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Abstract

We develop a penalized two-pass regression with time-varying factor loadings.
The penalization in the first pass enforces sparsity for the time-variation drivers
while also maintaining compatibility with the no-arbitrage restrictions by regular-
izing appropriate groups of coefficients. The second pass delivers risk premia esti-
mates to predict equity excess returns. Our Monte Carlo results and our empirical
results on a large cross-sectional data set of US individual stocks show that pe-
nalization without grouping can yield to nearly all estimated time-varying models
violating the no-arbitrage restrictions. Moreover, our results demonstrate that the
proposed method reduces the prediction errors compared to a penalized approach
without appropriate grouping or a time-invariant factor model.

Keywords: two-pass regression, predictive modeling, large panel, factor model, LASSO
penalization.

JEL classification: C13, C23, C51, C52, C53, C55, C58, G12, G17.
aGeneva School of Economics and Management, University of Geneva, bFaculty of Science, University of Geneva, cSwiss
Finance Institute.

1 Introduction
Under the arbitrage pricing theory (Ross (1976), Chamberlain and Rothschild (1983)),
we know that risk premia are drivers of expected excess returns. Hence, estimating
them should be useful for prediction of future equity excess returns. The workhorse
to estimate equity risk premia in a linear multi-factor setting is the two-pass cross-
sectional regression method developed by Black et al. (1972) and Fama and MacBeth
(1973). A series of papers address its large and finite sample properties for linear fac-
tor models with time-invariant coefficients; see, for example, Shanken (1985, 1992),
Jagannathan and Wang (1998), Shanken and Zhou (2007), Kan et al. (2013), and the
review paper of Jagannathan et al. (2010) (see Bryzgalova et al. (2019) for a recent
Bayesian approach). In a time-varying setting, Gagliardini et al. (2016) (henceforth
referred as GOS) study how we can infer the dynamics of equity risk premia from
large stock return data sets under conditional linear factor models (see also Gagliardini
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et al. (2020) for a review of estimation of large dimensional conditional factor models
in finance). They show how to explicitly account for the no-arbitrage restrictions re-
lating the time-varying intercept and the time-varying factor loadings when writing the
underlying linear regression to be estimated. In conditional factor models, we quickly
loose parsimony in terms of covariates because of the cross-products induced by the
no-arbitrage restrictions. Chaieb et al. (2020) show that a direct application of the GOS
methodology in an international setting is challenging because of the large number of
parameters needed to model the time-variations in factor exposures and risk premia.
Applying the GOS methodology off-the-shelf to an international setting results in few
or even zero stocks kept for several countries. To address this issue, they suggest to
rely on iteratively selecting for each stock the most important covariates driving the
dynamics of the factor loadings without violating the no-arbitrage restrictions.

The aim of this paper is to tackle this issue via LASSO-type penalisation tech-
niques (Tibshirani (1996)) to enforce sparsity for the time-variation drivers while also
maintaining compatibility with the no-arbitrage restrictions. The shrinkage targets the
time-invariant counterpart of the time-varying models. More specifically, the penalized
first-pass (time-series) regression selects and estimates the regression coefficients en-
suring a model specification compatible with the no-arbitrage restrictions through the
Group-LASSO with Overlap (OGL) of Jacob et al. (2009), which extends the original
Group-LASSO of Yuan and Lin (2006) to groups of variables that may overlap. Indeed,
if we do not introduce a quadratic term (or cross-products) in the time-varying intercept
while the covariate is present in the time-varying factor loadings, we introduce ex-ante
a model with arbitrage (see (4) below, and the discussion in Gagliardini et al. (2020)).
By definition, we cannot estimate a coefficient for which its covariate is absent. On the
contrary, if we delete a covariate in the time-varying factor loadings and keep it in the
time-varying intercept, then its corresponding coefficients could be shrunk to zero by
a standard LASSO for the first-pass regression, and thus could avoid ex-post a model
with arbitrage if the true model is sparse. In a standard Ordinary Least Squares (OLS)
first-pass procedure, those time-varying intercept coefficients could be estimated close
to zero if the true model does not include that covariate in the time-varying factor
loadings. By introducing groups based on finance theory, our OGL approach can only
consider models compatible ex-ante with the no-arbitrage restrictions by construction.
The groups take explicitly into account the links between the time-varying intercept and
the time-varying loadings induced by the no-arbitrage restrictions. With only models
satisfying ex-ante the no-arbitrage restrictions, we can substantially reduce the set of
possible models studied within our model selection procedure. We derive an upper
bound, and show that the number of explored models without grouping is divided by
23 = 8, at least, and often by a much larger number in empirical applications. As
an example, for the model specifications with four factors used in Section 5, the set
of possible models satisfying ex-ante the no-arbitrage restrictions is 297 times smaller
than the set of possible models explored without grouping. We exemplify this reduc-
tion with a simple two-factor example in Section 3.1. Consequently, the OGL approach
yields better performance in terms of covariate selection and estimated models without
arbitrage (see our Monte Carlo results in Section 4 and our empirical results in Section
5). On our data for US single stocks, more than half of the stocks require dynamics in
their factor loadings, while penalization without (with) grouping yields to 100% (0%)
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of all estimated time-varying models violating the no-arbitrage restrictions. Besides,
the OGL approach yields better in-sample and out-of-sample predictive performance
on an equally-weighted portfolio (see Sections 4 and 5). On our data for US single
stocks, prediction errors are located closer to zero and their scale is narrower.

LASSO type techniques have already been applied successfully to factor models
in finance. Bryzgalova (2015) develops a shinkrage-based estimator that identifies the
weak factors (i.e., factors that do not correlate with the assets) and ensures consis-
tent and normality of the estimates of the risk premia. Feng et al. (2020) propose a
model-selection method to evaluate the risk prices of observable factors. Freyberger
et al. (2020) propose a nonparametric method to determine which firm characteristics
provide incremental information for the cross section of expected excess returns. Gu
et al. (2020) use penalisation techniques for prediction purposes. Finally, let us men-
tion that there is also work on inference for large dimensional models with observable
and unobservable factors with high frequency data (Fan et al. (2016), Aït-Sahalia and
Xiu (2017), Pelger and Xiong (2019), Aït-Sahalia et al. (2020)).

The outline of this paper is as follows. Section 2 describes the conditional linear
factor models with sparse time-varying coefficients, and how to implement the no-
arbitrage restrictions in the specification of the random coefficient panel model. Sec-
tion 3 develops our penalized two-pass regression with time-varying factor loadings.
The penalisation in the first-pass (time-series) regressions of Section 3.1 enforces spar-
sity for the time-variation drivers while also maintaining compatibility ex-ante with
the no-arbitrage restrictions through building appropriate groups of coefficients. We
explain in detail in Section 3.1 why we prefer the OGL method over the original
Group-LASSO of Yuan and Lin (2006) for the first-pass regression. The second-pass
(cross-sectional) regression of Section 3.2 delivers risk premia estimates to predict eq-
uity excess returns. In Section 3.2, we show asymptotic consistency of our penalised
two-pass regression estimates under an estimated support for the first-pass regression
coefficients. Section 4 reports our simulations results. Section 5 gathers our empiri-
cal results. After describing our data on US single stocks in Section 5.1, we present
our empirical results on in-sample and out-of-sample prediction performance in Sec-
tions 5.2 and 5.3. We investigate 13 characteristics and 6 common instruments for the
dynamics of factor loadings, and use the four-factor model of Carhart (1997) and the
five-factor model of Fama and French (2015). Section 6 concludes. We list regularity
conditions in Appendix A and the proofs of our theoretical results in Appendix B.

2 Model specification
In this section, we consider a conditional linear factor model with time-varying coeffi-
cients as in GOS (see Gagliardini et al. (2020) for a review). From their Assumptions
APR.1, APR.2, and APR.3, the time-varying factor model for assets belonging to the
continuum of assets γ ∈ [0, 1] is

Rt(γ) = at(γ) + bt(γ)>ft + εt(γ), (1)

where Rt(γ) denotes the excess return on asset γ at period 1, . . . , T , vector ft ∈ RK
gathers the values of the factors at date t. From Assumption APR.1 of GOS, the inter-
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cept at(γ) ∈ R and factor loadings bt(γ) ∈ RK are Ft−1-measurable, where the filtra-
tion process Ft−1 is the information available to all investors at time t − 1. The error
terms have mean zero E[εt(γ)|Ft−1] = 0 and are uncorrelated with the factors condi-
tionally on information Ft−1, Cov(εt(γ), ft,k|Ft−1) = 0, k = 1, ...,K. Assumption
APR.2 of GOS gathers standard measurability conditions for a stochastic process, and
requires that the process βt(γ) = (at(γ), bt(γ)>)> ∈ RK+1 is a bounded aggregate
process as defined in Al-Najjar (1995), as well as the nondegeneracy in the factor load-
ings across assets. Assumption APR.3 of GOS imposes an approximate factor structure
in (1) such that, for any sequence γi ∈ [0, 1], i = 1, . . . , n, with Σεt,t,n ∈ Rn×n being
the conditional variance-covariance matrix of the vector (εt(γ1), . . . , εt(γn))> know-

ing Zt−1, there exists a set such that n−1 eigmax(Σεt,t,n)
L2

−→ 0 as n → ∞, where

eigmax(Σεt,t,n) denotes the largest eigenvalue of Σεt,t,n, and where L2

−→ denotes con-
vergence in the L2-norm. Under Assumptions APR.4 of GOS, the following asset
pricing restriction holds:

at(γ) = bt(γ)>νt, (2)

for all γ ∈ [0, 1], at any date t = 1, 2, . . . where random vector νt ∈ RK is unique and
is Ft−1-measurable, which can also be written as

E [Rt(γ)|Ft−1] = bt(γ)>λt, (3)

with λt = νt + E[ft|Ft−1] ∈ RK . Equation (3) shows the link between expected
excess returns and the product of the time-varying factor loadings and risk premia.
Below, we rely on that link to predict excess returns. Assumption APR.4 of GOS
excludes asymptotic arbitrage opportunity, such that there is no portfolio sequence with
zero cost and positive payoff. The conditioning information Ft−1 contains Zt−1 and
Zt−1(γ), where Zt−1 ∈ Rp is a vector of lagged instruments common to all stocks,
Zt−1(γ) ∈ Rq , for γ ∈ [0, 1], is a vector of lagged characteristics specific to stock γ,
and Zt = {Zt, Zt−1, ...} denotes the set of past realizations. Vector Zt−1 may include
past observations of the factors and some additional variables such as macroeconomic
variables. Vector Zt−1(γ) may include past observations of firm characteristics and
stock returns. We define the dynamics of the factor loadings bt(γ) as a sparse linear
function of Zt−1 (Shanken (1990), Ferson and Harvey (1991)) and Zt−1(γ) (Avramov
and Chordia (2006)).

