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Abstract. We study estimation, pointwise and simultaneous inference, and confidence

intervals for many average partial effects of lasso Logit. Focusing on high-dimensional

cluster-sampling environments, we propose a new average partial effect estimator and

explore its asymptotic properties. Practical penalty choices compatible with our asymp-

totic theory are also provided. The proposed estimator allow for valid inference without

requiring oracle property. We provide easy-to-implement algorithms for cluster-robust

high-dimensional hypothesis testing and construction of simultaneously valid confidence

intervals using a multiplier cluster bootstrap. We apply the proposed algorithms to the

text regression model of Wu (2018) to examine the presence of gendered language on the

internet.

1. Introduction

Binary response models are some of the most commonly used nonlinear econometric

models. When studying such models, the average partial effect, henceforth APE, is a

popular target parameter of interest. Under big data environments, as often happens in text

analysis, dimension reduction via lasso, or other type of machine learning algorithms, is often

unavoidable. Failure to account for the model selection step often leads to severely biased

estimates, which invalidate the usual inference procedures (see Figure 1 for an illustration).

Few results are available for valid post-selection inference for a single nonlinear functional

of high-dimensional nuisance parameters, such as APE, let alone simultaneous inference for

potentially many of such parameters. To fill this void, this paper considers simultaneous
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inference and confidence intervals for lasso Logit APEs. All results stay valid for cluster-

sampled data.

To our knowledge, this is the first paper handling multiple testing and simultaneous con-

fidence interval problems for more than a single APE under high-dimensional or big-data

environments. In addition, cluster sampling with heterogeneous cluster sizes is allowed.

Using the Neyman orthogonalization technique, we propose a new lasso-based post-double

selection APE estimator. To accompany the main theoretical results, we propose valid nui-

sance parameter estimators as well as their practical tuning parameter selection algorithms

that are compatible with our theory. To address the multiple-testing problem, we develop

a new, simple-to-implement, multiplier cluster bootstrap. We provide simple algorithms

for testing high-dimensional hypotheses and constructing simultaneously valid confidence

intervals. Simulation studies suggest the proposed methods have favorable finite-sample

performance. We illustrate the applicability of our theoretical results through examining a

claim of Wu (2018) on the presence of genderally biased use of language following Wu’s text

regression model using internet forum textual data from Economics Job Market Rumors

(EJMR) forum - see the following section.

2. Motivation: Text Analysis and Gendered Language on the Internet

Text analysis using machine learning algorithms has become a useful alternative to the

more traditional data analysis used in economics and other social sciences. Popular cate-

gories of text analysis models include text regression models, generative models, dictionary-

based methods and word embeddings. The first two categories link attributes and word

counts through conditional probabilities1 and, therefore, naturally relate to common econo-

metric models. Notable examples of applications using text regression include stock prices

prediction (e.g. Jegadeesh and Wu (2013)) and the Google Flu Trends, which is summa-

rized in Ginsberg, Mohebbi, Patel, Brammer, Smolinski and Brilliant (2009), among others.

Gentzkow, Shapiro and Taddy (2019) is a representative recent example for generative mod-

els applied to economics. For more details and applications, see Gentzkow, Kelly and Taddy

(2019) for an up-to-date review.

1Roughly speaking, given attributes vi and word counts ci, a text regression model considers P(vi|ci) and

a generative model considers P(ci|vi).
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(a) APE estimates based on direct plug-in of lasso

Logit coefficient estimates.

(b) APE estimates based on the proposed post-

double-selection estimator.

Figure 1. Simulations for low-dimensional lasso Logit APE estimation based on

2, 000 iterations. Each iteration has sample size n = 200. The dimensionality of co-

variates is set to be p = 10. We set true parameter vector as β0 = [.1,−1, 1, 0, ..., 0].

Covariates X are generated as i.i.d. zero-mean multivariate normal random vec-

tors with Toeplitz covariance matrix Σ with Σij = 0.5|i−j|. Outcome variables are

generated following Y = 1{X ′β0 + U} with i.i.d. U following standard logistic

distribution. The lasso estimations are implemented using R package glmnet with

penalty selection algorithms discussed in Section 6.
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Table 1. Top 10 most predictive words for female/male from Wu (2018)

Female Male

Word APE Word APE

Pregnancy 0.292 Knocking −0.329

Hotter 0.289 Testosterone −0.204

Pregnant 0.258 Blog −0.183

Hp 0.238 Hateukbro −0.176

Vagina 0.228 Adviser −0.175

Breast 0.220 Hero −0.174

Plow 0.219 Cuny −0.173

Shopping 0.207 Handsome −0.166

Marry 0.207 Mod −0.166

Gorgeous 0.201 Homo −0.160

(pronoun sample; a replication of Table 2 in Wu (2018))

Using a text regression model, Wu (2018) examines how women and men are discussed

and depicted in the anonymous Economics Job Market Rumors forum. The author first

extracted a list of female/male classifier vocabularies. According to Wu, a post is considered

to be female if it contains any female classifier and male if it contains any male classifier2.

Let Femalei be an indicator of whether post i is female. Xi denotes a vector of counts for

each of the top 10,000 most common words3 (excluding all gender classifiers) that are present

in gendered post i. Wu considers the text regression model with the logistic4 specification,

P(Femalei|Xi) = Λ(X ′iβ)

where Λ is the logistic function, using a lasso Logit procedure. The Male counterpart is

estimated analogously. For interpretability, Wu computes estimates for the APE for each

of the 9, 540 words, where the APE for the word count of the k-th word is defined as

APEk = E[βkΛ
′(X ′iβ)].

2Wu makes use of a classification procedure to decide the posts that contains both female and male

classifiers. See Section II A of Wu (2018) for more details
3It is also possible to use frequency and n-grams in place of word count and words, respectively, as

suggested in Gentzkow, Kelly and Taddy (2019).
4For text regression models with binary attributes, a penalized logistic model is recommended by

Gentzkow, Kelly and Taddy (2019); see their Section 3.1.1 for more details.
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Based on these estimates, Wu concludes the words that predict a post about a woman are

typically about physical appearance or personal information, whereas those most predictive

of a post about a man tend to focus on academic or professional characteristics.

