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1 Introduction

Private agents make the economic decisions that determine inflation and out-

put. Their expectations about monetary policy are thus key determinants of

economic outcomes. The private sector’s confidence in the conduct of mone-

tary policy is instrumental to the success of the policy itself. We are now far

removed from the times in which monetary policy was perceived as an arcane

undertaking best practiced out of public view,1 and transparency has become

a key tenet of modern central banking. And yet, as Alan Blinder’s quote below

notes, it is practically impossible to completely eliminate uncertainty about

the conduct of monetary policy.

... the [private sector’s] faulty estimate [of the Federal funds rate] was

largely attributable to misapprehensions about the Fed’s intentions. [...] Such

misapprehensions can never be eliminated, but they can be reduced by a central

bank that offers markets a clearer vision of its goals, its ‘model’ of the economy,

and its general strategy.

Blinder (1998)

In this paper we study how misgivings about monetary policy can impact

its effectiveness in anchoring inflation expectations at the target level. And, in

particular, we show how the evolution of long-run inflation expectations over

the last 30 years can be explained by the increased degree of confidence the

private sector has regarding the conduct of monetary policy.

We build a model that explicitly allows for multiple priors about the mone-

tary policy rule, as a way of formalizing the misapprehensions discussed above

in Blinder (1998). We augment a prototypical new-Keynesian model by intro-

ducing ambiguity about the monetary policy rule and assuming that agents

1As Bernanke pointed out in a 2007 speech: Montagu Norman, the Governor of the
Bank of England from 1921 to 1944, reputedly took as his personal motto, “Never explain,
never excuse.”
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are averse to ambiguity. Agents lack the confidence to assign probabilities to

all relevant events. Rather, they entertain as possible a set of multiple beliefs.

Together with their strict preference for knowing probabilities, this implies

that they act as if they evaluated plans based on the worst case in their set of

beliefs. We use a recursive version of the multiple prior preferences,2 pioneered

in business cycle models by Ilut and Schneider (2014) and used, for example,

by Baqaee (2015) to model how asymmetric responses to news can explain

downward wage rigidity and by Michelacci and Paciello (2017) to study the

effects of monetary policy announcements when agents face ambiguity about

the cost for policymakers to renege an announcement.3

Our model helps explain the low-frequency, or trend, component of infla-

tion. Trend inflation is a key determinant of overall inflation and, in particular,

of inflation persistence, as highlighted by Stock and Watson (2007) and Cog-

ley and Sbordone (2008) among others. Our model is also able to capture

the dynamics of long-run inflation expectations and to provide a rationale for

why, as Chan, Clark and Koop (2017) suggest, they differ in a statistically

significant way from both the target and the inflation trend.

We follow Ascari and Sbordone (2014) and Cogley and Sbordone (2008)

and study the inflation trend as a time-varying inflation steady state. Our

model, described in detail in Section 2, implies that, when the set of con-

ditional interest rate expectation means over which agents are ambiguous is

symmetric, long-run inflation expectations will exceed a statistical measure of

trend inflation, and both will be larger than the inflation target. Proximity of

rates to the effective lower bound, however, tends to make the aforementioned

set asymmetric – in a way we will detail and test for in Section 3 – which re-

sults in our model implying long-run inflation expectations will be lower than

both trend and target.

The key driver of the deviations of trend inflation from target, as well as

2See Gilboa and Schmeidler (1989) and Epstein and Schneider (2003).
3Also related is work by Benigno and Paciello (2014), who consider optimal monetary

policy in a model in which agents have a desire for robustness to misspecification about the
state of the economy, in the spirit of Hansen and Sargent (2007). In this paper we focus on
first-order effects instead.
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of the wedge between trend inflation and long-run inflation expectations, is

the time-varying degree of confidence the private sector has in the conduct of

monetary policy – i.e. how large the private sector’s set of beliefs about the

interest rate is. To measure ambiguity, we follow Ilut and Schneider (2014)

and use data on forecasters’ disagreement about their nowcasts of the policy

rate. Using this measure, our model helps reconcile the dynamics of trend

inflation and inflation expectations in the US since the early 1980s.4 High

long-run inflation expectations and inflation trend measures in the early 1980s

fell through most of the 1990s and 2000s and settled to around the target

level, before falling in the aftermath of the Great Recession. The observed

fall in trend inflation since the early 1980s, and the progressive alignment of

long-run inflation expectations to trend, is explained by an increase in private

sector confidence, which in turn can be traced back to the great increase

in transparency and communications enacted by the Fed, as highlighted by

Lindsey (2003).

Work by Swanson (2006) supports this claim by showing that, since the

late 1980s, the cross-sectional dispersion of interest rate forecasts by U.S. fi-

nancial markets and private sector forecasters – i.e. their disagreement –

shrank and, importantly, by providing evidence that these phenomena can be

traced back to increases in central bank transparency. Similarly, Ehrmann,

Eijffinger and Fratzscher (2012) find that increased central bank transparency

lowers disagreement among professional forecasters. This seems natural. For

a given degree of uncertainty about the state of the economy, improved knowl-

edge about the policymakers’ objectives and model will make forecasters more

confident about monetary policy and their predictions more homogeneous. As

confidence in the conduct of monetary policy increases, our model implies that

long-run inflation expectations will approach the target.

We show in Section 4 that, in the class of models we consider, policymakers

can do better than simply tracking the natural rate of interest. For example,

in a situation like that of the early 1980s, characterized by high degree of

ambiguity and inflation above target, our model implies that the policymaker

4Data limitations prevent us from going back further in time.
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should be more hawkish than what would be optimal in the absence of am-

biguity. In particular, the policymaker should increase its responsiveness to

inflation and, on top of that, should set the “intercept” of its policy rule above

the natural rate of interest. On the contrary, in situations in which ambiguity

drives long-run inflation expectations because of the proximity of the ZLB, it

is optimal for policymakers to aim for a rate below the natural rate of interest.

2 The Model

In this section we present a simple model with ambiguity-averse agents, and

then derive the implications for long-run inflation expectations and for trend

inflation.

Our theoretical setup augments a simple New-Keynesian model (see Yun,

2005 or Gaĺı, 2008) by assuming that private agents face ambiguity about the

expected future policy rate. To isolate the effects of ambiguity, we set up our

model so that, absent ambiguity, the first-best steady state would be attained,

thanks to a government subsidy that corrects the distortion introduced by mo-

nopolistic competition. Ambiguity, however, will cause steady-state inflation

to deviate from its target. For expositional simplicity, the derivation of the

model is carried out assuming that the inflation target is zero, so the steady-

state level of inflation we find should be interpreted as a deviation from the

target. However, the model is equivalent to one in which the central bank

targets a positive constant level of inflation, to which firms index their prices.

We now describe the model, starting with the household’s problem.

Household. The representative household’s felicity is a function of consump-

tion Ct and hours worked Nt:

u(Ct, Nt) = log(Ct)−
N1+ψ
t

1 + ψ
,
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and utility can be written recursively as a function of a consumption-hours

plan (C,N) :

Ut(C,N ; st) = u(Ct, Nt) + β min
p∈Pt(st)

Ep [Ut+1(C,N ; st, st+1)] (1)

where Pt(st) is a set of conditional subjective probabilities about next period’s

state of the economy st+1 ∈ S.5 The standard rational expectations model is

a special case of (1) in which the beliefs set Pt(st) contains only the correct

belief. The conditional subjective probability p is selected to minimize ex-

pected continuation utility, subject to the constraint that p must lie in the set

Pt(st). The minimization of the expected continuation utility captures a strict

preference for knowing probabilities, which results in a desire to be robust to

the worst case, as detailed in Gilboa and Schmeidler (1989) and Epstein and

Schneider (2003).

We parametrize the belief set with an interval [mt, mt] of conditional mean

distortions for ζt+1, so we can rewrite the utility function as:

Ut(C,N ; st) = u(Ct, Nt) + β min
µt∈[mt, mt]

Eµt [Ut+1(C,N ; st, st+1)] . (2)

where β is the discount factor and mt and mt are autoregressive processes

with unconditional means µ and µ respectively.6

Households maximize (2) subject to their budget constraint:

PtCt +Bt = Rt−1Bt−1 +WtNt + Tt, (3)

where Pt is the price of the final good, Wt is the nominal wage, Bt are bonds

with a one-period nominal return Rt – which are in zero net supply – and Tt

includes government transfers as well as profit payouts. There is no heterogene-

ity across households, because they all earn the same wage in the competitive

5The state of our model economy is st = {∆t−1, ζt, at,mt,mt}, where the first element
represents the price-dispersion term, the second the monetary policy disturbance, the third
technology and the fourth the degree of Knightian uncertainty. We will describe each of
these variables in the remainder of this section and in Appendix C.2.

6See Appendix C.1 for more details.
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labor market, they own a diversified portfolio of firms, they consume the same

Dixit-Stiglitz consumption bundle and face the same level of ambiguity.

We assume that households make their decisions before the current value

of Rt is realized, along the lines of Christiano, Eichenbaum and Evans (2005).

This timing assumption and the zero-net supply of bonds imply that:

1. At the beginning of time t, when decisions are made, the realization of

ζt+1, the disturbance in the monetary policy rule, is not yet known, so

the household’s expected policy rate is Eµtt
(
Rn
t e

ζt+1
)

(Πt)
φ. Taking logs

we can write:7

Eµtt rt = rnt + φπt + Eµtt ζt+1,

where Eµtt ζt+1 = ρζζt + µt is the household’s distorted belief about the

policy rate. The process for ζt is described in equation (14).

2. Consumption will be pinned down so that desired savings are zero, given

this expectation for the policy rate (which is common across all house-

holds).

3. When the actual policy rate is set, it will not affect households wealth,

because bond holdings are zero.

The household’s intertemporal and intratemporal Euler equations are thus:

1

Ct
= Eµtt

[
βRt

Ct+1Πt+1

]
(4)

Nψ
t Ct =

Wt

Pt
. (5)

We can rewrite the intertemporal Euler equation substituting in the distorted

expectations for the policy rate:

1

Ct
= Et

[
βRn

t e
ρζζt+µt (Πt)

φ

Ct+1Πt+1

]
, (6)

7More details on the exact specification of the monetary policy rule are provided below.
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where Et is the rational expectations operator. Equations (5) and (6) charac-

terize the maximization problem of the households. We will turn to finding

the level of µt that solves the minimization problem in the next section.

Firms. The final good Yt is produced by perfectly competitive producers

using a continuum of intermediate goods Yt(i) and a standard CES production

function

Yt =

[∫ 1

0

Yt(i)
ε−1
ε di

] ε
ε−1

. (7)

Taking prices as given, the final good producers choose intermediate good

quantities Yt(i) to maximize profits, resulting in the usual Dixit-Stiglitz de-

mand function for intermediate goods

Yt(i) =

(
Pt(i)

Pt

)−ε
Yt (8)

and in the aggregate price index

Pt =

[∫ 1

0

Pt(i)
1−εdi

] 1
1−ε

.

Intermediate goods are produced by a continuum of monopolistically com-

petitive firms using the following linear technology:

Yt(i) = AtNt(i), (9)

where At is a stationary technology process. Prices are sticky in the sense of

Calvo (1983): only a random fraction (1 − θ) of firms can re-optimize their

price in any given period. Whenever a firm can re-optimize, it sets its price

maximizing the expected presented discounted value of future profits

max
P ∗t (i)

∞∑
s=0

θjβjEt

[
C−1
t+j

Pt+j

[
P ∗t Yt+j(i)− Pt+jMCt+jYt+j(i)

]]
, (10)

where MCt = (1− τ) Wt

AtPt
is the real marginal cost, net of the subsidy τ = 1/ε
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and βj
C−1
t+j

Pt+j
is the stochastic discount factor.