ASSUMPTION A.1: (Sparse time-varying factor loadings)
The factor loadings are such that bt(γ) = A(γ) + B(γ)Zt−1 + C(γ)Zt−1(γ), where
A(γ) ∈ RK correspond to a time-invariant model, and B(γ) ∈ RK×p, C(γ) ∈ RK×q
are sparse matrices of coefficient for any γ ∈ [0, 1] and any t.

Moreover, we define the vector of risk premia as a sparse linear function of lagged
instruments Zt−1 (Cochrane (1996), Jagannathan and Wang (1996)) and specify the
conditional expectation of the factor E [ft|Ft−1] given the filtration process Ft−1.

ASSUMPTION A.2: (Sparse time-varying risk premia)
The risk premia vector is such that

(i) λt = Λ0 + Λ1Zt−1, where Λ0 ∈ RK correspond to a time-invariant model and
Λ1 ∈ RK×p is a sparse matrix for any t.
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The conditional expectation of the factor is such that
(ii) E [ft|Ft−1] = F0 + F1Zt−1, where F0 ∈ RK corresponds to a time-invariant

model and F1 ∈ RK×p is a sparse matrix for any t.

Assumptions A.1 and A.2 differ from Assumptions FS.1 and FS.2 of GOS. Indeed,
we consider here the matricesB(γ), C(γ),Λ1 andF1 of coefficients as sparse, meaning
that only a small fraction of the Zt−1 or Zt−1(γ) for γ ∈ [0, 1] are useful to describe
the dynamics of the factor loadings, risk premia, and conditional expectation of the
factors. Building on the sampling scheme from Assumptions SC.1 and SC.2 of GOS,
we define the indicator variable It(γ), for all γ ∈ [0, 1], such that It(γ) = 1 if the
return on asset γ is observable at time t, and 0 if not. Assumption SC.1 ensures that
It(γ), εt(γ) and variables in Ft−1 are independent, while Assumption SC.2 ensures
that the random variables γi, i = 1, ..., n, are i.i.d. indices, independent of εt(γ),
It(γ), and Ft−1. From the above sampling scheme, we can now use the following
notation: Ii,t = It(γi), Ri,t = Rt(γi), βi,t = βt(γi), εi,t = εt(γi), Ai = A(γi), Bi =
B(γi), Ci = C(γi) and Zi,t−1 = Zt−1(γi) as well as ai,t = at(γi) and bi,t = bt(γi).
Hence, from Assumptions A.1 and A.2, we can express (1) using the asset pricing
restriction in (2) as the following Data Generating Process (DGP):

Ri,t = A>i (Λ0 − F0) +A>i (Λ1 − F1)Zt−1 + Z>t−1B
>
i (Λ0 − F0)

+ Z>t−1B
>
i (Λ1 − F1)Zt−1 + Z>i,t−1C

>
i (Λ0 − F0)

+ Z>i,t−1C
>
i (Λ1 − F1)Zt−1 +A>i ft + Z>t−1B

>
i ft + Z>i,t−1C

>
i ft + εi,t.

(4)

We see that the first term A>i (Λ0 − F0) corresponds to the time-invariant part in the
time-varying intercept ai,t, while the term A>i ft corresponds to the time-invariant part
of the time-varying factor loadings bi,t. To separate the time-invariant part from the
time-varying part, we make the following assumption on the model specification.

ASSUMPTION A.3: (Non sparse time-invariant contribution)
We define the time-invariant contribution as A>i (Λ0 − F0) + A>i ft. We require that

the vectors Ai ∈ RK ,Λ0 ∈ RK , and F0 ∈ RK have a full vector specification, i.e., do
not contain null-elements.

Assumption A.3 ensures that the time-invariant part of a factor loading is always
included in the model specification, so that we can distinguish a factor with a time-
invariant loading from a factor with a time-varying loading for asset i. This assumption
is key to analyze which instrument Zt−1 and characteristic Zi,t−1 drive the dynamics
of the factor loadings bi,t for assets i, and impact on the prediction E[Ri,t|Ft−1] via (3).
Since implementing a penalized two-pass regression given on (4) is difficult (due to the
quadratic form in lagged instruments Zt−1 and Zi,t−1), we redefine the regressors and
coefficients, as a generic panel model. Beforehand, let us define the vector of lagged
instruments including the intercept as Z̃t−1 = (1, Z>t−1)> ∈ Rp̃, where p̃ = p+ 1, and
the new matrices B̆i = [Ai|Bi] ∈ RK×p̃ and Λ−F = [(Λ0−F0)|(Λ1−F1)] ∈ RK×p̃
that stack respectively column-wise the elements of Ai, Bi, and (Λ0−F0), (Λ1−F1).
The linear transformed regressors are

x2,i,t =
(
x>21,i,t, x

>
22,i,t

)>
=
(
f>t ⊗ Z̃>t−1, f

>
t ⊗ Z>i,t−1

)>
∈ Rd2 ,
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where d2 = d21 + d22 = Kp̃+Kq, and

x1,i,t =
(
x>11,i,t, x

>
12,i,t

)>
=
(

vech (Xt)
>
, Z̃>t−1 ⊗ Z>i,t−1

)>
∈ Rd1 ,

where d1 = d11 +d12 = (p̃+1)p̃/2+ p̃q and the symmetric matrixXt = (Xt,k,l)k,l ∈
Rp̃×p̃ is such that Xt,k,l = Z̃2

t−1,k, if k = l, and Xt,k,l = 2Z̃t−1,kZ̃t−1,l, other-
wise, for k, l = 1, . . . , p̃, where Z̃t,k denotes the k-th component of the vector Zt.
The vector-half operator vech (·) stacks the elements of the lower triangular part of a
p̃ × p̃ matrix as a p̃ (p̃+ 1) /2 vector. The first element of vech (Xt) is related to the
time-invariant coefficients A>i (Λ0 − F0), whereas the elements 2, . . . , p̃ are related
to A>i (Λ1 − F1)Zt−1 + Z>t−1B

>
i (Λ0 − F0). Through the above redefinitions of the

regressor, we can write (4) as

Ri,t = β>i xi,t + εi,t, (5)

where xi,t = (x>1,i,t, x
>
2,i,t)

> is of dimension d = d1 + d2 and βi = (β>1,i, β
>
2,i)
> is

defined as

β1,i =
(
β>11,i, β

>
12,i

)> ∈ Rd1 ,

β11,i = Np̃

[
(Λ− F )

> ⊗ Ip̃
]

vec(B̆>i ) ∈ Rd11 ,

β12,i = Wp̃,q

[
(Λ− F )

> ⊗ Iq
]

vec(C>i ) ∈ Rd12 ,

Np̃ =
1

2
D+
p̃ (Wp̃ + Ip̃2) ∈ R[(p̃+1)p̃/2+p̃q]×p̃2

,

β2,i =
(
β>21,i, β

>
22,i

)>
=
(

vec(B̆>i )>, vec(C>i )>
)>
∈ Rd2 ,

(6)

and whereWp̃,q is the commutation matrix such that vec(M>) = Wp̃,q vec(M). More-
over, D+

p̃ denotes the ((p̃+1)p̃/2+ p̃q)× p̃2 Moore-Penrose inverse of the duplication
matrix Dp̃ such that vech(M) = D+

p̃ vec(M), for any matrix p̃ × p̃ matrix M . The
following section describes the selection and estimation part of the model.

3 Estimation and selection
This section implements the two-pass regression of Black et al. (1972) and Fama and
MacBeth (1973), while selecting the contributing variables in the time-varying factor
loadings. The penalized first-pass (time-series) regression selects the non-zero coeffi-
cients βi for i = 1, . . . , n, ensuring a model specification compatible ex-ante with the
no-arbitrage restrictions through the OGL approach of Jacob et al. (2009). Then, the
coefficients of the selected βi are estimated (post-OGL) through an OLS time-series
regression as in GOS. The second-pass regression relies on the Weighted Least-Square
(WLS) estimator of GOS to estimate the vector ν, and takes the LASSO estimator of
Tibshirani (1996) to select and estimate the matrix F of coefficients.
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3.1 First-pass regression
The goal of the penalized first-pass regression is to select and estimate the factor load-
ings for each asset i = 1, . . . , n, while keeping their respective time-invariant contri-
bution fully specified as described in Assumption A.3. Moreover, it aims at selecting
variables ensuring a proper model specification consistent ex-ante with the no-arbitrage
restrictions for each stock. A possible solution to ensure that these restrictions are sat-
isfied while allowing to select variables in the first-pass regression is to consider a
LASSO-type estimator based on appropriate predefined sets of indices corresponding
to groups of variables. We define G ⊂ P({1, . . . , d}) as the set of indices corre-
sponding to all possible (potentially overlapping) groups in line with the no-arbitrage
restrictions, where P({1, . . . , d}) denotes the power set of {1, . . . , d}. Moreover, we
let g ∈ G denote a possible group and we require that the indices associated to all co-
variates belong to at least one group. Under the framework discussed in the previous
sections, we define below the restrictions on G such that a model selection procedure
based on G satisfies ex-ante the no-arbitrage restrictions by construction.

RESTRICTION A: The time-invariant coefficients belong to a single group, where no
amount of shrinkage is applied.

RESTRICTION B: Each covariate related to the non-diagonal elements of Xt belongs
to a single group.

RESTRICTION C: For instrument Z̃t−1,l, for l = 1, . . . , p̃, if all its corresponding
Z̃t−1,lft,k, for k = 1, . . . ,K, in x2,i,t are not included in the estimated model, only
the regressors Z̃2

t−1,l, related to the diagonal element of Xt, in x1,i,t should not be
included. For characteristic Zi,t−1,m, for m = 1, . . . , q, if all its corresponding
Zi,t−1,mft,k for k = 1, . . . ,K, in x2,i,t are not included in the estimated model, only
the regressors Zi,t−1,m in x1,i,t should not be included.