Wu (2018) focuses on estimation. To further investigate magnitude and statistical signif-

icance of these estimates, the researcher may be interested in conducting hypotheses testing

or constructing confidence intervals. To do so, several issues need to be carefully accounted

for. First, as posts in EJMR data of Wu (2018) are sampled from different threads of

various discussion topics, it is likely that posts coming from the same thread are highly cor-

related. Therefore, statistical testing should be conducted using a cluster robust inference

method. Secondly, Wu (2018) highlights that females are often described with words about

appearance or personal information. To formally examine such statements, one may want

to conduct multiple testing for APEs of a (potentially large) set of vocabularies related to

appearance or personal information. Furthermore, in many cases, words with the same or

close meaning are double-counted in this data set, e.g. “attractive” and “attractiveness” or

“homo”, “homosexual,” and “gay.”5 Thus, the researcher may want to consider a joint test

that controls family-wise error rates for APEs of these words. This results in a multiple

testing problem. Therefore, the testing procedure needs to be able to control the family-wise

error rate while testing potentially many variables. To our best knowledge, no method in

the literature is capable of addressing all these issues simultaneously. This paper attempts

to provide a useful and easy-to-implement method that can be applied to such problems.

3. Background and Literature Review

3.1. Contributions. Our main contribution is to provide a theory for high-dimensional

multiple-testing and simultaneous confidence intervals for APEs of binomial and fractional

response regression models under clustered data. To our best knowledge, no results were

previously available for this purpose. As a by-product, this paper also complements existing

papers by proposing a practical method for studying low-dimensional APEs of interest under

high-dimensional settings. Furthermore, cluster sizes are allowed to be heterogeneous - this

is essential to our application as number of posts varies from thread to thread. Inference and

construction of confidence intervals for such models are practically challenging; despite that

methods are proposed in the literature, no simulation evidence for inference of even a single

APE under lasso-regularization with these methods is available. In addition, we present

5If the researcher is only concerned about joint testing, an easy alternative is to combine these words.

However, this is not desirable when one wants to obtain separate estimates.
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practical and theoretically justified penalty choices for all the lasso estimators. Furthermore,

easy-to-implement bootstrap procedures are also provided for inference/confidence intervals

that hold valid, regardless of whether the researcher is interested in one or multiple APEs.

3.2. Relations to the Literature. The past decade has seen an explosive development

in the literature of post-selection inference for lasso-based high-dimensional methods. This

includes Belloni, Chernozhukov, Chen and Hansen (2012) for instrumental variable models,

Belloni, Chernozhukov and Hansen (2014), Javanmard and Montanari (2014), Zhang and

Zhang (2014), Farrell (2015), Caner and Kock (2018) and Athey, Imbens and Wager (2018)

for linear regression/treatment effects models. Post-selection inference for generalized linear

models such as Logit has been studied by van de Geer, Bühlmann, Ritov and Dezeure (2014),

Belloni, Chernozhukov and Kato (2015), Belloni, Chernozhukov and Wei (2016), Belloni,

Chernozhukov, Fernández-Val and Hansen (2017) and Belloni, Chernozhukov, Chetverikov

and Wei (2018), to list a few. This line of research predominately focuses on regression

coefficients of the generalized linear models rather than nonlinear functionals such as an

APE. Recently, Chernozhukov, Newey and Singh (2018) study L2-continuous functionals

using lasso and Dantzig selector. While focusing on affine-functionals, they provide an

extension of their method to nonlinear functionals. Their method makes use of a linear

Riesz representer to approximate the linearization of a nonlinear functional, which differs

from our approach. In addition, all of the aforementioned papers are based on i.i.d. or

independent sampling assumptions. On the other hand, there are some results available

for high-dimensional linear panel data. This includes Belloni, Chernozhukov, Hansen and

Kozbur (2016), Kock (2016) and Kock and Tang (2018).

Cluster-robust inference under various fixed-dimensional parametric settings has been

well-studied and widely applied in the literature. See Wooldridge (2010) and Cameron and

Miller (2015) for textbook treatment and comprehensive reviews. There has been recent

literary focus on cluster-robust bootstrap inference. This includes Kline and Santos (2012),

Hagemann (2017), MacKinnon and Webb (2017) and Djogbenou, MacKinnon and Nielsen

(2018), among others. These results cannot be generalized in a straightforward manner to

high-dimensional settings as the delta-method does not, in general, hold in an asymptotic

framework with increasing dimensionality, see Caner (2017) for more details.

APE for binomial/fractional regression models has been discussed extensively in the lit-

erature (cf Chamberlain (1984), Wooldridge (2005) and Wooldridge (2018), etc). Inference

for APEs of lasso-based binomial regression models are first studied by Wooldridge and Zhu

(2017) under a short (balanced) panel data setting. They make use of a single-selection step
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with a lasso Probit estimator and propose a de-biased estimator for a single APE and obtain

asymptotic normality. More recently, Hirshberg and Wager (2018) highlight the estimator

of Wooldridge and Zhu (2017) for its requirement of a “soft” beta-min assumption that rules

out regularization bias asymptotically6. For i.i.d. data, Hirshberg and Wager (2018) pro-

vide an alternative augmented minimax estimator based on the novel framework for linear

functionals developed in Hirshberg and Wager (2017). However, no variance estimator for

this approach is proposed. Also, the aforementioned results are available only for a single

APE; multiple testing and simultaneous confidence intervals for more than one APE remain

unavailable. In addition, implementing inference for even a single APE under such settings

presents practical challenges; to our best knowledge, there has been no simulation evidence

presented for the proposed estimators in the aforementioned papers.

This paper aims to address all the aforementioned issues simultaneously. To do so, we

extend the general framework for i.i.d. data developed in the important works of Belloni,

Chernozhukov and Kato (2015) and Belloni, Chernozhukov, Chetverikov and Wei (2018) to

allow for cluster sampling and adapt it to the studies of APEs. The pointwise/simultaneous

inference and confidence intervals are based on a multiplier cluster bootstrap which is built

upon the high-dimensional central limit theorem of Chernozhukov, Chetverikov and Kato

(2013).

3.3. Notations. Denote (Ω,A) the underlying measurable space and for each G ∈ N, PG
is a set of probability measures P ∈ PG defined on A. Consider triangular array data

{WG
g : g = 1, ..., G,G = 1, 2, 3, ...} defined on probability space (Ω,A,P), where P depends

on G through PG. Each WG
g = {WG

ig : 1 ≤ i ≤ ng}, is a random vector that is independent

across g, but not necessarily identically distributed. All parameters that characterize the

distribution of {WG
g ; g = 1, ..., G} are implicitly indexed by PG and thus by G. This

dependence is henceforth omitted for simplicity. Wig = (Yig, X
′
ig)
′ takes values in Rp+1. For

each g ≤ G, G ∈ N, the deterministic size of cluster ng satisfies 1 ≤ ng ≤ n̄ for a constant n̄

independent of G. Therefore, for i such that ng < i ≤ n̄, we can set Wig = 0 and thus each

Wg can be represented as a n̄(p+1)-dimensional random vector. Let EP be the expectation

with respect to law P.

