O*NET.1 Based on the occupational capital requirements, we

build an allocation rule to distribute capital for each of the 24 equipment categories across

occupations in each year, between 1984 and 2015. Then, we aggregate across equipment

categories in each occupation to build occupational capital.

With our dataset at hand, we take on our first task of measuring workers’ occupational

exposure to CETC. Two ingredients of exposure can be inferred directly from our dataset:

the capital share and the elasticity of substitution between capital and labor. To measure the

former, we work under the assumption of constant returns so that labor and capital expenses

equal the value of output. Capital expenses are computed using our newly constructed

dataset and estimates of the user cost of capital by equipment category in the tradition

of Jorgenson (1963). In 1984, the capital share ranges from 5% in sales occupations to

43% in mechanics and transportation occupations. Capital shares change substantially over

time: between 1984 and 2015, they decrease by 9.7p.p. in mechanics and transportation

occupations and by 7.6p.p in precision occupations and increase by more than 11p.p. for

1The Tools and Technology module of the O*NET was first exploited by Aum (2017) to study the impact
of software innovation on the demand for high-skill jobs. We expand the set of tools he matched to equipment
categories to include missing commodities in communication, service industry, and construction machinery
accounting for 12% of the current stock in 2016 as measured in the NIPA fixed asset tables.
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professionals and machine operators. We exploit this time variation along with changes in

the relative user cost of capital to labor to estimate their elasticity of substitution in each

occupation. Middle- and low-skill occupations are substitutable to capital on average, with

an average elasticity of 1.5; while high-skill occupations are complementary to capital, with

an average elasticity of 0.81.2 Importantly, our estimates of the elasticity of substitution are

robust to including control for the occupational task content (Autor et al., 1998, 2003; Autor

and Dorn, 2013), suggesting that our estimates pick up a novel dimension of heterogeneity

across occupations.

Inferring the output demand and labor supply elasticities brings up two challenges. First,

the estimation of the demand elasticity relies on occupational output and price data, which

are inherently unobservable.3 Second, the estimation of the labor supply elasticity is tangled

by selection effects from the endogenous sorting of workers across occupations, which are

also unobservable. To make progress, we specify a model of endogenous sorting of workers

across occupations in the tradition of Roy (1951). First, we assume a CES aggregator

of occupational output so that its demand elasticity equals the elasticity of substitution

across occupational outputs. Cost minimization at the occupation level is sufficient to infer

occupational output and prices from our data on occupational capital services and its user

cost. We find that occupational outputs are gross substitutes, with an elasticity of 1.34.

Second, we take a Fréchet distributional assumption on workers’ comparative advantage

across occupations to obtain a structural counterpart to the price elasticity of labor supply,

which we estimate at 0.3.

We document substantial variation in worker’s exposure to CETC across occupations,

ranging from a negative exposure of -3.5% for precision production occupations to the most

positive exposure of 5.7% for mechanics and transportation occupations. Exposure is positive

for managers, professionals, technicians, low-skilled services, mechanics and transportation;

with the implication that the positive scale effect of a decline in the user cost of capital

dominates the negative substitution effect, and so CETC increases labor demand (even

when capital and labor are substitutable). We combine exposure with CETC and compute

2In the aggregate, we estimate an elasticity of substitution between capital and labor of 0.88, consistent
with estimates by Oberfield and Raval (2020) and Leon-Ledesma et al. (2010). Our results are consistent
with the aggregate decline in the labor share (Sahin et al., 2013) through labor-biased technical change,
which we estimate at 1.9% per year. Kehrig (2018) is the first attempt to measuring heterogeneity in the
elasticities of substitution between capital and labor but his measure focuses solely on computers. A key
advantage of our measurement is the inclusion of the entire stock of equipment in the economy.

3The unobservability of occupational output and prices also impede reduced-form estimates of the impact
of the decline in the user cost of capital on labor demand, as implemented in Goos et al. (2014) using industrial
output in the context of the declining user cost of routinizeable and offshorable tasks.
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the reallocation of labor implied by changes in labor demand to find it to be consistent with

the polarization of employment observed in the US labor market over the last 30 years.

Prima facie, the phenomena of employment polarization is consistent with either hetero-

geneous substitutability of capital and labor across occupations, emphasized in Autor et al.

(2003) and of which we provide the first available estimates; or with a common elasticity of

substitution of capital and labor across occupations, faster capital deepening in occupations

that loose employment and complementarity in output across occupations, as in Goos et al.

(2014). Our estimates favor the substitution channel rather than the scale channel as a

driving force for employment polarization.

So how sizable has the impact of CETC been on the US labor market? To answer

this question we take on our second task and quantify the role of CETC for labor market

outcomes in general equilibrium. The model considers incentives for reallocation of workers of

different characteristics across occupations as well as changes in equilibrium wages. We find

that CETC explains 73% of the observed reallocation of labor towards high-skill occupations

between 1984 and 2015. CETC also accounts for 57% of the reallocation out of middle-skill

occupations and for a small fraction of the reallocation toward low-skill occupations, 11% of

it. In addition, we find that CETC fueled wage inequality: it generated 54% of the increase

in the college premium, about 1/3 of the rise in the cross-sectional age premia, and also

widened gender wage gap by 12.5p.p., between 1984 and 2015.

The richness of our structural model allows us to explore the role of other channels that are

potentially important for labor reallocation across occupations. Occupational demand shifts,

in the form of offshoring or related to structural change, have been posed as an important

driver of employment polarization (Autor and Dorn, 2013; Comin et al., 2020). We find

that this demand channel is quantitatively important to explain the gains in employment of

low-skill occupations, but it misses most of the gains in employment of high-skill occupations.

Last, we tease out the role of technological advances in each equipment type by extend-

ing our baseline model and specifying occupational capital as a CES composite of different

capital goods, with an elasticity of substitution of 1.13, which we estimate using our dataset.

Consistently with Eden and Gaggl (2018), our results indicate that CETC in computers,

communication equipment, and software have been important drivers of employment reallo-

cation and of the evolution of the returns to skill in the US over the last 30 years. However,

since 2000, there has been a slow-down in the decline of the relative price of computers and,

other categories of equipment, including communication, optical and medical instruments

have become increasingly important for labor reallocation. This finding demonstrate the
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value of studying CETC by considering broad measures of equipment, relative to case stud-

ies that focus on computers and robots only (Autor et al., 2006; Aum et al., 2018; Burstein

et al., 2019; Acemoglu and Restrepo, 2018).4 Distinctively from studies that focus on the

adoption of capital-intensive modes of production, we show that the magnitude of measured

disparities in CETC and capital labor ratios across capital types, occupations and time can

not in itself rationalize employment dynamics over the last 30 years. It is only when CETC is

paired with heterogeneous elasticities of substitution between capital and labor that CETC

becomes a quantitatively relevant source for labor reallocation.

The rest of the manuscript is organized as follows. Section 2 constructs occupational

capital and its user cost and presents key correlations between occupational CETC and em-

ployment flows. Section 3 estimates the elasticity of substitutions between capital and labor

across occupations. We use the findings in these sections to measure occupational exposure

to CETC and quantify the partial-equilibrium effects of technical change on the labor market

(Section 4). Section 6 evaluates the differential role that CETC has for employment realloca-

tion across occupations in general equilibrium, using the model outlined and parameterized

in Section 5. Section 7 discusses relevant model extensions and Section 8 concludes.

2 Capital and CETC across occupations

In this section, we document the path of the capital used in each occupation as well as its

user cost in the US between 1984 and 2015. We focus on equipment and measure occu-

pational capital consistently with the aggregate investment series in the Fixed-Asset tables

of the BEA. We follow the extensive literature that highlights the capital-embodied nature

of technology and the secular decline in the cost of investment over time, and construct

time-series of quality-adjusted capital stocks. To allocate these stocks to occupations, we

construct a novel index of the capital requirements in each occupation through time. Our

index is based off of the tools commonly used in each occupation, which we extract from the

DOT in the 1970s and from it successor, the O*NET, in the 2010s. The resulting dataset

of occupational capital and its user cost, replication code, and documentation are available

online at www.capitalbyoccupation.weebly.com.

4Estimates from annual capital expenditure survey (ACES) suggest that robotic equipment accounts for
0.7% of total equipment expenses in the US in 2019, and that half of those expenses are concentrated in the
manufacturing sector. Computers are an important contributor to the overall stock of equipment but the
slow-down in the decline of computer prices implies a slow-down in investment-specific technical change.

6

https://capitalbyoccupation.weebly.com


Our dataset combines four data sources: a novel dataset on occupational tool usage

that we construct using Natural Language Processing (NLP) algorithms over the textual

occupational definitions of the 1977 DOT, and the information from the Tools and Tech-

nology supplement of the 23.4 O*NET; annual Fixed-Assets (BEA) series of investment for

24 equipment categories; annual quality-adjusted series for the price of (new) capital con-

structed from linear projections of quality-adjusted price series from Gordon (1987) onto

NIPA price deflators for equipment (as in Cummins and Violante, 2002); and annual labor

market statistics computed from the March Current Population Survey (CPS) between 1984

and 2015.

2.1 Methodology

We start by defining an occupation to be a production unit that uses capital and labor to

produce output. We call the capital services used in an occupation “occupational capital”,

denoted by ko. We assume it to be a constant returns to scale aggregator of the capital

services used in production from individual equipment categories j, denoted by koj. This

assumption along with that of competitive markets imply that the growth rate of the occu-

pational capital, γko , is the weighted sum of the growth rate of individual equipment services

j in the occupation, γkoj, where the weights are determined by the expenditure shares of the

different categories, ωoj.
5 That is:

γkot =
∑
j

ωojtγ
k
ojt, for: ωojt =

λkjtkojt∑
jt λ

k
jtkojt

,

where λkj is the user cost of capital for equipment category j.To measure this user cost, we

use the standard no-arbitrage condition (Jorgenson, 1963):

λkjt =
λcjt−1

λct−1

R− (1− δ̄jt)
λkjt
λct

λkjt−1

λct−1

 ,
where λc is the price of consumption, λkj is the (quality-adjusted) price of equipment of type

j, and δ̄ corresponds to the average physical depreciation in the relevant decade of analysis.6

5The choice of weights follows Oulton and Srinivasan (2003) and is also consistent with those suggested
by Gourio and Ronglie (2020).

6We average the depreciation rates to smooth the effect of annual fluctuations in economic depreciation
on the residual estimate for physical depreciation. Results are robust to allowing for annual changes in
depreciation rates.
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The gross return on a safe asset is set at 2% per year, for R = 1.02.

In each occupation, we initialize occupational capital in 1984 to equalize the amount of

capital expenditures on all capital categories in the occupation. Then, iterating forward,

kot = kot−1e
γkot , for: ko1984 =

∑
j

λkj1984koj1984. (1)

Finally, we define CETC in each occupation, or occupational CETC, to be the decline in

the user cost of capital relative to consumption in the occupation. We construct the user cost

of occupational capital using the ratio between the total expenses in capital in an occupation

and occupational capital:

λkot =

∑
j λ

k
jtkojt

kot
.7 (2)

To implement our methodology, we need a measure of the occupational stocks for each

equipment category, kojt. We first construct aggregate quality-adjusted stocks by category,

kjt, and then assign their services across occupations as we describe next.

2.1.1 Quality-adjusted capital stocks per equipment category

We construct quality-adjusted stocks for each of the 24 equipment categories considered by

the BEA. This is our measure of the stock of capital in efficiency units (capital, for short)

for each equipment category. We initialize the stocks in 1984 to equalize their nominal

counterparts in 1985, our base year. Because the stock of capital is assigned to workers in

1984, our measurement implies that any investment occurring during 1984 (and showing up

in the stock in 1985) was available to workers in that year.