RESTRICTION D: For instrument Z̃t−1,l, for l = 1, . . . , p̃, if at least one of its corre-
sponding Z̃t−1,lft,k, for k = 1, . . . ,K, in x2,i,t are included in the estimated model,
only the regressors Z̃2

t−1,l, related to the diagonal element of Xt, in x1,i,t should be
included. For characteristic Zi,t−1,m, for m = 1, . . . , q, if at least one of its corre-
sponding Zi,t−1,mft,k, for k = 1, . . . ,K, in x2,i,t are included in the estimated model,
only the regressors Zi,t−1,m in x1,i,t should be included.

These restrictions ensure that Assumption A.3 is satisfied and that a model selec-
tion procedure guarantees that the instrument Z̃t−1,l or characteristic Zi,t−1,m exist
in either both x1,i,t and x2,i,t, or neither. More specifically, Restriction A is related
to Assumption A.3, which requires the coefficients in βi related to the time-invariant
contribution to be always included in the selected model. Restriction B is related to
Assumption A.1 and Assumption A.2. Under the DGP in (4), and from the definition
of vech(Xt), we can see that the off-diagonal of Xt in vech(Xt) cannot be assigned to
any groups. We cannot assign 2Z̃t−1,sZ̃t−1,l to a group a priori, since its contribution
can come from either the specification in Assumption A.1 or A.2. Restriction B reflects
this point, and imposes no specific group-structure to those covariates which are penal-
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ized individually. Restrictions C and D are critical in the model construction. They
constrain the set of possible models only to those compatible with the no-arbitrage re-
strictions, so that we do not introduce arbitrage ex-ante in the model specified in (5).
We want to avoid that the no-arbitrage restriction ai,t = b>i,tνt is violated by construc-
tion ex-ante in the specification. We illustrate this point below on an simple example
with two factors, a single common instrument, and a single characteristic.

From the set of restrictions listed above, it appears that, for any element in x1,i,t

related to a specific element of Z̃t−1,l and Zi,t−1,m, there exist multiple corresponding
regressors in x2,i,t related to the same instrument l and characteristic m. To implement
a shrinkage estimator satisfying Restrictions A to D, we consider the Group-LASSO of
Yuan and Lin (2006) and define the following sets of indices. The first group related to
Restriction A always includes all covariates corresponding to the time-invariant contri-
bution. Hence, we define x̃(1)

i,t = (xi,t,j)j∈ιg1 ∈ Rn1 , where n1 = K + 1, and ιg1 is a
set of indices such that,

ιg1
= {1, d1 + 1, . . . , d1 + kp̃+ 1, . . . , d1 + (K − 1)p̃+ 1} ∈ NK+1

+ , (7)

for k = 1, . . . ,K − 1 and with N+ = N \ {0}. The next set of groups are related to
Restriction B, and we define x̃(2)

i,t = (xi,t,j)j∈ιg2 ∈ Rn2 , where n2 = p̃(p̃− 1)/2, and
the set ιg2 corresponds to the indices related to the non-diagonal elements of vech(Xt)
in xi,t. To characterize it, let us first define the set of indices related to the diagonal
elements in vech(Xt) (i.e., the squared elements Z2

t−1,l) and the index set related to all
elements in vech (Xt) as follows

D =

{
x ∈ N+ | x = 1 + (k − 1)(p̃+ 1)− (k − 1)k

2
, k ∈ {1, ..., p̃}

}
,

A =

{
x ∈ N+|x ≤

(p̃+ 1)p̃

2

}
,

such that the indices in A\D generate the set of indices:

ιg2 = {ιg2,1 , . . . , ιg2,n2
} ∈ Nn2

+ ,

where each individual scalar index of ιg2
generates a single group containing only

one element xi,t,j , with j ∈ ιg2
. To implement Restrictions C and D in the Group-

LASSO framework, we would need to apply the same construction as described in
(7), i.e., group the corresponding scaled factors (Zt−1,lft,1, . . . , Zt−1,lft,K) with their
corresponding squared element Z2

t−1,l in x2,i,t and x1,i,t, respectively. However, this
construction would constrain the set of possible models. Indeed, let us consider the fol-
lowing simple case with one common instrument, say inflation, and the Fama-French
five-factor model (Fama and French (2015)), the Group-LASSO would force us to se-
lect either all scaled factors (product between lagged inflation and the factors), or none
of them. It removes the possibility that only a subset of them is relevant; for exam-
ple, only the product of inflation and the market factor matters for the dynamics of
excess returns. Besides, we could think of using multiple groups, each one containing
one scaled factor and its associated instrument. Jacob et al. (2009) investigate such a
proposal and show that this approach is not appropriate as the Group-LASSO would
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remove all groups if at least one of those groups is not selected. Here, the groups do not
yield to a partition for G, and therefore the Group-LASSO does not select necessarily
the predefined groups (due to non-differentiability of the penalty term). To tackle this
problem, Jacob et al. (2009) propose the OGL, or latent Group-LASSO. They introduce
the latent variables vg ∈ Vg = {x ∈ Rd| supp(x) = g}, for g ∈ G and where supp(x)
denotes the support of x, i.e., the set of indices i ∈ {1, . . . , d} such that xi 6= 0. More-
over, we define v = (v>g1

, . . . , v>gJ )> ∈ V =
∏J
j=1 Vgj , where J = |G|, | · | denotes

the cardinality of a set and gj , j = 1, . . . , J , denotes the j-th element of G. Then, we
define the following OGL estimator:

β̂OGL
i = argmin

βi∈Rd

∑
t

(
Ii,tRi,t − β>i Ii,txi,t

)2
+ δΩG∪(βi), (8)

with the penalty term ΩG∪(βi) defined as

ΩG∪(βi) = min
v∈V

∑
g∈G

wg‖vg‖2, s.t. βi =
∑
g∈G

vg, (9)

where wg denotes the predefined weight associated to group g such that ming∈G wg ≥
0, and δ ≥ 0 corresponds to the hyperparameter driving the amount of shrinkage.
The penalty term in (9) leads to a solution which is a union of the groups due to the
latent variables vg . One strategy to solve the minimization problem given in (8) is the
duplication of covariates put forward in Jacob et al. (2009), that we adapt to our setting
below.

Let us describe the group structure needed within a regular Group-LASSO by repli-
cating our covariates to solve the original OGL problem and ensuring that Restric-
tions C and D are met. First, the scalar ul, for l = 1, . . . , p, denotes the l-th element of
the set D \ {1}, i.e., the index set of diagonal elements excluding the first entry equal
to 1, which belongs already to ιg1 . Second, we duplicate K times each ul such that
ul,k, k = 1, . . . ,K, is the k-th duplicated element of ul. Then, we can characterize
the set ιg3

of indices related to a scaled factor and its corresponding squared common
instruments in the intercept as

ιg3
= {ιg3,1

, . . . , ιg3,Kp
} ∈ NKp+ , (10)

such that each set ιg3,j = {ul,k, d1 + k + (l − 1)p̃ + 1} ∈ N2
+, k = 1, . . . ,K, can

generate a single group containing two covariates and x̃(3)
i,t = (xi,t,j)j∈ιg3 ∈ Rn3 ,

where n3 = 2Kp. Finally, the last set ιg4 of indices collects the indices related to
Restrictions C and D for the stock-specific instruments Zi,t−1 such that

ιg4
= {ιg4,1

, . . . , ιg4,Kq
} ∈ NKq+ , (11)

where each element ιg4,j
= {rm,k, d1+d21+k+(m−1)q+1} ∈ Np̃+1

+ ,m = 1, . . . , q,
k = 1, ...,K, and rm,k is the k-th duplicated set of indices

rm,k = {d11 +m, . . . , d11 + sq +m, . . . , d11 + pq +m} ∈ Np̃+1
+ ,

9



for s = 1, . . . , p̃, k = 1, ...,K. We define the last set of covariates groups as x̃(4)
i,t =

(xi,t,j)j∈ιg4 ∈ Rn4 , where n4 = Kq(p̃+ 1). Next, we define the column vector

x̃i,t =
(
x̃

(1)
i,t
>, x̃

(2)
i,t
>, x̃

(3)
i,t
>, x̃

(4)
i,t
>
)>
∈ Rd̃,

where d̃ =
∑4
j=1 nj = K(p̃(q + 2) + q − 1) + (p̃ − 1)p̃/2 + 1. Let g̃ ∈ G̃ denote a

possible set of indices of the duplicated covariates x̃i,t, where

G̃ =
{
ιg1
, ιg2,1

, . . . , ιg2,n2
, ιg3,1

, . . . , ιg3,Kp
, ιg4,1

. . . , ιg4,Kq

}
. (12)

The sets G and G̃ are based on the original covariates xi,t for the former and the dupli-
cated covariates x̃i,t for the latter. Since we plug the duplicated variables in the groups
of G, we do not change the number of possible groups, and we have J = |G| = |G̃| =
1 + n2 +Kp+Kq. Based on g̃, we let ṽg̃ ∈ Ṽg̃ = {x ∈ Rd̃| supp(x) = g̃}, for g̃ ∈ G̃
as well as ṽ = (ṽ>g̃1

, . . . , ṽ>g̃J )> ∈ Ṽ =
∏J
j=1 Ṽg̃j . The OGL problem defined in (8)

can now be solved through the following equivalent optimization program:

β̂OGL
i = argmin

βi∈Rd

∑
t

(
Ii,tRi,t − β>i Ii,tx̃i,t

)2
+ δ

∑
g∈G̃

wg‖ṽg‖2

 ,

s.t. βi =
∑
g∈G̃

ṽg.