For a vector β, the k-th component is denoted as βk. For vectors, denote the `1-norm as

‖ · ‖1, l2-norm as ‖ · ‖, `∞-norm as ‖ · ‖∞, and the “`0-norm” as ‖ · ‖0 to denote the number

6Such post model selection inference issues are widely discussed in the literature (see e.g. Pötscher and

Leeb (2009) and the reference within).
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of non-zero components. For a matrix A, let A′ be the transpose of A. For 1 ≤ q < ∞,

‖A‖q denotes the induced lq-norm and ‖A‖∞ = max1≤j,k≤p |Aj,k|. For a vector δ ∈ Rp and

given data, ‖X ′igδ‖G =
√

1
G

∑G
g=1

∑ng

i=1(X ′igδ)
2 denotes the prediction norm of δ. Let ej be

the j-th vector of the standard basis for Rp. Given a vector δ ∈ Rp, and a set of indices

T ⊆ {1, . . . , p}, denote δT ∈ Rp the vector such that (δT )j = δj if j ∈ T and (δT )j = 0 if

j /∈ T . The support of δ is defined as support(δ) = {j ∈ {1, ..., p} : δj 6= 0}. We denote

a∨ b = max{a, b}, and a∧ b = min{a, b}. The notaion [k] = {1, ..., k} is used for k ∈ N. We

use c, C to denote strictly positive constants that is independent of G and P ∈ PG. Their

values may change at each presence. The notation aG . bG denotes aG ≤ CbG for all G

and some C > 0 that does not depend on G. aG = o(1) means that there exists a sequence

(bG)G≥1 of positive numbers that do not depend on P ∈ PG for all G such that |aG| ≤ bG

for all G and bG = o(1) as G converges to zero. aG .P bG means that for any ε > 0, there

exists C such that PP(aG > CbG) ≤ ε for all G. Throughout the paper we assume G ≥ 3.

Let (T, d) be a pseudomaetric space. For any ε > 0, denote N(T, d, ε) for the ε-covering

number of T .

3.4. Outline. The rest of the paper is structured as follows. In Section 4, an overview

of the method and algorithms are given. Section 5 contains the main asymptotic results.

Section 6 covers algorithms for penalty choices and the auxiliary results for theoretical

performance of nuisance parameters. Results of simulation studies are demonstrated in

Section 7. In Section 8, we apply the proposed method to conduct simultaneous testing to

verify a statement about gendered language in Wu (2018). We concludes in Section 9. All

the mathematical proofs and additional details are delegated to the appendix.

4. An Overview

Recall Wig = (Yig, X
′
ig)
′. Suppose that the researcher observes data sampled from G

clusters, {Wig : i = 1, ..., ng, g = 1, ..., G}. Each cluster size ng is considered non-random,

and 1 ≤ ng ≤ n̄ < ∞ for a constant n̄ that does not depend on G. Denote n =
∑G

g=1 ng.

Throughout the paper, we assume that the conditional expectation of Y given X follows

the following single-index structure

EP(Yig|Xig) = Λ(X ′igβ
0).

for each cluster g. Any Wi1g,Wi2g can be arbitrarily correlated while any Wi1g1 ,Wi2g2 are

independent if g1 6= g2. The dimensionality of β0 is allowed to increase with G. This is

the population-averaged approach as β0 represents an averaged parameter after integrating
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out heterogeneity. The target parameter is the APE with respect to the k-th continuous

covariate of interest,

APEk = EP

[ 1

n

G∑
g=1

ng∑
i=1

β0
kΛ′(X ′igβ

0)
]

where Λ′ stands for the derivative of Λ. As ng ≤ n̄, it suffices to consider αk, the rescaled

APE7 defined as

αk =EP

[ 1

G

G∑
g=1

ng∑
i=1

β0
kΛ′(X ′igβ

0)
]
.

4.1. Estimation and Inference Procedures. We now summarize the estimation, infer-

ence and construction of simultaneous confidence intervals procedures based on the theo-

retical results to be presented in Section 5 and 6 ahead. First, we describe the procedures

for computing the proposed APE estimators. Set αk as the parameter of interest. The

post-double-selection estimator for αk is defined as

α̃k =
1

G

G∑
g=1

ng∑
i=1

β̌kkΛ′(X ′igβ̌
k) (4.1)

where β̌k is the pooled Logit estimate with its support restricted to the set of covariates

T̃k = {k} ∪ support(β̂) ∪ support(ζ̂k) ∪ support(γ̂k), (4.2)

and β̂, ζ̂k and γ̂k are nuisance parameter estimators to be defined below. Therefore, once

T̃k is obtained, estimation of α̃k becomes a standard pooled Logit problem.

Suppose that we have some generic penalty tuning parameters λ, λγk and λζk and, in addi-

tion, Ψ̂, Ψ̂γ
k , Ψ̂ζ

k, diagonal normalization matrices of dimensions p, p− 1 and p, respectively.

Formal and theoretically justified choices of these objects are delayed to Section 6.

First, β̂ and its two post-lasso counterparts are defined as

β̂ ∈ argmin
β∈Rp

1

G

G∑
g=1

ng∑
i=1

{−YigX ′igβ + log(1 + exp(X ′igβ) )}+
λ

G
‖Ψ̂β‖1, (4.3)

β̃ ∈ argmin
β∈Rp:support(β)⊂support(β̂)

1

G

G∑
g=1

ng∑
i=1

{−YigX ′igβ + log(1 + exp(X ′igβ) )}, (4.4)

β̃k ∈ argmin
β∈Rp:support(β)⊂support(β̂−k)

1

G

G∑
g=1

ng∑
i=1

{−YigX ′igβ + log(1 + exp(X ′igβ) )}. (4.5)

7The original APE can be simply recovered by APEk = (G/n) · αk.
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Using the above post-lasso estimates, we compute f̂2
ig = Λ′(X ′igβ̃) and Ŝkig = β̃kk · {1 −

2Λ(X ′igβ̃)}. Throughout the rest of this paper, denote Dj
ig = Xig,j , the j-th component of

Xig, and Xj
ig = X ′ig,−j , the remaining p− 1 variables. Using these quantities, the remaining

two nuisance parameter estimates can be obtained as

γ̂k = argmin
γ∈Rp−1

1

G

G∑
g=1

ng∑
i=1

f̂2
ig(D

k
ig −Xk′

igγ)2 + 2
λγk
G
‖Ψ̂γ

kγ‖1, (4.6)

ζ̂k = argmin
ζ∈Rp

1

G

G∑
g=1

ng∑
i=1

f̂2
ig(Ŝ

k
ig −X ′igζ)2 + 2

λζk
G
‖Ψ̂ζ

kζ‖1. (4.7)

Now T̃k can be calculated following (4.2) and thus

β̌k = argmin
β∈Rp:βj=0 for all j∈T̃ c

k

1

G

G∑
g=1

ng∑
i=1

{−YigX ′igβ + log(1 + exp(X ′igβ) )}, (4.8)

and α̃k can be obtained following equation (4.1).