We apply the permanent inventory method to construct stocks over time. This requires

a measure of the efficiency units of investment and of the physical depreciation rate. We

assume a linear technology to transform consumption goods into investment at rate qjt,

in the tradition of Greenwood et al. (1997). Hence, the efficiency units of investment in

equipment j can be obtained by deflating nominal investment by its quality-adjusted price,

pkjt. The measures of depreciation reported by BEA, djt, reflect both physical depreciation,

δjt, and economic depreciation. We adjust these measures to compute physical depreciation

7This implied user cost is almost identical to that computed using a Tornqvist price index, with shares
equal to the expenditure share of each equipment category in the occupation. Also note that the choice of
the initial stock for occupational capital, equation 1, implies that the usercost of capital is normalized to 1
in each occupation in the initial period.
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as follows:

djt = 1− (1− δjt)
qjt−1

qjt
,

where the measure of economic depreciation induced by the availability of more efficient

capital is
qjt−1

qjt
=

pkjt
λyt

λyt−1

pkjt−1
and λyt−1 is the price of consumption.

2.1.2 Occupational assignment

We build an allocation rule for the aggregate quality-adjusted stocks of equipment to the

occupations based on the occupational capital requirements.

An index of occupational capital requirements. We refer to the capital require-

ments of an occupation as the fraction of the aggregate stock of each equipment category

used by the occupation. We infer these requirements from the tools used by workers in the

occupation. For example, commonly used tools by a dental assistant include air compres-

sors, dental cutting instruments, and personal computers. Our dataset includes more than

7,000 tools, which correspond to commodities in the United Nations Standard Products and

Services Code (UNSPSC) classification system and are linked to the equipment categories

considered by the BEA.8

We collect information on these tools across occupations in the US over the last 30 years.

The O*NET, a database collecting standardized occupation-specific descriptors, readily pro-

vides information on occupational tools for the period post-2010 through its Tools and Tech-

nology module (available since 2006 but with scattered occupational coverage in the earlier

years). To collect occupational tools in the beginning of our sample, 1980s, we use the tex-

tual definition of occupations collected in the 1977 version of the DOT. We parse out the set

of the tools used in each occupation by applying NLP algorithms.9 To generate measures

of occupational tools through the sample period we linearly interpolate the DOT-based and

O*NET-based occupational tools for each of the 324 3-digit occupations we observe.10

8We map UNSPSC commodities to the BEA equipment categories using the textual definition provided
by the BEA (see the Online Appendix for details on this mapping).

9We build a corpus of the universe of tools listed under Commodity Titles, i.e. UNSPSC, and T2-Examples
in the Tools and Technology module of the O*NET and use it for string-matching to the descriptions in the
DOT. We experiment with different matching criteria as described in the Online Appendix. Our benchmark
results exploit occupational cross-walks to disambiguate generic tool descriptions found in the DOT.

10These occupations are those for which we consistently observe labor and capital over time. The classifi-
cation of occupations based on the O*NET-SOC system is a modification of the 2010 Standard Occupational
Classification (SOC) system that allows for a link to the American Community Survey classification system.
To build a consistent occupational definition through time, we use the classification and the crosswalks of
the ACS classification system provided by Acemoglu and Autor (2011).
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For illustration, Figure B.I in the Appendix compares the occupational tools measured in

the O*NET and DOT datasets for 1-digit occupations. It plots the fraction of tools used for

two equipment categories, computers and communication equipment. For both categories,

the DOT records the highest share of tools for administrative services while the O*NET

records it for professionals. Over time, a worker in a professional occupation has seen the

share of computers and communication equipment tools allocated to him increase, whereas

a worker in an administrative service occupation has seen it decline. These differences ex-

emplify how technology impacts occupations by changing the nature of the tasks performed,

as well as the tools used to perform those tasks.

We use our time-series of occupational tools to construct occupational capital require-

ments. Let τojt be the number of tools of BEA equipment category j used by a worker in

occupation o at time t – that is, τojt ≡
∑

c I
ot
c∈j, where Iotc∈j is an index function that takes

value 1 if UNSPSC commodity c belongs to equipment category j and is used in occupation

o at time t. Let lot be the number of full-time equivalent workers in occupation o at time t.

We define the requirement for capital j in occupation o as the number of tools used by the

workers in that occupation relative to the total tool used in the economy:

reqojt ≡
τojtlot∑
o τojtlot

. (3)

We distribute the stock of capital of a given category to an occupation proportionally to

these capital requirements, kojt = reqojtkjt.

Discussion. First, the measurement of occupational capital requirements is challenged

by the absence of data on the amount of time a worker uses a particular equipment for.

Our assignment rule exploits the highly disaggregated nature of tool descriptions to proxy

for intensity of usage. An implication is that occupations that use a larger variety of tools

within an equipment category will be allocated more capital. However, notice that capital

is assigned equipment by equipment and therefore differences in total tool counts across

equipment categories has no influence on the assignments. For example, the total count of

tools in 2015 for non-medical equipment doubles that of medical equipment (373 vs. 170). If

we were to double the number of tools for the latter category while keeping the distribution

across occupations identical, occupational capital would remain unchanged.

Second, the reader may wonder how do tool counts get affected by task automation? The

automation of some of the tasks executed by a worker in his job changes the nature of the job

and so directly influences the aggregation mapping from the finer (10-digit) title information

10



available in the DOT and the O*NET to the coarser 3-digit occupation classification system

of the Census. To the extent that a 3-digit occupation is not fully automated, automation

only implies a change in the tools used by a worker.11 For example, an accountant may now

use computer software that automates tasks previously done on paper. Our tool counts pick

up this effect by extracting tool information in both the 1970s and in the 2010s. At the

same time, when all the tasks executed by a worker in a 3-digit occupation get automated,

the operation of the machine is usually overseen by a worker, either in the same role or

in another role within the production process. For example, film projectionists have been

mostly replaced by digital cinema projectors and the basic operation of these projectors is

performed by a theatre’s front-of-house and managerial staff. Our tool counts sensibly assign

equipment to the 3-digit occupation of its operator.

Third, while differences in relative prices across equipment categories are fully accounted

for (through the value of the efficiency units of each stock), our assignment implies that no

additional price heterogeneity exists across tools that belong to the same category. While

this is certainly a limitation, the tool description is general enough that imputing prices

would induce a fair amount of measurement error.12

We validate our measurement of occupational capital using available information on usage

of computers by occupation and the capital stock by industry in Section 2.3.

2.2 Salient features of occupational capital

We now document the path of occupational capital and that of the user cost of occupational

capital relative to consumption in each occupation, our measure of occupational CETC.

To ease the exposition, we group the data into 9 occupational groups, which correspond

to the 1-digit non-agricultural occupational grouping in the US census – that is, managers,

professionals, technicians, sales, administrative services, low-skilled services, mechanics and

transportation, precision workers, and machine operators.

Capital per worker. Panel (a) in Figure 1 shows the time series of occupational

capital per worker across occupations. The levels are normalized relative to the per-worker

occupational capital of managers in 1984. Overall, occupational capital per worker increased

in all occupations and the dispersion across occupations shrank throughout the period. The

11Indeed, Atalay et al. (2018) using newspaper job advertisement information find that most of the changes
in nature of jobs happens within occupations.

12There is no description of the characteristics of the tool. For example, prices for personal computers
vary widely depending on its features and capabilities, none of which are reported in the data.
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Figure 1: Capital and CETC by occupation.

Panel (a) displays the logarithm of occupational capital per worker relative to managers in 1984. Panel (b)
displays the logarithm of the user cost of capital relative to consumption across occupations. Source: BEA
and own computations.

increase in capital per worker was largest for administrative services, professionals, and sales

workers (1.1%, 1.1%, and 1.4% annualized growth rates between 1984 and 2015, respectively).

Capital per worker in precision production occupations and mechanics and transportation

occupations grew the least, with annualized growth rates of 0.4% and 0.5%, respectively.

CETC. Panel (b) in Figure 1 displays the path of CETC for different occupations.

Managers, sales, and administrative services occupations experienced the strongest decline

in the relative user cost of capital to consumption, by more than 8% per year between 1984

and 2015. On the opposite end, mechanics and precision production occupations recorded

a decline in the relative user cost of capital to consumption of 2.9% and 3.4% per year,

respectively.

Relationship to employment. Given the novel nature of our measurement of occu-

pational capital and its user cost relative to consumption (CETC), it is worth exploring

evidence for the relationship between these measures and labor market outcomes.13 Figure

2 panel (a) displays the change in the employment share between 1984 and 2015 for each

of the 9 1-digit occupations plotted against CETC. Prima facie, there is little association

between the extent of CETC and employment flows across occupations. For example, the

extent of CETC was similar for low-skill services and precision production occupations, but

13For brevity, we only report features on the association between CETC and labor market outcomes
that are central to our analysis. We defer to the Online Appendix for a broader evaluation, including the
relationship between CETC and outcomes when including controls for the task intensity of the occupation.
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Figure 2: Employment shares by occupation.

Panel (a) displays the change in the share of employment between 1984 and 2015 in each 1-digit occupation
against the annualized decline in the user cost of capital relative to consumption. Panel (b) displays the
change in the share of employment between 1984 and 2015 in each 1-digit occupation against the percentage
change in the input expense ratio (capital expenses divided by the wage bill) in each occupation between
1984 and 2015. All entries are in percent. Source: BEA, CPS, and own computations.

the share of employment in the latter decreased, while the share in the former increased. A

similar conclusion is drawn when looking at the change in the input expense ratio, i.e. cap-

ital expenses divided by the wage bill in each occupation (Figure 2, panel b). We see again

vast heterogeneity in employment gains and losses for occupations that became more capital

intensive. For example, the change in the input expense was comparable for professionals

and machine operators, but the share of employment in the latter decreased while the share

in the former increased. On the flip side, occupations that displayed similar declines in their

share of employment had vastly different changes in input expense ratios. For example, the

share of employment decreased similarly for machine operators and administrative service

occupations, but the ratio of capital expenses to labor expenses increased substantially more

in the former (2.5p.p. per year versus 0.25p.p. per year).

Heterogeneity in the path of capital per worker and employment across occupations per-

sists even when looking at more disaggregated occupational data: across 327 occupations,

employment shares fell for occupations at the bottom of the distribution of growth rates in

capital-labor ratios and increased at the top of the distribution, see Panel B in Table B.I.

Importantly, these differences in employment changes coexisted with wage gains across all

occupations (about 1% per year, on average), and these wage gains were largest in occupa-

tions with highest changes in capital-labor ratios and the highest gains in skilled workers,
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consistently with capital skill complementarity as a driver of skill-biased technical change

(Katz and Murphy, 1992; Krusell et al., 2000).

There is an extensive literature linking capital-deepening and employment reallocation.

Notably, the routinization hypothesis sustains that workers that engage in tasks that are

routine intensive are more likely to be replaced by machines, particularly computers and

robots (Autor et al., 2003). This hypothesis is consistent with the observation that em-

ployment has flown out of computer-intensive occupations, which we also confirm with our

data. However, the gains in employment and wages in occupations intensive in other types

of capital that displayed levels of CETC comparable to that of computers, suggests that

other dimensions of occupational heterogeneity may play a role in understanding the link

between employment reallocation, CETC, and capital-deepening. For example, panel C of

Table B.I shows that while workers in computer-intensive occupations saw their wages rise

the fastest, by 1% per year on average, these occupations lost employment overall (with their

share falling by 3.6p.p. between 1984 and 2015). At the same time, workers in occupations

intensive in other capital goods with strong CETC, including communication equipment,

also saw their wages rise by a similar amount, 0.8% per year, but these occupations gained

employment throughout (5.5p.p. over the period).

The dimension of occupational heterogeneity more relevant to CETC is the degree of

substituatibily between capital and labor, as hypothesized by Autor et al. (2003) and Autor

et al. (2008). In Section 3, we then estimate occupation-specific elasticities of substitution

between capital and labor.

2.3 Validation of occupational capital

Given the novelty of our measurement of occupational capital, we assess their comparability

to alternative measures of capital and technical change used in the literature.