The firm’s price-setting decision, which is the same for all the firms setting

prices in given period, can be characterized by the firms’ first-order condition8

P ∗t (i)

Pt
=

ε
ε−1

Et
∑∞

j=0 β
jθjMCt+j

(
Pt
Pt+j

)−ε
Et
∑∞

j=0 β
jθj
(

Pt
Pt+j

)1−ε (11)

together with the following equation derived from the law of motion for the

price index:

P ∗t (i)

Pt
=

(
1− θΠε−1

t

1− θ

) 1
1−ε

. (12)

Monetary policy. In our economy the only disturbance unrelated to the

policymaker’s behavior is a technology shock At. A policy rule responding

more than one for one to inflation and including the natural rate of interest,

Rn
t = Et

(
At+1

βAt

)
, would thus be optimal (Gaĺı, 2008). Indeed, together with

the optimal production subsidy, this policy rule would attain the first-best

allocation at all times.

However, we augment the policy rule to account for the possibility that the

policymaker might deviate from the rule or might follow a poorly measured

estimate of the natural rate of interest:

Rt =
(
Rn
t e

ζt+1
)

(Πt)
φ , (13)

where ζt+1 is characterized by the following perceived law of motion:

ζt+1 = ρζζt + uζt+1 + µt 0 < ρζ < 1 µt ∈
[
µ
t
, µt

]
(14)

where µt is the agents’ belief distortion and captures the idea that households

are uncertain about the conduct of monetary policy. The formulation of the

8Log-preferences in consumption and the fact that Yt = Ct simplify this expression as
the marginal utility of future consumption simplifies out with aggregate output in the profit
function.
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disturbance process as an AR(1) process serves multiple purposes. First, it

captures the idea that a deviation from the optimal rule today also represents

a signal of future likely deviations from the rule, which, for example, can be

thought of as capturing serial correlation in the mismeasurement of the natural

rate. Second, it captures autocorrelation in the policy rate, while not breaking

the result that, in the absence of this disturbance, the policy rule is such that

the economy attains first-best.9

Finally, it is important to note that the realization of ζt+1 is not known at

time t when decisions are made, and therefore agents are required to compute

expectations regarding the conduct of monetary policy. This is consistent

with the assumption adopted when identifying monetary policy shocks with

timing restrictions as in Christiano, Eichenbaum and Evans (2005). More

importantly, if monetary policy committees meet several times a quarter (twice

in the US), agents have to make predictions about the policymakers’ decisions

even within a quarter. In practice, so long as any relevant economic decision

has to be made prior to the last policy meeting of the quarter, our specification

captures a relevant economic situation faced by the private sector. Indeed, this

uncertainty also manifests in the survey data we use to measure ambiguity,

namely the nowcast (forecast for the current quarter) of the Fed Funds rate

reported in the second month of the quarter, in the Blue Chip survey. From

this perspective, ρζ captures the predictability of future deviations of rates

from the underlying optimal rule.

When it comes to the interpretation of µt, we follow Ilut and Schneider

(2014) and posit that the two terms that make up the innovations to ζt, zt+1 ≡
ζt+1− ρζζt, are a sequence of i.i.d. Gaussian innovations uζt+1 ∼ N (0, σu), and

9A literature going back to Rudebush (2002) has discussed whether this formulation is
preferable to one in which the lagged policy rate enters the right-hand side of the policy rule.
The optimality of the response to technological shocks and tractability considerations - this
formulation allows us to compute the solution to the log-linear approximation analytically
- make us opt for this specification. This said, our steady state results carry over to a
situation in which the lagged interest rates enters the policy rule specification. Including
a measure of the output gap would also be possible, at the cost of not being able to solve
for the steady state analytically anymore. For our estimated parameter values, however,
we can verify numerically that the shape of the welfare function, and thus the worst-case
steady state, is consistent with the one we present here.

10



a deterministic sequence µt. By assumption, the empirical moments of µt

converge in the long run to those of an i.i.d. zero-mean Gaussian process,

independent of uζt+1, and with variance σ2
z − σ2

u > 0, which result in µt being

extremely hard to recover.

Agents thus treat that term as ambiguous. The information at their dis-

posal only enables them to put bounds on their conditional expectations for

policy rates,10 which we parametrize with the interval [mt, mt].
11 The width

of the interval [mt, mt] measures the agents’ confidence, a smaller interval

capturing the idea that agents are more confident in their prediction of the

policy rate.

These assumptions imply that the expectation for the policy rate can be

written in logs as:

Eµtt rt = rnt + φπt + Eµtt ζt+1 (15)

= rnt + φπt + ρζζt + µt µt ∈ [mt, mt] (16)

= Etrt + µt, (17)

which is the expression we use in Equation (6).

Government and Market Clearing. The Government runs a balanced

budget and finances the production subsidy with a lump-sum tax. Out of

notational convenience, we include the firms’ aggregate profits in the lump-

sum transfer:

Tt = Pt

[
−τ Wt

Pt
Nt + Yt

(
1− (1− τ)

Wt∆t

PtAt

)]
= PtYt

(
1− Wt∆t

PtAt

)
.

where ∆t is the price dispersion term, which we define below.

10Given our timing convention, the realization of ζt+1 only becomes known after decisions
are made.

11Throughout the paper, we will maintain the assumption that mt < 0 and mt > 0 so
that the rational expectations model (µt = 0) is nested.
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Market clearing in the goods markets requires that Yt(i) = Ct(i) for all

firms i ∈ [0, 1] and all t, which implies

Yt = Ct.

Market clearing on the labor market implies that

Nt =

∫ 1

0

Nt(i)di =

∫ 1

0

Yt(i)

At
di =

Yt
At

∫ 1

0

(
Pt(i)

Pt

)−ε
di,

where we define ∆t ≡
∫ 1

0

(
Pt(i)
Pt

)−ε
di as the relative price dispersion across

intermediate firms (Yun, 2005).

Finally, it can be established that the relative price dispersion evolves as

follows:

∆t = θΠε
t∆t−1 + (1− θ)

(
1− θΠε−1

t

1− θ

) ε
ε−1

. (18)

2.1 Steady State

We study our model economy around the worst-case steady state, since agents

act as if the economy converged there in the long run (see Ilut and Schneider,

2014). The agents’ pessmistic expectations however are not fulfilled by the

realization of the exogenous process, so, in general, the ergodic steady state

will differ from its worst-case counterpart. We will discuss both steady states

in turn.

We start by deriving the steady state of the agents’ first-order conditions

as a function of a generic level of the belief distortion induced by ambiguity,

µ, and we then rank the different steady states, indexed by µ, to characterize

the worst-case steady state.
We strive to derive general results so we need to define the set of admis-

sible parameter values. We define the vector ω =
[
β, ε, θ, φ, ρζ , ρa, ψ

]
and
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characterize the set of admissible values Ω as:

Ω =
{
ω :
(
β ∈ (0, 1), ε ∈ (1,∞), θ ∈ (0, 1), φ ∈ (1,∞), ρζ ∈ (0, 1), ρa ∈ (0, 1), ψ ∈ [0,∞)

)
∩

(
ρζ +

εµ

log (θ) (φ− 1)
< 1

)}
, (19)

where the first part of the definition of Ω simply includes the standard eco-

nomic restrictions on the discount factor, the demand elasticity, the probability

of firms not being able to reset prices, the responsiveness of monetary policy

to inflation deviations from target (assuming the Taylor principle is satisfied),

the autocorrelation coefficients for the two exogenous processes and the in-

verse Frisch elasticity, respectively. The second part of the definition restricts

a combination of parameter values to ensure that the steady state be well

defined. In particular, it ensures that θΠ (µ, ω)ε < 1.12 It is easy to verify

from equation (18) that, if this condition is not verified, the law of motion

for the the price-dispersion term will not be stationary around steady state.13

It is worth noting that this condition does not restrict the set of admissible

parameters at all for µ = 0 (when price dispersion is zero on average) and

becomes more restrictive as the degree of ambiguity increases. In practice, we

will only use it in the context of our estimation exercise by checking that it is

met by the estimated parameters.

Worst-Case Steady State. We can express steady state inflation as a func-

tion of a generic µ and ω. All other steady state variables can be then com-

puted as a function of steady-state inflation, in a way that mimics that of

the trend inflation literature (e.g. Ascari and Ropele, 2009) – we report them

in Appendix A. We then turn to characterizing the value of µ ∈
[
µ, µ

]
that

minimizes welfare.

Proposition 2.1. If agents perceive the disturbance ζt+1 to have non-zero

12Where we will use the notation Π (µ, ω) for the steady state for inflation for a given
value of µ and ω.

13As shown in Appendix A, another way to characterize this condition is to verify that
it ensures that N (µ, ω), the steady state level of hours worked for a given level of µ and
parameters ω, is positive and real.

13



mean, inflation in steady state, relative to target, takes value:

Π(µ, ω) = e−
ζ

φ−1 . (20)

where ζ = µ
1−ρζ .

As a result, for any ω ∈ Ω, µ > 0⇒ Π(µ, ω) < Π(0, ω) = 1, while the opposite

is true for µ < 0.

Proof. See Appendix B.

Proposition 2.1 has two key implications. First, it shows that the worst-case

steady state level of inflation depends on two parameters only, which provides

a tight parametrization to be brought to the data. Second, it illustrates how

inflation is a decreasing function of the belief distortion µ, as long as the Taylor

principle is satisfied. To build some intuition, let us consider the case in which

household decisions are based on an expected level of the interest rate that

is systematically lower than the true policy rate (µ < 0). Other things being

equal, agents will want to bring consumption forward, thus causing demand

pressure and driving up inflation.

Proposition 2.1 also shows that the effects of ambiguity are decreasing in

φ. For a given level of µ, a more aggressive response to inflation deviations will

keep inflation closer to target thus reducing the adverse effects on welfare.14

Having worked out the value of steady state inflation for a generic value

for µ, we now turn to determining the worst-case steady state, i.e. the value of

µ ∈ [µ, µ] that minimizes the agents’ welfare. In our simple model, the presence

of the production subsidy ensures that monetary policy implements the first-

best steady state in the absence of ambiguity (µ = µ = 0). Therefore, any

belief distortion µ 6= 0 will generate a welfare loss. However, it is not a priori

clear whether a negative µ is worse than a positive one of the same magnitude,

i.e. whether underestimating the interest rate is worse than overestimating it

by the same amount.

14This fact can be seen formally by noting that the second derivative of the welfare
function with respect to µ (see equation (33)), governs the concavity of welfare as a function
of µ, is negative but increasing in φ.
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Figure 1: Steady-state welfare as a function of µ (measured in basis points of
an annualized interest rate).
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The following proposition characterizes the properties of steady-state wel-

fare V(µ, ω), in detail.

Proposition 2.2. For any ω ∈ Ω, steady state welfare V(µ, ω) is continuously

differentiable around µ = 0 and:

i. attains a maximum at µ = 0,

ii. is strictly concave in µ,

iii. if the bounds are symmetric around zero (µ = −µ), for β sufficiently

close to one, attains its minimum on [−µ, µ] at µ = −µ.

Proof. See Appendix B.

Proposition 2.2 states that for any economically viable calibration,15 our

economy attains its welfare maximum in the absence of ambiguity – indeed

we know it attains first best – and that welfare is strictly concave. This

corresponds to the intuition that any deviation of µ from zero reduces welfare

and also immediately rules out interior minima, which leaves us with the two

bounds µ and µ as candidate minima.

15The condition that β be close to one is required to derive the results analytically but
it is easy to verify numerically that it is not restrictive in practice.
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Figure 1 shows that our welfare function is asymmetric and that, if the

bounds are symmetric, welfare is minimized when µ = µ = −µ, as part iii.

of Proposition 2.2 states in general terms. This corresponds to a situation in

which agents act as if monetary policy will be too loose. Given Proposition

2.1, under symmetry, the worst-case steady state is characterized by inflation

exceeding target.16 We define the worst-case steady state inflation level as

ΠW
(
µ, µ, ω

)
= Π (−µ, ω).

This asymmetry in the welfare loss has an intuitive economic interpretation.

