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Abstract

In generic two-player finitely repeated games, if a particular outcome path
is induced by a set of equilibria that is stable in the sense of Mertens (Math-
ematics of Operations Research 1989, 14:575–625), then a member of that
set induces a renegotiation proof equilibrium of the continuation game after
the first period. It follows that such a stable outcome path yields the pay-
off of a renegotiation proof equilibrium as the number of repetitions of the
game goes to infinity. In this sense, any pure outcome consistent with Govin-
dan and Wilson’s (Econometrica 2012, 80:1639–1699) axioms—Undominated
Strategies, Backward Induction and Invariance to Embedding—is generically
renegotiation proof. Journal of Economic Literature Classification: C72.
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1 Introduction

The concept of “renegotiation proofness” is motivated by the idea that players should

“let bygones be bygones”; an equilibrium that leads to Pareto-dominated play in some

subgame should at that point be renegotiated away. By this account, although po-

tent, the punishment threatened by a “grim-trigger” strategy is incredible, since both

players would have an incentive to renegotiate continuation play. Strategic stability

(Kohlberg and Mertens 1986), meanwhile, offers an apparently quite different equi-

librium refinement; it highlights an equilibrium set’s robustness to Selten’s (1975)

“trembles” as key to the satisfaction of a number of desirable properties of such a

refinement. Whilst Kohlberg–Mertens stability unifies numerous resolutions of trou-

blesome behavior—such as the intuitive criterion (Cho and Kreps 1987) and univer-

sal divinity (Cho and Sobel 1990)—it nonetheless fails to satisfy connectedness and

backward induction, which led Mertens (1989, 1991) to develop a modified concept

without these drawbacks. Moreover, Govindan and Wilson (2012) recently achieved

Kohlberg and Mertens’ stated aim of giving stability a decision-theoretic axiomati-

zation, at least in finite two-player games; they showed that, if a refinement satis-

fies three axioms—Undominated Strategies, Backward Induction and Invariance to

Embedding—then each solution of a two-player game with perfect recall and generic

payoffs is a Mertens stable set. Since the converse holds in general, stability offers a

characterization of these axioms in the relevant class of games.

In this paper I show that, in generic two-player finitely repeated games, if a

particular outcome path is induced by a (Mertens) stable set of equilibria, then a

member of that set induces a renegotiation proof equilibrium of the continuation

game after the first period. Intuitively, under an appropriate choice of stability’s

embeddings (Govindan and Wilson 2012), a player may use a deviation to initiate

Pareto-improving play and observation of such a deviation may be interpreted as

a signal of such play. Thus, continuation play that fails renegotiation proofness is

destabilized in a manner reminiscent of forward induction. Osborne (1990) shows

forward induction to imply near efficiency of stable payoffs in certain repeated coor-

dination games, but the scope of his result is limited to games that lend themselves

to unambiguous signalling, in the sense that they admit a deviation with a unique

profitable continuation. This problem does not arise here, since the relevant embed-

ding game may be chosen to deliver the required unambiguous signalling. Indeed,
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whilst Govindan and Wilson (2009) show that a broader notion of forward induction

is implied by backward induction and a weak form of invariance, forward induction

alone does not imply my result, with Invariance to Embedding performing an inde-

pendent role. This is further illustrated by the insufficiency of Kohlberg–Mertens

stability for the result, which I demonstrate with an example of a Kohlberg–Mertens

(but not Mertens) stable set that fails to induce renegotiation proof continuations.

The restriction of renegotiation proofness to subgames after the first period is

important, allowing the players an opportunity to make the signalling deviation in

the first period. That the result cannot be extended to the full game is shown by Van

Damme’s (1988) two-period example of the inconsistency of renegotiation proofness

with stability.1 However, the renegotiation proofness of second-period continuation

play is enough for a stable outcome path to approach a renegotiation proof payoff

as the number of iterations of the game goes to infinity. Moreover, I argue that the

concept of renegotiation proofness might reasonably be redefined without first-period

Pareto efficiency, since it is not called “negotiation proofness”; a pure outcome’s con-

sistency with Govindan and Wilson’s (2012) axioms would then imply renegotiation

proofness in generic two-player repeated games of any finite length.