Implications for alternative disaggregations of the capital stock. By construc-

tion, our stocks aggregate to the BEA fixed asset tables for aggregate equipment by category

(except, of course, through quality adjustments). We view this feature as a major advantage

to users that would like to enrich otherwise standard macro models of the economy with

occupational heterogeneity, and to users that would like to include capital in standard labor

models of occupational heterogeneity.

An alternative disaggregation of the aggregate capital stock in the economy relies on

the industries that use it. BEA provides fixed asset tables at the industry level, combining
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investment by asset type from NIPA and various sources of industry investment. While

these measures are not free of imputation challenges, as described in BEA (2003), we find it

worthwhile to compare our implied industrial allocation of capital to these measures.14 We

compute stocks in each 2-digits industry by aggregating up a measure occupational capital

and exploiting the occupational composition of the industry. For comparability we assign

nominal stocks of equipment instead of quality-adjusted ones, and abstract from agriculture

and mining. The current-cost net stock of private equipment by industry in the fixed assets

tables and our industry (nominal) stocks display a correlation of 0.84 in 1984, 0.79 in 2000,

and 0.48 in 2016. Because these changes in correlation reflect changes in the composition of

the stock of capital by equipment across industries over time, we also explore the allocation

of each of the 24 equipment categories across industries. We find that the cross-industry

correlation between the stock of a given equipment category computed in NIPA and using our

allocation rule is stable in time for most equipment categories, e.g. communication displays

a correlation of 0.6 in 1984 and 0.55 in 2016; medical equipment displays a correlation of 0.99

in both 1984 and 2016; while the correlation for aircrafts is 0.98 in 1984 and 0.81 in 2016.

The one noticeable decline in such a correlation is observed for computers, with a correlation

of 0.72 in 1984 and 0.3 in 2016. Cognizant of the note of caution that the BEA poses on the

industrial equipment stocks due to a significantly lower imputation quality than those in the

aggregate, we use an alternative validation for computer capital.

Alternative measures of computer capital. We compare the assignment of the stock

of computers across occupations using our tool shares to the information in the October CPS

Supplement (October Supplement) in 1984 and 2003, which asks employed workers whether

they “use a computer at/for his/her/your main job.”15 As in our main analysis, we restrict

the sample to employed individuals working full time (more than 35 hours a week) who are

between 16 and 65 years old. We use this sample to estimate the distribution across 1-digit

occupations of the total working hours of computer usage, each year. Figure B.II compares

the share of computer usage and our measure of occupational tools in 1984 and 2003 (the

last year available). The distribution of the tool measure across occupations is similar to

that of computer usage with a correlation of 0.9 in 1984 and 0.96 in 2003. Moreover, the

14BEA (2003) explains that some industry sources provide information for selected benchmark years
like economic Census; others provide information for interpolations between and extrapolations from the
benchmark years. Wherever possible, the investment control totals are based on capital expenditures data
collected from each industry, e.g. the ACES. Where these data are not available, the estimates are derived
as the change in net stocks plus depreciation from industry balance sheet data as recorded regulatory offices,
e.g. IRS.

15The computer module is also available in the CPS of 1989, 1993, 1997 and 2001. We focus on the earliest
and latest modules for presentation purposes, but results are robust to using intermediate years.
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correlation is also near one when considering changes over time: 0.96 for changes between

1984 and 2003. These strong correlations bring confidence to our newly constructed dataset,

the main advantage of which is the breath of equipment considered relative to the October

Supplement and the availability of data post-2003.

3 Elasticity of substitution between capital and labor

Heterogeneous occupational paths of CETC, capital-per-worker, and employment suggest

that substitution patterns between capital and labor may differ across occupations. Next,

we estimate these key elasticities for each 1-digit occupation.

The elasticity of substitution is the partial equilibrium response of the capital labor ratio

to a change in the marginal rate of transformation. With the assumption of competitive fac-

tor markets, the marginal rate of transformation equals the relative input prices. To measure

this elasticity, we need the information on input and price ratios in efficiency units, kot/not

and λnot/λ
k
ot. Non-neutral technical change has direct implications for this measurement and

is, for the most part, unobserved. To see this, rewrite the elasticity as a function of observ-

able variables – that is, observable labor ñot (for example, full-time equivalent workers) and

its price λñot as well as our measure of occupational capital and its user cost:

σo ≡
dln(kot/not)

dln(λnot/λ
k
ot)

=
d ln

(
kot
ñot

)
dln
(
λñot exp(γot)

λkot

) , (4)

where γot is the log difference between labor and capital-augmenting technical change in

occupation o and, jointly with the elasticity of substitution, shapes the bias of technology.

Diamond et al. (1978) formally proved the impossibility of separately identifying the elas-

ticity of substitution and (unobserved) biased technical change from a time series of factor

shares and observable capital-labor ratios. For an arbitrary elasticity of substitution, declin-

ing observable capital-labor ratios kot
ñot

can be rationalized by capital-augmenting technical

change, i.e. a decline in exp(γot); while increasing observable capital-labor ratios can be

rationalized by labor-augmenting technical change, i.e. an increase in exp(γot).

To circumvent this impossibility result and identify the elasticity of substitution, the

literature imposes structure on the path of factor-augmenting technical change (see Herren-

dorf et al., 2015, Antras, 2004). Accordingly, we assume that factor-augmenting technical
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change is exponential, i.e. exp(γot) = ao exp(γot) for some initial level ao > 0.16 Then, under

constant elasticity, the empirical counterpart to equation 4 is:

ln

(
kot
ñot

)
= β1o + β2ot+ β3o ln

(
λñot
λkot

)
+ εot, (5)

where β1o is the intercept of the regression which corresponds to a constant of integration in

equation 4; β2o identifies γo for an estimate of σo; β3o is the elasticity of substitution between

capital and labor, σo; and εot is an error term that augments the structural equation 4.

To construct the series in the regression we aggregate our 3-digit series for quantities and

prices to the 1-digit occupational classification system of the Census. We measure labor,

ñot, as full-time equivalent workers adjusted for efficiency due to observable characteristics,

i.e. age, schooling, and gender. We use wages relative to males aged 16-24 with less-than-

college as a proxy for skill/efficiency (see Antras, 2004, among others). We compute the

price of measured labor, λ̃not, as the ratio between the total wage bill in an occupation and

our measure for labor ñot. Finally, we use our measures of the user cost of capital and

occupational capital constructed in Section 2. All series are available from 1984 to 2015.

Endogeneity. The estimation of regression equation 5 exposes an obvious endogeneity

problem. Observed relative factor prices are endogenous to the capital labor ratios in each

occupation. In general, the elasticity will not be identified unless one uses an exogenous

shift in either the supply of capital or labor. In each 1-digit occupation, we construct

an instrument for an exogenous shift in the supply of occupational labor.17 We use the

interaction between 16-year lagged live births per 1000 people, brt−16, and the predicted

employment in an occupation computed from the product of the 1984 share of employment

of a given education level e (i.e., college or less-than-college) in the occupation, shloe1984, and

the total number of workers of that educational level in the economy in each year, net:

log(brt−16

∑
e

shloe1984net).

16The identifying restriction assumes that factor-augmenting technical change occurs at a constant pro-
portional rate. We run robustness checks when we allow for a trend break in 2000, the time at which we
observe a slow-down in the decline in the price of computers. Our results are robust to this more flexible
specification, see Appendix B.III.

17While it may seem that this supply shifter affects the LHS of the estimation equation 5, in an exactly
identified IV regression the estimated elasticity is the same whether capital-labor ratios are the LHS vari-
able and relative prices are the RHS variable, or viceversa. We favor specification 5 because the mapping
between the regression coefficients and the elasticity of substitution is linear, and therefore the computation
of standard errors and hypothesis testing is straightforward.
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A standard Kleibergen Paap F-statistic test suggests that this instrument is not strong

for two occupations, namely low-skill services and mechanics and transportation (see details

in the discussion that follows). For those occupations we construct a shifter in the supply

of labor driven by an output demand shock in occupations other than the one under con-

sideration. To do so, we exploit heterogeneity in the industrial composition of employment

in an occupation. First, we predict the number of workers demanded by occupations other

than the one under consideration using the total employment in each industry s, nst, and the

share of employment in these occupations that is employed in industry s in 1984, sho−s1984.

Second, we multiply this measure by the economy-wide level of exports as % of GDP, Xt,

which we use as our output demand shifter:

log(Xt

∑
s

sho−s1984nst).

A valid instrument should be exogenous to the system and correlated with the regressors.

We take fertility choices as exogenous and argue that changes in the size of the population

and the skills available in the economy are likely correlated with the labor services available in

each occupation. Similarly, we consider aggregate trade shocks as exogenous to the workings

of the labor market and argue that the size of the industries in the economy, measured by

the number of workers in each industry, are likely correlated with the labor services available

in each occupation. We discuss the statistical strength of these instruments after presenting

the point estimates.

Results. Table 1 presents our baseline estimates of the elasticity of substitution for

each occupation. Focusing on the results from the instrumented regression equation, the

lowest elasticities (highest complementarity) are reported for technicians and mechanics and

transportation (at 0.65 and 0.73, respectively), followed by professionals and managers. For

the remaining occupations we estimate substitutability between capital and labor. The

point estimates are significantly different from a unitary elasticity for technicians, sales,

administrative services, and precision production workers.

Two features of these estimates are worth exploring. First, what are the implications for

an aggregate measure of the elasticity of substitution of capital and labor? and second, are

the occupational estimates different, in a statistical sense? We compute the estimate of the

elasticity for the aggregate economy constructing economy-wide counterparts to the capital

labor ratios and the relative prices for our sample period, 1984-2015. We use 16-year lagged

live births per 1000 people to instrument for possible endogeneity. The IV point-estimate is
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Table 1: Elasticity of substitution between capital and labor.

OLS IV Kleibergen Paap Dickey
Paap Fuller

Aggregate 0.56 0.88 29.20 -2.57
0.11 0.18

Managers 0.48 0.93 23.74 -1.90
0.11 0.25

Professionals 0.64 0.86 24.96 -2.98
0.10 0.17

Technicians 0.30 0.65 15.98 -2.93
0.10 0.21

Sales 1.00 1.38 43.24 -2.34
0.11 0.16

Admin Service 0.92 2.18 16.47 -2.22
0.19 0.50

Low-skilled Serv 0.71 1.32 9.22 -2.96
0.21 0.37

Mechanics & Transp. 0.04 0.73 6.65 -4.46
0.11 0.39

Precision 0.44 2.06 12.06 -5.27
0.19 0.63

Machine Operators 0.05 1.41 7.48 -2.75
0.10 0.61

Note: Authors’ estimation of equation 5. Columns (1) presents the OLS estimates and the corresponding
std. errors for the estimate; Columns (2) contains the IV estimates using the instruments described in the
text. Column (3) contains the F-statistic for weak instruments robust to heteroscedasticity, Kleibergen. The
relevant Stock-Yogo critical value for a 15%, 20% and 25% bias in the IV estimates are 8.96, 6.66 and 5.53,
respectively. Column (4) contains the Dickey-Fuller test statistic for a test of a unit root in the error for the
IV estimated equation. The 5% and 10% critical values are -1.95 and -1.6 respectively.

0.88, slightly higher but consistent with recent exercises in Antras (2004) using time-series

variation (0.8 for 1948-1998), Leon-Ledesma et al. (2010) using a normalized production

function approach (0.6-0.7 for 1960-2004), and with Oberfield and Raval (2020) exploiting

cross-sectional variation in the manufacturing sector (0.75 by 2007). To assess the hetero-

geneity in the occupational estimates of the elasticity of substitution, we run Wald type tests

where we compare pair-wise each of the estimates (see Table B.II). We find that the elasticity

of substitution between capital and labor is significantly lower for managers, professionals

and technicians, than for administrative services, sales, and precision occupations. We also

find that the point estimate for mechanics and transportation occupations is significantly

lower than those in administrative services and precision occupations.