Positive inflation tends to lower the relative price of firms that do not get a

chance to re-optimize. These firms will face a very high demand, which, in

turn, will push up their labor demand. In the limit, as their relative price goes

to zero, these firms will incur huge production costs while their real unitary

revenues shrink. On the other hand, negative trend inflation will reduce the

demand for firms which do not re-optimize and this will reduce their demand

for labor. In the limit, demand for their goods will tend to zero, but so will

their production costs.

When the ambiguity bounds are not symmetric, the location of the worst

case depends on the exact shape of the ambiguity interval. If the ambiguity

interval is capped from below, for example because the policy rate is close

to the zero lower bound, welfare might be minimized at µ. In this situation,

households fear that the policy rate is set higher than it should be and this

will, ultimately, determine trend inflation and inflation expectations to be

below target. We will test for asymmetry of our measure of ambiguity in

Section 3.

Ergodic Steady State. Agents act as if the process for ζt+1 was governed

by (14). However, the true law of motion for ζt+1 is ζt+1 = ρζζt + uζt+1. This

means that the agents pessimistic expectations are not, in general, validated

by the realization of the exogenous process, which results in the ergodic steady

state to differ from its worst-case counterpart.

16In Appendix C.2 we verify that the worst-case we identify in Proposition 2.2 corresponds
to the worst-case even when we approximate the equilibrium conditions around their worst-
case steady state.
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Here we focus on the case in which hours worked enter the felicity func-

tion linearly because it allows us to maintain tractability and to explore

the differences between the two steady states in detail. Formally we define

Ω0 = Ω ∩ {ψ = 0}.

Proposition 2.3. The ergodic steady state for inflation, in deviation from

target, can be expressed in logs as:

π = πW − µλπζ (µ, ω)

1− ρζ
= − µ

1− ρζ

(
1

φ− 1
+ λπζ (µ, ω)

)
(21)

λπζ (µ, ω) ≡ − κ0ρ
ζ

(1− ρζ)
(

1 + κ0
φ−ρζ
1−ρζ − ρζ

(
κ2 + ρζ κ1κ5

1−ρζκ6

)) , (22)

where πW = log ΠW
(
µ, µ, ω

)
, λπζ (µ, ω) is the coefficient governing the equi-

librium response of inflation to ζt, and the κ’s are functions of (µ, ω) which

represent the coefficients in the log-linearized set of equilibrium conditions, de-

scribed in Appendix C.

Proof. See Appendix C.3

The intuition behind Proposition 2.3 is better understood starting from the

special case in which ρζ → 0. If the degree of ambiguity increases unexpectedly,

agents will act as if the interest rate will be lower, thus bringing consumption

forward and pushing up inflation. At time t + 1 agents will observe that the

actual realizations of ζt+1 and, thus, of rt differ from the one they expected.

Because bonds are in zero net supply, a surprise in the interest rate will not

affect the agents’ level of wealth. Moreover, if the autocorrelation in ζ is

negligible, realizing ζt+1 6= Etζt+1 has no bearing on their expectation for ζt+2.

In sum, when ρζ → 0, the fact that the expected bad news did not materialize

has no impact on the economy, and the ergodic steady state tends to the

worst-case steady state (λπζ (µ, ω)→ 0 and π → πW ).

For a generic positive ρζ , however, the moment agents realize that the

outcome for ζt+1 is not as bad as they anticipated, they will revise their ex-

pectations for the future. As a result, demand pressures will be reduced and
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Figure 2: Worst-case steady state inflation (red), ergodic steady state infla-
tion (orange dashed), approximation to the ergodic steady state (blue), and
inflation target (black dashed), as a function of µ (measured in basis points of
annualized rate) and parameter values from the estimation in the first column
of Table 1.
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inflation will not be as high as anticipated at time t. Equation (21) reflects

this correction and implies that, in the ergodic steady state, inflation will be

lower than in the worst case steady state.

At the same time 1
φ−1

+ λπζ (µ, ω) > 0, which implies that the level of

ergodic steady state inflation exceeds the target for strictly positive levels of

ambiguity (under the symmetry assumption), which is another readily testable

implication of our model.

The following proposition, formalizes the properties of the ergodic steady-

state inflation we just discussed.

Proposition 2.4. For small µ, for any ω ∈ Ω0:

i. − 1
φ−1

< λπζ (µ, ω) < 0

ii. πW and π are both decreasing in µ

iii. when the worst case corresponds to µ = µ < 0 (µ = µ > 0 ), 0 < π < πW

(0 > π > πW )

Proof. See Appendix C.4.
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Figure 2, which is drawn for the range for µ we measure in the data and

for the parameter values we estimate in the next section, illustrates the main

points implied by Proposition 2.4 in our baseline symmetric-bounds case. Both

the worst-case and the ergodic levels of inflation in steady state exceed the

target and both increase with the degree of ambiguity. However, the effect of

ambiguity on the ergodic steady state is smaller. In line with the economic

intuition presented above, the ergodic steady state reflects the fact that the

actual law of motion for ζt+1 does not validate the pessimistic expectations

underlying the worst-case steady state. Figure 2 also shows that the results

we derive in Proposition 2.4 under the assumption of µ being sufficiently small,

apply for the entire range we consider. We can see that by noting that the

blue line, which represents an approximation in a neighborhood of µ = 0, and

the orange dashed line, which accounts for the fact that λπζ (µ, ω) varies with

µ, are virtually indistinguishable.

Testable Implications. The theoretical results in this section have clear

testable implications, which we will bring to the data, matching the worst-

case steady-state inflation with data on long-run inflation expectations and

the ergodic steady state inflation with statistical measures of trend inflation.

In particular, in keeping with the inflation trend literature (e.g. Ascari and

Sbordone, 2014), we will give to our model an anticipated utility interpretation

and test the following implications of our model. When the level of ambiguity

that minimizes welfare is µ (µ)

i. both the worst-case steady-state inflation and the ergodic steady state

inflation are above (below) target;

ii. statistical measures of trend inflation should lie between long-run inflation

expectations and the target;

iii. as the degree of ambiguity falls, all measures should tend to converge to

the inflation target.
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3 Trend Inflation and Long-run Inflation Ex-

pectations

The evidence in favor of a trend in inflation is extensive (see for example Stock

and Watson, 2007, and Cogley and Sbordone, 2008). Most of the macroeco-

nomic literature relies, however, on models that are approximated around a

zero-inflation steady state17 and that, consequently, cannot capture the per-

sistent dynamic properties of inflation and long-run inflation expectations, nor

their relationship. In these models, the target, trend inflation and inflation

expectations all coincide.

A strand of the macroeconomic literature, summarized in Ascari and Sbor-

done (2014), studies the effects of trend inflation by allowing for a time-varying

steady state level of inflation. This results in what they refer to as a Gener-

alized New-Keynesian Phillips Curve and helps make sense of inflation per-

sistence. The model studied by Ascari and Sbordone (2014) treats inflation

trend as a primitive (taken from time-series estimates) and implies that long-

run inflation expectations will equal the inflation trend. Chan, Clark and

Koop (2017), however, show that long-run inflation expectations and trend do

not coincide.

In order to capture long-run inflation dynamics, Del Negro and Eusepi

(2011) and Del Negro, Giannoni and Schofheide (2015) propose replacing the

constant inflation target with a very persistent, exogenous, inflation target

process. This assumption is very effective at matching inflation data, but

seems at odds with evidence from sources such as the Blue Book – a document

illustrating monetary policy alternatives, presented to the FOMC by Fed staff

before each meeting. While the Federal Reserve officially did not have an

explicit numerical target for inflation until 2012, Blue Book simulations have

been produced assuming targets of 1.5% and 2% since at least 2000. Indeed,

Lindsey (2003) states that, as early as July 1996, numerous FOMC committee

members had indicated at least an informal preference for an inflation rate in

the neighborhood of 2%, as indicated by FOMC transcripts of the July 2-3,

17Or alternatively, and equivalently from this perspective, a full indexation steady-state.
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1996.

Recently, Carvalho et al. (2017) proposed a model of inflation in which

changes in long-run inflation beliefs are a state-contingent function of short-

run inflation surprises. Their model predicts observed measures of long-term

inflation expectations, but cannot account for the observed wedge between

the inflation trend and inflation expectations, because, as in most models, the

inflation trend and long-run survey expectations coincide, at odds with the

evidence presented by Chan, Clark and Koop (2017).

By introducing ambiguity in our simple New-Keynesian model, we can

make progress in the quest for explaining why long-run inflation expectations

do not correspond to measures of inflation trend, and both differ from the in-

flation target. From the perspective of our model, long-run inflation expecta-

tions would naturally correspond to the worst-case steady state inflation level.

However, an econometrician working with realized inflation would estimate

inflation to settle around a different value in the long run, which corresponds

to the ergodic steady state.18

Inflation Trend. We estimate trend inflation with a Bayesian vector au-

toregression model with drifting coefficients (TVP-BVAR), along the lines of

Cogley and Sargent (2002). The specification is taken from Cogley and Sbor-

done (2008), and comprises the following series: real GDP growth, unit labor

cost, the federal funds rate, and a series for inflation. We alternate three

different measures of inflation: the GDP deflator, the PCE deflator and CPI

inflation. Figure 3 reports CPI inflation along with the trend inflation series

implied by our model, when using as inflation measure the implicit GDP de-

flator (blue line), the PCE deflator (red line) and CPI price index (bold black

line). For the CPI-based trend inflation we also show the 90% confidence

bands (dotted lines). We focus our attention on the CPI inflation to facilitate

the comparison between trend and long-run inflation expectations: the major-

18See Ilut and Schneider’s (2014) discussion of the econometrician’s data-generating pro-
cess.
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Figure 3: Trend inflation implied by different measures of inflation
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CPI inflation trend inflation implied by a TVP-BVAR using GDP deflator (blue), CPI
(bold black line), PCE deflator (red). The dotted lines indicate the 90% confidence bands
for the trend inflation obtained using CPI as a measure on inflation.

ity of the existing measures of long-run inflation expectations concern CPI.19

Clearly, inflation is characterized by a trend component, which has fallen since

the early 1980s and is currently estimated to be slightly below the FOMC’s

2% target for all three inflation measures listed above.

Inflation Expectations. We consider four alternative measures of long-run

inflation expectations, three survey-based (Blue Chip, the Survey of Profes-

sional Forecasters and the Survey of Consumers by the University of Michigan)

and one based on surveys as well as inflation swaps and other financial market

data (the Cleveland Fed’s measure of 10 years ahead inflation expectations, see

Haubrich, Pennacchi and Ritchken, 2011, for more details).20 The Blue Chip

CPI inflation forecast 5 to 10 year ahead is available biannually since 1983, the

19In 2012 the FOMC announced that it was targeting core PCE inflation, but long-
run inflation expectations for PCE are, to our knowledge, available only in the Survey of
Professional Forecasters, and only from 2007 onwards.

20This is a monthly series. We make quarterly by taking the average of the 3 observations
in each quarter.
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SPF 10 year-ahead CPI inflation forecast is available quarterly since 1991, the

Michigan Survey 5 to 10 year ahead inflation expectation series is available

quarterly from 198321 and, finally, the Cleveland Fed produces estimates of

inflation expectations at monthly frequency starting from 1982.

Figure 4 reports these measures of long-run inflation expectations and com-

pares them with the measure of trend we obtained with the TVP-BVAR. In-

flation expectations exceed our measure of trend inflation through the early

2000s. In the aftermath of the Great Recession the Cleveland Fed’s measure

clearly falls below target and also below our declining measure of trend infla-

tion. The purely survey-based measures of inflation expectations fall much less

and remain above the 2 percent mark. We attribute the more evident fall in

the Cleveland Fed’s measure of inflation expectation to it including financial

variables. However, it is also important to keep in mind that the FOMC’s 2

percent target is defined in terms of PCE inflation. CPI inflation has been on

average .4 percentage points higher than PCE inflation over the last 20 years

(see for example Bullard, 2013) as is also evident from our estimates for trend

inflation trend in Figure 3. Taken literally, that would mean that expectations

of CPI below 2.4 percent could be interpreted as below-target expectations.