(13)

Since our goal is to shrink toward the model that includes only the time-invariant con-
tribution of the covariates, the weight associated with the first element of wg is equal
to zero. Every subset of G can be associated to a model. Indeed, consider W ⊆ G,
then this subset is associated to the set SW =

⋃|W|
l=1Wl of indices. It allows us to enu-

merate the number 2J−1 of possible models under appropriate grouping. That number
is typically much lower in empirical applications than the number 2d−n1 of possible
models with a LASSO penalization. We get the ratio 2J−1/2d−n1 = 2−(pq+p+q), and
we can see that, for large p and q, the LASSO method examines many more possibil-
ities. Besides, from Assumption A.1, we have min(p, q) ≥ 1, and deduce the upper
bound:

2J−1

2d−n1
≤ 1

8
. (14)

To illustrate the grouping structure and the importance of Restrictions A to D, let us
consider the following simple two-factor model with a single common instrument and
a single characteristic. Here, we have K = 2, p̃ = 2, and q = 1, with Z̃t−1 =
(1, Zt−1)> ∈ R2, so that the regressors xi,t = (x>1,i,t, x

>
2,i,t)

> become

x1,i,t = (x1,i,t,1, x1,i,t,2, x1,i,t,3, x1,i,t,4, x1,i,t,5)>

= (1, 2Zt−1, Z
2
t−1, Zi,t−1, Zt−1Zi,t−1)> ∈ R5,

and

x2,i,t = (x2,i,t,1, x2,i,t,2, x2,i,t,3, x2,i,t,4, x2,i,t,5, x2,i,t,6)>

= (ft,1, Zt−1ft,1, ft,2, Zt−1ft,2, Zi,t−1ft,1, Zi,t−1ft,2)> ∈ R6,

10



with their respective coefficients β1,i = (β1,i,1, β1,i,2, β1,i,3, β1,i,4, β1,i,5)> and β2,i =

(β2,i,1, β2,i,2, β2,i,3, β2,i,4, β2,i,5, β2,i,6)>. From the definition of G̃ in (12), we con-
struct the set of six groups made of the covariates: (x1,i,t,1, x2,i,t,1, x2,i,t,3)> for ιg1

,
(x1,i,t,2) for ιg2,1

, (x1,i,t,3, x2,i,t,2)> for ιg3,1
, (x1,i,t,3, x2,i,t,4)> for ιg3,2

,
(x1,i,t,4, x1,i,t,5, x2,i,t,5)> for ιg4,1

, and finally (x1,i,t,4, x1,i,t,5, x2,i,t,6)> for ιg4,2
.

Stacking those vectors line-wise in a single column defines the full vector of covariates
x̃i,t for the OGL estimation. Besides, we can use this simple example to illustrate two
possible manners to introduce ex-ante arbitrage through careless modeling. Removing
the covariates x2,i,t,2 = Zt−1ft,1 and x2,i,t,4 = Zt−1ft,2 from the full model might
introduce ex-ante arbitrage through x1,i,t,3 = Z2

t−1 since we miss its associated scaled
factors in x2,i,t. Here, the coefficient associated with x1,i,t,3 might be shrunk to zero
by the LASSO estimator, avoiding ex-post a model with arbitrage. On the contrary,
removing the quadratic term x1,i,t,3, while keeping its corresponding scaled factors
x2,i,t,2 and x2,i,t,4, introduces ex-ante arbitrage in the model by construction, since we
cannot estimate the coefficient of x1,i,t,3, when that covariate is absent from the model.

Table 1 explores the set M = {M1, . . . ,M32} of possible models that respect
Restrictions A to D withM1 being the model with the time-invariant contribution only
(Assumption A.3). The OGL method gives 25 possible models. It is considerably
smaller than the 28 = 256 possible models explored by the LASSO method. Here, we
reach the upper bound (14) since p = q = 1. We can see that our regularization ap-
proach restricts the space of searched models, even in this simple time-varying setting,
and hence permits a sound exploration of the possible models consistent with finance
theory. Moreover, the two specifications with arbitrage described in the above lines are
not in the setM of models induced by the grouping structure of the OGL approach,
strengthening conducive arguments for our proposed method.

Let us define the true support of βi as Si = supp(βi) ⊆ {1, . . . , d}. The goal of
(13) is to recover the true support Si of βi, which is discussed in Jacob et al. (2009)
under the following assumptions.

ASSUMPTION A.4: (Group-support recovery Jacob et al. (2009))
(i) 1/Ti

∑
t Ii,txi,tx

>
i,t is a positive definite matrix.

(ii) There exists a neighborhood of βi for which (9) has a unique solution.

Assumption A.4 i) is a standard regularity condition. Assumption A.4 ii) requires
the true support for asset i to be unique and is discussed in Jacob et al. (2009). Under
Assumptions A.4, δTi → 0 with δTiT

1/2
i → ∞, Conditions C1 and C2 of Jacob et al.

(2009), Si is asymptotically contained in Ŝi, i.e.,

Pr(Si ⊆ Ŝi)→ 1, (15)

where Ŝi is the estimated support of the estimated coefficients for asset i. Conditions
C1 and C2 are discussed in Jacob et al. (2009) and required for βi to be a feasible
solution of (8). Let us further define the set of estimated supports for all i = 1, . . . , n,
as Ŝ = (Ŝ1, . . . , Ŝn) and its set of true values S = (S1, . . . ,Sn). Those definitions are
useful to derive the asymptotic properties.

In our approach, the OGL estimator recovers the support of βi, for all i. Then,
to estimate the vector parameter βi in (5), we follow Feng et al. (2020), and rely on
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x1,1 x1,2 x1,3 x1,4 x1,5 x2,1 x2,2 x2,3 x2,4 x2,5 x2,6

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

M16

M17

M18

M19

M20

M21

M22

M23

M24

M25

M26

M27

M28

M29

M30

M31

M32

Table 1: Set of possible models according to Restrictions A-D when K = 2, p̃ = 2,
and q = 1. A check denotes inclusion of a covariate in modelMj . A cross denotes
exclusion of a covariate in Mj . For notational simplicity, we remove i and t in the
column labeling such that xl,i,t,k = xl,k

.12



a post-OGL estimator, regressing the xi,t included in the estimated set for each asset
i. Post-LASSO approaches are now standard (see the review paper of Chernozhukov
et al. (2015)). For that purpose, we introduce the indicator vector 1βi ∈ Nd, such
that 1βi,j = 1 if βi,j 6= 0, and 0 otherwise, for j = 1, . . . , d, that we decompose
in the following manner: 1βi = (1>β11,i

,1>β12,i
,1>β21,i

,1>β22,i
)>, where 1β11,i

∈ Nd11 ,
1β12,i

∈ Nd12 , 1β21,i
∈ Nd21 and 1β22,i

∈ Nd22 . To implement the WLS estimator
for the vector ν, we need to account for the different number of regressors selected
through the OGL approach. Hence, in the same spirit as in Chaieb et al. (2020), we
introduce the following selection matrices that help us transforming the xi,t into their
sparse counterparts. The matrices D̃i and Ẽi are the d11×d11,i and d12×d12,i such that
columns with all zeros have been removed in diag(1β11,i) and diag(1β12,i). Similarly,
the matrices B̃i and C̃i are the d21,i× d21 and d22,i× d22 matrices such that rows with
all zeros have been removed in diag(1β21,i

) and diag(1β22,i
). We can now introduce

the post-OGL covariates and parameter specification of dimension d1,i = d1,i + d2,i,
where d1,i = d11,i + d12,i and d2,i = d21,i + d22,i such that x̌i,t =

(
x̌>1,i,t, x̌

>
2,i,t

)>
,

where
x̌1,i,t =

(
vech [Xt]

>
D̃i,

(
Z̃>t−1 ⊗ Z>i,t−1

)
Ẽi

)>
∈ Rd1,i ,

x̌2,i,t =
((
Z̃>t−1 ⊗ f>t

)
B̃>i ,

(
Z>i,t−1 ⊗ f>t

)
C̃>i

)>
∈ Rd2,i .

Based on this definition of x̌i,t, we can finally define the post-OGL vector parameter
β̌i = (β̌>1,i, β̌

>
2,i)
>, where

β̌1,i =

(
D̃>i Np̃

[
(Λ− F )

> ⊗ Ip̃
]
B̃>i B̃i vec

[
B̆>i

]
,

Ẽ>i Wp̃,q

[
(Λ− F )

> ⊗ Iq
]
C̃>i C̃i vec

[
C>i
])>

,

β̌2,i =

(
B̃i vec

[
B̆>i

]>
, C̃i vec

[
C>i
]>)>

,

yielding the linear regression model defined in terms of the sparse regressors x̌i,t:

Ri,t = β̌>i x̌i,t + εi,t.

We can implement our post-OGL estimator on the updated first-pass regression, on the
selected support Ŝi and define the estimator of β̌i as β̂i(Ŝi) = Q̂−1

x̌,i
1
Ti

∑
t Ii,tx̌i,tRi,t,

i = 1, ..., n,, where Q̂x̌,i = 1
Ti

∑
t Ii,tx̌i,tx̌

>
i,t. To control for short sample size, and

potentially numerical instability on the inversion of matrix Q̂x̌,i, we consider the trim-
ming device defined in GOS, such that 1χi = 1{CN(Q̂x̌,i) ≤ χ1,T , τi,T ≤ χ2,T },
where CN(Q̂x̌,i) =

√
eigmax(Q̂x̌,i)/ eigmin(Q̂x̌,i) is the condition number of the ma-

trix Q̂x̌,i, eigmin(·) denotes the minimum eigenvalue, and τi,T = T/Ti. The first
trimming based on CN(Q̂x̌,i) ≤ χ1,T selects the assets for which the time-series re-
gression is not badly conditioned, while the second trimming based on τi,T ≤ χ2,T

keeps only the assets for which samples are not too short.
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3.2 Second-pass regression
The second pass regression aims at computing the cross-sectional estimator of ν. For
that purpose, we implement the WLS estimator of GOS, while accounting for the sparse
model specification in the first pass regression for all i = 1, . . . , n. Based on the
selection matrices D̃i, Ẽi, B̃i, and C̃i , we re-write the parameter restriction in (2) such
that

β̌3,i =

([
D̃>i Np̃

(
B̆>i ⊗ Ip̃

)]>
,
[
Ẽ>i Wp̃,q

(
C>i ⊗ Ip

)]>)>
,

whereNp̃ is defined in (6), yielding the asset pricing restrictions expressed in the newly
defined β̌1,i and β̌3,i as β̌1,i = β̌3,iν, ν = vec(Λ> − F>). We obtain β̌3,i from the
following identity,

vec(β̌>3,i) = Ja,iβ2,i,

Ja,i =

(
J11,i 0

0 J22,i

)
,

J11,i = Wd11,i,Kp

[
IKp ⊗

(
D̃>i Np̃

)]
{IK ⊗ [(Wp ⊗ Ip) (Ip ⊗ vec [Ip])]} B̃>i ,

J22,i = Wd12,i,Kp

[
IKp ⊗

(
Ẽ>i Wp,q

)]
{IK ⊗ [(Wp,q ⊗ Ip) (Ip ⊗ vec [Iq])]} C̃>i .