Suppose that the researcher is interested in αk for a set of continuous covariates with

k ∈ A for an index set A ⊂ [p]8. We present a concrete estimation procedure as the following

algorithm.

Algorithm 4.1 (Post-Double-Selection Estimator). For each k ∈ A,

(1) Run lasso and post-lasso Logit to compute β̃ following (4.3) and (4.4).

(2) Define generated weights f̂2
ig = Λ′(X ′igβ̃).

(3) Run lasso to compute γ̂k following (4.6).

(4) Run lasso to compute ζ̂k following (4.7).

(5) Let T̃k = {k}∪ support(β̂)∪ support(ζ̂k)∪ support(γ̂k) and compute β̌k following (4.8).

(6) Compute plug-in estimator α̃k following (4.1).

Remark 4.1. The post-double-selection estimator is theoretically related to the post-

double-selection estimators for linear models in Belloni, Chernozhukov and Hansen (2014)

and for Logit regression coefficients in Belloni, Chernozhukov and Wei (2016) and Belloni,

Chernozhukov, Chetverikov and Wei (2018). However, because our target parameters of

interest are APEs, the nonlinear transformations of high-dimensional nuisance parameters,

rather than regression coefficients themselves, the structure of our nuisance parameters are

8There is no restriction on the cardinality of A. A = [p] is also allowed.
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fundamentally different. Estimation of these nuisance parameters requires different strate-

gies and therefore presents extra challenges. We discuss the theory of nuisance parameters

estimation in Section 6.

For inference, let us define the post-lasso counterparts of γ̂k and ζ̂k

γ̃k = argmin
support(γ)⊂support(γ̂k)

1

G

G∑
g=1

ng∑
i=1

f̂2
ig(D

k
ig −Xk

igγ)2, (4.9)

ζ̃k = argmin
support(ζ)⊂support(ζ̂k)

1

G

G∑
g=1

ng∑
i=1

f̂2
ig(Ŝ

k
ig −X ′igζ)2, (4.10)

and the nuisance parameter estimate

θ̃k = [−γ̃k1 , ...,−γ̃kk−1, 1,−γ̃kk , ...,−γ̃kp−1]′ ·
{ 1

Gτ̂2
k

G∑
g=1

ng∑
i=1

f̂2
ig

}
, (4.11)

where each τ̂2
k is calculated using

τ̂2
k :=

1

G

G∑
g=1

ng∑
i=1

f̂2
ig(D

k
ig −Xk

igγ̃
k)2. (4.12)

Define the additional nuisance parameter estimate

µ̃k = ζ̃k + θ̃k. (4.13)

Finally, define the variance estimate as

σ̃2
k =

1

G

G∑
g=1

{ ng∑
i=1

(
α̃k

(G
n

)
− β̃kΛ′(X ′igβ̃) + µ̃k′Xig{Yig − Λ(X ′igβ̃)}

)}2
. (4.14)

We are now ready to introduce a procedure for simultaneous inference. Suppose that the

null hypothesis of interest is

H0 : αk = α0
k for all k ∈ A

for some values (α0
k)k∈A. We present a concrete simultaneous inference procedure as the

following algorithm.

Algorithm 4.2 (Simultaneous Inference via Multiplier Cluster Bootstrap). For each k ∈ A,

(1) Compute σ̃k for k ∈ A following (4.14).

(2) Compute the test statistic T = maxk∈[p]

√
Gσ̃−1

k |α̃k − α
0
k|.

(3) For each k ∈ A, compute µ̃k following (4.13).
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(4) Set the number of bootstrap iterations to B. For each b ∈ [B], generate i.i.d. standard

normal random variables {ξbg}Gg=1 independently from data.

(5) For each k ∈ A and b ∈ [B], compute

W b = max
k∈A

∣∣∣ 1√
Gσ̃k

G∑
g=1

ξbg

ng∑
i=1

(
α̃k

(G
n

)
− β̃kkΛ′(X ′igβ̃) + µ̃k′Xig{Yig − Λ(X ′igβ̃)}

)∣∣∣ (4.15)

and ca, the (1− a)-th quantile of {W b}Bb=1.

(6) If T > ca, reject H0. Otherwise do not reject H0.

Finally, we illustrate the procedure for constructing simultaneously valid confidence in-

tervals with (1− a) coverage probability for αk, k ∈ A.

Algorithm 4.3 (Simultaneous Confidence Intervals via Multiplier Cluster Bootstrap). For

each k ∈ A,

(1) Compute σ̃2
k for k ∈ A following (4.14).

(2) Set the number of bootstrap iterations to B. For each b ∈ [B], generate i.i.d. standard

normal random variables {ξbg}Gg=1 independently from data.

(3) For each k ∈ A and b ∈ [B], compute W b following (4.15) and ca, the (1−a)-th quantile

of {W b}Bb=1.

(4) Compute simultaneous confidence intervals I = ×k∈AIk, where Ik = α̃k ± σ̃k · ca/
√
G.

Remark 4.2. Note that it is also possible to conduct multiple testing and simultaneous

confidence intervals without normalization (studentization). To do so, one simply follows

every step in Algorithms 4.2 and 4.3 with 1 in place of σ̂k for all k.

5. Main Theoretical Results

In this section, we present our main theoretical results for simultaneous inference and

construction of confidence intervals. These results justify the validity of the algorithms

proposed in Section 4. First, we introduce some notations. Recall

EP(Yig|Xg) = EP(Yig|Xig) = Λ(X ′igβ
0).