Discussion. The structural equation 4 is consistent with two econometric models, equa-
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tion 5 and its inverse,

ln

(
λkot
λñot

)
= β̄1o + β̄2ot+ β̄3o ln

(
kot
ñot

)
+ ε̄ot. (6)

As pointed out by Antras (2004), not much can be said about the relative magnitudes of

the OLS estimates for β3o and β̄3o on statistical grounds. Acknowledging the biases in the

estimates associated to alternative representations of the same equation, Leon-Ledesma et al.

(2010) propose the estimation of a system of equations that includes the production function

itself and the optimality conditions for each input. Unfortunately, the inherent unobservabil-

ity of occupational prices and output yields this approach unfeasible for us. However, when

using an exactly identified IV-regression, the estimates are identical irrespective of whether

relative prices are on the left-hand side or the right-hand side of the econometric model.

For the remainder of these discussion, we focus on the IV estimates. First we run statis-

tical tests for the strength of the proposed instruments, then we test for potential spurious

correlation in the variable of interest. Formally, with one endogenous variable and one instru-

ment the Kleibergen-Paap Wald-type test for weak-instruments is desirable under possible

heteroscedasticity. Table 1 presents the value of the statistic and the critical value for a

variety of maximal IV sizes as tabulated by Stock and Yogo (2005). In all cases but for

mechanics and transportation we reject the null that the maximum relative bias in the es-

timate is 15% or larger. For mechanics we reject the null that the maximum relative bias

in the estimate is 25% or larger. Another important threat to the validity of the estimates

is the possibility of spurious correlation induced by unit roots in the time series of relative

prices and input ratios. For the IV specification, we construct tests for the presence of unit

roots in the error of the regression equation following Dickey and Fuller (1979) and report

the statistics in Table 1. For all occupations as well as in the aggregate we reject the null of

a unit root in the error of the regression.

A commonly used strategy when estimating the elasticity of substitution between capital

and labor is to exploit cross-sectional variation across geographical locations in production

units, as in Oberfield and Raval (2020), or in the occupational composition, as in Kehrig

(2018). One interpretation of these estimates is that they correspond to the “long-term”

elasticity of substitution, whereas the one identified from time-series variation corresponds

to the “short-term” elasticity of substitution. Indeed, adjustments in input ratios that do not

respond to changes in prices within a unit of time (in our case, a year) would be abstracted

away by the latter estimation. Assumptions on factor mobility and standard Bartik-style
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instruments are enough to identify the parameter of interest in the cross-section. Such an

identification strategy is challenging for us because we do not observe capital usage in each

location.

Finally, we loop back and discuss the implications of our elasticity estimates for the

occupational heterogeneity in capital per worker and employment flows. First, we focus on

the labor share, which combines information on both factor quantities and prices (equation 6

can be rewritten as a function of the factor shares). Our aggregate estimates for the elasticity

of substitution between capital and labor suggest complementarity, as well as the estimates of

4 out of 9 1-digit occupations. The consistency between these findings and the decline in the

labor share reported in the US (Sahin et al., 2013) depends on the relative strength of labor

and capital-augmenting technical change, which combined with the value of the elasticity of

substitution, yields the bias of technology. In the aggregate, we find a 1.35% faster increase

in labor-augmenting technology relative to capital-augmenting technology. This finding,

jointly with the aggregate complementarity between capital and labor, implies capital-biased

technology and is consistent with the decline in the aggregate labor share. Prior literature

that focuses on the estimation of aggregate production functions has generated estimates

for the bias of technology in the US that are very much in line with ours, see Klump et al.

(2012) for a review.18

Last, we focus on the potential confounding effects of our measures of the elasticity of

substitution between capital and labor and other dimensions of occupational heterogeneity,

namely the task content of occupations Autor et al. (2003). Table B.III shows estimates

of the elasticity of substitution where the estimation equation 5 is augmented to include a

measure of the routine task intensity (RTI) of each 1-digit occupation. Following Autor et al.

(2006), RTIot = ln(routineot) − ln(manualot) − ln(abstractot), where routineot, manualot,

and abstractot indicate the average normalized task score of occupation o in year t.19 We

find that the resulting estimates of the elasticity of substitution are only slightly more com-

plementary than our benchmark, particularly so in high-skill occupations. We conclude that

our estimates are robust to these controls and importantly, that our estimates pick up a

novel dimension of heterogeneity across occupations.

18We present occupation-specific estimates of the bias of technology in the Online Appendix. In all but
one occupation the estimate of the elasticity and the bias of technology implies a decline in the labor share.

19Task scores are measured for all 3-digit occupations in 1980. Changes in the employment composition
imply that task inputs for 1-digit occupations vary in time. Tasks are measured on a zero to ten scale. We
follow Autor et al. (2003) and replace the score of the occupations with the lowest task scores by the 5th
percentile of each score.
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4 Occupational exposure to CETC

We now use the findings in Sections 2 and 3 to measure occupational heterogeneity in the

exposure to CETC and quantify the partial-equilibrium effects of technical change on the

US labor market between 1984 and 2015.

As described in the introduction, we conceptualize occupational exposure to CETC in

the cross-price elasticity of labor demand – that is, the response of the labor demand in

an occupation to changes in the user cost of capital. Under the assumptions of constant

returns, price-taking behavior, and cost minimization, Hicks (1932) and Robinson (1934)

independently show that this elasticity can be expressed as a function of four components:

− d ln(no)

d ln(λko)
=

ηnλn(ρ− σo)λ
k
oko
λyoyo

ρ+ ηnλn + (σo − ρ)λ
k
oko
λyoyo

, 20 (7)

where (i) σo is the extent of labor substitutability to capital in occupational output produc-

tion, (ii) ηnλn is the own price elasticity of labor supply, (iii) λkoko
λyoyo

is the importance of capital

for production in the occupation, or its cost share and (iv) ρ is the demand elasticity for

occupational output. On the one hand, a decline in the cost of capital decreases the labor

demand via a substitution effect, a function of σo. On the other hand, it increases labor

demand through a scale effect associated to the higher demand for occupational output in

response to lower production costs, a function of ρ. Ultimately, the relative magnitude of

these two elasticities determines which of the two effects dominates and therefore if exposure

rises labor demand in the occupation (σo < ρ) or reduces it (σo > ρ).

We bring exposure to the data by assuming that all three elasticities that enter its

specification are constant in time. The elasticity of substitution between capital and labor

across occupations as well as the capital share have been directly estimated from our dataset

(Section 3). The remaining two parameters, ρ and ηnλn , cannot be estimated directly in the

data as their inference requires information on occupational output and on selection effects

due to workers’ occupational sorting, which are intrinsically unobservable. We instead use a

structural model where exposure arises endogenously. To ease the exposition, we defer the

details of the estimation strategy to Section 5. Our estimate of the labor supply elasticity is

ηnλn = 0.30 and of the demand elasticity for occupational output is ρ = 1.34.

We start by reporting exposure to CETC in each occupation, Figure 3 left panel. In

the figure, 1-digit occupations are ranked by increasing skill requirements, following Autor

20Derivations in the Online Appendix.
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Figure 3: Occupational exposure to CETC and CETC-powered employment reallocation.

The left panel plots occupational exposure to CETC (equation 7) across 1-digit occupations ordered by
increasing skill requirements. Exposure is computed using the capital share in 1984, the initial year in our
sample. The right panel plots the change in the share of employment between 1984 and 2015 attributed to
CETC by the Hicks’s prediction (left axis) and that observed in the data (right axis). The striped lines are
cubic polynomial fit.

(2015). Exposure is positive in five occupations out of nine: managers, professionals, techni-

cians, low-skilled services, mechanics and transportation. In these occupations, the elasticity

of substitution between capital and labor is lower than the demand elasticity for occupa-

tional output, with the implication that the positive scale effect of a decline in the relative

cost of capital on labor demand dominates the negative substitution effect and therefore

CETC increases labor demand. Sales, administrative services, precision production, and

machine operators are occupations for which, instead, the substitution effect dominates the

scale effect, even though only by a small amount, and CETC has a negative impact on labor

demand. Low-skill services, sales, and machine operators measure scale and substitution

effects of similar sizes and so a small elasticity of labor demand to CETC.21

Exposure to CETC varies substantially across occupations: it ranges from a negative

exposure of -3.5% recorded for precision production to the most positive exposure of 5.7%

recorded for mechanics and transportation. Further, exposure is U -shaped across occupa-

tions ranked by their average wage and skill content. The exposure of high-skill occupations

21Our finding that CETC mostly increased labor demand is robust to alternative estimates of a demand
elasticity for occupational output that are less than but close to 1. Goos et al. (2014)’s estimate of the labor
demand elasticity at 0.9 extends the list of occupations with negative exposure in our framework by one
occupation only (sales). That is, our estimates still indicates that the scale effect has been at least as strong
as the substitution effect between 1984 and 2015.
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(i.e. managers, professionals, and technicians) and that of low-skill occupations is positive,

averaging 2% in the former and 0.1% in the latter, while the exposure of middle-skill occu-

pations (i.e. the remaining occupations) is negative, at an average of -0.1%. Heterogeneity

in the elasticity of substitution between capital and labor is the main determinant of these

differences: occupations with higher elasticity have smaller exposure to CETC.

Next, we combine exposure with CETC to compute the yearly changes in occupational

labor demand generated by CETC. We cumulate these changes over the 1984-2015 period

and re-weight them so that total net employment reallocation equals zero. The predicted

employment changes are the Hicks (1932)’s (partial equilibrium) predictions for the impact

of CETC on each occupation and are presented in Figure 3, right panel, black markers. The

direction of employment reallocation generated by Hicks’s prediction is consistent with the

data (red markers). Importantly, this direction is mostly set by occupational heterogeneity

in exposure, rather than in the extent of CETC. Consider for example the occupations that

experienced the strongest CETC, at a rate above 8% per year: managers, sales, and admin-

istrative workers. Despite experiencing similar CETC, these occupations record changes in

labor demand that are at opposite extremes due to their differential exposure. Sales have

an exposure that is very close to zero, implying a very small elasticity of labor demand to

CETC. Administrative services, instead, record the highest decrease in demand across all

occupations, at 0.21p.p. per year, combining the second highest negative exposure with

strong CETC. We conclude that the key driver of the heterogeneity in labor demand across

occupations is exposure rather than the extent of CETC.

Yet the magnitude of employment reallocation set by exposure is always smaller than

that in the data. An important limitation of the Hicks (1932)’s prediction is its partial

equilibrium nature, which considers occupations in isolation and abstracts from important

feedback effects in labor reallocation across occupations. In the remaining part of the paper

we address this limitation. We re-evaluate the impact of CETC on the labor market in

a general equilibrium model where these effects are considered and exposure endogenously

responds to CETC through the capital share.

5 A model of occupational capital, labor and output

In this section, we lay out and parameterize a framework that links occupational output

to capital and labor inputs. Our framework extends Greenwood et al. (1997) to include

multiple occupations that differ by their exposure to CETC and to include an heterogeneous
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worker’s assignment to occupations in the tradition of Roy (1951). In Section 7.1, we extend

our framework to explicitly model the usage of different capital goods across occupations.

5.1 Environment

Time is discrete and indexed by t. The economy is populated by a continuum of heteroge-

neous workers indexed by i. Workers are divided into a countable number of labor groups

of cardinality H, indexed by h. A labor group is defined on the basis of the demographic

characteristics of the workers. For example, we can think of h as comprising schooling e,

cohort c and gender g, h ≡ (e, c, g). The measure of workers of type h at a point in time is

exogenously given by πht.

There is a countable set of occupations of cardinality O, indexed by o. An occupation is

a technology that combines capital and labor of different types to produce an occupational

good. Occupations differ in two dimensions, by the technology embodied in capital (CETC)

and by the elasticity of substitution between capital and labor. This is supported by the

evidence provided in Sections 2 and 3.

There are three sets of goods: a final good that can be used for consumption and to

produce capital goods; O-types of occupational goods that are used in the production of the

final good; and O-types of capital goods that are used in the production of each occupa-

tional good, along with labor. Capital fully depreciates after usage within the period. We

relax this assumption when microfounding differences in occupational capital and CETC via

occupational disparities in the capital bundles, see Section 7.2.22

Last, equipment, output, and labor markets are frictionless.