We can now implement the following second pass regression WLS estimator

ν̂(Ŝ) = Q̂−1
β3

1

n

∑
i

β̂3,i(Ŝi)>ŵiβ̂1,i(Ŝi), (16)

where ν̂(Ŝ) denotes the estimator of ν̂ under the set of estimated support Ŝ, Q̂β3
=

1
n

∑
i β̂3,i(Ŝi)>ŵiβ̂3,i(Ŝi) , and weights are estimates of wi = 1χi (diag [vi])

−1. For
simplicity of notation we define the estimator β̂i(Ŝi) = β̂i, β̂1,i(Ŝi) = β̂1,i and
β̂3,i(Ŝi) = β̂3,i. Moreover, the vi are the asymptotic variances of the standardized
errors

√
T (β̂1,i − β̂3,iν) in the cross-sectional regression for large T such that vi =

τiC
>
ν,1,iQ

−1
x̌,iSiiQ

−1
x̌,iCν,1,i where Qx̌,i = E[x̌i,tx̌

>
i,t|γi]. Moreover, we have that Sii =

plimT→∞
1
T

∑
t σii,tx̌i,tx̌

>
i,t = E[ε2

i,tx̌i,tx̌
>
i,t|γi] with σii,t = E[ε2

i,t|x̌i,t, γi] andCν,1,i
= (E>1,i−(Id1,i

⊗ν>)Ja,iE
>
2,i)
>,E1,i = (Id1,i

, 0d1,i×d2,i
)>,E2,i = (0d2,i×d1,i

, Id2,i
)>.

We use the estimates v̂i = τi,TC
>
ν̂1
Q̂−1
x̌,i ŜiiQ̂

−1
x̌,iCν̂1 , where Ŝii = 1

Ti

∑
t Ii,tε̂

2
i,tx̌i,tx̌

>
i,t,

ε̂i,t = Ri,t− β̂>i x̌i,t and Cν̂,1,i = (E′1,i−
(
Id1,i

⊗ ν̂>1,i
)
Ja,iE

>
2,i)
>. To estimate Cν,1,i,

we use the OLS estimator ν̂1,i = (
∑
i 1

χ
i β̂
>
3,iβ̂3,i)

−1
∑
i 1

χ
i β̂
>
3,iβ̂1,i. We estimates the

weights through ŵi = 1χi (diag [v̂i])
−1.

To study the asymptotic properties of the estimator ν̂(Ŝ), we consider the following
assumptions on the dependence structure and size of the cross-section n.

ASSUMPTION A.5: (Conditional heteroskedasticity)
There exists a positive constantM such that for all n, T , 1

M ≤ σii,t ≤M, i = 1, ..., n.

ASSUMPTION A.6: (Relative rates and bounds)
i) The size of the cross section is such that n = O(T γ̄) for γ̄ > 0.
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ii) The probability that the estimated set Ŝi is not included in the true set of active
group Si is such that Pr(Si 6⊆ Ŝi) = O(T−ω) for ω > 0, ω > γ̄ and i = 1, . . . , n.

Assumption A.5 allows for potential conditional heteroskedasticity in the error
terms. Assumption A.6 i) puts a bound on the growth of the cross-section such that
it does not grow faster that some power of the sample size T , while Assumption A.6 b)
requires the probability that the true support Si is not included in the estimated support
Ŝi, for all i = 1, . . . , n, converges to 0 at a faster rate than n diverges. In Proposition 1,
we provide the consistency result for the estimator ν̂(Ŝ).

PROPOSITION 1: (Consistency of ν̂(Ŝ))
Under Assumptions APR.1 to APR.4, SC.1 and SC.2 of GOS and Assumptions A.1 to
A.2, A.4 and B.1 to B.5, we have that ‖ν̂(Ŝ)− ν‖ = op (1) , when n, T →∞.

This asymptotic property of ν̂(Ŝ) is studied under the double asymptotics n, T →
∞. Lemma 2 in Appendix B shows that it yields Pr(S ⊆ Ŝ)→ 1. The estimator ν̂(Ŝ)
is therefore consistent for ν under the estimated support Ŝ. GOS show consistency
of ν̂ under a full representation of βi, while we assume a sparse representation of βi.
Hence, our result differs in that respect. Proof of Proposition 1 is given in Appendix B.

Let us now recover the sparse structure of the conditional expectation of the factors
under Assumption A.2. For that purpose, we consider the LASSO estimator of Tibshi-
rani (1996) to select and estimate the matrix F of coefficients. We solve the following
minimization problem for all factor fk,t, k = 1, . . . ,K, such that the estimator of the
k-th row of the matrix F is given by:

F̂k = argmin
Fk∈Rp̃

∑
t

(
fk,t − F>k Z̃t−1

)2

+ δ‖Fk‖2, (17)

where δ accounts for the amount of shrinkage. The estimate F̂ stacks row-wise the
elements of F̂k obtained from (17). Under Assumption A.3, no amount of shrinkage
is applied to F0 in F , to always keep the time-invariant contribution in the model.
We get the final estimates of the sparse matrix Λ from the relationship vec(Λ̂>) =

ν̂(Ŝ) + vec(F̂>), which yields λ̂t = Λ̂Zt−1. To derive the asymptotic consistency
of Λ̂, we rely on Proposition 1 for the estimator ν̂(Ŝ) and the work of Knight and
Fu (2000), which study the asymptotic properties of the LASSO estimator under the
following assumptions:

ASSUMPTION A.7: (Consistency of LASSO Knight and Fu (2000))
i) WT = 1/T

∑T
t=1 Z̃t−1Z̃

>
t−1

P−→W , where W is a positive definite matrix.
ii) WT is a non-singular matrix.

Assumptions A.7 are standard regularity assumptions on the design matrix for lin-
ear regression model, in order to obtain a unique solution for Fk. Under the above
Assumption A.7, Knight and Fu (2000) show that, for a sequence of δT such that
δT/T → δ0 where δ0 ≥ 0, F̂k

P−→ Fk as T → ∞, and with Fk being the true value
of the vector parameter F̂k. Based on this results and Proposition 1, the following
Proposition gives the consistency result for the estimator Λ̂.
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PROPOSITION 2: (Consistency of Λ̂)
From Proposition 1, under APR.1 to APR.4, SC.1 and SC.2 of GOS, Assumptions A.2,
A.7 and B.6, we have that ‖Λ̂− Λ‖ = op (1) , when n, T →∞.

Proof of Proposition 2 is direct since from the definition of Λ̂, ‖ vec(Λ̂>−Λ>)‖ ≤
‖ν̂(Ŝ)−ν‖+‖ vec(F̂>−F>)‖. From Proposition 1, we know that ‖ν̂(Ŝ)−ν‖ = op(1)

and from Assumptions A.7 and B.6 ‖ vec(F̂> − F>)‖ = op(1). Hence consistency of
λ̂t, supt ‖λ̂t − λt‖ = op(1), is implied under Assumption B.6.

4 Simulation study
In this section, we study how the selection and estimation procedures of Section 3 per-
form in finite samples. This first simulation study aims at investigating the prediction
and selection performance of the OGL method and at comparing it with the LASSO
method in a very sparse environment (Assumptions A.1 and A.2). To that purpose, we
simulate 500 replicates from the DGP in (4) for a (randomly drawn) single asset i with
sample size Ti = 500. We split that full sample in a training subsample and a testing
subsample of 450 and 50 observations. The testing set is used for out-of-sample predic-
tion performance assessment, where we compare the realized excess returns Ri,t with
their predictions R̂i,t = b̂>i,tλ̂t under the model estimated on the training set. Errors in
(4) are i.i.d. such that εi,t ∼ N (0, σ2), where σ2 = 0.15. We match the model spec-
ification described in our empirical study (Section 5.1) for the common instruments
Zt−1 ∈ R6 and stock-specific instruments Zi,t−1 ∈ R13. For the factors, we use the
Fama-French five-factor model (Fama and French (2015)) described in the next sec-
tion, namely we condition w.r.t. the values ft observed in our empirical study for the
five factors. We also condition w.r.t. the observed Zt−1 and Zi,t for asset i of our em-
pirical study. We only draw the error terms as in a parametric bootstrap. This setting
corresponds to a theoretical R2 of 51% and a signal-to-noise ratio of approximately
1.05.

In accordance with sparsity in Assumptions A.1 and A.2 and non-sparse time-
invariant contribution in Assumption A.3, we set the matricesAi,Bi, andCi according
to their values for asset i in the empirical study, with one non-zero element in Bi and
two non-zero element for Ci. We keep the vector Ai full. We set the corresponding
ai,t in order to avoid ex-ante arbitrage. Since we take very sparse matrices Bi and Ci,
we can view the simulation study as conservative for selection performance assessment
(type of worst-case scenario). The resulting βi has 24 non-zero coefficients (including
the 6 coefficients induced by the non-sparse time-invariant contribution) over a total of
219 coefficients. The matrices F and Λ are simply set to zero since they do not concern
the OGL estimator.

The selection and prediction performance is measured through the median of the
Mean Prediction Error (Med(PER)), the median of Mean Squared Error (MSE) for
parameter βi (Med(MSEβ)), the proportion of times the model introduces arbitrage
(Arb. (%)), the proportion of times the correct model is nested within the selected
model (Inc. (%)), the average number of selected true non-zero coefficients (true +),
and average number of regressors in the selected model (NbReg). Table 2 summarizes
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the results. The post-OGL method makes a better job at predicting out-of-sample with
a reduction of 22% w.r.t. the post-LASSO method. The improvement in the median of
the MSE for βi is 75%. Contrary to the LASSO methods, for which 96.8% of estimated
models exhibit arbitrage, the OGL methods select only models without introducing ex-
ante arbitrage by construction. Since we face less than 100% for the LASSO methods,
they sometimes shrink adequately to zero the coefficients that should be. Contrary to
the LASSO methods, the OGL methods are almost always (96.2%) included in the true
model as expected from our theory, which predicts 100% asymptotically. The LASSO
methods yield a zero proportion since as soon as it does not shrink to zero a coefficient
that should be because of the no-arbitrage restriction, the LASSO methods fail. The
OGL methods are able to recover the 24 true non-zero coefficients (23.7) while the
LASSO methods struggle (11.5). They are also more parsimonious in terms of selected
regressors (52.8 versus 74.5). Overall, the performance of the OGL methods is much
closer to the oracle where we estimate the true DGP with the known sparsity by OLS
(oracle-OLS).