Define the Neyman orthogonal score for αk by

ψ̄k(Wig, α, η) =α · G
n
− βkΛ′(X ′igβ) + µ′Xig{Yig − Λ(X ′igβ)} (5.16)

=α · G
n
− ψk(Wig, η),
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where ψk(Wig, η) = βkΛ
′(X ′igβ)− µ′Xig{Yig − Λ(X ′igβ)}. In addition, let the “ideal” popu-

lation nuisance parameters9 for αk be ηk = (β0′, µk′)′ ∈ R2p with

µk =ζk + θk, (5.17)

ζk =
{

EP

[ 1

G

G∑
g=1

ng∑
i=1

f2
igXigX

′
ig

]}−1
EP

[ 1

G

G∑
g=1

ng∑
i=1

f2
igXigS

k
ig

]
, (5.18)

θk =
{

EP

[ 1

G

G∑
g=1

ng∑
i=1

f2
igXigX

′
ig

]}−1
EP

[ 1

G

G∑
g=1

ng∑
i=1

f2
igek

]
, (5.19)

where Skig = β0
k(1− 2Λ(X ′igβ

0)) is an auxiliary regressor and f2
ig = Λ′(X ′igβ

0) is a regression

weight. Also denote the population nodewise regression coefficients for the j-th covariate

as γj . We can also rewrite the population nuisance parameter regression coefficients ζj as

a weighted projection of Sjig on Xig. Thus, we have the following

γj = argmin
γ∈Rp−1

EP

[ 1

G

G∑
g=1

ng∑
i=1

f2
ig(D

j
ig −X

j
igγ)2

]
, (5.20)

ζj = argmin
γ∈Rp

EP

[ 1

G

G∑
g=1

ng∑
i=1

f2
ig(S

j
ig −Xigζ)2

]
. (5.21)

Denote the projection errors by Zjig = Dj
ig −X

j
igγ

j and εjig = Sjig −Xigζ
j . Let q > 4 be a

constant independent of G. Let c1 and C1 be some strictly positive constants independent of

G. Furthermore, let aG = p∨G and δ̌G be a sequence of positive constants that converge to

zero. MG,1 ≥ 1 and MG,2 ≥ 1 be some sequence of positive constants possibly diverging to

infinity. s = sG is a non-decreasing sequence of constants. We make the follow assumptions.

Assumption 1 (Parameters).

‖β0‖2 + max
j∈[p]
‖γj‖2 + max

k∈[p]
‖ζk‖2 ≤ C1.

Also, for all k ∈ [p], Hk contains a ball of radius (s log aG)/G1/2 centered at ηk.

Assumption 2 (Sparsity). There exist vectors γ̄j ∈ Rp−1 and ζ̄k ∈ Rp for all j, k ∈ [p]

such that

‖β0‖0 + max
j∈[p]
‖γ̄j‖0 + max

k∈[p]
‖ζ̄k‖0 ≤ s

9See Section A in the Appendix for derivation of this moment condition.
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and

max
j,k∈[p]

(‖γ̄j − γj‖2 ∨ ‖θ̄k − θk‖2 + s−1/2‖γ̄j − γj‖1 ∨ ‖ζ̄k − ζk‖1) ≤ C1(s log aG/G)1/2.

Remark 5.1. Assumption 1 requires bounded `2 norm of nuisance parameters, which is

mild and standard in the lasso literature. The `1 norm of the nuisance parameters are

allowed to be growing with G. Note that we do not require exact sparsity of γj and ζk in

Assumption 2 since the exact sparsity of nodewise lasso coefficients could be more difficult

to justify in many applications. Also, note that for each j ∈ [p], we can without loss of

generality assume γ̄j = γjT , where T = support(γj). The same applies to ζ̄k and ζk.

For the following assumption, define Ugk = n̄ · maxi∈[ng ] |Xig,k|, Ug = [Ugk]k∈[p] and

V j
g = maxi∈[ng ](|Z

j
ig| ∨ |ε

j
ig|).

Assumption 3 (Covariates). At least one coordinate of Xig is continuously distributed.

There exist finite positive constants c1, C1 such that the following moment conditions hold

for all G,

(1) inf‖ξ‖2=1 EP[ 1
G

∑G
g=1

∑ng

i=1(figX
′
igξ)

2]∧inf‖ξ‖2=1 EP[ 1
G

∑G
g=1(

∑ng

i=1{Yig−Λ(X ′igβ
0)}X ′igξ)2] ≥

c1.

(2) minj,k EP[ 1
G

∑G
g=1(

∑ng

i=1 f
2
igZ

j
igXig,k)

2] ∧ minj,k EP[ 1
G

∑G
g=1(

∑ng

i=1 f
2
igXig,jXig,k)

2] ≥
c1.

(3) maxj,k{EP[ 1
G

∑G
g=1 |V

j
g Ugk|3]}1/3 log1/2 aG ≤ δ̌GG1/6.

(4) sup‖ξ‖2=1 EP[ 1
G

∑G
g=1(U ′gξ)

4] + maxj∈[p] EP[ 1
G

∑G
g=1(V j

g )4] ≤ C1.

(5) MG,1 ≥ {EP[ 1
G

∑G
g=1 maxj∈[p] |V

j
g |2q]}1/2q.

(6) M2
G,1s log aG ≤ δ̌GG1/2−1/q.

(7) MG,2 ≥ {EP[ 1
G

∑G
g=1 ‖Ug‖

2q
∞]}1/2q.

(8) M2
G,2s log aG ≤ δ̌GG1/2−1/q.

(9) (M2
G,1 ∨ s log2 aG)M4

G,2s ≤ δ̌GG1−3/q.

Assumption 4 (Sparse Eigenvalues). Let ∆(m) = {δ ∈ Rp : ‖δ‖0 ≤ m, ‖δ‖2 = 1}. With

probability at least 1− C(logG)−1, we have

1 . min
j∈[p]

min
δ∈∆(Cs)

1

G

G∑
g=1

ng∑
i=1

(ZjigX
′
igδ)

2 ≤ max
j∈[p]

max
δ∈∆(Cs)

1

G

G∑
g=1

ng∑
i=1

(ZjigX
′
igδ)

2 . 1,

1 . min
δ∈∆(Cs)

1

G

G∑
g=1

ng∑
i=1

(X ′igδ)
2 ≤ max

δ∈∆(Cs)

1

G

G∑
g=1

ng∑
i=1

(X ′igδ)
2 . 1.
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Remark 5.2. Assumptions 1, 2, 3 are the cluster sampling counterpart of the Assumptions

3.1, 3.2, 3.4 and 3.5 of Belloni, Chernozhukov, Chetverikov and Wei (2018). To deal with

APEs, however, we do need extra conditions on the growth of some moments that are listed

below in the statement of Theorem 1. These growth conditions are satisfied when, for

example, the covariates are sub-gaussian and/or uniformly bounded. When regressors are

uniformly bounded, which is assumed in both Wooldridge and Zhu (2017) and Hirshberg

and Wager (2018), the rate requirement would be s log p/G1/2 = o(1) (s3/2 log p/G1/2 = o(1)

is required by Wooldridge and Zhu (2017)). Assumption 4 is analogous to condition SE in

Belloni, Chernozhukov, Hansen and Kozbur (2016) for the linear panel data model.