Related literature The Folk Theorem for finitely repeated games (Benôıt and

Krishna 1985) establishes an inherent unpredictability in games with multiple equi-

librium payoffs for each player, and yet efficiency is often thought to be focal in

such games. Kohlberg and Mertens (1986) argue that single-valued solution concepts

such as Nash and subgame perfect equilibrium miss important aspects of rational

decision-making in games that are captured by their set-valued notion of stability.

As mentioned above, the refinement possibilities of stability have previously been

highlighted in certain finitely repeated coordination games, where Osborne (1990)

shows that, among the set of pure outcome paths that consist of sequences of one-

shot Nash equilibria, only those with nearly Pareto efficient payoffs are stable.2 But

whilst this delivers sharp predictions in certain 2 × 2 stage games, his results lose

force when each player has more than two actions, when equilibrium paths contain

1See Ferreira (1995), however, for an argument that the two concepts can be reconciled even in
such cases. For a more applied exploration of the possible inconsistency of stability and renegotiation
in a sequential signalling game, see Gale and Hellwig (1989).

2Van Damme (1989) also offers examples of the sometimes dramatic effects of stability in finitely
repeated games.
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outcomes that are not stage Nash equilibria, and when the game is asymmetric.3

Whilst there are numerous competing notions of renegotiation proofness in in-

finitely repeated games (Farrell and Maskin 1989; Bernheim and Ray 1989; Bergin

and Macleod 1993; Pearce 1987; Abreu and Pearce 1991), the concept’s definition

has been uncontroversial in finitely repeated games (Farrell 1983; Bernheim and Ray

1989; Van Damme 1988; Benôıt and Krishna 1993). It has important applications,

such as Maskin and Tirole’s (1988) renegotiation proof collusive outcome in a dynamic

price-setting duopoly, and MacLeod and Malcomson’s (1989) analysis of employment

contracts when employee performance is unverifiable. Matsuyama (1990) uses it to

eliminate an unappealing equilibrium of a trade liberalization game, whilst Pearce

and Stacchetti (1997) and Matsuyama (1997) conduct renegotiation proof analyses

of classic macroeconomic time inconsistency problems. The concept has also re-

ceived some recent attention in the form of “renegotiation proof mechanism design”

(Strulovici 2017; Silva 2019).

2 Example

Consider the example of Osborne (1990) where two players play the game G1 in

Figure 1 twice. This repeated game has a subgame perfect equilibrium outcome

path ((A,A), (A,A)) with a payoff of 2 for each player. Osborne makes the following

forward induction argument for the instability of this path: If player 1 deviates by

playing B in period 1, the only second-period outcome yielding player 1 a payoff

greater than 2 is (B,B). Thus, player 2 can deduce from such a deviation that player

1 will play B in period 2, so that it is better for player 2 to play B in period 2. Hence,

player 1 can get a payoff of 3 by deviating from the equilibrium path, destabilizing

it.

Osborne’s (1990) results generalize this example but with some important restric-

tions on the game, needed to afford player 1 an unambiguous signal of his intended

continuation play following a deviation; namely, that there is only one continuation

3In infinitely repeated games, Aumann and Sorin (1989) select the optimal outcome of a two-
player game of common interests using a tremble in which every strategy with finite memory is used
with positive probability. Anderlini and Sabourian (1995) obtain a similar result for trembling-hand
perfect equilibrium of two-player common interest games in computable pure strategies. Norman
(2018) shows that strategies with inefficient stage Nash continuations are vulnerable to experimen-
tation with efficient play, and hence are strategically unstable for two arbitrarily patient players.
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Figure 1: The game G1

path yielding player 1 a higher payoff than the putative equilibrium path, and that

player 2 cannot benefit from any outcome path resulting from her own deviation from

the continuation. As a consequence, the results lose force when the players have more

than two actions each period, when equilibrium paths contain outcomes that are not

stage Nash equilibria, and when there is conflict over what is the best outcome (i.e.