Ambiguity. We follow Ilut and Schneider (2014) in using disagreement as a

measure of ambiguity. In particular, we use the disagreement in survey now-

casts for the Fed Funds rate to capture ambiguity about the conduct of mon-

etary policy. Both Swanson (2006) and Ehrmann, Eijffinger and Fratzscher

(2012) present evidence of a clear link between an increase in central bank

transparency in the 1990s and 2000s and a decrease in forecasters’ disagree-

ment about the policy rate.

Our headline measure of ambiguity about the conduct of monetary policy

is the interdecile dispersion in nowcasts of the current quarter’s federal funds

rate from the Blue Chip Financial Forecasts dataset, which are available from

1983 onwards.

The Blue Chip nowcasts of the federal funds rate are collected on a monthly

21We interpolate 14 missing observations in the early part of the sample
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Figure 4: Trend inflation and various measures of inflation expectations
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The Cleveland Fed’s estimate is the solid red line, the SPF 10Y ahead inflation expectations
is the dashed-dotted line, the stars represent the Blue Chip measure of 5-10 years ahead
inflation expectations, and the solid magenta line the Michigan Survey expectations. The
black line is trend inflation estimated with the TVP-BVAR using CPI as a measure of
inflation.

basis. Since we want to isolate the uncertainty relating to monetary policy,

rather than macro uncertainty in general, we compare the Blue Chip release

dates with the FOMC meeting dates. We find that the nowcasts produced on

the second month of the quarter are the most likely to capture the type of un-

certainty we are modelling. FOMC meetings mostly happened before the third

month’s survey was administered, dispelling most of the uncertainty relating

to policy for those nowcasts. The nowcasts produced for the first month of the

quarter, instead, also reflect uncertainty about the incoming macro data, while

on the second month of the quarter most of the relevant information available

to the FOMC at the time of their meeting has already been released. Therefore

we choose the nowcasts produced for the second month. We take a 4-quarter

moving average, smoothing out very high-frequency variations, which do not

have much to say about trend, while leaving the scale unaffected.

Figure 5 shows the 4-quarter moving-average of our preferred measure of
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Figure 5: A measure of disagreement about the federal funds rate
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The solid line is the interdecile dispersion of Blue Chip nowcasts of the federal funds rate
in the second month of the quarter.

ambiguity. It is obvious that the degree of dispersion was much larger in the

early 1980s than it is now. From the mid-1990s onwards, the dispersion is on

average below 25 basis points, which means that the usual disagreement among

the hawkish and dovish ends of the professional forecasters’ pool amounts to

situations like the former expecting a 25bp tightening and the latter no change

– a very reasonable scenario in the late 1990s and early 2000s. In the early

80s, however, that number exceeded three quarters of a percent.

The implications of our model depend crucially on whether we can think

of the interval [µ
t
, µt] as being symmetric or not.22 If the interval is symmetric

we can simply calibrate µt to half our measure of dispersion and µ
t

= −µt.
To verify this is a sensible assumption, we test for the symmetry in the dis-

persion of short-term rate nowcasts using a test developed by Premaratne and

22Notice that by writing out [µ
t
, µt], we are giving the steady-state interval [µ, µ] an

anticipated-utility interpretation (Kreps, 1998 and Cogley and Sargent, 2008), which is
common in the trend inflation literature and which we will expand on in Section 3.1.
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Figure 6: Test for the null that the distribution of the individual Blue Chip
nowcasts is symmetric
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We test for the symmetry of the distribution of the individual Blue Chip nowcasts of the
federal funds rate. We use the Premaratne and Bera (2015) test for symmetry of the
distribution and perform it period per period from 1983 to 2015. The test is χ2-distributed.
The points above the black line are those in which the null of symmetry is rejected with
99% confidence.

Bera (2015).23 Figure 6 shows that the null of symmetry of the distribution

of individual Blue Chip nowcasts of the federal funds rate is only occasion-

ally rejected, and never for several subsequent quarters, up to 2010.24 After

2010/2011, however, the dispersion started to display a noticeable and per-

sistent upward skew and this determines a persistent rejection of the null

hypothesis of symmetry. Indeed, it is plausible that, the ZLB on policy rates

limits disagreement on the downside precisely in this fashion. In these situa-

tions it is natural that agents would expect the worst-case scenario to be one

in which rates are too high, resulting in a low level of inflation, as our theory

predicts.

23This test adjusts the standard
√
b1 test of symmetry of a distribution, which assumes

no excess kurtosis, for possible distributional misspecifications.
24We perform the test on the cross-section of nowcasts at each date in our sample.
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Figure 7: Cleveland Fed Long-Run Inflation Expectations (red) and Inflation
Trend (blue) as a function of our measure of ambiguity
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3.1 Estimation

The measures of long-run inflation expectations we consider and our estimate

of the inflation trend are highly correlated – for example, the sample correlation

coefficient with respect to the Cleveland Fed’s measure is .95 – and both are

negatively correlated with our measure of ambiguity (sample correlation of -

.88 and -.91 for the Cleveland’s Fed measure of long-run inflation expectations

and trend respectively). Figure 7 illustrates this by overlaying a scatter plot

of our estimate of trend inflation vis-a-vis our measure of ambiguity (blue

diamonds) to a scatter plot which relates long-run inflation expectations to

ambiguity (red circles). Clearly, negative values for µ associate with inflation

expectations (and trend) exceeding the target value, while the opposite is true

for positive values of µ as our theory suggests. Moreover, Figure 7 shows how

long-run inflation expectations appear to have been moving more with changes

in ambiguity than the inflation trend, in line with the prediction of Proposition

2.4.

To substantiate this claim, we estimate the parameters of our model as a

way to check that the observed levels of inflation trend can be attained for
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reasonable parameter values.

We follow the inflation-trend literature (Ascari and Sbordone, 2014) and

give our steady-state results an anticipated-utility interpretation (Kreps, 1998

and Cogley and Sargent, 2008). Under anticipated utility the worst-case steady

state inflation corresponds to long-run inflation expectations by agents. The

ergodic steady state inflation level, on the other hand, can be mapped into the

low-frequency inflation component observed by an econometrician (Ilut and

Schneider, 2014), i.e. the inflation trend.

Our estimation procedure bears similarities with the minimum-distance

procedure proposed by Cogley and Sbordone (2008). Cogely and Sbordone

(2008) estimate the parameters of a simple New-Keynesian DSGE with trend

inflation using the estimates for trend inflation obtained from their TVP-VAR.

While we estimate the same TVP-VAR, our approach features two impor-

tant differences. First, trend inflation in Cogley and Sbordone (2008) is a

parameter in their model so their moment conditions compare conditional ex-

pectations in the model and in the VAR and the relationship between inflation

and marginal cost. In our case, however, trend inflation is not exogenous but

a function of the level of ambiguity and model parameters. So we can directly

minimize the distance between the VAR estimate for trend inflation and the

model-implied measure.

The second difference is that our model provides separate restrictions for

long-run inflation expectations and trend inflation so we can use both to esti-

mate our parameter values.

In particular, we can define our data vectore as zt =
[
zµt , z

πe

t , z
trend
t

]′
, t =

1, ..., T . It includes a measure of ambiguity25, a measure of long-run inflation

expectations and a measure of inflation trend.

The definitions for inflation expectations and the ergodic steady state level

of inflation presented in Proposition 2.3 provide us with two restrictions that

25We define zµt based on disagreement and the test for symmetry of the interval as
described above.
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we can bring to the data:

Mt (ω, zt) =

 zπ
e

t −
(
π∗ − zµt

(1−ρζ)(φ−1)

)
ztrendt −

(
π∗ − zµt

1−ρζ

(
1

φ−1
+ λπζ (zµt , ω)

))
 , (23)

so that we can estimate ω by solving the following minimization:

min
ω∈Ω̃0

T∑
t=1

Mt (ω, zt)
′WMt (ω, zt) , (24)

where we use the identity matrix as a weighting matrix W in our baseline

estimation.

We impose ω ∈ Ω0 to ensure that the steady state is well defined (see

equation (19)).26 Also, our restrictions have nothing to say about the autore-

gressive parameter of the technology shock ρa so we do not estimate it at all.

In keeping with most empirical macroeconomic literature, we simply calibrate

β = .995. More interestingly, we face two identification challenges. Firstly, it

is very difficult to separately identify θ and ε. These two parameters enter our

moment restrictions via λπζ (zµt , ω) and they both tend to magnify the effects

of steady state inflation,27 so we calibrate ε = 11 – which implies firms price

their goods at a ten percent markup over their marginal cost – and estimate

θ.

Moreover, lower ρζ and higher φ produce the same effect on the worst-case

steady state level of inflation (our first model condition) and similar effects

on the level of trend inflation – their values impact λπζ (zµt , ω) differently. As

a result, in our baseline estimation we set φ = 1.5 (as advocated by Taylor,

1993) and focus on estimating ρζ . We report the estimation results in which we

estimate both φ and ρζ in Appendix D.1– while the parameter estimates show

26In practice, we run an unconstrained minimization and then verify that the inequality
in equation (19) is satisfied given the estimates.

27The definitions of the log-linear coefficients in Appendix C show that the expression
θΠ (µ, ω)

ε
is recurring. So when Π (µ, ω) > 1, as is the case for most of our sample obser-

vations, ε and θ have similar effects in that they both increase θΠ (µ, ω)
ε
, which, in turn,

affects the value of the κ coefficients that enter the definition of λπζ (µ, ω) in equation (22).
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more variation when we experiment with different series for long-run inflation

expectations, they are all well within the acceptable range.28

Table 1 reports our baseline estimates for our four series for inflation ex-

pectations (zπ
e

t ). The estimates for θ are between .5 and .6, roughly in line

with estimates by Cogley and Sbordone (2008) and Christiano, Eichenbaum

and Evans (2005) who estimate the corresponding parameter with limited-

information techniques at .588 and .60, respectively, in different setups, and

not far from the .65 estimate in Smets and Wouters (2007). ρζ is estimated to

be around .7, not far from estimates of the autocorrelation term in the mone-

tary policy rule29 in Smets and Wouters (2007) and Clarida, Gaĺı and Gertler

(1999) which estimate it at .81 and .79 respectively.

Considering the bootstrap-confidence interval, we cannot find any statisti-

cally significant difference in the estimates for θ, while estimate for ρζ using the

SPF series is just outise the confidence interval for the estimates we get using

the Cleveland Fed and Blue Chip series. Overall, the estimates seem robust

across the different series, which is important considering that our measures

of inflation expectations are highly correlated up to the ZLB period, but less

so afterwards.30

We find these results encouraging, since the moments we are matching up

to are not normally used in the estimation of DSGEs. And importantly, from

our perspective, our estimates imply that about half of the overall variance of

ζt+1 can be traced back to the predictable component (ρζ
2 ≈ .5) and half to

the innovation uζt+1, which seems reasonable given that our dispersion measure

is collected midway through the quarter, in particular between the two FOMC

meetings usually taking place in each quarter.

28In our estimations we set the inflation target π∗ to 2%, the value announced by the
FOMC in 2012 for PCE. This implies a rather conservative value for CPI inflation, which
has been on average .4 points above PCE inflation in the last 20 years (see for example
Bullard, 2013).

29The autocorrelation is most normally modeled as the coefficient on the lagged interest
rate. For tractability purposes, we elect to adopt this specification instead, which allows us
to keep the derivation analytical as discussed above.