Occupational good producer. In each occupation, a representative producer uses a

CES technology in capital, kot, and labor, not, to produce the occupational good, yot:

yot =

[
αk

σo−1
σo

ot + (1− α)n
σo−1
σo

ot

] σo
σo−1

. (8)

A producer facing an occupational price λyot, a price of capital-o λkot, and a wage per

22When capital of different types is combined via an occupation-specific bundle, the capital allocation
problem can be split into two. First, one chooses an equilibrium capital-labor ratio in each occupation (our
benchmark), and second, one chooses the composition capital. Modelling capital dynamics when capital is
occupation-specific implies a slower factor reallocation in response to technical change than in an economy
where capital of different types are accumulated each period and then allocated and combined into bundles
in each occupation in spot markets.
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efficiency unit of labor λnot, chooses equipment and labor to maximize profits:

max
{kot,not}

λyotyot − λkotkot − λnotnot. (9)

Note that this description of behaviour and technology of the occupational output pro-

ducer is sufficient for the model to generate a specification of exposure to CETC as in

equation 7.

Final good producer. Final consumption goods are produced combining occupational

goods using a CES technology:

yt =

(∑
o

ω
1/ρ
ot y

(ρ−1)/ρ
ot

) ρ
ρ−1

,

where ρ is the elasticity of substitution across occupational goods. This elasticity is the

model equivalent of the demand elasticity for occupational output in occupational exposure,

equation 7. Changes ωo over time are isomorphic to demand shifters. They capture, for

example, the increase in demand for low-skill services discussed by Autor and Dorn (2013);

and the increase in demand for skill-intensive output discussed by Buera et al. (2015).

A producer facing a final good price λyt and prices of occupational goods λyot maximizes

profits:

max
{yot}Oo=1

λyt yt −
∑
o

λyotyot. (10)

Capital producer. Each occupational capital is produced with a linear technology in

the final good. Let qot be the rate of transformation for capital-o. Changes in qot formalize

the notion of capital embodied technical change (CETC), as in Greenwood et al. (1997).

A producer facing a price of capital λkot and a price of the final good λyt demands xot units

of final output to maximize:

max
{xot}

λkotqotxot − λ
y
txot. (11)

Workers. Workers value consumption and are endowed with one unit of time, which

they inelastically supply to work in an occupation. Worker i of type h supplies noht(i)

efficiency units of labor when employed in occupation o at time t. Each worker draws

a profile of {noht(i)}o across occupations at each point in time. We assume that noht(i)

is a random variable drawn from a univariate Fréchet distribution with cumulative density

function Foht(z) ≈ exp(−Tohtz−θ). The draws of efficiency units of labor are independent and
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identically distributed across occupations and workers.23 The parameters θ and Toht govern

the dispersion of efficiency units of labor across workers and across groups/occupations,

respectively.

We allow the scale parameter Toht to vary across groups and occupations, shifting the

mean efficiency units of labor at each point in time. The group-h common component of Toht

determines the absolute advantage of the labor group. For example, the average efficiency

units supplied by a college graduate working for an hour of time might be higher than that

supplied by a non-college graduate. The dispersion of Toht across occupations and groups

determines the structure of comparative advantage. The comparative advantage of working

in occupation o relative to o
′

for labor type h with respect to labor type h
′

is:

(
Toht
To′ht

/
Toh′ t
To′h′ t

) 1
θ

, (12)

with a comparative advantage for h if the ratio is greater than 1.

The scale parameters of the distribution of efficiency units of labor encompass differences

in human capital, differences in labor productivity in the occupational technologies, as well

as labor market frictions (see, Burstein et al., 2019 and Hsieh et al., 2019). Our framework

remains agnostic as of the source of these differences. We infer the scale parameter residually

to match labor market outcomes.

A worker i of type h who provides noht(i) units of labor to occupation o receives com-

pensation woht(i) ≡ noht(i)λ
n
ot. Workers maximize their consumption, coht(i) = woht(i) (and

therefore instantaneous utility), by choosing the occupation that yields the highest compen-

sation. Hence, given a set of wages per efficiency units {λnot}Oo=1, the problem of worker i in

labor group h reads:

o?ht(i) ≡ arg max
o
{woht(i)}. (13)

5.2 Parameterization

We parameterize the model equilibrium to the US economy, over the 1984-2015 period. The

definition and characterization of the equilibrium is standard and, for brevity, described in

Appendix A. Our parameterization strategy consists of two steps. First, we use our newly

constructed dataset on occupational capital to measure occupational heterogeneity in CETC

and in the elasticity of substitution between capital and labor. Second, we parameterize the

23This assumption can be relaxed following Lind and Ramondo (2018).
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distribution of efficiency units of labor to match labor market outcomes and the demand

structure of occupational output to match occupational capital per worker across occupa-

tions. The parameterization of the model delivers the two components of exposure to CETC,

equation 7, that remain to be inferred – that is, the labor supply elasticity and the demand

elasticity of occupational output.

We map the estimates of the elasticity of substitution in Table 1 to σo in each occupation.

In Section 2, we constructed the user cost of the quality-adjusted capital in each occupation,

in units of consumption (Figure 1). We map this price to the price of each occupational

capital good relative to consumption in the model, λkot.

Next, we parameterize the distribution of efficiency units of labor, as determined by the

shape parameter of the Fréchet distribution, θ, and the scale parameters, {{{Toht}Oo=1}Hh=1}t={1984,2015}}.
The shape parameter governs the magnitude of the right tail of the distribution of efficiency

units of labor: a lower θ induces a fatter tail and therefore more dispersion in talent draws.

To estimate its value, we use maximum likelihood to fit an inverse Weibull distribution on

the wage residuals predicted from a Mincerian regression with age, age squared, dummies

for sex and education, and 1-digit occupation fixed effects. We run these estimates for each

year, between 1984 and 2015, and take the average over the period at θ = 1.30.24 Combining

our estimate of θ with the specification of the labor supply elasticity in our model, we deduce

ηnλno = θ − 1 = 0.30.25

The model defines a link between the labor market outcomes of workers of a given group

h and their associated scale parameters of the Fréchet distribution, Toht (equations 20 and

22). We consider 12 labor groups, as defined by three of their demographic characteristics:

age, gender and schooling attainment. We group age in three groups: 16- to 29-years old,

30- to 49-years old and 50- to 65-years old. We group schooling attainment into two groups:

less-than 4-year of college and 4-year of college or more. We use the occupational choice and

average wages of workers to parameterize the profile of Toht, given wages per efficiency units

in each occupation.

We choose a profile of wages per efficiency units across occupations, woht, so that the

model matches the capital per worker across occupations, kot
`ot

. The equilibrium of the model

specifies that the capital-labor ratio differs across occupations as a function of the elasticity

24Our estimate of the shape parameter of the Fréchet distribution is consistent with Hsieh et al. (2019) and
Burstein et al. (2019) who, using a similar identification strategy, parameterize it at 1.24 and 2, respectively.

25A labor market participation choice can be accommodated in our environment as in Hsieh et al. (2019).
The measure of occupational exposure to CETC remains unchanged with this additional margin, as well
as the identification of the labor supply elasticity (through the residual wage variation) and the demand
elasticity of occupational output (through the production technology).
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of substitution between capital and labor and factor prices (equation 19). The capital-labor

ratio maps to capital per worker for a value of the average efficiency units of labor in each

occupation. This last term is not directly observable in the data and is a result of worker’s

selection into different occupations. The properties of the Fréchet distribution allows us

to link the selection effect of each worker group to their occupational choice, and therefore

measure differences in efficiency units of labor per-worker from data on occupational choices

(equation 21).26

We now turn to the inference of the parameters of the production function of final output.

We first estimate the elasticity of substitution across occupational output, ρ, from the first

order condition for the final good producer, equation 18:

ln

(
λyotyot
λyobtyobt

)
= (1− ρ) ln

(
λyot
λyobt

)
+ ln

ωot
ωobt

.

The covariation of the value of occupational output with relative occupational prices gives

an estimate of the elasticity of substitution across occupations. The value of output across

occupations, λyotyot, can be readily measured from our dataset on capital and labor expen-

ditures at the occupation level, under the assumption of competitive markets. However,

occupational output prices, λyot, are intrinsically unobserved. To overcome this challenge, we

rely on the structure of our model, which links these prices to our previously inferred wage

per efficiency units of labor and to the price of capital (see equation 17).

We are then able to estimate the following regression equation:

ln

(
λyotyot
λyobtyobt

)
= β1 + β2ot+ β3 ln

(
λyot
λyobt

)
+ εot, (14)

where εot ≡ ln ωot
ωobt

+ νot, and νot is an error term, normally distributed, mean-zero, and i.i.d.

across observations. We control for occupation-specific time trend in equation 14 to capture

trends in unobserved occupation-specific demand shifters. Note that our model predicts that

changes in equilibrium occupational prices depend on changes in the unobserved demand

shifters. We then expect the error term to be correlated with
λyot
λyobt

and the resulting estimate

of ρ to be biased, with unknown direction. To address this endogeneity issue, we follow

Burstein et al. (2019) and use a Bartik-style instrument based on the average cost of capital

in each occupation with equipment weights within each occupation fixed at 1984 levels.

Our estimation considers eight occupations, over 32 years, between 1984 and 2015. The

26Details on the inference of the scale parameters of the Fréchet distribution and on the profile of wages
per efficiency unit are in the Online Appendix.
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OLS yields an estimate for the elasticity of substitution of 1.11 (se: 0.008) while the IV yields

an estimate of 1.34 (se: 0.061).27 Burstein et al. (2019) estimate the elasticity of substitution

using the same method, under a Cobb-Douglas production structure for occupational output.

They obtain an estimate of 1.78, which is close to our estimate. Under a Cobb-Douglas

production structure the wage per efficiency units of labor cannot be inferred from capital

per worker, and therefore can only be measured up to a value for the scale parameters of the

Fréchet distribution.28

Last, to pin down the demand shifters, ωot, we use the first-order conditions of optimiza-

tion of the final good producer (equation 18) along with the price of occupational output

implied by the wage per efficiency units of labor and our estimate of elasticity of substitution

across occupational output.

6 The role of CETC for labor market outcomes

In this section, we use the model described in Section 5 to quantify the impact of CETC

on labor re-allocation and the evolution of wage premia across labor groups in the US. This

is the general equilibrium counterpart of the analysis developed in Section 4. We close the

section by evaluating other forces that may have contributed to these labor market outcomes.

Our main findings are based on a set of counterfactual exercises, where we take the 2015

economy and progressively remove all exogenous forces in the model, by setting their value to

that in the 1984 economy. These exogenous forces are: the decline in the user costs of quality-

adjusted capital, λkot (“CETC”); the change in the scale parameters of the distribution of

efficiency units of labor associated to occupations, Tot, and in the demand shifters in final

production, ωoT (“Demand”); the change in the scale parameters associated to worker types,

Tgt (“Demographics”); the change in the structure of worker comparative advantage, T̃ogt

(“CA”); the change in the weights of the different labor groups, πgt (“Composition”).29

Because each of these forces interact non-linearly with each other, their role for labor market

outcomes depends on the value of the remaining forces. To account for these non-linear

27The first-stage regression of the 2-stage least squares returns a p-value on the coefficient for the instru-
ment of 0.009 and an R2 of 0.80.

28Alternative estimates are in Goos et al. (2014) and Lee and Shin (2019), who estimate the demand
elasticity using data on routine tasks’ intensity and computer capital, respectively, and find an elasticity
lower than 1. The novelty of our approach relies on our ability to measure occupational capital and so
occupational expenditure shares.

29Details on the decomposition of the scale parameters of the Fréchet distribution in the occupation, group,
and comparative advantage components are in the Online Appendix.
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Table 2: The role of CETC for employment reallocation.