the game is asymmetric). Here I use a more general instability argument to remove

these limitations.4

Consider any member q∗ of the component Q∗ of equilibria with outcome path

((A,A), (A,A)).5 Player i’s strategy q∗i plays B with probability at most 1/4 follow-

ing the opponent j 6= i playing B in the first period. Let pi be a strategy that plays B

initially, then B following the opponent’s A. The strategy q∗i is a best reply to q∗j , but

not to pj; the strategy that plays A initially, then the first-period action of the oppo-

nent, is lexicographically optimal (Blume, Brandenburger, and Dekel 1991; Govindan

4However, a limitation of Osborne’s results that remains in the present context arises when
equilibrium paths involve randomization, since any completely mixed strategy equilibrium is auto-
matically stable.

5The appeal of components is conferred by the Generic Finiteness Theorem (Kreps and Wilson
1982; Kohlberg and Mertens 1986; Govindan and Wilson 2001), which states that the Nash equilibria
of a generic extensive-form game induce a finite number of outcome distributions over the terminal
nodes. This implies that each equilibrium in a connected set generates the same outcome, so
that connectedness provides a natural notion of equivalence in which equilibrium components are
the unit. In this capacity, connectedness substitutes for the minimality requirement of Kohlberg–
Mertens stability, which Mertens (2003, §4.2.6) shows to be inconsistent with ordinality.
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and Klumpp 2002) against the sequence (q∗j , pj). Hence, there is a deviation from

equilibria in Q∗ against which elements of Q∗ are not lexicographically optimal, which

provides the basis for establishing that Q∗ is not stable by Govindan and Wilson’s

(2012) Theorem 5.2. Their characterization of stability requires Invariance to Em-

bedding the game in a range of larger games, with Backward Induction then requiring

that a player’s strategies must be lexicographically optimal against such sequences of

opponent’s strategies; here, the possibility of a player deviating to Pareto-improving

play serves to destabilize the putative equilibria’s off-equilibrium-path play.

But we need not stop here. Consider Osborne’s (1990, §6a) coordination game

G(α1, . . . , αm, β), where m + 1 pure strategies A1, . . . , Am, B are associated with di-

agonal payoffs α1, . . . , αm, β for β > αm ≥ · · · ≥ α1 ≥ 0. His near-efficient stability

result applies to this game only if α1 and αm are sufficiently close, otherwise a de-

viation need not be an unambiguous signal of the deviator’s intended continuation

play (in the presence of multiple Pareto-improving continuations). But there is no

reason why we may not apply the destabilizing argument from the last paragraph

here, effectively disambiguating the deviator’s signal with the choice of a particular

Pareto-improving continuation under p (and hence the relevant embedding of the

game). For instance, any path ((Ak, Ak), (Ak, Ak)), k ∈ 1, . . . ,m, is destabilized by a

deviation pi that plays B initially, then B following the opponent’s Ak. Thus, careful

choice of stability’s embeddings can serve to disambiguate signals of Pareto-improving

play more generally than in Osborne (1990). In particular, it can do so whenever

there exists a proper subgame in which there is a Pareto-improving continuation.

The absence of such a subgame in a T -fold repeated game implies that continuation

play after the first period is renegotiation proof; hence, as T → ∞, stable outcomes

approach renegotiation proofness.

3 The Model

The model is essentially that of Govindan and Wilson (2012), applied to the setting of

finitely repeated games. Let G = (A1, A2;u1, u2) be a two-player normal-form game,

where Ai is player i’s finite action set and ui : A1×A2 → R is his payoff function. Let

u ≡ u1×u2 be the payoffs and A ≡ A1×A2 the set of outcomes of G. Let G(T ) be the

game where G is played T times in succession. An outcome path ~a = (a1, a2, . . . , aT )

yields the payoffs
∑T

t=1 u(at). For K < T , let hK = (a1, a2, . . . , aK) be a K-period
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history of play, belonging to the set of allK-period historiesHK , withH ≡
⋃T

K=1H
K .