Theorem 1 (Main Result). Suppose that Assumptions 1, 2, 3, 4 hold and (MG,1∨MG,2)4(log aG)7 .

G1−2/q−c1 for some c1 ∈ (0, 1− 2/q),

(1) The following uniform Bahadur representation holds with probability at least 1 −
C(logG)−1

sup
P∈PG

max
1≤k≤p

∣∣∣∣∣√Gσ−1
k (α̂k − αk)−

1√
G

G∑
g=1

ng∑
i=1

ϕk(Wig, αk, η
k)

∣∣∣∣∣ . δG,

where ϕk(Wig, α, η) = −ψ̄k(Wig, α, η)/σk and ηk = (β0′, µk′)′.

(2) Let cW (a) be the a-th quantile of W , we have, with probability at least 1−C(logG)−1,

sup
P∈PG

sup
α∈(0,1)

∣∣∣PP

(
max

1≤k≤p
|
√
Gσ−1

k (α̂k − αk)| ≤ cW (a)
)
− a
∣∣∣ = o(1).

That is to say, the algorithms in Section 4 provide valid simultaneous inference and

confidence intervals asymptotically.

A proof can be found in Section D.1 in the Appendix. Now, it remains to find a valid

variance estimator. Recall the variance estimator σ̃2
k defined in (4.14). Denote σ̃k = {σ̃2

k}1/2.

Lemma 1 (Variance Estimator). Suppose that the conditions for Theorem 1 hold. Then

max
k∈[p]
|σ̃k − σk| . (log aG)−1

with probability at least 1− C(logG)−1.

A proof can be found in Section D.2 in the Appendix.
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6. Nuisance Parameters

Recall that the “ideal” nuisance parameter vector ηk = (β0′, µk′)′, where

µk =
{

EP

[ 1

G

G∑
g=1

ng∑
i=1

f2
igXigX

′
ig

]}−1
· EP

[ 1

G

G∑
g=1

ng∑
i=1

(
β0
kΛ′′(X ′igβ

0)Xig + Λ′(X ′igβ
0)ek

)]
= ζk + θk.

In this section, we propose estimators for these nuisance parameters as well as some the-

oretically justified choices of penalty tuning parameters. The choices here are based on

the moderate deviation theory of self-normalized sums, which is first adapted for penalty

selection of lasso by Belloni, Chernozhukov, Chen and Hansen (2012). Throughout this

section, we fix a positive integer m̄ ≥ 1 as the number of iterations used in the algorithms

for choosing penalty tuning parameters.

6.1. Post-Lasso Logit and Estimation of β0. We now establish an asymptotic theory

for estimation of β0, which plays a central role in estimation of APE. The identification

of β0 follows from quasi-maximum likelihood and the assumption of population-averaged

approach E[Yig|Xig] = Λ(X ′igβ
0). Define the negative partial log-likelihood function by

M(Yig, Xig, β) = −{YigX ′igβ − log(1 + exp(X ′igβ))}. (6.22)

Then, one has

β0 = argmin
β∈Rp

EP

[ 1

G

G∑
g=1

ng∑
i=1

M(Yig, Xig, β)
]
.

We propose the following algorithm for the choice of Ψ̂.

Algorithm 6.1 (Penalty Choice: Clustered Lasso Logit β0). Define λ = c
√
GΦ−1(1−γ/2p)

and set c = 1.1 and γ = 0.1/ logG. For m = 0, let

l̂j,0 =
1

2

{ 1

G

G∑
g=1

( ng∑
i=1

ngX
2
ig,j

)}1/2

and for 1 ≤ m ≤ m̄,

l̂j,m =
{ 1

G

G∑
g=1

( ng∑
i=1

{Yig − Λ(Xigβ̃)}Xig,j

)2}1/2

with β̃ coming from iteration m− 1. Let Ψ̂ = diag{l̂j,m : j ∈ [p]}.

The following result provides convergence rates of β̃ and β̃k.
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Theorem 2. Suppose that the Assumption 1, 2, 3 and 4 are satisfied. If δ̌2
G log aG = o(1),

then with penalty chosen according to Algorithm (6.1), with probability 1− γ, γ = O( 1
logG),

‖β̃ − β0‖1 ∨max
k∈[p]
‖β̃k − β0‖1 . s

√
log aG
G

and ‖β̃ − β0‖2 ∨max
k∈[p]
‖β̃k − β0‖2 .

√
s log aG
G

.

A proof can be found in Section E.1 in the Appendix.

6.2. Weighted Post-Lasso with Estimated Weights. We now establish asymptotic

theory for weighted post-lasso with estimated weights that will be essential for Sections 6.3

and 6.4. We propose the following algorithm for the choices of penalty tuning parameters.

Algorithm 6.2 (Penalty Choice: Weighted Clustered Lasso γj). Define λγ = c
√
GΦ−1(1−

γ/2p(p− 1)) and set c = 1.1 and γ = 0.1/ logG. For each j ∈ [p], for m = 0, set

l̂jk,0 =2 max
g∈[G]

max
i∈[ng ]

|f̂igXig,k|
{ 1

G

G∑
g=1

( ng∑
i=1

f̂igD
j
ig

)2}1/2

and 1 ≤ m ≤ m̄,

l̂jk,m =2
{ 1

G

G∑
g=1

( ng∑
i=1

f̂2
ig(D

j
ig −X

j
igγ̃

j)Xj
ig,k

)2}1/2

and Ψ̂γ
j = diag{l̂jk,m : k ∈ [p− 1]}.

The following result provides convergence rates of γ̃j , which plays an important role in

Section 6.3.

Theorem 3. Suppose that Assumption 1, 2, 3, 4 are satisfied and if δ̌2
G log aG = o(1), then

with penalty chosen according to Algorithm (6.2), with probability 1− γ, γ = O( 1
logG)

max
j∈[p]
‖γ̃j − γj‖1 . s

√
log aG
G

and max
j∈[p]
‖γ̃j − γj‖2 .

√
s log aG
G

.

A proof can be found in Section E.2 in the Appendix.

6.3. Nodewise Post-Lasso and Estimation of θk. Now we provide estimators for θk

that are built upon the method of cluster nodewise post-lasso estimator for approximately

inverting a singular matrix. The theory developed here is based on applying the weighted

post-lasso with estimated weights from Belloni, Chernozhukov, Chetverikov and Wei (2018)
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to the panel nodewise regressions of Kock (2016). Recall that each nuisance parameter

vector θk contains the matrix

Θ :=
{

EP

[ 1

G

G∑
g=1

ng∑
i=1

f2
igXigX

′
ig

]}−1
.