Method Med (PER) Med(MSEβ) Arb. (%) Inc. (%) true + NbReg
OGL 3.3 · 10−2 1.1 · 10−1 0.0 96.2 23.7 52.8
post-OGL 3.0 · 10−2 1.3 · 10−1 0.0 96.2 23.7 52.8
LASSO 3.1 · 10−2 3.5 · 10−1 98.8 0.0 11.5 74.5
post-LASSO 3.8 · 10−2 3.7 · 10−1 98.8 0.0 11.5 74.5
oracle-OLS 2.4 · 10−2 4.8 · 10−2 0.0 100.0 24.0 24.0

Table 2: Performance of estimation and model selection criteria. The methods in-
clude the OGL, post-OGL, LASSO, post-LASSO, and oracle-OLS. We simulate 500
samples under the true sparse DGP. We report the median of the Mean Predic-
tion Error (Med(PER)), the median of Mean Squared Error (MSE) for parameter βi
(Med(MSEβ)), the proportion of times the model does not introduce arbitrage (Arb.
(%)), the proportion of times the correct model is nested within the selected model
(Inc. (%)), the average number of selected true non-zero coefficients (true +), and av-
erage number of regressors in the selected model (NbReg).

Our second simulation set-up focuses on the out-of-sample prediction performance
of the post-OGL method in a setting close to our empirical study. We use a training
sample to estimate the model and a testing sample to gauge its out-of-sample pre-
diction performance on an equally-weighted portfolio. We consider the same model
specification in terms of ft, Zt−1 and Zi,t−1 as in the first study and implement the
following procedure. We sample randomly a subset of n = 500 assets from Sec-
tion 5 (training sample), while keeping the same proportion of time-invariant models
as in Table 4. From each asset i in this subset, we simulate Ti observations from
Ri,t = ai,t + b>i,tft + εi,t with the coefficients ai,t and bi,t chosen as their post-OGL
corresponding values for stock i. The 500 × 1 error vector εt at date t is Gaussian
with mean zero and block-diagonal correlation matrix with 10 blocks of equal size
50, where, within each block matrix, the correlation between εk,t and εl,t is set to
corr(εk,t, εl,t) = 0.25|k−l|, k, l = 1, ..., 50, l 6= k. The variance of each error εi,t is
set equal to 0.05. From those 500 simulated paths, we implement the OGL estimation
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procedure of Section 3, and compare it with the same procedure, but using the LASSO
estimator instead of the OGL estimator to select the covariates in (5). To evaluate the

Methods RMSPE Av(|PE|) Std(PE)

post-OGL 1.0 · 10−2 9.9 · 10−3 3.1 · 10−4

post-LASSO 1.3 · 10−2 1.3 · 10−2 4.5 · 10−4

Table 3: Out-of-sample prediction performance of an equally-weighted portfolio. We
compare the post-OGL and post-LASSO methods. We simulate excess return paths
for 500 assets under sparse DGPs. We report Root Mean Squared Prediction Error
(RMSPE), Mean Absolute Prediction Error (Av(|PE|)) and Standard Deviation of the
Prediction Error (Std(PE)) of an equally-weighted portfolio.

out-of-sample prediction performance, we simulate one new cross-sectional sample
(testing sample) from the time-varying factor model for the 500 assets and each date t
and compute the prediction R̂i,t = b̂>i,tλ̂t for the 500 stocks and each date t based on
the estimator computed before through the post-OGL and post-LASSO methods. We
finally compute the out-of-sample Prediction Error (PE) for an equally-weighted port-
folio through the difference between the new simulated 1

500

∑
iRi,t and its predicted

value 1
500

∑
i R̂i,t. We compute the Root Mean Squared Prediction Error (RMSPE),

the Mean Absolute Prediction Error (Av(|PE|)), and the Standard Deviation (Std(PE))
of the Prediction Error over the vector gathering the PE at each out-of-sample date. We
repeat this procedure 50 times to get an average. They are reported in Table 3. We
can see that the post-OGL method is much better at out-of-sample predicting excess
returns of an equally-weighted portfolio both in terms of average |PE| (reduction by
24%) but also in terms of variability as measured by Std(PE) (reduction by 32%). The
empirical distribution of the prediction errors is given in Figure 1. We can see that
the post-OGL method is centered on zero with a lower variance contrary to the post-
LASSO method. Those second simulation results again point in favor of our advocated
selection method.

5 Empirical results
This section investigates the predictive capacity of the post-OGL estimator and com-
pares it with the post-LASSO estimator, and a pure time-invariant model. We use the
post-LASSO estimator to gauge the added value of incorporating the no-arbitrage re-
strictions in the penalisation approach and the time-invariant model to gauge the added
value of allowing for time-variation.

5.1 Data description
We extract the stock returns from the CRSP database for US common stocks listed on
the NYSE, AMEX, and NASDAQ, and remove stocks with prices below 5 USD. We
exclude financial firms (Standard Industrial Classification Codes between 6000 and
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6999). The firm characteristics come from COMPUSTAT. The sample begins in July
1963 and ends in December 2019. It gives us T = 678 monthly observations. We
proxy the risk-free rate with the 1-month T-bill rate.

From Freyberger et al. (2020), we consider the following q = 13 firm level charac-
teristicsZi,t−1: change in share outstanding (∆ shrout), log change in the split adjusted
shares outstanding (∆ so), growth rate in total assets (Inv), size (LME), last month vol-
ume over shares outstanding (lturnover), adjusted profit margin (PM), momentum and
intermediate momentum (r12,2 and r12,7), short-term reversal (r2,1), closeness to 52-
week high (Rel_to_high), the ratio of market value of equity plus long-term debt minus
total assets to Cash and Short-Term Investments (ROC), standard unexplained volume
(SUV), and total volume (Tot_vol). We refer to Freyberger et al. (2020) for a detailed
description of those characteristics. We only retain stocks for which all 13 characteris-
tics are non-missing. It produces a sample of n = 6874. For each Zi,t−1, we follow
Freyberger et al. (2020) and compute the cross-sectional rank at each time t − 1 for
all observations (see also Chaieb et al. (2020)). For the common instruments Zt−1, we
consider the p = 6 following variables: dividend yield (dp), net equity expansion (ntis),
inflation (infl), stock variance (svar), default spread (def_spread), and the term-spread
(term_spread). For each Zt−1, we center and standardize all observations.

We consider the two following sets of factors ft. The first set is the four-factor
model of Carhart (1997), such that ft = (fm,t, fhml,t, fsmb,t, fmom,t)

>, where fm,t
is the month t market excess return over the risk free rate, fhml,t, fsmb,t, fmom,t are
respectively the month t returns on zero investment factor-mimicking portfolio for size,
book-to-market, and momentum. Our second set of factors considers the profitability
factor frmw,t and the investment factor fcma,t as in the five-factor model of Fama and
French (2015), such that ft = (fm,t, fhml,t, fsmb,t, frmw,t, fcma,t)

>. Our choice for
a parsimonious specification in the factor space is justified by our goal of studying the
selection of common and idiosyncratic instruments Zt−1 and Zi,t−1 that have impacts
on the dynamics of the ai,t, bi,t, and λt. Gagliardini et al. (2019) and Gagliardini
et al. (2020) also report evidence that those factors with time-varying loadings are rich
enough to achieve a weak cross-sectional dependence in the error terms, namely there
are no remaining omitted factors in the error terms.

5.2 In-sample prediction performance
In this section, we compare the in-sample prediction performance of the penalized two-
pass procedure with OGL described in Section 3 to the two following methods. The
first method computes the estimator of GOS in the first and second-pass regressions
for a time-invariant model (time-invariant contribution only, see Assumption A.3) with
only the factors ft as regressors. Our second estimator is the post-LASSO estima-
tor, where we select the xi,t in the first-pass regression with the LASSO estimator of
Tibshirani (1996) and fit the WLS estimator for the ν described in Section 2, while
computing the estimator F̂ as in (17). The horse race starts from the same set of initial
data described in the previous section, and the comparison is thus made on the same
initial full information. From the characteristics and common instruments outlined in
Section 5.1, under the Carhart four-factor model, we have d = 5 for the time-invariant
model and d = 199 for the time-varying model. Regarding the five-factor model of
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Fama and French (2015), we have d = 6 and d = 219 for the unconditional and condi-
tional specifications. The number of possible models searched by the LASSO method
is 2194 (2213) with K = 4 (K = 5), while the number of models searched by the OGL
method is 297 (2116), which gives the ratio 2−97, a much lower value than the upper
bound 1/8 in (14).

We choose the regularisation parameter δ in a data dependent way to minimize the
Akaike Information Criterion (AIC) for both post-OGL and post-LASSO estimator.
As advocated in Greene (2008), we use χ1,T = 15, and require at least 5 years of
data such that χ2,T = 678/60. Because of the trimming, we do not keep the same
set of stocks for each method and each model. Indeed, due to the different models
induced by the first pass for each stock i, the trimming device 1{CN(Q̂x̌,i) ≤ χ1,T },
yields a different set of stocks for each method. Since we do not wish to introduce
multicolinearity in the second-pass regression, we choose to stick with different sets
for each method. For the post-OGL estimator, the post-LASSO estimator, and the
time-invariant estimator, we end up with 4582, 4238, 4879 for the four-factor model,
and 4549, 4176, 4879 for the five-factor model. We can observe that the trimming
device for the post-LASSO method is more binding, since as seen in the simulation
results in Section 4, the post-LASSO method tends to includes more variables, and
increases its associated condition number. Table 4 reports the percentage (TI (%)) of
estimated models shrunk towards the time-invariant models. For those estimates, we
only select the single group corresponding to Restriction A related to Assumption A.3.
More than half of the stocks require dynamics in their factor loadings. This new em-
pirical result based on a penalisation approach illustrates the relevance of allowing for
potential time-variation in modelling excess returns of individual stocks with factor
models. Table 4 also reports the percentage (Arbitrage (%)) of estimated models with
time-varying loadings and presenting arbitrage, namely selecting covariates violating
the no-arbitrage restrictions. For that computation, we exclude the time-invariant esti-
mates and OGL estimates, which both avoid ex-ante arbitrage by construction. In line
with our Monte Carlo results, the post-LASSO procedure ends up with all the time-
varying models estimated with arbitrage for both specifications. We conclude that the
post-OGL estimation achieves parsimony while avoiding arbitrage in time-varying fac-
tor models.