Player i’s pure strategy si is a function mapping each history in H to an element of

Ai. A strategy profile s ≡ s1 × s2 induces an outcome at(s) for each t, and payoffs

U(s) =
∑T

t=1 u(at(s)). Let s|hK be the pure strategy profile induced by s on the

subgame G(T − K) following hK . A strategy of player i that follows the outcome

path ~a so long as player j 6= i does so is consistent with ~a.

Denote i’s simplex of mixed strategies by Σi, the vertices of which constitute the

set Si of i’s pure strategies, and extend each Ui to be i’s multilinear expected payoff

function on Σ ≡ Σ1 × Σ2. Each mixed strategy σi induces a behavioral strategy

bi, specifying a mixture over i’s actions following each history. Let Bi be i’s set of

behavioral strategies. Assume that the game G(T ) has perfect monitoring; hence,

each behavioral strategy profile is induced by (and yields the same distribution of

outcomes as) certain equivalent profiles of mixed strategies (Kuhn 1953).

Renegotiation proofness (Farrell 1983; Van Damme 1988; Bernheim and Ray 1989;

Benôıt and Krishna 1993) is defined inductively in finitely repeated games: A strategy

profile is renegotiation proof in G(1) if it is a Nash equilibrium of G that is not

(strictly) Pareto dominated by another equilibrium. The pure strategy profile s is

then renegotiation proof in G(T + 1) if:

i. it is a Nash equilibrium of G(T + 1);

ii. s|h1 is renegotiation proof in G(T ) for all h1 ∈ H1; and

iii. there does not exist ŝ satisfying i and ii that strictly Pareto dominates s.

Clearly a renegotiation proof strategy profile is a subgame perfect equilibrium.

Let X be the set of nodes in the extensive form of G(T ), and Xi the set of nodes

where i moves (partitioned into his information sets). For any x ∈ X, let h(x) be the

history preceding x. For each i, si ∈ Si and y ∈ X, let βi(y, si) be the probability

that si does not exclude y—i.e. βi(y, si) = 1 if si plays in accordance with h(y), and

βi(y, si) = 0 otherwise. The function βi may be extended to a function over mixed

and behavioral strategy profiles in an obvious manner. Letting Z ⊂ X be the set

of terminal nodes in the extensive form of G(T ), for each i define ρi : Σi → [0, 1]Z

by the formula ρi(σi) = (βi(z, σi))z∈Z , and let ρ ≡ ρ1 × ρ2. Then the space Pi of

i’s enabling strategies (Govindan and Wilson 2002) is the image of ρi and the space

P ≡ P1 × P2 of enabling strategy profiles is the image of ρ. To each vertex of Pi
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corresponds an equivalence class of i’s pure strategies that exclude the same outcome

paths.6 As Govindan and Wilson (2012, §4.3) note, enabling strategies are sufficient

representations for extensive-form games of perfect recall.

A connected closed set of equilibria is stable (Mertens 1989, 1991) if the local

projection map, from a connected closed neighborhood in the graph of equilibria over

the space of players’ strategies perturbed toward mixed strategies, is “homologically

nontrivial”. As a consequence: its image does not deform to a point in the tremble

space (it is not “null-homotopic”); it is essential (it has a point of coincidence with

every continuous map having the same domain and range); and it has nonzero degree

(the number of times each tremble is covered by the projection map). Since a map

that is not surjective has zero degree, it follows that there is a Nash equilibrium at

each point along any continuous trajectory of perturbations in the relevant neigh-

borhood, and hence a stable set is also strategically stable in the sense of Kohlberg

and Mertens (1986). The converse does not apply, however, because a surjective map

need not have nonzero degree, nor be null-homotopic. The latter prevents the appli-

cation of Brouwer’s theorem to a fixed point problem solved by proper equilibria (see

Mertens 1989, Theorem 6), so that Kohlberg–Mertens stable sets need not contain

such equilibria, and hence may fail backward induction (Van Damme 1984). Stabil-

ity corrects this failure, at the cost of a slightly opaque definition for an economics

audience—a defect that is alleviated by Govindan and Wilson’s (2012) equivalent

formulation in terms of lexicographic beliefs, which appears in Lemma 1 and for my

purposes can be taken as definitional of stability.