Its sample counterpart is not invertible if p > n and could be very unstable if p is only

moderately larger than n. Here, we take advantage of Assumption 2 to construct a high

quality approximate inverse estimate. Denote Θj for the j-th row written as a column

vector. If we can find some reasonable estimator Θ̂k for Θk, then intuitively an estimator

for θk can be defined as

θ̃k = Θ̂k ·
1

G

G∑
g=1

ng∑
i=1

f̂2
ig.

We propose a cluster nodewise post-lasso procedure to estimate Θ. Recall that the error

Zjig = Dj
ig−X

j
igγ

j which satisfies EP[ 1
G

∑G
g=1

∑ng

i=1 f
2
igX

j
igZ

j
ig] = 0. Define the error variance

τ2
j = EP[ 1

G

∑G
g=1

∑ng

i=1 f
2
ig(Z

j
ig)

2]. Some properties of τ2
j can be found in Section F.1. Note

that γj has a sparse approximation γ̄j under Assumption 1. Then, we can use post-lasso

estimate γ̃j for γj from Section 6.2 and construct a p× p matrix Ĉ by

Ĉ =


1 −γ̃1

1 . . . −γ̃1
p−1

−γ̃2
1 1 . . . −γ̃2

p−1
...

...
. . .

...

−γ̃p1 −γ̃p2 . . . 1

 .

That is, the off-diagonal spots of the j-th row of Ĉ consist of components of −γ̃j and the

diagonal entries are set to 1. Also, denote

T̂ 2 = diag{τ̂2
1 , ..., τ̂

2
p },

where τ̂2
j is defined in (4.12). Now, the cluster nodewise post-lasso estimator for Θ is defined

as

Θ̂ = T̂−2Ĉ,

which in turn gives the expression of (4.11). The following results provide validity of Θ̂ and

θ̃k.
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Lemma 2. Suppose that the Assumption 1, 2, 3, 4 are satisfied. If δ̌2
G log aG = o(1), then

with penalty chosen according to Algorithm 6.2, with probability 1− γ, γ = O( 1
logG),

max
j∈[p]
‖Θ̂j −Θj‖1 . s

√
log aG
G

and max
j∈[p]
‖Θ̂j −Θj‖2 .

√
s log aG
G

.

Theorem 4. Suppose that all assumptions required by Lemma 2 are satisfied. Then, with

probability 1− γ, γ = O( 1
logG), we have

max
k∈[p]
‖θ̃k − θk‖1 . s

√
log aG
G

and max
k∈[p]
‖θ̃k − θk‖2 .

√
s log aG
G

.

Proofs for the above two results can be found in Sections E.4 and E.5 in the Appendix.

6.4. Weighted Post-Lasso and Estimation of ζk. Recall that the nuisance parameters

ζk is identified by

ζk = argmin
ζ∈Rp

EP

[ 1

G

G∑
g=1

ng∑
i=1

f2
ig(S

k
ig −X ′igζ)2

]
.

We propose the following algorithm for choice of the penalty tuning parameters.

Algorithm 6.3 (Penalty Choice: Weighted Clustered Lasso ζk). Define λζj = c
√
GΦ−1(1−

γ/2p2) and set c = 1.1 and γ = 0.1/ logG. For each k ∈ [p], for m = 0, set

l̂kj,0 =2 max
g∈[G]

max
i∈[ng ]

|f̂igXig,j |
{ 1

G

G∑
g=1

( ng∑
i=1

f̂igŜ
k
ig

)2}1/2

and 1 ≤ m ≤ m̄,

l̂kj,m =2
{ 1

G

G∑
g=1

( ng∑
i=1

f̂2
ig(Ŝ

k
ig −X ′ig ζ̃k)Xig,j

)2}1/2

and Ψ̂ζ
k = diag{l̂kj,m : j ∈ [p]}.

The following result provides convergence rates of ζ̃k.

Corollary 1. Suppose that Assumptions 1, 2, 3, 4 hold. If δ̌2
G log aG = o(1), then with

penalty chosen according to Algorithm 6.3, with probability 1− γ, γ = O( 1
logG),

max
k∈[p]
‖ζ̃k − ζk‖1 . s

√
log aG
G

and max
k∈[p]
‖ζ̃k − ζk‖2 .

√
s log aG
G

.

A proof can be found in Section E.3 in the Appendix.
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7. Simulation Studies

In this section, we conduct simulation studies to examine the finite-sample performance of

the proposed procedures. We set the number of total observations to n, and each observation

is then randomly assigned into G0 clusters. The empty clusters, if they exist, are then

discarded and thus G ≤ G0. For DGP1, let the number of covariates for each observation

be p = 1.5 ·G0 and

β0 = [1, β2, 1/3, 1/4, 1/5, .., 1/19, 1/20, 0, ..., 0]′ ∈ Rp.

The first component of each covariate vector is set to 1 and the rest of the subvector, Xig,−1,

can be decomposed into an idiosyncratic part X1
ig and a cluster-wise component X2

g as

Xig,−1 = X1
ig +X2

g

and both X1
ig and X2

g are i.i.d. following a multivariate normal distribution with mean 0

and a Toeplitz covariance matrix:

Σij(ρ) := ρ|i−j|, ρ = 0.1, 0.3, 0.5, 0.7, 0.9, i, j,∈ [p− 1].

So the larger ρ is, the more correlated the covariates are. The outcome variable is generated

by

Yig = 1

{
X ′igβ

0 + Uig > 0
}
,

where the error term can also be decomposed into an idiosyncratic term and a cluster-wise

term as

Uig = Λ
(

Φ−1(U1
ig + U2

g )
)
,

where both U1
ig and U2

g are i.i.d. following the normal N(0, 1/2) distribution. Thus, Uig is

a standard logistic distribution. Thus both covariates and errors are correlated within each

cluster. To consider “outliers” and substantial skew and kurtosis in marginal distribution

of independent variables, we also consider alternative DGPs inspired by Kline and Santos

(2012) by setting X1
ig and X2

g to follow a mixture between two distributions, N(0,Σ(ρ))

with probability 0.9 and a N(0,Σ(ρ))− 1.5×N(1,Σ(ρ)) with probability 0.1.
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Table 2. List of DGPs in Simulation Studies.