Carhart four-factor Fama-French five-factor

Methods TI (%) Arbitrage (%) TI (%) Arbitrage (%)

post-OGL 42 0 49 0
post-LASSO 46 100 44 100
time-invariant 100 0 100 0

Table 4: Percentage (TI (%)) of estimated models shrunk towards the time-invariant
specification and percentage (Arbitrage (%)) of estimated time-varying models pre-
senting arbitrage with the Carhart four-factor and Fama-French five-factor models for
the post-OGL, post-LASSO, and time-invariant methods. The sample of US equity
excess returns begins in July 1963 and ends in December 2019.
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Let us now investigate in-sample predictability performance. As, in Chaieb et al.
(2020), we decompose the conditional expected return of asset i for month t for both
time-varying factor specifications, as:

E [Ri,t|Ft−1] = ai,t − b>i,tνt + b>i,tλt = ai,t + b>i,tE[ft|Ft−1]. (18)

For such time-varying specifications, the contribution of the pricing errors ai,t − b>i,tνt
is often small, revealing that the no-arbitrage restrictions are met for a vast majority of
dates. When they are not, Chaieb et al. (2020) show that incorporating pricing errors,
instead of only relying on b>i,tλt in (18), helps to predict future equity excess returns.
Similarly, for the time-invariant models, we decompose the unconditional expected
return as:

E [Ri,t] = ai − b>i ν + b>i λ = ai + b>i E[ft]. (19)

For such time-invariant specifications, the contribution of the pricing errors ai − b>i ν
is often large. To compare the prediction performance of the three estimation ap-
proaches, we compute the RMSPE of an equally-weighted portfolio for the Carhart
four-factor model and Fama-French five-factor model. Equal weighting corresponds to
cross-sectional averaging. Chaieb et al. (2020) also uses this weighting scheme. For
that portfolio, we compute the PE by comparing the prediction made at time t by each
model ((18) and (19)) to the forward 12-months realized excess returns, namely the
average of the realized excess returns over the next 12 months. Table 5 reports the
RMSPE, as well as the Av(|PE|) and Std(PE) of the Prediction Error for the Carhart
four-factor model and Fama-French five-factor model specifications. The post-OGL
method performs better than its competitors even for that very diversified stable port-
folio, where we expect differences in prediction performance to be attenuated. In par-
ticular, the Av(|PE|) is reduced by 10% to 20%. Figure 2 displays the corresponding
box-plots of the PE computed at each month for each method. The box-plots for the
post-OGL method in Figure 2 are narrower when compared to the two other methods
as the PE are more concentrated around zero. Those predictability improvements pro-
vide further evidence in support for the advocated post-OGL approach in the first-pass
regression on top of the need to incorporate model parameter restrictions to get models
compatible ex-ante with the no-arbitrage restrictions.

Carhart four-factor Fama-French five-factor

Methods RMSPE Av(|PE|) Std(PE) RMSPE Av(|PE|) Std(PE)

post-OGL 1.4 · 10−2 1.1 · 10−2 3.1 · 10−4 1.4 · 10−2 1.1 · 10−2 3.2 · 10−4

post-LASSO 1.5 · 10−2 1.2 · 10−2 3.1 · 10−4 1.6 · 10−2 1.3 · 10−2 3.3 · 10−4

time-invariant 1.5 · 10−2 1.2 · 10−2 3.3 · 10−4 1.5 · 10−2 1.4 · 10−2 3.3 · 10−4

Table 5: Root Mean Squared Prediction Error (RMSPE), Mean Absolute Prediction Er-
ror (Av(|PE|)) and Standard Deviation of the Prediction Error (Std(PE)) of an equally-
weighted portfolio with the Carhart four-factor and Fama-French five-factor models
for the post-OGL, post-LASSO, and time-invariant methods. The sample of US equity
excess returns begins in July 1963 and ends in December 2019.
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To further investigate time-varying predictability, Figures 4 and 5 show the forward
12-months realized excess returns for the equally-weighted portfolio and compare them
with the predicted excess returns computed from (18) and (19) for the two methods
with penalisation. In both Figures 4 and 5, the post-OGL and post-LASSO predicted
excess return paths (red plain line) overall reconcile well with the realized excess re-
turns (black dashed line). However, the post-LASSO method sometimes predicts large
negative excess returns, which is at odd with a positive reward expected from taking
risks. The observed differences in the decomposition between estimates of ai,t (orange
shaded area) and of b>i,tE[ft|Ft−1] (blue shaded area) come from the selected regres-
sors in the first pass. Since the LASSO penalization ends up with time-varying models
presenting arbitrage, we observe larger values for estimated âi,t, especially during the
recession periods (gray areas) determined by the National Bureau of Economic Re-
search (NBER). The post-OGL method avoids putting covariates in estimated âi,t that
should not be there because of the no-arbitrage restrictions. Besides, the estimated path
for ai,t is close to zero with the post-OGL method as it should be if we believe that the
factors are most of the time fully tradable. Figures for the Carhart four-factor model
are similar, and thus omitted.

5.3 Out-of-sample prediction performance
In this section, we compare the out-of-sample prediction performance for the same
methods used in the previous section. Here, we compute PE but for data that never
enter into model estimation. We follow a similar approach than in Gu et al. (2020). We
split the sample into two subsamples, one for training and one for testing. We estimate
the models from July 1963 to December 2009 and compute PE from January 2010 to
December 2019 (recent period). We repeat the same analysis for a training period from
July 1963 to December 1999 and a testing period from January 2000 to December 2009
(older period). We closely follow the same setting as in the previous section, the only
difference being that we separate the subsample used for estimation from the one used
for prediction performance assessment. We only report the results for the five-factor
model of Fama and French (2015), since the results for the four-factor model of Carhart
(1997) are similar.

Table 6 reports the out-of-sample results for an equally-weighted portfolio and the
two testing periods. Figures 6 and 7 show the forward 12-months realized excess re-
turns for the equally-weighted portfolio and compare them with the predicted excess
returns out-of-sample. Overall, we confirm the messages conveyed by the in-sample
analysis, and we do not repeat all of them to save space. The post-OGL method beats
the two other methods in out-of-sample prediction performance on the recent testing
period 2010-2019. In Table 6, the (Av(|PE|)) is reduced by 32% when compared to the
two other methods. We believe that the good out-of-sample performance for the portfo-
lio comes from the diversification of the prediction errors among the single assets. We
observe a similar phenomenon in forecast combinations (Timmermann (2006)). We
also have a reduction of 8% for the older testing period 2000-2009 when compared
to the time-invariant method. The Post-LASSO method does better by 8% in average
|PE|, but its RMSPE is equal to the one of the post-OGL method. The older testing
period includes two recession periods with large swings in the realized portfolio excess
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Fama-French five-factor

Jan. 2000 to Dec. 2009 Jan. 2010 to Dec. 2019

Methods RMSPE Av(|PE|) Std(PE) RMSPE Av(|PE|) Std(PE)

post-OGL 1.6 · 10−2 1.3 · 10−3 3.5 · 10−4 1.0 · 10−2 8.2 · 10−3 2.0 · 10−4

post-LASSO 1.6 · 10−2 1.2 · 10−3 3.9 · 10−4 1.4 · 10−2 1.2 · 10−2 1.8 · 10−4

time-invariant 1.7 · 10−2 1.4 · 10−3 3.9 · 10−4 1.6 · 10−2 1.2 · 10−2 3.8 · 10−4

Table 6: Out-of-sample Root Mean Squared Prediction Error (RMSPE), Mean Ab-
solute Prediction Error (Av(|PE|)) and Standard Deviation of the Prediction Error
(Std(PE)) of an equally-weighted portfolio with the Fama-French five-factor model
specification for the post-OGL, post-LASSO, and time-invariant methods. The test-
ing periods are Jan. 2000 to Dec. 2009 and Jan. 2010 to Dec. 2019. Their associated
training periods precede them and start in July 1963.

returns. As a consequence, the predictability performance deteriorates. For both testing
periods, the box-plots in Figure 3 show that out-of-sample PE related to the portfolio
excess returns for the post-OGL method are located closer to zero and more symmet-
rically distributed. Their scale is narrower for the older period and comparable for the
recent period. As observed in the in-sample analysis, the post-OGL method seems to
perform better in terms of out-of-sample predictability.