30In Appendix D.1 we also present results on a shorter sample that excludes the ZLB
period for the sake of robustness.
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Table 1:
Clev. Fed 10Y Blue Chip 5-10Y SPF 10Y Mich 5-10Y

θ 0.5275 0.5834 0.5231 0.5178
(0.468,0.627) (0.390,0.677) (0.218,0.715) (0.195,0.612)

ρζ 0.7335 0.7395 0.6962 0.7398
(0.704,0.778) (0.719,0.811) (0.662,0.814) (0.749,0.814)

No of obs. 129 65 97 115+14†

Sample 1983Q4-2015Q4 1983H2-2015H2 1991Q4-2015Q4 1983Q4-2015Q4

Estimates of θ and ρζ obtained using different measures of long-run inflation expectations.
We indicate in parentheses the 95% confidence intervals obtained by bootstrapping, using
the moving block method proposed by Künsch (1989) for dependent data. The length of
the blocks is of 4 quarters, but we experimented with different block length and found that
the results are robust to the choice of block length.
†: The series comprises biannual observations over 1983Q4-198Q4 and quarterly observations
over 1986Q1-1987Q4 and 1990Q2-2015Q4, for a total of 115 observations. Data for the
remaining 14 quarters has been generated by interpolation.

Figure 8 illustrates the fit of our model and estimation exercise by combin-

ing the data (Figure 7) and the model-implied values (Figure 2).31 This simple

scatter plot confirms our intuition that augmenting a simple New-Keynesian

DSGE with ambiguity regarding the monetary policy rule can go a long way

towards reconciling the observed behavior of long-run inflation expectations,

measures of inflation trend and their deviations from target.

The fit is overall better for the inflation trend series than for inflation

expectations. This is partly a direct consequence of the fact that our model

implies that, of the parameters we estimate, only ρζ can affect the model

counterpart to long-run inflation expectations while both ρζ and θ can make

the model fit the trend series.

In sum, we find that a very simple mininum-distance estimation exercise

of our tightly parametrized model-implied long-run inflation expectations and

inflation trend concepts can do a good job at explaining why, in line with the

observed reduction in our measure of Knightian uncertainty, the differences

between long-run expectations and trend fell and both approached the target,

only to fall below the target level as interest rates approached their lower

31The blue line in Figure 8 corresponds to the blue line in Figure 2, i.e. it uses the
approximation for µ clos to zero. The estimation uses the exact formulation for λπζ (µ, ω)
but, as shown above in Figure 2 the two are indistinguishable.
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Figure 8: Cleveland Fed Long-Run Inflation Expectations (red circles) and
Inflation Trend (blue diamonds) as a function of our measure of ambiguity.
The solid lines represent our model-implied values for long-run inflation ex-
pecatations (red) and inflation trend (blue) given the esitmates in Table 1

-50 -40 -30 -20 -10 0 10 20

µ in annualized bp

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

π

bound. In this respect, our model can offer a compelling explanation for why

inflation expectations, while falling to below target, remained close to it. In

particular, this pattern should be credited to the high degree of confidence in

the conduct of monetary policy that built over the years.

4 Optimal Monetary Policy

In our simple economy the policy implemented by equation (13) is optimal

if the policymaker measures the natural rate accurately (σu → 0) and if the

private sector has full confidence in this happening (µ = µ = 0).

It is thus out of question that optimizing policymakers would want to

reduce the error component in their measure of the natural rate as much as

possible as well as increase the degree of confidence to the extent possible.

The interesting question is, what happens when the ambiguity regarding the

policy rule cannot be totally dispelled. Here we explore optimal rules for this

scenario.
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Our results characterize policy rules that attain the best of possible worst-

case steady-state welfare levels - a concept we will refer to as steady-state

optimality. Steady-state optimality is very often disregarded in analysis of

optimal policy set-ups because, in the absence of ambiguity, zero inflation

and the optimal subsidy deliver the first-best allocation, independent of the

values the other parameters. We will show how, in our setting, the degree of

policy responsiveness to deviations of inflation from target plays a critical role

instead.

We characterize the optimal monetary policy rule when there is a bound on

the responsiveness of the policy rate to inflation. As can be seen in equation

(20), as φ → ∞, steady state approaches first best. However, as Schmitt-

Grohé and Uribe (2007) point out, values of φ above around 3 are impractical.

Hence, we will work under the assumption that values of φ are bounded.

Proposition 4.1. For any ω ∈ Ω, a small µ > 0, µ = −µ and φ ≤ φ ≤ φ,

the following rule is steady-state optimal in its class:

Rt = R∗tΠ
φ
t (25)

where R∗t = Rn
t e

δ∗(µ,φ;ω) and 0 < δ∗(µ, φ;ω) < µ
1−ρζ .

Proof. See Appendix E.2

We can summarize the result by saying that the central bank needs to

be more hawkish than in the abscence of ambiguity, because it is optimal to

respond as strongly as possible to inflation and to increase the monetary policy

rule’s intercept. The overly tight policy stance that Chairman Volcker followed

in early 1982 (see Goodfriend 2005, p. 248) can be better appreciated from

the perspective of this result. In an economy in which ambiguity about policy

was rampant, it was optimal to tighten above and beyond what the business

cycle conditions would seem to dictate.

Both high φ and positive δ reduce the wedge between steady-state inflation

and the target, thus increasing welfare. The slope coefficient φ reduces the

effects of ambiguity on inflation because, even if the worst-case interest rate
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tends to drive inflation up, this effect is mitigated by a more forceful response

by the policymaker to any deviation from target.

The optimal intercept (R∗t ) is higher than the natural rate, because, as

inflation is still inefficiently high in the presence of ambiguity, the central

bank would like to tighten more. Facing a bound on φ, it can do so only by

increasing the intercept of its policy rule. However, increasing it too much

can be detrimental. On average, the private sector is underestimating the

policy rate by ζ = µ
1−ρζ . A näıve policymaker could respond by systematically

setting rates higher than its standard policy rule by the same amount (ζ). If

agents did not evaluate welfare in the worst-case scenario when they make

their decisions, this policy action would implement first best. In our setting,

however, ambiguity-averse agents would realize that the worst-case scenario

had become one in which interest rates are too high and steady state inflation

would end up falling below target. The level of δ that maximizes worst-case

welfare is positive but strictly smaller than µ
1−ρζ , capturing the idea that the

policymaker can do better than blindly following the policy rule that would be

optimal in the absence of ambiguity, yet he or she has to prevent the degree of

extra-tightening (δ > 0) to become so large as to make agents fear excessive

tightening more than excessive loosening.

Another important aspect of Proposition 4.1 is that the rule in equation

(25) is optimal in its class, i.e. the class of rules including inflation and a

measure of the natural rate. Clearly, plenty of alternative specifications could

legitimately be proposed. It is not in the spirit of this paper to try to review

and numerically evaluate a great number of alternative rules, but it is immedi-

ate to show that our functional form can deliver as high a level of steady-state

welfare as any other policy scheme, provided we are prepared to relax the con-

straint on φ. In other words, our functional form is only potentially restrictive

in terms of practical implementability, because high values of φ can be hard to

justify in practice as we mentioned above, but is otherwise as good as any.32

Finally, our previous result applies under the assumption that the interval

over which the ambiguity is defined is symmetric (µ = −µ). When that is not

32See Corollary in Appendix E.1 for a formal statement.
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the case, as in recent years, the policy prescription still features the highest

possible value for φ but a negative value for δ as we formalize in the following

Corollary.

Corollary 4.1. Given the setup in Proposition 4.1 except for the fact that

|µ| << |µ|, so that V
(
µ, ω

)
> V (µ, ω), then

Rt = R∗tΠ
φ
t (26)

where R∗t = Rn
t e

δ∗(µ,µ,φ,ω) and − µ
1−ρζ < δ∗(µ, µ, φ;ω) < 0 is steady-state opti-

mal in its class.

Proof. See Appendix E.3

This corollary highlights the different roles played by φ and δ. Higher

φ always tends to bring inflation closer to target, so it is always optimal to

increase φ as much as possible, irrespective of whether trend inflation is above

or below target. As for the “policy-rule intercept,” however, when the worst-

case level of inflation is below target, it is optimal for R∗t to be smaller than

the natural rate to generate inflationary pressures that would push inflation

up towards its target.

5 Conclusions

We augment a standard New-Keynesian DSGE to study the consequences of

changes in confidence on the success of an inflation targeting regime. When

ambiguity-averse agents face Knightian uncertainty about the conduct of mon-

etary policy, long-run inflation expectations do not correspond to the inflation

target. In particular, in normal times long run inflation expectations will ex-

ceed the target, and the distance between the two will depend on the degree of

ambiguity and the central bank’s response to inflation deviations from target.

In the proximity of the ZLB our model predicts that long-run inflation expec-

tations will fall below the inflation target as the worst-case scenario becomes

one in which policy will be too tight.
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Our model can also explain why statistical measures of the inflation trend

tend to differ from both the target and long-run expectations, usually falling

somewhere in between the two. From a modeling perspective this follows

from the realized mean level of inflation reflecting the interaction between

pessimistic expectations and the fact that the worst-case expectations about

the policy rate do not actually materialize.

By keeping the solution of the model analytical, we can easily estimate the

key parameters governing inflation using disagreement on the policy rate as

a measure of ambiguity, long-run inflation expectations from surveys and a

TVP-BVAR estimate for the inflation trend. Our simple minimum distance

procedure is able to fit US trend inflation and long-run inflation expectations

data since the early 1980’s reasonably well, especially considering how tight

the parametrization is – in our baseline estimation we only estimate two pa-

rameters.

Our results are consistent with the idea that the increased level of trans-

parency can explain the transition from a situation in which long-run inflation

expectations exceeded 5 percent in the early 1980s to one in which they are

remarkably well anchored around the target – the post Great Recession fall

is much smaller in magnitude relative to the deviations observed in the early

part of our sample, a testament to the much improved degree of anchoring.

We conclude our analysis by characterizing the optimal policy rule in an

ambiguity-ridden economy. In particular, we show how in the presence of

ambiguity a simple monetary policy rule that tracks movements in the natural

rate of interest can be improved upon by one that tracks a higher interest

rate (lower in the vicinity of the ZLB). This provides a novel insight in the

seemingly overly tight policy stance pursued by chairman Volcker in the early

1980s and the ultra low rates observed in the aftermath of the Great Recession.

In sum, by building on the latest advances in the inflation trend literature

(Ascari and Sbordone, 2014) and in the ambiguity literature (Ilut and Schnei-

der, 2014) we can provide an economic rationale for observed low-frequency

variations in inflation and inflation expectations which are normally treated

as purely exogenous if not disregarded altogether.
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Appendix - For Online Publication

A Steady State

Pricing. In our model firms index their prices based on the first-best infla-

tion, which corresponds to the inflation target and is zero in the case presented

in the main body of the paper. Because of ambiguity, however, steady-state

inflation will not be zero and therefore there will be price dispersion in steady

state:

∆(µ, ω) =
(1− θ)

(
1−θΠ(µ,ω)ε−1

1−θ

) ε
ε−1

1− θΠ(µ, ω)ε
(27)

∆ is minimised for Π = 1 - or, equivalently, µ = 0 - and is larger than unity

for any other value of µ. As in Yun (2005), the presence of price dispersion

reduces labour productivity and ultimately welfare.

Hours, Consumption and Welfare. In a steady state with no real growth,

steady-state hours are the following function of µ:

N(µ, ω) =

(
(1− θΠ(µ, ω)ε−1) (1− βθΠ(µ, ω)ε)

(1− βθΠ(µ, ω)ε−1) (1− θΠ(µ, ω)ε)

) 1
1+ψ

, (28)

while consumption is:

C(µ, ω) =
A

∆(µ, ω)
N(µ, ω) (29)

Hence the steady state welfare function takes a very simple form:

V(µ, ω) =
1

1− β

(
log (C(µ, ω))− N(µ, ω)1+ψ

1 + ψ

)
. (30)

41



Bound on µ. Equation (28) delivers the upper bound on steady-state infla-

tion that is commonly found in this class of models (e.g. Ascari and Sbordone

(2014)). As inflation grows, the denominator goes to zero faster than the

numerator, so it has to be that Π (µ, ω) < θ−
1
ε for steady state hours to be

finite33. Given the formula for steady-state inflation (Result 2.1), we can then

derive the following restriction on admissible parameter values for given levels

of µ :

(
1− ρζ

)
(φ− 1) log (θ) < εµ (31)

which can be rearranged into the expression in equation (19). Notice that given

natural parameter restriction the left-hand side of equation (31) is negative as

0 < θ < 1. Under symmetry (µ = −µ) the worst case level of µ is also negative

and keeps decreasing as the degree of ambiguity increases. So, in practice, it

is enough to verify that for the largest (in absolute value) level of ambiguity

this restriction is satisfied for our calibration/estimation. For concreteness, in

our estimation exercise we express this constraint as an upper bound on ρζ

and verify our estimate for ρε satisfies it.