Data CETC CETC/Data

Fraction moving into:
High-skill 10.06 7.31 72.72
Middle-skill -13.58 -7.72 56.85
Low-skill 3.52 0.41 11.55

Abs average movement:
All 3.04 2.64 86.95
Non-college graduates 2.61 3.22 123.23
College graduates 1.03 1.87 180.90
16- to 29-year old 3.97 2.65 66.79
30- to 49-year old 2.86 2.32 81.03
50- to 65-year old 2.29 2.70 117.98
Females 4.33 3.20 74.01
Males 2.17 2.10 96.85

Note: Column “CETC” reports the outcome attributed to the decline in the price of capital relative to
consumption via the counterfactual exercise. “High-skill” occupations are managers, professionals, and
technicians. “Low-skill” occupations are low-skill services. All remaining occupations are “Middle-skill”
occupations. Entries are in percent.

interactions we remove these forces in different ordering and compute the effect of a particular

force by averaging across different orderings.30

6.1 CETC

We start by considering the role of CETC for the polarization of US employment (Acemoglu

and Autor, 2011). The top panel of Table 2, column Data, reports that, between 1984

and 2015, low-skill occupations (low-skill services) and high-skill occupations (professionals,

managers, and technicians) gain 3.52p.p. and 10.06p.p. in their employment shares, respec-

tively. Column CETC, in the same table, reports the contribution of CETC to this pattern,

i.e. the difference between the data and the counterfactual employment allocation. CETC

is consistent with employment polarization, as it generates an increase in the employment

share for low- and high- skill occupations. CETC has been most relevant for high-skill oc-

cupations. The model predicts that employment reallocation toward high-skill occupations

30The interaction effects are quantitatively relevant. The Online Appendix compares our findings to those
based on a set of counterfactual exercises where we remove each of the exogenous forces starting from the
2015 economy.
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Figure 4: Employment polarization.

“Data & model” plots 100 times the change in share of employment between 1984 and 2015; “CETC” plots
the same outcome attributed to the CETC via the counterfactual exercise. Lines are cubic polynomial fits.

due to CETC was of 7.31p.p. – that is, 73% of the observed reallocation. CETC had a

lesser role in the reallocation out of middle-skill occupations, accounting for 57% of it, and

even a smaller one in the reallocation toward low-skill occupations, accounting for 12% of

it. Figure 4 gives a visual representation of the role of CETC for employment polarization.

It plots employment changes across occupations of increasing skill requirements, as reported

in the data (black dashed line) and as generated by CETC alone (red dotted line).

The bottom panel of Table 2 reports the absolute change in employment allocation across

occupations generated by CETC for workers of different education, age and gender. We

find that CETC had a stronger role in the reallocation of more educated, older, and male

workers. CETC accounts for 58p.p. more of of the reallocation of college graduates than

of non-college graduates, for 52p.p. more of the reallocation of 50- to 65-year-old workers

compared to 16- to 29-year-old workers, and for 23p.p. more of the reallocation of male

workers compared to female workers. This finding is a reflection of more educated, older, and

male workers choosing high-skill occupations more frequently and highlights the importance

of the occupational choice for workers to access the returns of CETC.

In our model, differences in the occupational choices across demographic groups are

rationalized via a residual component of the productivity shifters that determines the com-
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Table 3: The role of CETC for the wage premia across demographic groups.

Data CETC CETC/Data

College premium 30.58 16.49 53.93
Age premium
30- to 49-year old 7.95 4.12 51.86
50- to 65-year old 13.83 1.26 9.09

Gender wage gap -28.01 12.48 -44.56

Note: The table reports percentage variation in the college premium, the age premia, and the gender wage gap
between 1984 and 2015. Column “CETC” reports the outcome attributed to CETC via the counterfactual
exercises. Entries are in percent.

parative advantage. Various studies highlight how this residual component reflects labor

market frictions linked to the demographic characteristics (see, among others Hsieh et al.,

2019). Such frictions prevent workers to fully respond to CETC with their occupational

choices and therefore exacerbate inequality in labor market outcomes across demographic

groups. Table 3 shows the impact of CETC on the wage premia across labor groups. In the

data, the college premium increased by 31p.p. between 1984 and 2015, the cross-sectional

age premium increased by 8p.p. for 30- to 49-year old workers and by 14p.p. for 50- to

65-year old workers. CETC generates 54% of the increase in the college premium and about

1/3 of the rise in the cross-sectional age premia. Over the same period of time, the gender

wage gap decreased of 28p.p.. Our model generates an increase of the gender wage gap

due to CETC because males are more likely to work in high-skill occupations, where wages

increase as a consequence of technical change.

To conclude our evaluation of the role of CETC for labor market outcomes, we test its

predictive capacity on employment flows via an in-sample prediction exercise. Standing in

2005, we ask how well we would had predicted occupational employment over the subsequent

10 years in the US using only the information on occupational CETC over the previous 10

years. To do so, we take the calibrated model economy in 2005 and input the path of CETC

that is implied by the average yearly decline in the user cost of capital relative to consumption

we observe over the 1995-2005 period, to forecast employment reallocation between 2006 and

2015. The results are in Figure 5, which plots the predicted employment changes (dotted

lines) along with the data (solid lines). CETC is a strong predictor of employment in high-

skill occupations: it predicts 3.8p.p. of the realized 5.0p.p. rise in the employment share

of these occupations, between 2005 and 2015. CETC is also able to predict the outflow of

employment from middle-skill occupations over the same period, 64% of the realized one,

33



1995 2000 2005 2010 2015

10

20

30

40

50

60

E
m

p
lo

y
m

en
t:

 d
at

a 
(s

o
li

d
) 

v
s 

p
re

d
ic

te
d
 (

d
o
tt

ed
)

  high-skill

  middle-skill

  low-skill
Lo

w
-s

ki
lle

d 
se

rv
.

M
ec

ha
ni
cs

 a
nd

 tr
an

sp
.

M
ac

hi
ne

 o
pe

ra
to

rs
 

Pre
ci
si
on

 p
ro

d.

Adm
in
. s

er
v.

Sal
es

Tec
hn

ic
ia
ns

Pro
fe

ss
io
na

ls

M
an

ag
er

s
-4

-2

0

2

4

E
m

p
lo

y
m

en
t 

ch
an

g
e,

 2
0

0
5

-2
0

1
5

O
6

O
7

O
9

O
8

O
5

O
4

O
3

O
2

O
1

O
6

O
7

O
9 O

8

O
5

O
4

O
3

O
2

O
1

data predicted

Figure 5: Forecasting exercise.

The left panel plots 100 times the employment share in the data and as predicted by our in-sample forecasting
exercise, between 1995 and 2015. Forecasting starts in 2006 and uses CETC data from 1995 to 2015. The
right panel plots the same statistics but as a difference between 2015 and 2005 and separately for 1-digit
occupations; lines are cubic polynomial fits.

but predicts an outflow of employment from low-skill occupations of 0.35p.p. in contrast to

the realized inflow of 0.34p.p..

Partial vs general equilibrium quantification. Aggregating the effects of CETC

across occupation, we summzarize the role of CETC for the reallocation of US labor between

1984 and 2015. Table 2 shows that the average absolute change in employment allocation

across occupations over this time period is 3.0%. CETC accounts for 87% of this employment

reallocation (2.6p.p.).

The contribution of CETC to labor market outcomes using our general-equilibrium frame-

work is more than five times the number we obtain when using the Hicks’s prediction (see

Section 4). In this latter prediction, the elasticity of employment to a decline in the cost

of using capital in an occupation is computed fixing employment and output prices in all

other occupations in the Hicks exercise, whereas those are allowed to endogenously change

in our general-equilibrium estimates. Our exercise shows that these feedback effects are

quantitatively important.

Quantification of the channels. In Section 4, we established that CETC influences

labor market outcomes through heterogeneity in occupational exposure, which shapes the

scale and substitution effects in each occupation, rather than through heterogeneity in the
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extent of CETC. We now test this finding in our general equilibrium model. To isolate

the quantitative role of these two sources of heterogeneity, we design three alternative ex-

periments: first, we equalize the path of the relative user cost of capital to consumption

across occupations (Identical CETC ); second, we input a common elasticity of substitution

of capital and labor across occupations, (Identical elasticity); third, we input both a com-

mon relative user cost of capital and elasticity of substitution in all occupations, (Identical

elasticity). We set the common elasticity of substitution to σ = 0.81, which is estimated by

imposing a common elasticity parameter in regression equation 5, Section 3.We quantify the

importance of CETC in each of these alternative experiments by shutting down the decline

in the relative price of capital to consumption – that is, by setting λko2015 = λko1984, and

computing the difference between the data and the counterfactual in 2015. Table B.V in the

Appendix reports the contribution of CETC in the three alternative experiments.31

Consistently with our findings in Section 4, the heterogeneity in the elasticity of substi-

tution across occupations is the most important driver for the direction and the magnitude

of the reallocation of labor across occupations. When we force identical elasticities of substi-

tution in all occupations, CETC generates about a 1/3 of the inflow of employment toward

high-skill occupations generated in the baseline.

6.2 Other forces at play

In the previous section we established that CETC has played a maojr role in shaping labor

market outcomes in the US over the 30 years. However, not all labor market outcomes can

be traced back to CETC. In this section, we quantify the contribution of other exogenous

forces in the model to labor market outcomes via counterfactual exercises.

Figure 6 shows the contribution for employment polarization of the occupational demand

shifters, in the left panel, and of all other exogenous forces, in the right panel. Consistently

with the hypothesis in Autor and Dorn (2013) and the recent work of Comin et al. (2020), we

find that demand shifters were responsible for the increase in employment at the bottom of

the skill distribution. The model predicts that demand shifts towards low-skill occupations

should have generated a 2.41p.p. increase in the share of workers allocated to them; in

the data, this change was 3.52p.p. Demand shifters mostly miss the employment gains

31In each alternative experiment, we recalibrate the model following the calibration strategy in Section
5.2. We keep the elasticity of substitution across occupational output as in the baseline, at ρ = 1.34, for
comparability. Note that our counterfactual exercises on the alternative experiments abstract from interac-
tion effects among the exogenous forces in the model. These effects are inconsequential to the conclusions
we take from the alternative experiments.
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(b) The role of other forces

Figure 6: Other forces at play.

“Data & model” plots the fifth-degree polynomial fit of 100 times the change in share of employment between
1984 and 2015; the remaining lines plot the quadratic polynomial fit of the same outcome attributed to the
various forces via the counterfactuals described in the text.

at the top of the skill distribution, as well as the hollowing out in middle skill occupations.

Employment losses at the middle of the skill distribution that follow from the demand shifters

are redirected equally toward higher employment in both high- and low- skill occupations,

This is in contrast to the data, where see a flow into high-skill occupations that is 74% of

the outflow from middle-skill occupations.

The right panel of Figure 6 shows that exogenous forces beyond CETC and demand

shifters mostly play a secondary role in the US employment polarization. The only effect

worth noting is that of changes in the weights of the different labor groups (“Composition”

effects), which generate an outflow of employment from middle-skill occupations of a magni-

tude of 20% that observed in the data (mostly accounted by mechanics, transportation, and

machine operators) and an inflow of employment toward high-skill occupations of a magni-

tude of 31% that observed in the data (mostly accounted by managers and professionals).32

Overall, we conclude that, on average, CETC, demand effects, and demographic compo-

sitional effects are the most important determinants of workers reallocation from middle skill

occupations to high and low skill occupations. CETC is the most important contributor of

changes in the reallocation of labor in high-skill occupations.

32Details on the quantifications of each of the effects by occupation are in Table B.IV in the Appendix.
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7 Discussion

One of the key advantages of our measures of occupational capital is that we see disaggregated

data for all equipment categories and that our series are consistent with BEA’s measurement

of equipment stocks. To study the effect of particular equipment categories on labor market

outcomes, we modify the commodity space of the economy in Section 5 to model occupational

capital as an endogenous composite of different capital goods. In Section 7.1, we document

the contribution of CETC that relates to specific capital goods for the reallocation of labor

in the US between 1984 and 2015. In Section 7.2 we discuss the implications of capital

accumulation for the equilibrium allocations.