6 Conclusions
Our empirical results show that taking explicitly into account the no-arbitrage restric-
tions coming from the Arbitrage Pricing Theory do help in predictive modeling of large
cross-sectional equity data sets with penalisation methods. We view this approach as
an example of a structural approach to big data where incorporating finance theory
improves on the prediction performance of the estimated quantities. It resonates with
structural approaches in panel econometrics guided by economic theory (Bonhomme
and Shaikh (2017)). In asset management and risk management, a better predictive per-
formance of excess returns should help to better gauge time-variation in the risk-reward
trade-off. In asset selection, it should help to improve performance of time-varying
portfolio allocation when we use predicted excess returns as inputs. From our simula-
tion and empirical results, we expect our procedure to perform well in out-of-sample
prediction for portfolio building.
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Figure 1: Empirical distribution of out-of-sample Prediction Error (PE) of an equally-
weighted portfolio. We compare the post-OGL and post-LASSO methods. We simulate
excess return paths for 500 assets under sparse DGPs.
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Figure 2: Empirical distribution of in-sample Prediction Error (PE) of an equally-
weighted portfolio. We compare the post-OGL, post-LASSO, and time-invariant meth-
ods. The upper panel corresponds to the Carhart four-factor model. The lower panel
corresponds to the Fama-French five-factor model. The sample of US equity excess
returns begins in July 1963 and ends in December 2019.
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Figure 3: Empirical distribution of out-of-sample Prediction Error (PE) of an equally-
weighted portfolio. We compare the post-OGL, post-LASSO, and time-invariant meth-
ods for the Fama-French five-factor model. The upper panel is for the testing period
2000-2009. The lower panel is for the testing period 2010-2019. Their associated
training periods precede them and start in July 1963.
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Figure 4: Predicted excess returns, realized excess returns, and prediction decomposi-
tion for the Fama-French five-factor model and an equally-weighted portfolio with the
post-OGL method. In the upper panel, the predicted excess return path corresponds
to the red plain line. The realized excess returns correspond to the black dashed line.
In the lower panel, the orange shaded area corresponds to estimates of ai,t. The blue
shaded area corresponds to estimates of b>i,tE[ft|Ft−1]. The gray shaded areas corre-
spond to the recession periods determined by the National Bureau of Economic Re-
search (NBER). The sample of US equity excess returns begins in July 1963 and ends
in December 2019.
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Figure 5: Predicted excess returns, realized excess returns, and prediction decompo-
sition for the Fama-French five-factor model and an equally-weighted portfolio with
the post-LASSO method. In the upper panel, the predicted excess return path corre-
sponds to the red plain line. The realized excess returns correspond to the black dashed
line. In the lower panel, the orange shaded area corresponds to estimates of ai,t. The
blue shaded area corresponds to estimates of b>i,tE[ft|Ft−1]. The gray shaded areas
correspond to the recession periods determined by the National Bureau of Economic
Research (NBER). The sample of US equity excess returns begins in July 1963 and
ends in December 2019.
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Figure 6: Out-of-sample predicted excess returns, realized excess returns, and pre-
diction decomposition for the Fama-French five-factor model and an equally-weighted
portfolio with the post-OGL method. The left panel is for the testing period 2000-2009.
The right panel is for the testing period 2010-2019. Their associated training periods
precede them and start in July 1963. In the upper panel, the predicted excess return
path corresponds to the red plain line. The realized excess returns correspond to the
black dashed line. In the lower panel, the orange shaded area corresponds to estimates
of ai,t. The blue shaded area corresponds to estimates of b>i,tE[ft|Ft−1]. The gray
shaded areas correspond to the recession periods determined by the National Bureau of
Economic Research (NBER).
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Figure 7: Out-of-sample predicted excess returns, realized excess returns, and predic-
tion decomposition for the Fama-French five-factor model and an equally-weighted
portfolio with the post-LASSO method. The left panel is for the testing period 2000-
2009. The right panel is for the testing period 2010-2019. Their associated training
periods precede them and start in July 1963. In the upper panel, the predicted excess
return path corresponds to the red plain line. The realized excess returns correspond
to the black dashed line. In the lower panel, the orange shaded area corresponds to
estimates of ai,t. The blue shaded area corresponds to estimates of b>i,tE[ft|Ft−1].
The gray shaded areas correspond to the recession periods determined by the National
Bureau of Economic Research (NBER).
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A Regularity conditions
This Appendix lists and comments the regularity conditions needed to derive the asymp-
totic properties of the estimation procedure (see also Appendix A in GOS). Beforehand,
we need to define the following vector xt(γ) = (vech(Xt), Z

>
t−1 ⊗ Zt−1(γ)>, f>t ⊗

Z>t−1, f
>
t ⊗ Zt−1(γ)>)>.

ASSUMPTION B.1: There exist constants η, η̄ ∈ (0, 1] and C1, C2, C3, C4 > 0 such
that for all δ > 0 and T ∈ N we have:

sup
γ∈[0,1]

Pr

[∥∥∥∥∥ 1

T

∑
t

(
xt(γ)xt(γ)> −E

[
xt(γ)xt(γ)>

])∥∥∥∥∥ ≥ δ
]

≤ C1T × exp{−C2δ
2T η}+ C3δ

−1 exp{−C4T
η̄}.

ASSUMPTION B.2: There exists a constant M such that a) supγ∈[0,1] ‖xt(γ)‖ ≤M ,
P -a.s.. Moreover,
b) supγ∈[0,1] ‖A(γ)‖ <∞, supγ∈[0,1] ‖B(γ)‖ <∞, supγ∈[0,1] ‖C(γ)‖ <∞.

ASSUMPTION B.3: infγ∈[0,1]E[It(γ)] > 0 .

ASSUMPTION B.4: infγ∈[0,1] eigmin ‖E[xt(γ)xt(γ)>]‖ > 0, where eigmin denotes
the minimum eigenvalue of ‖E[xt(γ)xt(γ)>]‖.

ASSUMPTION B.5: The trimming constants satisfy χ1,T = O ((log T )κ1), χ2,T =
O ((log T )κ2), with κ1, κ2 > 0.

ASSUMPTION B.6: There exists a constant M > 0, such that ‖E[ut, u
>
t |Zt−1]‖ =

Σ⊗ IK ≤ M , for all t, where ut = ft −E[ft|Ft−1], and Σ, the covariance matrix is
diagonal.

Assumption B.1 gives an upper bound for large-deviation probabilities of the sam-
ple average of random matrices (xt(γ)xt(γ)>) uniformly w.r.t. γ ∈ [0, 1]. It implies
that the sample moments of squared components of the regressor vector converge in
probability to the corresponding population moments at a rate O(T−η/2 log(T )c) , for
some c > 0. Assumption B.2 eases the proofs and requires uniform upper bounds
on the regressor values, intercept, and model coefficients. Assumption B.3 implies
that the fraction of the time period in which an asset return is observed is bounded
away from zero asymptotically uniformly across assets, while Assumption B.4 bounds
away from zero the minimum eigenvalue of the population squared moment to exclude
asymptotic multicolinearity problems uniformly across assets. Assumption B.5 gives
an upper bound on the divergence rate of the trimming constants such that logarithmic
divergence rate allows to control the post-OGL estimation error in the second-pass re-
gression. Finally, Assumption B.6 bounds conditional variance-covariance matrix for
the linear innovation ut associated with the factor process and defines the matrix Σ
as diagonal. This assumption helps to prove consistency of the LASSO estimator F̂k
equation per equation, when regressing fk,t, for k = 1, ...,K, on Zt−1.
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B Proof of Proposition 1

In order to proof Proposition 1, we study the quantity ν̂(Ŝ). From the definition
of ν̂(Ŝ), we know that ν̂(Ŝ) − ν = Q̂−1

β3

1
n β̂
>
3,iŵiC

>
ν,i(β̂i(Ŝ) − β̌i). For ν̂(Ŝ) to be

consistent, the support recovery Ŝ needs to be consistent uniformly for βi across all
i = 1, . . . , n, such that the following lemma holds.

LEMMA 1: (Consistency β̂i(Ŝ))
Under Assumptions A.4, A.6, B.1, Conditions C1 and C2 from Jacob et al. (2009) and
Assumptions SC.1 and SC.2, we have supi 1

χ
i ‖β̂i(Ŝ) − β̌i‖ = Op,log(T−η/2), where

the notation Bn,T = Op,log(an,T ), is such that Bn,T/an,T is bounded in probability by
some power of log(T ) as n, T →∞.

As mentioned above, to prove Lemma 1, we need uniform support recovery across
all assets i. Therefore, we introduce the following lemma.

LEMMA 2: (Uniform support recovery)
Under Assumptions A.4, A.6, and Conditions C1 and C2 from Jacob et al. (2009), we
have Pr(S ⊆ Ŝ)→ 1, as n, T →∞.

PROOF OF LEMMA 2: By Bonferroni inequality we have

Pr
(
S ⊆ Ŝ

)
= Pr

(
S1 ⊆ Ŝ1, . . . ,Sn ⊆ Ŝn

)
≥ 1−

n∑
i=1

Pr
(
Si 6⊆ Ŝi

)
≥ 1− n max

i=1,...,n

{
Pr
(
Si 6⊆ Ŝi

)}
.

By Assumption A.6, we have Pr(Si 6⊆ Ŝi) = O(T−ω), for all i = 1, . . . , n. Hence,
we obtain Pr(S ⊆ Ŝ) = 1−O(T γ̄−ω) = 1− o (1) , since γ̄ < ω, by Assumption A.6,
which concludes the proof. �

Lemma 2 shows that the probability of recovering the true support Si for all i tends
to one P-a.s. Hence, from Lemma 2, the proof of Lemma 1 follows:

PROOF OF LEMMA 1: From Lemma 3 i) of GOS, under Assumption B.1, Assumptions
SC.1 and SC.2 of GOS, we know that for i = 1, . . . , n,

I1 = sup
i

1χi ‖β̂i(Si)− β̌i‖ = Op,log

(
T

−1/2 sup
i
‖Yi,T ‖

)
, (20)

with β̂i(Si) the estimator of β̌i under the true support Si and Yi,T = 1/
√
T
∑
t Ii,txi,tεi,t.

In the framework of GOS, β̌i is given by βi, as the model specification is not sparse for
all i. Then, we can compute the following probability

Pr (I1) = Pr
(
I1|S ⊆ Ŝ

) [
1− Pr

(
S 6⊆ Ŝ

)]
+ Pr

(
I1|S 6⊆ Ŝ

)
Pr
(
S 6⊆ Ŝ

)
,
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which, from the result in Lemma 2, can be written as

Pr (I1) = Pr
(
I1|S ⊆ Ŝ

)
+
[
−Pr

(
I1|S ⊆ Ŝ

)
+ Pr

(
I1|S 6⊆ Ŝ

)]
Pr
(
S 6⊆ Ŝ

)
≤ Pr

(
I1|S ⊆ Ŝ

)
+ Pr

(
S 6⊆ Ŝ

)
= Pr

(
I1|S ⊆ Ŝ

)
+ o(1).

Hence, from (20), we can work conditionally on having selected the correct support
for each asset i, so that lock supi 1

χ
i ‖β̂i(Ŝ)− β̌i‖ = Op,log

(
T−1/2‖Yi,T ‖

)
. Moreover,

from the result of Lemma 3 i) and its proof in GOS, and δT = T−η/2(log T )(1+γ̄)/(2C2),
for η, C2, γ̄ > 0, we obtain from Assumption B.1 that Pr(T−1/2 supi ‖Yi,T ‖ ≥ δT ) =
O(1), which concludes the proof.

�

Consistency of ν̂(Ŝ) follows from Lemma 1, and the following results ii) supi ‖wi‖ =
O(1), iii) 1/n

∑
i ‖ŵi−wi‖ = op(1) and iv) Q̂β3

−Qβ3
= op(1) coming from Lemma

3 of GOS under Assumptions B.1, B.5 and B.6.
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