A component of equilibria is a maximal closed connected set of equilibria in Σ.

Membership of such a component provides a natural notion of equivalence of equilibria

(see, e.g., Kohlberg and Mertens 1986, §2.8, Van Damme 1987, p. 271)—it generically

implies a common payoff vector, with strategic differences occurring only off the

equilibrium path (Kreps and Wilson 1982; Kohlberg and Mertens 1986; Govindan and

Wilson 2001).7 Let Σ̄∗ be a component of the equilibria of G(T ) in mixed strategies

(and the sets B̄∗ and P̄ ∗ the equivalent behavioral and enabling strategies). All

6These are the pure strategies in Mailath, Samuelson, and Swinkels’s (1993) “pure reduced normal
form”.

7Whilst Kohlberg–Mertens stable sets need not be connected, there does always exist a stable
set that belongs to a single component of equilibria (Kohlberg and Mertens 1986, p. 1027), and
connectedness is satisfied by Mertens stability and by Govindan and Wilson’s (2012) axiomatic
solution.
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equilibria in these sets generically induce the same outcome path, so that for each

node x ∈ X the probability βi(x, b̄
∗) of reaching x in an equilibrium b̄∗ ∈ B̄∗ is the

same for all b̄∗ ∈ B̄∗; let β∗i (x) be this probability. Now let X∗i be the collection of

nodes x ∈ Xi such that β∗i (x) > 0 (i.e. that are not excluded by elements of Σ̄∗i ), and

let A∗i be the set of actions that are chosen with positive probability at nodes in X∗i

by the equilibria in B̄∗. Let S0
i ⊂ Si be the set of pure strategies s0i with the property

that, at each node xi ∈ X∗i that s0i does not exclude, s0i prescribes an action in A∗i .

Let S1
i ≡ Si\S0

i —i.e. each pure strategy si in S1
i chooses a nonequilibrium action at

some node xi ∈ X∗i that it does not exclude.

For k = 0, 1, let Σk
i be the set of mixed strategies whose support is contained in

Sk
i . Note that the support of i’s strategy in every equilibrium in Σ̄∗ is contained in

S0
i and that every strategy in S0

i is a best reply to every equilibrium in Σ̄∗; hence,

Σ̄∗i ⊆ Σ0
i . Now let Σ∗ be a component of the undominated equilibria in Σ̄∗; then

Σ∗i is a connected component of the intersection of Σ̄∗i with the set of undominated

strategies. Let Q∗ be the image of Σ∗ under ρ. Let P k
i be i’s set of enabling strategies

in the image of Σk
i for k = 0, 1, let P k ≡ P k

1 × P k
2 , and define P ≡ P 0 × P 1. Let

Z1
i ⊂ Z be the set of terminal nodes z such that h(z) contains an action profile with

some a /∈ A∗i . Then P 0
i is the set of pi ∈ Pi such that pi(z) = 0 for all z ∈ Z1

i and

thus P 0
i (but not necessarily P 1

i ) is a face of Pi.

Given pi ∈ Pi, let ψZ1
i
(pi) be the projection of pi to RZ1

i
+ ; then ψZ1

i
(pi) = 0 if and

only if pi ∈ P 0
i . Fixing a point p̄j in the interior of Pj, j 6= i, and defining ηi : Pi → R

by ηi(pi) =
∑

z∈Z1
i
p̄j(z)pi(z), clearly η(pi) = 0 if and only if pi ∈ P 0

i . Choose ε > 0

such that ηi(pi) > ε for all pi ∈ P 1
i , and let Hi be the hyperplane in RZ1

i with normal

(p̄j(z))z∈Z1
i

and constant ε, which separates the origin from ψZ1
i
(P 1

i ). Let Π1
i be the

intersection of Hi with ψZ1
i
(Pi), and π̄1

i be the function from Pi\P 0
i to Π1

i that maps

each pi ∈ P 0
i to the point ε(ηi(pi))

−1ψZ1
i
(pi).