7.1 Multiple capital goods

Consider a countable set of capital goods of cardinality J indexed by j. These capital goods

map to the 24 BEA equipment categories, including for example computers and communi-

cation equipment. Each capital good is produced with a linear technology in the final good,

with a rate of transformation qjt specific to each capital good. Occupational capital is an

occupation-specific CES aggregator of a subset of capital goods, Ωk
ot of cardinality Jot:

kot =

∑
j∈Ωkot

ξ
1/φ
ojt k

(φ−1)/φ
ojt


φ
φ−1

.

The equipment producer now chooses the quantity of each capital good used in the occupa-

tion, along with the stock of capital and labor.

The competitive equilibrium is analogous to the one described in the benchmark, except

that the capital markets are now indexed by the capital type rather than the occupation.

As before, the equilibrium price of capital relative to consumption equals the inverse of the

rate of transformation, λkjt = 1/qjt. Given the price of each capital good, the optimal capital

allocation in an occupation and the price of occupational capital satisfy:

ξojt
ξj′ot

=
kojt
kjbot

(
λkjt
λkj′t

)φ

, λkot =

∑
j∈Ωkot

ξojtλ
1−φ
jt

 1
1−φ

(15)

Hence, given these prices, the equilibrium allocations in this extension of the model are as

in the baseline. The capital labor ratio and the relation of the wage per efficiency unit and
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the occupational price follow from equations 19 and 17. In this sense, the problem of capital

allocation within each occupation can be split into two. First, solving for the value of the

capital labor ratio, and second, solving for the mix of capital types within the occupational

composite, as in equation 15.

To quantify this extended version of the model, we first parameterize the CES aggregator

for capital and then run the calibration procedure in Section 5.2. We use the parameterized

model to run counterfactual exercises analogous to those of Section 6 and quantify the role

of CETC in each capital good on the reallocation of labor across occupations.

To infer the elasticity of substitution across capital goods, we use the ratio of the first

order condition for the occupational good producer across capital goods, equation 15:

ln

(
λkjtkojt

λkjtkjbot

)
= (1− φ) ln

(
λkjt
λkjbt

)
+ ln

ξojt
ξjbot

.

We observe all the elements of the above equation, except for the occupational efficiency by

capital type,
ξojt
ξjbot

. Therefore, we estimate the following regression equation:

ln

(
λkjtkojt

λkjtkjbot

)
= β1 ln

(
λkjt
λkjbt

)
+ εjt, (16)

where εojt = ln
ξojt
ξjbot

+ νojt, and νjt is an error term, normally distributed, mean-zero, and

i.i.d. across observations. We take changes in the ratio of capital prices over time,
λkjt
λkjbt

, as

exogenously determined by changes in technology. We then estimate regression equation

above using OLS. We consider 24 capital goods, over 9 occupations and 32 years, between

1984 and 2015 and estimate an elasticity of substitution of φ = 1.13 (se: 0.017).33 Given

the estimate of φ, we set the occupational efficiency by capital type, ξojt to match our newly

documented occupational expenditure shares by capital good and occupational capital stocks

(Figure 1).

First, the static nature of our model implies that, under our calibration, the inferred

role for CETC across capital goods is identical to the one measured in our baseline model

with occupational capital goods. We then use our model with multiple capital goods to

evaluate the role of specific capital goods for the reallocation of labor. To do so, we run a

33Including a time-trend in regression equation 16 gives an estimate for the elasticity of substitution across
capital goods of 1.42 (se: 0.030). If the trend is allowed to vary by occupation and capital good, we estimate
a value of 1 (se: 0.014).
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Table 4: CETC across capital goods.

Data CETC in:
computers communication software

Fraction moving into:
High-skill 10.16 0.70 0.81 1.12
Middle-skill -13.82 -0.61 -0.73 -0.97
Low-skill 3.52 -0.09 -0.08 -0.15

Managers 3.97 0.27 0.32 0.38
Professionals 6.19 0.30 0.41 0.54
Technicians -0.11 0.14 0.08 0.20
Sales -1.15 -0.12 -0.12 -0.19
Administrative serv. -4.16 -0.67 -0.80 -0.79
Low-skilled serv. 3.52 -0.09 -0.08 -0.15
Mechanics and transp. -1.88 0.32 0.29 0.17
Precision production -2.14 -0.09 -0.05 -0.10
Machine operators -4.24 -0.05 -0.05 -0.07

Fraction moving into:
High-wage 10.06 0.70 0.81 0.16
Middle-wage -13.58 -0.61 -0.73 -1.49
Low-wage 3.52 -0.09 -0.08 -0.30

Note: entries are in percent. Columns under “CETC” present the outcome attributed to CETC via the
counterfactual exercise. “High-skill” occupations are managers, professionals, and technicians. “Low-skill”
occupations are low-skill services. All remaining occupations are “Middle-skill” occupations.

counterfactual where we shut down, one at a time, the CETC in each capital good – that is,

we set λj2015 = λj1984 ∀j, and consider the implications for employment reallocation between

1985 and 2015. Table 4 shows the contribution of CETC, separately for the three capital

goods with the strongest impact on allocations: computers, communication equipment, and

software. The direction of employment reallocation generated by CETC in the three capital

goods is identical. However, the magnitude of these reallocations are not. CETC in computer

generates the smallest reallocation of employment, communication equipment comes second

in order of magnitude, while software comes first. This difference in magnitude is particularly

relevant for administrative services and professionals. CETC in both communication and

software generates an employment outflow from administrative service occupations that is

more than 0.10p.p. stronger than that generated by computers. In professional occupations,

CETC in software generates an employment inflow that is more than 0.10p.p. stronger than

that generated by communication equipment and more than 0.20p.p. stronger than that

generated by computers.34

34Different magnitudes are also recorded for technicians, transportation, and mechanics, but the model
generates counterfactual directions of the employment flows.
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Our results highlight the importance of studying broader equipment categories, other

than computers. This is particularly important for the post-2000 period, where the stock of

computers and software experienced a slow down in growth while communication equipment

has continued its linear trend and has now surpassed the efficiency units value of the stock

of computers.

7.2 Capital accumulation

A distinctive feature of equipment is its durability.

An important feature of the embodied nature of technology is that technological changes

shift the returns to capital accumulation. Capital accumulation and output growth would

necessarily be unbalanced in an environment where there are multiple capital goods and

therefore multiple trends for investment-specific technical change, as well as arbitrary elas-

ticities of substitution across different inputs and outputs. This feature poses a maojr chal-

lenge in characterizing the equilibrium path of the economy. To make progress, we restrict

the parameter space of the economy to an aggregator of capital at the occupation level, and

an aggregator of occupational output that display unitary elasticity, i.e. Cobb-Douglas. In

addition, we restrict the occupation specific component of the scale parameter of the dis-

tribution of talent to grow at the same rate as the measure of investment-specific technical

change at the occupation level. Therefore, technological growth is Hicks-neutral.

As we show in the Online Appendix, this economy displays a BGP where final output,

occupational output and capital grow at constant albeit different rates. As in Greenwood

et al. (1997) capital grows faster than output and the return to capital declines at constant

rates. Because the shares of occupational output are constant along the BGP (due to the

Cobb-Douglas structure of the demand), occupational prices exactly offset the effect of CETC

on occupational output. Capital-labor ratios, measured in efficiency units, are constant along

the equilibrium path as they are in our baseline economy. Finally, the detrended version of

this economy is observationally equivalent to the economy discussed in section 7.1.

8 Conclusions

We document two new facts. First, there is substantial heterogeneity in the capital bundles

used by different occupations, and therefore in CETC. Second, workers’ exposure to CETC

varies considerably across occupations, as a function of heterogeneity in the intensity of
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capital use and in the elasticity of substitution between capital and labor. Through the

lens of a general equilibrium model of occupational choice, we find that CETC accounts

for 87% of the gross labor reallocation across occupations observed in the US since 1984.

CETC is particularly important in explaining the gains in employment at the top of the skill

distribution.

Occupations with higher skill requirements experienced strongest CETC. These occu-

pations also gained employment overall. Our structural model rationalizes these gains in

employment through capital-labor complementarity, as well as a relatively substitutable oc-

cupational output. As the demand for higher skill occupations shifted upwards, both capital

and labor reallocated toward those occupations. How changes in the demand for skills feed

back into the pace of CETC is still an open question.

41



References

Acemoglu, D. and Autor, D. (2011). Skills, tasks and technologies: Implications for employment and
earnings. vol. 4B, 12, 1st edn., Elsevier, pp. 1043–1171.

— and Restrepo, P. (2018). The race between man and machine: Implications of technology for growth,
factor shares, and employment. American Economic Review, 108 (6), 1488–1542.

Antras, P. (2004). Is the u.s. aggregate production function cobb-douglas? new estimates of the elasticity
of substitution. The B.E. Journal of Macroeconomics, 4 (1), 1–36.

Atalay, E., Phongthiengtham, P., Sotelo, S. and Tannenbaum, D. (2018). New technologies and
the labor market. Journal of Monetary Economics, 97, 48 – 67.

Aum, S. (2017). The Rise of Software and Skill Demand Reversal. Mimeo.

—, Lee, S. Y. T. and Shin, Y. (2018). Computerizing industries and routinizing jobs: Explaining trends
in aggregate productivity. Journal of Monetary Economics, 97, 1 – 21.

Autor, D. H. (2015). Why Are There Still So Many Jobs? The History and Future of Workplace Automa-
tion. Journal of Economic Perspectives, 29 (3), 3–30.

— and Dorn, D. (2013). The growth of low-skill service jobs and the polarization of the us labor market.
American Economic Review, 103 (5), 1553–97.

—, Katz, L. F. and Kearney, M. S. (2006). The polarization of the U.S. labor market. American Economic
Review, 96 (2), 189–194.

—, — and — (2008). Trends in U.S. Wage Inequality: Revising the Revisionists. The Review of Economics
and Statistics, 90 (2), 300–323.

—, — and Krueger, A. B. (1998). Computing Inequality: Have Computers Changed the Labor Market?*.
The Quarterly Journal of Economics, 113 (4), 1169–1213.

—, Levy, F. and Murnane, R. J. (2003). The Skill Content of Recent Technological Change: An Empirical
Exploration. The Quarterly Journal of Economics, 118 (4), 1279–1333.

BEA (2003). Fixed assets and consumer durable goods in the United States, 1925-97. government printing
office, Department of Commerce.

Buera, F. J., Kaboski, J. P. and Rogerson, R. (2015). Skill Biased Structural Change. NBER Working
Papers 21165, National Bureau of Economic Research, Inc.

Burstein, A., Morales, E. and Vogel, J. (2019). Changes in Between-Group Inequality: Computers,
Occupations, and International Trade. American Economic Journal: Macroeconomics, 11 (2), 348–400.

Comin, D. A., Danieli, A. and Mestieri, M. (2020). Income-driven Labor Market Polarization. NBER
Working Papers 27455, National Bureau of Economic Research, Inc.

Cummins, J. G. and Violante, G. L. (2002). Investment-Specific Technical Change in the US (1947-2000):
Measurement and Macroeconomic Consequences. Review of Economic Dynamics, 5 (2), 243–284.

Diamond, P., McFadden, D. and Rodriguez, M. (1978). Measurement of the elasticity of factor substi-
tution and bias of technical change. In M. Fuss and D. McFadden (eds.), Production Economics: A Dual
Approach to Theory and Applications, vol. 2, [Wiley, Royal Statistical Society], pp. 125–147.

Dickey, D. A. and Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series
with a unit root. Journal of the American Statistical Association, 74 (366), 427–431.

Eden, M. and Gaggl, P. (2018). On the welfare implications of automation. Review of Economic Dynamics,
29, 15–43.

Goos, M., Manning, A. and Salomons, A. (2014). Explaining Job Polarization: Routine-Biased Tech-
nological Change and Offshoring. American Economic Review, 104 (8), 2509–2526.