B Proofs of Steady State Results

Proof of Result 2.1. In steady state, equation 6 becomes:

1

C
=

β 1
β
eζΠφ

CΠ
(32)

where 1
β

is the steady state value for the natural rate of interest. Simplify-

ing and rearranging delivers equation (20). The second part follows immedi-

ately.

33Indeed, the same condition could be derived from the formula for price dispersion in
equation (27).
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Proof of Proposition 2.2. V (µ, ω), as defined in equation (30), is continu-

ously differentiable around zero. Direct computation, or noting that the first-

best allocation is attained in our model when µ = 0, shows that ∂V(µ,ω)
∂µ

= 0.

Direct computation also delivers:

∂2V (µ, ω)

∂µ2

∣∣∣∣
µ=0

= − θ ((β − 1)2θ + ε(βθ − 1)2(1 + ψ))

(1− β)(θ − 1)2(βθ − 1)2(φ− 1)2(1 + ψ)(−1 + ρζ)2
(33)

All the terms are positive given the minimal theoretical restrictions we impose,

hence the second derivative is strictly negative, which completes the proof of

parts i. and ii..

Direct computation shows that the third derivative evaluated at µ = 0 can be

expressed as:

∂3V (µ, ω)

∂µ3

∣∣∣∣
µ=0

=
ε(2ε− 1)θ(1 + θ)

(1− β)(1− θ)3(φ− 1)3(1− ρζ)3
+R(β) (34)

Where, given our parameter restrictions, the first term on the RHS is positive

andR(β) is a term in β such that limβ→1−R(β) = 0. Hence, limβ→1−
∂3V(µ,ω)
∂µ3

∣∣∣∣
µ=0

=

+∞.

Moreover, ∂

(
∂3V(µ,ω)
∂µ3

∣∣∣∣
µ=0

)
/∂β exists, which ensures continuity of the third

derivative in β. Hence the third derivative is positive for any β sufficiently

close to but below unity.

A third-order Taylor expansion around zero can be used to show that, for a

generic small but positive µ0:

V (µ0, ω)− V (−µ0, ω) =
∂3V (µ, ω)

∂µ3

∣∣∣∣
µ=0

2µ3
0

6
+ o(µ4

0) > 0, (35)

So the steady state value function attains a lower value at −µ0 than it does

at at +µ0. This, combined with the absence of internal minima, delivers our

result under symmetry (µ = −µ).
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C Model Dynamics

To study the dynamic properties of our model, we log-linearize the equlibrium

conditions around the worst-case steady state. As explained in Ascari and

Ropele (2007), having price dispersion in steady state essentially results in an

additional term in the Phillips Curve. Appendix C.1 presents the log-linear

approximation around a generic steady state indexed by µ. By setting µ = −µ,

we obtain the log-linear approximation to the worst-case steady state (under

symmetry).

Armed with the solution of the log-linearized model, we can verify if the worst-

case indeed corresponds to our conjecture not only in steady state but also

around it.

Once we have verified our conjecture about the worst-case steady state,

we turn our attention to the implications of changes in the agents’ confidence

in their understanding of the monetary policy rule on the determinacy region

and we then study the effects of shocks to ambiguity.

C.1 Log-linearized Equations and Solution

In the equations below, lower-case letters34 represent log-deviations of variables

from a generic steady state indexed by µ.35 Setting µ to its worst-case steady

state value, one obtains the log-linear approximation around the worst-case

34We make an exception to this rule by using ∆̂t to refer to the log-deviation of the
price-dispersion term from its steady state as we use lower-case δ as a parameter.

35Where we refer to the numerator of equation (11) as Υt and to the denominator as
Γt and express both in recursive form as Υt = ε

ε−1MCt + βθEtΠε
t+1Υt+1 and Γt = 1 +

βθEtΠε−1
t+1Γt+1 respectively.
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steady state:

ct = Et [ct+1 − (rt − πt+1)] (36)

πt = κ0 (µ, ω)mct + κ1 (µ, ω)Etγt+1 + κ2 (µ, ω)Etπt+1 (37)

rt = (rnt + ζt+1) + φπt (38)

∆̂t = κ3 (µ, ω) ∆̂t−1 + κ4 (µ, ω) πt (39)

γt = κ5 (µ, ω)Etπt+1 + κ6 (µ, ω)Etγt+1 (40)

mct = wt − at (41)

wt = ct + ψnt (42)

yt = at − ∆̂t + nt (43)

ct = yt (44)

rnt = Etat+1 − at (45)

ynt = at (46)

at = ρaat−1 + uat (47)
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Where κ’s are known convolutions of deep parameters and the degree of am-

biguity, defined as:

κ0 (µ, ω) ≡

((
1

Π(µ,ω)

)ε−1

− θ
)

(1− βθΠ (µ, ω)ε)

θ
(48)

κ1 (µ, ω) ≡ β

((
1

Π (µ, ω)

)ε−1

− θ

)
(Π (µ, ω)− 1) Π (µ, ω)ε−1 (49)

κ2 (µ, ω) ≡ βΠ (µ, ω)ε−1

(
−θ(ε− 1)(Π (µ, ω)− 1) + (1− ε+ εΠ (µ, ω))

(
1

Π (µ, ω)

)ε−1
)

(50)

κ3 (µ, ω) ≡ Π(µ, ω)εθ (51)

κ4 (µ, ω) ≡ θε (Π (µ, ω)− 1)(
1

Π(µ,ω)

)ε−1

− θ
(52)

κ5 (µ, ω) ≡ (ε− 1)βθΠ(µ, ω)ε−1 (53)

κ6 (µ, ω) ≡ βθΠ(µ, ω)ε−1 (54)

The equations above can be summarized in the following system of four equa-

tions:

ỹt = Et [ỹt+1 − (φπt + ζt+1 − πt+1)] (55)

πt = κ0 (µ, ω)
(

(1 + ψ)ỹt + ψ∆̂t

)
+ κ1 (µ, ω)Etγt+1 + κ2 (µ, ω)Etπt+1

(56)

∆̂t = κ3 (µ, ω) ∆̂t−1 + κ4 (µ, ω) πt (57)

γt = Et (κ5 (µ, ω) πt+1 + κ6 (µ, ω) γt+1) , (58)

where we define ỹt ≡ yt − ynt = yt − at, the flex-price output gap.36 Moreover,

Et[ζt+1] = ρζζt − µ̃t under symmetric bounds, where µ̃t is the level of ambi-

36These equation make it transparent that technological shocks do not affect any of the
four variables in this system. This is common in models in which the natural rate enters
the policy rule. at will still play a role, though, in that consumption, and thus utility, will
respond to it.
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guity in deviation from its steady state level. In particular, we maintain that

ambiguity can vary over the business cycle according to:

mt = (1− ρµ)µ+ ρµmt−1 + uµt , (59)

and define m̂t = mt − µ.

In words, a positive shock uµt implies that ambiguity will be higher than

usual. This implies an expectation of monetary policy loosening (Et[ζt+1] =

ρζζt − m̃t falls), which ends up driving inflation above its worst-case steady

state level – which itself exceeds the inflation target.

C.2 Worst-Case around the Steady State

We now need to study welfare around the worst-case steady state. To preserve

analytical tractability we focus on the case in which hours enter felicity linearly

(ω ∈ Ω0) and follow a similar approach to that in Ilut and Scheider (2014),

section II. Namely:

i. Based on Result 2.2, we determine the worst-case steady state, i.e. µ =

−µ under symmetry.

ii. We then solve for the linear policy functions, thus getting a mapping from

the state of the economy st = (∆̂t−1, ζt, at, m̂t)
37 onto all the endogenous

variables of interest, most notably ct and nt, which determine welfare.

iii. We then verify whether welfare is increasing in ζt, consistent with the

guess that the worst-case scenario is that in which its expectation takes

the lower value on the range (−µ).

If hours enter felicity linearly (ψ = 0), the price dispersion term drops out

of equation (56). As a result, while price dispersion still affects hours worked

and thus welfare, it does not enter the policy functions for inflation, the output

gap and the forward-looking term γt. Moreover, the presence of the natural

37Under symmetry, we do not need to keep track of variations in mt and mt separately,
hence the state of the economy is smaller.
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rate in the policy rule, implies that technology also does not affect any of these

variables (while affecting welfare via consumption and hours).

Policy functions for these variables are thus linear functions in (ζt, m̂t),

where we use λ’s to denote the coefficients, which can be computed analytically

in this case using the method of undetermined coefficients.

For this particular exercise, the only relevant coefficients are those pertain-

ing to ζt so we only report the expressions for them:

πt = λπζζt + λπµm̂t λπζ ≡
−κ0ρ

ζ

(1− ρζ)
(

1 + (φ−ρζ)κ0
1−ρζ − ρζ

(
κ2 + ρζκ1κ5

1−ρζκ6

))
(60)

ỹt = λyζζt + λyµm̂t λyζ ≡
ρζ +

(
φ− ρζ

)
λπζ

1− ρζ
(61)

γt = λFζζt + λFµm̂t λFζ ≡
ρζκ5λπζ
1− ρζκ6

(62)

∆̂t = κ3∆̂t−1 + κ4

(
λπζζt + λπµm̂t

)
(63)

where κ’s are defined in equations (48)-(54).

Using the expressions in Section C.1 we can then out the policy functions for

consumption and hours:

ct = ỹt + at = λyζζt + λyµm̂t + at (64)

nt = ct − at + ∆̂t = ỹt + ∆̂t = λyζζt + λyµm̂t + κ3∆̂t−1 + κ4

(
λπζζt + λπµm̂t

)
(65)

Turning to the value function, we can express it using the policy functions, as:

V
(

∆̂t−1, ζt, at, m̂t

)
= log ((1 + ct)C(−µ, ω))− (1 + nt)N (−µ, ω) + βEtV

(
∆̂t, ζt+1, at+1, m̂t+1

)
(66)

V
(

∆̂t−1, ζt, at, m̂t

)
= [log (C(−µ, ω))−N (−µ, ω)] + log (1 + ct)− ntN (−µ, ω) + βEtV

(
∆̂t, ζt+1, at+1, m̂t+1

)
(67)

V
(

∆̂t−1, ζt, at, m̂t

)
= u

(−→
C (−µ, ω)

)
+ log (1 + ct)− ntN (−µ, ω) + βEtV

(
∆̂t, ζt+1, at+1, m̂t+1

)
(68)

48



We can then define dV
(

∆̂t−1, ζt, at, m̂t

)
≡ V

(
∆̂t−1, ζt, at, m̂t

)
− V (−µ, ω),

which can be expressed as:

dV
(

∆̂t−1, ζt, at, m̂t

)
= log (1 + ct)− ntN (−µ, ω) + βEtdV

(
∆̂t, ζt+1, at+1, m̂t+1

)
(69)

dV
(

∆̂t−1, ζt, at, m̂t

)
= ct − nt + βEtdV

(
∆̂t, ζt+1, at+1, m̂t+1

)
(70)

dV
(

∆̂t−1, ζt, at, m̂t

)
= at − ∆̂t + βEtdV

(
∆̂t, ζt+1, at+1, m̂t+1

)
(71)

dV
(

∆̂t−1, ζt, at, m̂t

)
= at − κ3∆̂t−1 − κ4λπζζt − κ4λπµm̂t + βEtdV

(
∆̂t, ζt+1, at+1, m̂t+1

)
(72)

The result38 clearly illustrates how, to a first-order approximation, welfare

around the worst-case steady state moves with the difference between con-

sumption and hours worked (equation (70)) which, in turn can be expressed

as the difference between the level of technology and that of price disper-

sion (equation (71)). This is obvious if one considers the resource constraint:

Ct = At
∆t
Nt. Both At and ∆t act as wedges between the level of consumption

and that of hours, though they work in opposite directions.