Player i’s strategy σi is lexicographically optimal (Blume, Brandenburger, and

Dekel 1991; Govindan and Klumpp 2002) against a sequence (σn
j )n=1,2,... of his oppo-

nent’s strategies if any alternative strategy σ̂i that is a better reply to σn
j for some

n is a worse reply to σm
j for some m < n. Given Q∗, let Q be the set of those

(q∗, (p0, p1), π1) ∈ Q∗×P×Π1 such that there exist r0, p̃0 ∈ P 0, and r1 ∈ P 1, and for
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each i, scalars λ0i , λ
1
i , and µ1

i in the interval (0, 1] such that, if

q0i = λ0i p
0
i + (1− λ0i )r0i and

q1i = (1− λ1i )p̃0i + λ1i
(
µ1
i p

1
i + (1− µ1

i )r
1
i

)
, (1)

then for each i,

i. π̄1
i (q1i ) = π1

i ;

ii. q0i , and r0i if λ0i < 1, are lexicographically optimal replies against (q∗j , q
0
j , q

1
j );

iii. if µ1
i < 1, then r1i is an optimal reply against q∗j and lexicographically as good

a reply against (q∗j , q
0
j , q

1
j ) as other strategies in P 1

i .

The set Q is the graph of lexicographically optimal replies to possible deviations from

equilibria in Q∗.8

Let ψ : Q → P be the natural projection, ψ(q∗, (p0, p1), π1) = (p0, p1), and ∂Q ≡
ψ−1(∂P); then ψ is essential if, for every continuous map φ : Q → P there exists

some q ∈ Q such that φ(q) = ψ(q). Note that this corresponds to the concept of

essentiality in homotopy, in the sense of not being null-homotopic (see Govindan and

Wilson 2008, Lemmas A.3 and A.4, and Mertens 1991, lemma on p. 597).

Lemma 1 (Govindan and Wilson 2012) Q∗ is stable if and only if the projection

map ψ : (Q, ∂Q)→ (P, ∂P) is essential.

The players’ payoffs are given by a point U in U = R2×Z, where Ui(z) is the pay-

off to player i at terminal node z ∈ Z. I assume that payoffs are generic in the sense

that there exists a lower-dimensional subset U◦ of U such that the results are true

for all repeated games in U \U◦. Govindan and Wilson (2012, Theorem 5.1) show

that, if a refinement satisfies three axioms—Undominated Strategies, Backward In-

duction and Invariance to Embedding—then each solution of a two-player game with

perfect recall and generic payoffs is a stable set, and indeed an essential component

of admissible equilibria. If a stable set induces a particular outcome path ~a with

probability 1, call ~a a stable outcome path.

8For the case where S1
i is empty for some i (which does not arise for Theorem 1 below) see

Govindan and Wilson (2012, pp. 1655–7).
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Theorem 1 If a stable set Σ∗ of a generic G(T ) induces a stable outcome path, then

Σ∗ contains an equilibrium that induces a renegotiation proof equilibrium in G(T−1).

Proof. Suppose otherwise; then there exists a stable outcome path ~a induced by Σ∗.

Moreover, for each σ∗ ∈ Σ∗ there exists a K < T and a nonempty history hK ∈ HK

such that either: (a) σ∗|hK is not a Nash equilibrium of G(T −K); or (b) there exists

a subgame perfect equilibrium of G(T − K) that strictly Pareto dominates σ∗|hK .