Gordon, R. J. (1987). The Postwar Evolution of Computer Prices. NBER Working Papers 2227, National
Bureau of Economic Research, Inc.

Gourio, F. and Ronglie, M. (2020). Capital heterogeneity and investment prices: How much are invest-

42



ment prices declining?

Greenwood, J., Hercowitz, Z. and Krusell, P. (1997). Long-Run Implications of Investment-Specific
Technological Change. American Economic Review, 87 (3), 342–62.

Herrendorf, B., Herrington, C. and Valentinyi, (2015). Sectoral technology and structural trans-
formation. American Economic Journal: Macroeconomics, 7 (4), 104–33.

Hicks, S. J. (1932). The Theory of Wages.

Hornstein, A., Krusell, P. and Violante, G. L. (2005). Chapter 20 - the effects of technical change
on labor market inequalities. Handbook of Economic Growth, vol. 1, Elsevier, pp. 1275 – 1370.

Hsieh, C.-T., Hurst, E., Jones, C. I. and Klenow, P. J. (2019). The allocation of talent and u.s.
economic growth. Econometrica, 87 (5), 1439–1474.

Hulten, C. R. (1992). Growth Accounting When Technical Change Is Embodied in Capital. American
Economic Review, 82 (4), 964–80.

Jorgenson, D. W. (1963). Capital theory and investment behavior. The American Economic Review,
53 (2), 247–259.

Katz, L. F. and Murphy, K. M. (1992). Changes in relative wages, 1963-1987: Supply and demand
factors. The Quarterly Journal of Economics, 107 (1), 35–78.
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Appendix

A Model derivations

Equilibrium definition. We define the equilibrium, given a set of technological parame-
ters {ωo, qo}Oo=1, a set of a scale parameters in the distribution of efficiency units of labor,
{{Toh}o=1}Hh=1, and a set of measures of workers by labor groups, {πh}Hh=1.

A competitive equilibrium consists of (1) consumption and labor decisions for workers of
each type i and labor group h, {o?h(i), co?h(i)h(i)}Hh=1, (2) labor, capital and output allocations
across occupations, {{no, ko, yo, xo}Oo=1, y}; such that given prices {{λno , λko , λyo}Oo=1, λ

y}:

1. Workers maximize wages, equation 13;

2. Profits in all occupations, final output, and capital production are maximized, equa-
tions 9, 10, 11;

3. The labor market for each occupation clears, i.e., no =
∑
h

∫
i∈Ωho

noh(i)πhdFoh(i), where
Ωho identifies the set of workers with o?h(i) = o;

4. The market for each capital-o clears, ko = qoxo.

5. The market for final output clears, i.e.
∑
ho

∫
i
co?h(i)h(i) +

∑
o xo = y.

Input and output prices across occupations. From the zero-profit condition of the producer
of occupational output, we express the wage per efficiency unit of labor as a function of the
price of occupational output and the price of capital:

λnot =

((
1

1− α

)σo
λy1−σo
ot −

(
α

1− α

)σo
λk1−σo
ot

) 1
1−σo

. (17)

The wage per efficiency unit does not equalize across occupations because workers are not
equally productive across them, i.e. they draw different efficiency units depending on the
occupation {noht(i)}Oo=1, as in Roy (1951).

From the zero-profit condition of the capital producer, the price of capital-o equals the
inverse of the exogenous rate of transformation from consumption, λko = 1/qo.

The optimal demand from the final good producer characterizes occupation output prices,

λyot = λyt

(
ωot

yt
yot

) 1
ρ

, (18)

where λyt is the price index for the final good and which we normalize to 1 at each point in
time, λyt =

(∑
o ωot(λ

y
ot)

1−ρ) 1
1−ρ = 1.
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Capital-labor ratios across occupations. The optimality conditions of the occupational
good producer pin down the capital to labor ratio in the occupation as a function of prices,

kot
not

=

(
α

1− α
λnot
λkot

)σo
. (19)

Therefore, the capital-labor ratio differs across occupations as a function of the elasticity of
substitution between capital and labor and factor prices.

Workers’ labor supply. The probability that worker i of group h chooses occupation o is:

πoht ≡ Prob(woht(i) > wo′ht(i)) ∀o
′
6= o.

Replacing equilibrium wages and using the properties of the Fréchet distribution, we solve
for the occupational allocation of workers of group h:

πoht =
Toht(λ

n
ot)

θ∑
o′ To′ht(λ

n
o′ t

)θ
. (20)

The occupational choice of the worker defines the amount of efficiency units supplied to an
occupation o:

not =
∑
h

∫
i∈Ωhot

noht(i)πhtdFoht(i) =
∑
h

πhtπohtE(n|oht) =
∑
h

πhtπoht

(
Toht
πoht

) 1
θ

Γ(1− 1

θ
). (21)

These are a function of the number of workers that choose that occupation, πhtπoht, and
their average efficiency units, E(n|oht). The properties of the Fréchet distribution yield a
close form solution for the average efficiency.

Workers’ expected wages. The average wages of workers of type h in occupation o
are the product of the wage per efficiency unit and the average efficiency units supplied,
woht = λnotE(n|oht). Using equation 21 average wages are:

woht =

(
Toht

∑
o

λnθot

) 1
θ

Γ(1− 1

θ
). (22)

The equilibrium of the model predicts no differences in the average wages of a group
h across occupations, wht = woht. The assumption of i.i.d. Fréchet draws implies that
selection effects perfectly offset differences in the scale parameters across occupations (or
mean efficiency of the workers). For example, an increase in the mean worker efficiency
associated to occupation o through a higher scale parameter increases the returns to working
in that occupation. This increases the number of workers that choose such an occupation and
therefore decreases the efficiency units of the inframarginal worker, pushing average wages
down.35

35Different occupational wages across occupation for a labor group, as observed in the data, can be
rationalized via occupational preferences that generate equilibrium compensating differentials (see Hsieh
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Labor supply-elasticity. Combing equations equation 20, 21 and 22, we can charac-
terize the elasticity of labor supply to its price for fixed average wages across labor groups :

ηnλno = θ − 1.

The constant elasticity result is a direct result of the Fréchet distributional assumption of
workers’ efficiency units across occupations.

B Tables and Figures
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Figure B.I: Changes in tool shares.

The left panel displays the share of computer tools used by a worker in each 1-digit occupation in 1977 (from
the DOT, lighter colors) and in 2016 (from O*NET, darker colors). The right panel displays the share of
communication tools used by a worker in each 1-digit occupation in 1977 and 2016. Source: O*NET, DOT
and own computations.

et al., 2019). In a Mincerian regression run separately on the initial and final years of our sample (1984
and 2015), controlling for demographics alone accounts for approximately 80% of the explained variation in
wages by a model that also controls for 1-digit occupational dummies.
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Figure B.II: Comparison tool share and computer use.

The figure shows the distribution of hours of work using computers according to historical data using the CPS
October supplement (light colors) and the distributions of computer tools used by workers in each 1-digit
occupation based on DOT and O*NET (darker colors). The left panel shows data for 1984 for computer use
and 1984 for tool shares. The right panel displays each measure in 2003. Source: O*NET, DOT, CPS and
own computations.
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Table B.II: Wald Test for equality of elasticities, p-values

Professionals Technicians Sales Admininstrative Low-skill Mechanics & Precision Machine
services services Transportation Operators

Managers 0.83 0.38 0.13 0.03 0.38 0.59 0.09 0.46
Professionals 0.42 0.03 0.01 0.26 0.67 0.06 0.38
Technicians 0.01 0.01 0.11 0.90 0.03 0.23
Sales 0.13 0.89 0.08 0.29 0.96
Admin serv. 0.16 0.02 0.88 0.33
Low-skill services 0.22 0.30 0.90
Mechanics & Transportation 0.06 0.31
Precision 0.45

The table reports the p-values associated to a pair-wise Wald test for equality of the elasticity estimate, β3

in equation 4. Bold entries correspond to pairs where the null of equality of the estimates is rejected.

Table B.III: Estimates of σo, robustness.

baseline RTI controls quadratic trend trend break 2000
(1) (2) (3) (4) (5) (6) (7) (8)

Managers 0.93 0.25 0.85 0.14 0.97 0.27 1.30 0.59
Professionals 0.86 0.17 0.64 0.33 0.90 0.18 0.58 0.39
Technicians 0.65 0.21 0.71 0.22 0.64 0.21 0.67 0.54
Sales 1.38 0.16 1.20 0.11 1.43 0.18 1.91 0.33
Admin Services 2.18 0.50 1.57* 0.22 2.31 0.55 3.66 1.49
Low-skill Services 1.32 0.37 1.28 0.40 1.07 0.38 1.27 0.60
Mechanics & Transportation 0.73 0.35 0.86 0.47 0.43 0.30 0.65 0.38
Precision 2.06 0.63 2.10 0.57 2.02 0.61 2.06 0.99
Machine Operators 1.41 0.61 1.62 0.72 1.50 0.64 2.17 1.64

The table reports the baseline estimates of the elasticity of substitution between capital and labor in each
occupation (Column 1) and their standard errors (Column 2), alongside the estimates from alternative
specifications of regression equation 5. Columns (3) and (4) present estimates and standard errors when
controlling for a measure of the routine task intensity (RTI) of the occupation, as described in the Section 3.
Columns (5) and (6) report results when we allow for a quadratic time trend in regression 5 while Columns
(7) and (8) allow for a break in the time trend in 2000, which marks the beginning of the slow-down in the
decline of the price of computers. * Instrumented with the stock of warehouses in the economy.
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Table B.IV: Forces driving labor reallocation across occupations.

Data CETC demand demographics CA composition

Fraction moving into
Managers 3.97 2.98 0.89 -0.28 -0.83 1.21
Professionals 6.19 2.69 3.42 -1.09 -0.80 1.96
Technicians -0.11 1.64 -1.79 -0.02 0.13 -0.08
Sales -1.15 0.22 -1.61 0.19 0.18 -0.13
Administrative services -4.16 -8.86 4.75 -0.31 0.26 -0.07
Low-skilled services 3.52 0.41 2.41 0.49 0.60 -0.40
Mechanics and transp. -1.88 3.96 -6.40 1.48 0.18 -1.09
Precision production -2.14 -2.33 0.06 0.09 0.32 -0.30
Machine operators -4.24 -0.71 -1.74 -0.60 -0.05 -1.14

High-skill 10.06 7.31 2.53 -1.38 -1.49 3.08
Middle-skill -13.58 -7.72 -4.94 0.85 0.89 -2.74
Low-skill 3.52 0.41 2.41 0.49 0.60 -0.40

Note: All columns present the outcome attributed to the various forces via the counterfactual exercise. The
description of all the counterfactuals in the columns is in the text. “High-skill” occupations are managers,
professionals, and technicians. “Low-skill” occupations are low-skill services. All remaining occupations are
“Middle-skill” occupations. Entries are in percent.

Table B.V: The role of CETC: channels.

Data Identical:
elasticity CETC elasticity and CETC

Fraction moving into:
High-skill 10.16 1.44 6.58 1.49
Middle-skill -13.69 -0.48 -5.07 0.44
Low-skill 3.52 -0.96 -1.51 -1.93

Abs average movement:
All 3.04 0.44 2.10 0.95
Non-college graduates 2.61 0.52 2.27 1.03
College graduates 1.03 0.36 1.86 0.85
16- to 29-year old 3.97 0.48 2.13 0.95
30- to 49-year old 2.86 0.43 2.07 0.94
50- to 65-year old 2.29 0.44 2.14 0.97
Females 4.33 0.45 2.10 1.06
Males 2.17 0.43 2.11 0.87

Note: entries are in percent. All columns aside from “Data” report the outcome attributed to CETC via the
counterfactual exercises. Columns Identical elasticity, Identical CETC, and Identical elasticity and CETC
show the results for the alternative exercises. “High-skill” occupations are managers, professionals, and
technicians. “Low-skill” occupations are low-skill services. All remaining occupations are “Middle-skill”
occupations. Entries are in percent.
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