Moreover, while At is completely exogenous, ∆t is a discounted sum of past

deviations of inflation from steady state. As demonstrated in Proposition 2.4,

λπζ < 0. On the other hand, κ4 > 0 when Π (µ, ω) > 1, as is the case in the

worst-case steady state under symmetry39.

This means that a lower value for ζt will lead to an increase in inflation

(it is a loosening in the monetary policy stance), which results in an increase

in the price dispersion index for the foreseeable future (κ3 > 0). As a result,

lower ζt will result in a lower level of welfare, which illustrates how welfare

is increasing in ζt, so that a pessimistic agent would act on the assumption

that ζt will be lower in the future. Which is the conjecture we make when we

assume that the expectation distortion µt equals −µt at all times so long as

38We use the Taylor approximation for log(1+ct) and the fact that N (−µ, ω), as defined
in (28), is extremely close to one for reasonable values for µ.

39Notice that the condition presented in equation (31) implies that θΠ (µ, ω)
ε
< 1. When

Π (µ, ω) > 1, θΠ (µ, ω)
ε−1

< θΠ (µ, ω)
ε
< 1 so the condition in equation (31), which we is

necessary for hours worked in steady state to be positive, implies that the denominator of
equation (52) is positive.
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the symmetry assumption (µ = −µ) holds.

Two more remarks are in order. First, if one was to approximate the

economy around the ergodic steady state instead, the argument would still

go through. The key parameter in equation (72) is κ4. So long as the (gross)

steady state level of inflation around which the model is approximated is larger

than one, κ4 > 0. Proposition 2.4 implies that the (gross) ergodic steady state

level of inflation exceeds unity whenever the worst-case does. The sign of κ4

would thus be positive even if the model was log-linearized around the ergodic

steady state, thus implying that welfare would still be increasing in ζt.

Second, when |µ| << |µ| so that worst case inflation is Π (µ, ω) < 1, κ4 < 0

and the welfare function is decreasing in ζt, verifying the maintained conjecture

that µt = µt at all times under those circumstances.

C.3 Proof of Proposition 2.3

We report the proof for the case in which µ = µ = −µ (i.e. the symmetry

case). But the same steps apply when in the worst-case µ = µ.

We can collect the relevant set of variables in deviation from their worst-

case steady state in a vector xt =
[
ỹt πt ∆̂t Γt ζt at m̂t

]′
and the

innovations in a vector ut =
[
uζt uat uµt

]′
.

The law of motion for xt around the worst case steady state (xW ) can be

represented as:

xt =



0 0 0 0 ρζλyζ ρaλya ρµλyµ

0 0 0 0 ρζλπζ ρaλπa ρµλπµ

0 0 κ3 0 ρζκ4λπζ ρaκ4λπa ρµκ4λπµ

0 0 0 0 ρζλFζ ρaλFa ρµλFµ

0 0 0 0 ρζ 0 −1

0 0 0 0 0 ρa 0

0 0 0 0 0 0 ρµ


xt−1 +



λyζ λya λyµ

λπζ λπa λπµ

κ4λπζ κ4λπa κ4λπµ

1 0 0

0 1 0

0 0 1


ut

(73)
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Or, more compactly:

xt = Axt−1 +Rut (74)

Equation (74) governs the dynamic around the worst-case steady state. We

define the ergodic steady state (x) starting from this representation of the

economy, as in Ilut and Schneider (2014), and correcting for the fact that the

realizazions for ζt differ from those expected in the previous period by a factor

µt−1:

x = xW + (I − A)−1R

 µ

0

0

 . (75)

We can then compute the ergodic steady state for inflation analytically by

defining B ≡ I−A and noting that we only need the second row of B−1 which

we can define as a row vector w such that:

wB =
[

0 1 0 0 0 0 0
]

(76)

Direct computation shows that:

w =

[
0 1 0 0

ρζλπζ
1−ρζ

ρaλπa
1−ρa

ρµλπµ−
ρζλπζ

1−ρζ

1−ρµ

]
(77)

And finally:

wR

 µ

0

0

 = µλπζ +
µλπζρ

ζ

1− ρζ
=

µλπζ
1− ρζ

(78)

Which defines the ergodic steady state realtive to its worst-case counterpart

πW . Since in the worst-case under symmetry µ = −µ,
µλπζ
1−ρζ = −µλπζ

1−ρζ .
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C.4 Proof of Proposition 2.4

In a neighborhood of µ = 0 we can approximate the expression for π in (21)

with its first-order Taylor expansion:

π (µ, ω) = π (0, ω) +
∂π

∂µ

∣∣∣∣
µ=0

µ =
∂π

∂µ

∣∣∣∣
µ=0

µ (79)

Where:

∂π

∂µ

∣∣∣∣
µ=0

=

(
− 1

1− ρζ

[
1

φ− 1
+ λπζ (µ, ω)

]
− µ

1− ρζ
∂λπζ (µ, ω)

∂µ

)∣∣∣∣
µ=0

(80)

= − 1

1− ρζ

[
1

φ− 1
+ λ∗πζ

]
(81)

where we define λ∗πζ ≡ λπζ (0, ω) .

From equations (48) - (54) it is immediate to notice that as µ→ 0:

κ0 →
(1− θ) (1− βθ)

θ
(82)

κ1 → 0 (83)

κ2 → β (84)

κ6 → βθ (85)

So λ∗πζ = 1

1− φ

ρζ
−
θ(1−βρζ)(1−ρζ)
ρζ(1−βθ)(1−θ)

.

Moreover:

∂λ∗πζ
∂θ

=
ρζ (1− βθ)

(
1− ρζ

) (
1− βρζ

)
((θ − ρζ) (1− βθρζ)− (1− θ) (1− βθ)φ)2 > 0 ∀ω ∈ Ω0 (86)

∂λ∗πζ
∂ρζ

= −
(1− θ) (1− βθ)

(
θ
(
1− β(ρζ)2

)
+ (1− θ) (1− βθ)φ

)
((θ − ρζ) (1− βθρζ)− (1− θ) (1− βθ)φ)2 < 0 ∀ω ∈ Ω0

(87)

∂λ∗πζ
∂β

=
ρζθ (1− θ)

(
1− ρζ

) (
θ − ρζ

)
((θ − ρζ) (1− βθρζ)− (1− θ) (1− βθ)φ)2 (88)
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So λ∗πζ is continuous and monotonic in θ and ρζ . It is also weakly monotonic

in β: increasing if θ > ρζ > 0, flat if θ = ρζ and decreasing otherwise. So we

only need to check the extremes:

λ∗πζ →



− ρζ

φ−ρζ as θ → 0

0 as θ → 1

0 as ρζ → 0

− 1
φ−1

as ρζ → 1

(89)

1

1− φ
ρζ
− θ(1−ρζ)(1−ρζ)

ρζ(1−θ)(1−θ)

→



− ρζ

φ−ρζ as θ → 0

0 as θ → 1

0 as ρζ → 0

− 1
φ−1

as ρζ → 1

(90)

1

1− φ
ρζ
− θ(1−ρζ)

ρζ(1−θ)

→



− ρζ

φ−ρζ as θ → 0

0 as θ → 1

0 as ρζ → 0

− 1
φ−1

as ρζ → 1

(91)

Where the second and third expressions are the limits for λ∗πζ as β tends to 1

and to 0, respectively.

So − 1
φ−1

< λ∗πζ < 0.

Given our definition for λ∗πζ , this proves point i..

Using these inequalities in equation (80) proves that ∂π
∂µ

∣∣∣∣
µ=0

< 0, i.e. the

ergodic steady state level of inflation is decreasing in µ. πW = − µ
(1−ρζ)(φ−1)

is

also clearly decreasing in µ. Which proves point ii..

Finally − 1
φ−1

< λ∗πζ < 0 implies that:

0 >
∂π

∂µ

∣∣∣∣
µ=0

= − 1

1− ρζ

[
1

φ− 1
+ λ∗πζ

]
>
∂πW

∂µ
= − 1

(1− ρζ)(φ− 1)
(92)

Which means that while both πW and π are negatively related to µ, the former
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responds more than the latter to changes in µ. Which proves point iii. when

we consider that cases µ = −µ < 0 and µ = µ > 0.

D Estimation

D.1 Alternative estimation specification

Table 2 reports estimation results when we relax the restriction φ = 1.5.

Importantly, while estimates are more sensitive to the choice of the inflation-

expectations series, all estimates are well within the acceptable range.

In particular, the estimates for φ range between 1.44 and 1.74, while those

for ρζ between .69 and .82. These estimates also highlight the identification

issues mentioned in the main body. Namely, higher values for φ associate

with higher values for ρζ . That is because, for a given level of zµt , higher

φ pushes down the model-implied value for worst-case steady state inflation,

while higher ρζ pushes the same value up. As a result, the two effects can

easily compensate, thus making identification weaker - the identification relies

on the differing effects these two parameters have on λπζ (zµt , ω).

The variation in the estimates for θ is more puzzling. When we consider

the confidence intervals, however, it becomes apparent that it is primarily an

identification issue. In practice, this estimation suggests, that is really hard

to identify θ separately from φ with our two series.

Finally, Table 3 presents our estimates when we exclude the ZLB period

from our sample. They show that our estimates are not driven by the ZLB

period as estimates very close to those obtained from the full sample and also

close to one another.

D.2 Time-Series of the actual and fitted values for trend

inflation and inflation expectations

Figure 9 overlays the measures of trend inflation implied by our model and

our baseline estimate for the CPI inflation trend, along with the Cleveland
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Table 2:
Cleveland Fed 10Y Blue Chip 5-10Y SPF 10Y Michigan Survey 5-10

φ 1.437 1.741 1.6737 1.444
(1.343,2.000) (1.378,2.037) (1.377,2.589) (1.361,2.115)

θ 0.266 0.792 0.7462 0.286
(0.141,0.814) (0.269,0.846) (0.276,0.930) (0.139,0.858)

ρζ 0.695 0.824 0.7745 0.707
(0.581,0.870) (0.735,0.904) (0.722,0.928) (0.688,0.894)

No of obs. 129 65 97 115+14†

Sample period 1983Q4-2015Q4 1983H2-2015H2 1991Q4-2015Q4 1983Q4-2015Q4

Estimates of φ, θ and ρζ obtained using different measures of long-run inflation expectations.
We indicate in parentheses the 95% confidence intervals obtained by bootstrapping, using
the moving block method proposed by Künsch (1989) for dependent data. The length of
the blocks is of 4 quarters, but we experimented with different block length and found that
the results are robust to the choice of block length.
†: The series comprises biannual observations over 1983Q4-198Q4 and quarterly observations
over 1986Q1-1987Q4 and 1990Q2-2015Q4, for a total of 115 observations. Data for the
remaining 14 quarters has been generated by interpolation.

Fed’s measure of inflation expectations and the long-run inflation expectations

implied by the model.

As mentioned in the main body of the text, our estimate for long-run

inflation expectations undershoots the outturn for a number of years in the

1990s, which is mostly attributable to the fact that our inflation target of 2

percent is defined in terms of PCE inflation, which is on average lower than

CPI inflation.

Also, we can note a short-lived period around the onset of the Great Reces-

sion when our model read the increase in uncertainty as pushing up on inflation

expectations until rates fell to the point when the [µ, µ] became asymmetric

thus changing the direction in which inflation moves in response to an in in-

crease in Knightian uncertainty.