Since a stable set satisfies backward induction, there exists some σ̃∗ ∈ Σ∗ for which

(b) holds with dominating equilibrium ŝ∗ following history hK̃ . If any σ∗ ∈ Σ∗ places

probability 1 on ŝ∗ following hK̃ , then there exists a subgame perfect equilibrium

that also does so; hence, σ̃∗, hK̃ and ŝ∗ may be chosen such that no σ∗ ∈ Σ∗ places

probability 1 on ŝ∗ following hK̃ . Moreover, if ~a is a continuation of hK̃ , then there

exists another K̃-length history of which ~a is not a continuation and following which

σ̃∗ is also dominated by ŝ∗; hence, we may suppose that ~a is not a continuation of

hK̃ .

Now let p0i be a strategy that prescribes the same action mixture as q̃∗i at any

node that q̃∗i does not exclude. Meanwhile, let p1i be a strategy that plays according

to hK̃ , then ŝ∗i following i’s own adherence to hK̃ . For any q∗ ∈ Q∗, r0, p̃0 ∈ P 0,

r1 ∈ P 1 and λ0i , λ
1
i , µ

1
i ∈ (0, 1] satisfying iii on the previous page, the strategy q0i is

a best reply to both q∗j and q0j , but not to p1j (and hence q1j , since any r1j optimal

against q∗i does not play according to hK̃ for generic payoffs) because q0i does not

induce ŝ∗ with probability 1 following hK̃ . The strategy consistent with ~a that plays

ŝ∗i following the opponent j’s adherence to hK̃ is a best reply against q∗j and q0j , and a

better reply than q0i against p1j (and hence against q1j ). Thus, ψ−1(p0, p1) /∈ Q. Now,

whilst maps that are essential in homotopy need not be surjective, (co)homologically

essential maps must be so, and the two notions of essentiality are equivalent in this

case by a theorem of Mertens (1989, pp. 704–5) and Govindan and Wilson’s (2012,

Theorem 5.2) result that the domain and codomain of ψ are of equal dimension.

Therefore, ψ is not essential in homotopy, and the result follows by Lemma 1.

Corollary 1 Any stable outcome path of a generic G(T ) yields payoffs approaching

those from a renegotiation proof equilibrium as T →∞.

Intuitively, if Σ∗ does not contain a strategy profile inducing renegotiation proof

continuations, then there exists a possible deviation that initiates Pareto-improving

play, against which none of Σ∗’s strategies is lexicographically optimal. This creates
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a “hole” in the graph Q, so that the projection map ψ cannot be essential. The

assumption that Σ∗ induces some outcome path with probability 1 is both necessary

for Σ∗ to contain a renegotiation proof equilibrium (which is defined to be a pure

strategy equilibrium), and sufficient for the existence of an off-equilibrium path first-

period action, with which either player may signal Pareto-improving continuation

play. Moreover, any completely mixed strategy equilibrium is automatically stable

(the case of S1
i empty for both i), and clearly need not induce renegotiation proof

continuations.

4 Discussion

4.1 The necessity of Mertens stability

A natural question to arise is whether Theorem 1 would fail under Kohlberg and

Mertens’ (1986) original notion of stability. Consider the two-fold repetition of the

game G2 in Figure 2, and in particular the equilibrium path ((U,L), (D,R)).9 Any

equilibrium inducing this path must fail renegotiation proofness, as it must deter a

first-period deviation to M with second-period play that is strictly Pareto dominated

by (D,R). However, there is a Kohlberg–Mertens stable set that induces this path.

To see this, suppose first that strategies are perturbed such that, following first-

period play of (M,L), the tremble (i.e. involuntary) probabilities (πU , πM , πD) on the

actions U , M and D satisfy πM ≥ max{πU , 2πD}. Then C is a best response for Bob,

deterring Ann’s first-period deviation to M .

Alternatively, suppose that the strategy perturbations are such that πM <

max{πU , 2πD}. Then if Bob mixes with probabilities (1/2, 1/2) on actions C and R

following (M,L), Ann is indifferent between playing U then D unconditionally and

playing M both in the first period and following (M,L). And if Ann mixes with prob-

abilities (δ, 1−δ) on these two strategies, then there exist constants$1, $2, $3, $4 > 0

such that Bob is indifferent between C and R following (M,L) if and only if

δ =
(2(1−$4)− πM)$2

(1−$1)(1− πU − πM − πD + 2(1−$3 −$4))− (2(1−$4)− πM)(1−$1 −$2)
.