All things considered, though, we find that the model-implied trend in-

flation does a good job at capturing the decline in the secular component of

inflation in the data, the fact that, over recent years, the inflation trend fell

below the 2% mark, while also helping us to make sense of the progressive

reduction of the wedge between inflation expectations and trend inflation.
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Table 3:
Cleveland Fed 10Y Blue Chip 5-10Y SPF 10Y Mich 5-10Y

θ 0.553 0.5834 0.660 0.578
(0.536,0.653) (0.390,0.677) (0.643,0.804) (0.489,0.690)

ρζ 0.745 0.7395 0.657 0.763
(0.704,0.778) (0.732,0.790) (0.636,0.760) (0.732,0.807)

No of obs. 98 51 66 84+14†

Sample period 1983Q4-2008Q1 1983H2-2008H1 1991Q4-2008Q1 1983Q4-2008Q1

Estimates of θ and ρζ obtained using different measures of long-run inflation expectations
for the pre-crisis sample, i.e. until 2008Q1. We indicate in parentheses the 95% confidence
intervals obtained by bootstrapping, using the moving block method proposed by Künsch
(1989) for dependent data. The length of the blocks is of 4 quarters, but we experimented
with different block length and found that the results are robust to the choice of block
length.
†: The series comprises biannual observations over 1983Q4-198Q4 and quarterly observations
over 1986Q1-1987Q4 and 1990Q2-2008Q1, for a total of 84 observations. Data for the
remaining 14 quarters has been generated by interpolation.

E Optimal Policy

E.1 Useful Lemmas

With a slight abuse of notation we use ω to refer to all parameter values but

φ in the following Lemma and in other similar circumstances in this section

when we want to study the effects of φ while keeping the other parameters

fixed.

Lemma E.1. For any ω ∈ Ω and µ, a small positive number, given any pair

(µ, φ) ∈ [−µ, 0) × (1,∞), for any µ′ ∈ [µ, 0) there exists φ′ ∈ (1, ∞) such

that:

V(µ, φ′, ω) = V(µ′, φ, ω)

And φ′ ≥ φ iff µ′ ≥ µ.

A corresponding equivalence holds for µ ∈ (0, µ].

Proof. Inspection reveals that µ and φ only enter steady-state welfare through

the steady-state inflation term Π(µ, ω) = e
µ

(1−φ)(1−ρζ) . It follows immediately

that, for a given µ′, φ′ = 1 + (φ−1)µ
µ′

implies that (µ, φ′) is welfare equivalent to
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Figure 9: Trend inflation and inflation expectations implied by our measure
of disagreement
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(µ′, φ). (µ, µ′) ∈ [µ, 0) × [µ, 0) ensures that µ′ · µ > 0 and so φ′ ∈ (1,∞) for

any φ > 1. The inequalities follow immediately from the definition of φ′ given

above and the fact that both µ and µ′ are both negative.

A similar argument would go through for (µ, µ′) ∈ (0, µ]× (0, µ].

Lemma E.2. Define Vδ (µ, δ, ω) to be the welfare function of an economy

identical to that described in Section 2 except for the fact that the policy rule

has a constant term δ entering as follows:

Rt =
(
Rn
t e

ζt+1eδ
)

(Πt)
φ (93)

Then Vδ (), for a generic value µ, can be expressed as a function of welfare in

the baseline economy for a different value of µ in the following way:

Vδ (µ, δ, ω) = V
(
µ+ δ̃, ω

)
(94)

where δ̃ ≡
(
1− ρζ

)
δ.
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Proof. The computation of the steady state of the model in Section A reveals

that the steady state in this model can be thought of as expressing all the

variables as a function of steady state inflation and steady state inflation as

a function of µ, because µ only enters the model via the steady state level of

inflation. The same is true of δ.

Substituting equation (93) for equation (13) and following the Proof of Result

2.1 yield the following steady state value for inflation:

Π (µ, δ, ω) = e
− µ

(φ−1)(1−ρζ)
− δ
φ−1 = e

− µ+δ̃

(φ−1)(1−ρζ) (95)

This level of steady state inflation (and consequently of welfare) is equivalent

to that in the original economy for a value µ′, where µ′ = µ+ δ̃.

Lemma E.3. Assuming that V(µ, ω) takes only real values over some interval

(m,m) such that m > µ > 0 > µ > −m, is continuously differentiable, strictly

concave and attains a finite maximum at µ = µ0 ∈ (m,m); then the level of δ̃

that maximizes worst-case steady-state welfare is implicitly defined as:

δ̃∗(µ, µ) : V
(
µ+ δ̃∗(µ, µ), ω

)
= V

(
µ+ δ̃∗(µ, µ), ω

)
(96)

Proof. Given Lemma E.2 we can use the welfare function for the original econ-

omy and its properties derived in Proposition 2.2.

First, note that strict concavity ensures µ0 is the unique maximum.

Second, consider the following cases:

1. µ0 ∈ (µ, µ): then V′(µ, ω) > 0 > V′(µ, ω)

a. V(µ, ω) < V(µ, ω). Together with strict concavity this implies that

the minimum (or worst-case) over [µ, µ] is µ. Then there exists a

small δ̃ > 0 such that

V(µ, ω) < V(µ+ δ̃, ω) < V(µ+ δ̃, ω) < V(µ, ω).
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So now the worst case µ+ δ̃ generates a higher level of welfare. The

worst-case welfare can be improved until the second inequality above

holds with equality. Continuity ensures such a level of δ̃∗ exists. Our

assumptions also ensure that µ0 − µ > δ̃∗40, because if µ + δ̃ = µ0,

V(µ+ δ̃) = V(µ0) which is a unique maximum so the equality cannot

hold. This, in turn ensures that V′(µ+ δ̃∗) > 0 > V′(µ+ δ̃∗). Hence,

any further increase in δ̃ would make µ+ δ̃ the worst case and welfare

at the worst-case would fall.

b. V(µ, ω) > V(µ, ω). Together with strict concavity, this implies that

the minimum is attained at µ. Then there exists a small enough

δ̃ < 0 such that:

V(µ, ω) < V(µ+ δ̃, ω) < V(µ+ δ̃, ω) < V(µ, ω)

By the same arguments as above µ0 − µ < δ̃∗ < 0 makes the second

inequality hold with equality and attains the higher level of welfare.

c. V(µ, ω) = V(µ, ω). Any δ̃ 6= 0 would lower the worst-case welfare:

δ̃∗ = 0.

2. µ0 ∈ [µ,m). Strict concavity implies that welfare is strictly increasing

over [µ, µ] and µ mimizes welfare over that range. For all 0 ≤ δ̃ ≤ µ0− µ

V(µ, ω) ≤ V(µ+ δ̃, ω) < V(µ+ δ̃, ω) ≤ V(µ0, ω)

The second inequality will always be strict. For δ̃ just above µ0 − µ the

logic of case 1a above applies and δ̃∗ can be determined accordingly.

3. µ0 ∈ (m,µ]. Strict concavity implies that welfare is strictly decreasing

over [µ, µ] and µ mimizes welfare over that range. For all 0 ≥ δ̃ ≥ µ0− µ

V(µ0, ω) ≥ V(µ+ δ̃, ω) > V(µ+ δ̃, ω) ≥ V(µ, ω)

The second inequality will always be strict. For δ̃ just below µ0 − µ the

40Clearly µ0 − µ > 0, since µ0 > µ in this case.
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logic of case case 1b above applies and δ̃∗ can be determined accordingly.

E.2 Proof of Proposition 4.1

Lemma E.2 applies so we will use the welfare function of the original economy.

Then, the proof of static optimality proceeds in two steps by first findind the

optimal value of φ given assumptions on the welfare function and on δ̃ and

then verifying that for φ, the conjectures made in the previous point hold.

i. Suppose that V(−µ+ δ̃, ω) corresponds to the worst-case steady-state wel-

fare for some δ̃ ∈ (0, µ), then φ = φ maximizes worst-case welfare over

[φ, φ].

Following the same logic as in Lemma E.1, but using the expression in

equation (95) for inflation, it is easy to verify that for any 1 < φ′ < φ,

there exists a µ′ s.t.:

V
(
µ′ + δ̃, φ′, ω

)
= V

(
−µ+ δ̃, φ, ω

)
(97)

In particular:

µ′ = −µ
(
φ′ − 1

φ− 1

)
− δ̃

(
1− φ′ − 1

φ− 1

)
(98)

Given our parameter restrictions, this implies that 0 > −δ̃ > µ′ > −µ.

In our economy V(0, ω) corresponds to the maximum, so the argmax

µ = −δ̃. Together with strict concavity (Proposition 2.2), this implies

that, in this case, V() strictly increasing for µ < −δ̃, hence:

V
(
−µ+ δ̃, φ, ω

)
= V

(
µ′ + δ̃, φ′, ω

)
> V

(
−µ+ δ̃, φ′, ω

)
(99)

which implies that φ maximizes welfare over [φ, φ] for φ > 1 which we

maintain throughout (equation (19)).
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ii. 0 < δ̃∗ < µ defined by V
(
−µ+ δ̃∗, ω

)
= V

(
µ+ δ̃∗, ω

)
maximizes worst-

case welfare for φ = φ.

Proposition 2.2 guarantees that our welfare function satisfies the assump-

tions of Lemma E.3 in a neighborhood of zero.

To find the bounds on δ̃∗, note that for µ > 0 and µ = −µ, Propo-

sition 2.2 also implies that the maximum µ0 = 0 is interior and that

V(µ, ω) < V(µ, ω). So, case 1a of the proof of Lemma E.3 applies, which

implies that µ0 − µ = µ > δ̃∗ > 0. These considerations apply for any

φ > 1, thus also for φ.

E.3 Proof of Corollary 4.1

Following the same approach as for Proposition 4.1

i. Suppose that V(µ + δ̃, ω) corresponds to the worst-case steady-state wel-

fare for some δ̃ ∈ (−µ, 0), then φ = φ maximizes worst-case welfare over

[φ, φ].

For any 1 < φ′ < φ, there exists a µ′ s.t.:

V
(
µ′ + δ̃, φ′, ω

)
= V

(
µ+ δ̃, φ, ω

)
(100)

In particular:

µ′ = µ

(
φ′ − 1

φ− 1

)
− δ̃

(
1− φ′ − 1

φ− 1

)
(101)

Given our restrictions, this implies that 0 < −δ̃ < µ′ < µ.

V() is strictly decreasing for µ > −δ̃, hence:

V
(
µ+ δ̃, φ, ω

)
= V

(
µ′ + δ̃, φ′, ω

)
> V

(
µ+ δ̃, φ′, ω

)
(102)

ii. 0 > δ̃∗ > −µ defined by V
(
µ+ δ̃∗, ω

)
= V

(
µ+ δ̃∗, ω

)
maximizes worst-
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case welfare for φ = φ.

V(µ, ω) > V(µ, ω) and for µ < 0 and µ > 0 the welfare maximum µ0 = 0

is in the interior. This corresponds to case 1b of the proof of Lemma E.3,

which implies that µ0 − µ = −µ < δ̃∗ < 0.

E.4 Corollary: general applicability of the optimality

result in Proposition 4.1

Corollary E.1. A monetary policy rule with the same functional form as that

in Proposition 4.1 can attain the same level of steady-state welfare as any other

generic rule for a suitably high level of φ.

Proof. We will focus on the symmetric case µ = −µ but the logic is the same

for cases in which the worst-case steady state corresponds to µ. Moreover, this

sufficient condition can be derived even for δ = 0, so we will assume that for

expositional simplicity. Setting δ optimally will simply make the suitably high

level of φ somewhat lower.

Consider any policy plan delivering utility v0 in steady state. Suppose

that is welfare-superior to the policy currently in place V(−µ, φ, ω) < v0 ≤
V(0, φ, ω), where the latter is the first-best allocation.

Proposition 2.2 ensures that welfare is strictly increasing and continous for

µ < 0 so there exists a µ′, −µ < µ′ ≤ 0, s.t. V(µ′, φ, ω) ≥ v0. Lemma E.1 then

ensures there also exists φ′ s.t. V(−µ, φ′, ω) = V(µ′, φ, ω). So for any φ ≥ φ′

a policy rule of the form in equation (93) can attain at least the same level of

steady state welfare as the generic alternative under consideration.
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