The numerator here tends to 0 from above as the strategy perturbations vanish, and

9I am grateful to an anonymous referee for suggesting this example.
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Figure 2: The game G2

the denominator to 1, so δ tends to 0 from above. Bob’s continuation payoff following

(M,L) approaches 1 in this limit, so he will not deviate to L.

Thus, the path ((U,L), (D,R)) is a Kohlberg–Mertens stable outcome. Note,

however, that it is not a Mertens stable outcome, as Bob’s play is not lexicographically

optimal against a sequence of equilibrium strategies that induce the equilibrium path,

followed by a strategy that deviates to M in the first period and then plays D.

4.2 Forward induction

The deviating strategies used in the proof of Theorem 1 are reminiscent of those used

to make forward induction arguments, and indeed Osborne’s (1990) Proposition 2 is

implied by Theorem 1. The idea of forward induction is that “players assume, even

if they see something unexpected, that the other players chose rationally in the past”

(Hillas and Kohlberg 2002, §42.13.6), which motivates van Damme’s (1989) require-

ment that a deviation be followed by a unique profitable continuation in order to

allow forward induction, since only then is an unambiguous signal sent through the

act of deviating. If we think back to Osborne’s coordination game G(α1, . . . , αm, β)

(discussed in Section 2 above), with its multiple Pareto-improving continuations fol-

lowing a deviation from (A1, A1) for instance, it is clear that this narrow notion of

forward induction will not suffice for renegotiation proof continuations.
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But nor will Govindan and Wilson’s (2009) broader forward induction require-

ment that the players believe their opponents to use only relevant optimal strate-

gies (as opposed to optimal continuation play). To see this, note that the path

((A1, A1), (A1, A1)) in the twice-repeated game G(1, 3, 4) is consistent with forward

induction, enforced by a belief that the opponent will play A2 with probability 4/7 and

B with probability 3/7 after observing a first-period deviation. Indeed, for generic

two-player games, Govindan and Wilson show their notion of forward induction to

be a consequence of invariance to redundant strategies and backward induction, and

hence of both Mertens stability and the original Kohlberg–Mertens stability, the lat-

ter of which was shown above to be insufficient for renegotiation proofness.10

Al-Najjar (1995) provides another forward induction concept that allows multiple

Pareto-improving continuations, and which is sufficient for renegotiation proof contin-

uations. However, this concept is implied by neither Kohlberg–Mertens nor Mertens

stability, as is clear from its existence problems in games such as the repeated Battle

of the Sexes. The proof of Theorem 1 avoids the problem of ambiguous signalling

in games like G(α1, . . . , αm, β) by careful choice of the deviation p1, and hence of

the implicit embedding of the game to which a Mertens stable set must be robust.

Thus, Invariance to Embedding plays a role over and above (invariance to redundant

strategies and) forward induction, by coordinating play off the equilibrium path.

4.3 A redefinition

Given the limitation of stable renegotiation proofness to continuation play after the

first period, perhaps renegotiation proofness should be redefined with this in mind; it

is, after all, not called “negotiation proofness”. In particular, a strategy profile could

be considered renegotiation proof in G(1) if it is a Nash equilibrium of G. The pure

strategy profile s would then be renegotiation proof in G(T + 1) if:

i. it is a Nash equilibrium of G(T + 1);

ii. s|h1 is renegotiation proof in G(T ) for all h1 ∈ H1; and

iii. there does not exist ŝ satisfying i and ii and h1 ∈ H1 such that ŝ|h1 strictly

Pareto dominates s|h1 .

10Whilst Kohlberg–Mertens stability does not satisfy backward induction in general, it does so in
two-player games (Govindan and Wilson 2006).
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With this alternative definition, Theorem 1 would yield a stable renegotiation proof

equilibrium in G(T ), rather than G(T − 1).
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