Model DGP Descriptions

M1 X1
ig, X

2
g ∼ N(0,Σ(ρ)) with ρ = 0.1

M2 Same as M1 except ρ = 0.3

M3 Same as M1 except ρ = 0.5

M4 Same as M1 except ρ = 0.7

M5 Same as M1 except ρ = 0.9

M6 X1
ig, X

2
g ∼

(
N(0,Σ(ρ))− 1.5 ∗B(1, 0.1) ∗N(1,Σ(ρ))

)
with ρ = 0.1

M7 Same as M6 except ρ = 0.3

M8 Same as M6 except ρ = 0.5

M9 Same as M6 except ρ = 0.7

M10 Same as M6 except ρ = 0.9

Note that for the DGPs with high ρ, such as M4, M5, M9 and M10, the approximate

sparsity conditions in Assumption 1 are violated. We conduct three sets of simulations.

First we examine one-dimensional confidence interval coverage for α2 with true underlying

β2 ∈ {0, 0.25, 0.5, 0.75, 1}. Our second goal is to construct simultaneous confidence intervals

that control the family-wise error rate for αk for k ∈ A, A is set to be

A1 = {2}, A2 = {2, 3}, A3 = {2, 3, 4}, A5 = {2, 3, ..., 6}, A10 = {2, 3, ..., 10}, A20 = {2, 3, ..., 20},

A30 = {2, 3, ..., 31}, A40 = {2, 3, ..., 41}, A50 = {2, 3, ..., 51}, A100 = {2, 3, ..., 101},

where the APE with respect to the intercept is always omitted. In this group of simulations,

we set β2 = 0.5. Finally, we examine the asymptotic behaviors of coverage probabilities of

simultaneous intervals for A10.

The estimation of all lasso and lasso Logit are conducted using R package glmnet and

the penalty choices follow Algorithms 6.1, 6.2 and 6.3 in Section 6 with m̄ = 1. For each

iteration of the simulation, we set the number of bootstrap iterations to B = 600. We then

simulate 1, 000 times for each DGP. The simultaneous confidence intervals are constructed

following Algorithm 4.3 and without normalization by σ̃k for simplicity. The true αk are

computed using 3, 000, 000 additional observations generated independently from data fol-

lowing the same marginal distribution as Xig. The nominal coverage probability is set to be

0.95. The results for one-dimensional confidence intervals are presented in the tables below.
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Table 3. Coverage probability for one-dimensional 95% confidence intervals

for α2 under each DGP with G0 = 200, n = 500 and p = 300:

Model DGP β2 = 0 β2 = .25 β2 = .5 β2 = .75 β2 = 1

M1 0.953 0.935 0.943 0.959 0.972

M2 0.949 0.944 0.937 0.956 0.969

M3 0.939 0.938 0.941 0.951 0.968

M4 0.938 0.944 0.937 0.944 0.954

M5 0.928 0.931 0.928 0.940 0.923

M6 0.928 0.919 0.920 0.946 0.970

M7 0.921 0.920 0.912 0.926 0.957

M8 0.934 0.925 0.929 0.954 0.956

M9 0.926 0.929 0.933 0.941 0.958

M10 0.938 0.935 0.944 0.938 0.947

We now present the coverage probabilities for simultaneous confidence intervals for different

sets of covariates. For this part, we focus on models M1 to M5 with β2 = 0.5.

Table 4. Coverage probability for 95% simultaneous confidence intervals

for αk, k ∈ A under each DGP with G0 = 200, n = 500 and p = 300:

Model DGP A1 A2 A3 A5 A10 A20 A30 A40 A50 A100

M1 0.943 0.941 0.933 0.926 0.920 0.940 0.951 0.959 0.957 0.943

M2 0.937 0.945 0.932 0.930 0.907 0.927 0.917 0.920 0.940 0.950

M3 0.941 0.943 0.956 0.914 0.882 0.900 0.901 0.914 0.920 0.930

M4 0.937 0.928 0.925 0.876 0.865 0.863 0.865 0.891 0.897 0.925

M5 0.928 0.926 0.930 0.891 0.865 0.861 0.874 0.898 0.894 0.904

Finally, we investigate the asymptotic behaviors of the case with A10, one of the worst-

performing cases in the above simulations for simultaneous confidence intervals, to examine

whether the performance improves as sample size increases. In this set of simulations, set

β2 = 0.5 for number of nominal clusters G0 = 200, 400, 600 and 800, p = 1.5 · G0, and

n = 2.5 ·G0.
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Table 5. Asymptotic behaviors of coverage probability for 95% simultane-

ous confidence intervals for αk, k ∈ A10 under each DGP:

Model DGP G0 = 200 G0 = 400 G0 = 600 G0 = 800

M1 0.920 0.914 0.930 0.945

M2 0.907 0.917 0.920 0.921

M3 0.882 0.894 0.898 0.903

M4 0.865 0.856 0.864 0.876

M5 0.865 0.859 0.847 0.857

In all of the three sets of simulations, the coverage probabilities are mostly fairly close

to the nominal coverage rate when ρ is not very high. When ρ is high, the approximate

sparsity of nuisance parameters in Assumption 1 is violated. Thus some of the coverage

probabilities are not close to the nominal rate. In addition, the coverage probabilities

improve as sample size increases. In summary, the outcomes of the simulations are consistent

with our theoretical results.

8. Application: Testing Gendered Language on the Internet

In this section, we apply our method of simultaneous inference for APEs in the text

regression model of Wu (2018) introduced in Section 2. We make use of the pronoun sample

(gendered posts including either female or male pronouns) from Wu (2018). Following Wu,

using the EJMR dataset10, we exclude the same list of words from the 10,000, including

all gender classifiers, plus names of non-economist celebrities. We conduct our analysis

based on the subset of non-duplicate posts that are used as the test sample for selecting

optimal probability threshold in the original paper (the posts with index labelled as test0)

for classification of posts that contains both female and male classifiers. We consider only

pronoun sample. This leaves 46,502 posts sampled from 31,739 threads and 9541 covariates11

that consists of an intercept and the word counts of 9,540 non-excluded vocabularies.

10The dataset is publicly available at url:https://www.aeaweb.org/articles?id=10.1257/pandp.20181101
11Since the number of observations is larger than dimensionality of parameters, regular Logit and even

OLS can be applied here. We have attempted to implement Logit using glm package in R. However, it did

not finish after 70 minutes. OLS on the other hand takes 55 minutes to complete. In contrast, the proposed

estimation and inference algorithms, when applied to the testing problem in this section, takes about two

minutes to complete.
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Wu (2018) highlights that posts about males include more academically and profession-

ally oriented vocabularies, such as “adviser,” “supervisor,” and “Nobel.” To see the joint

significance of these words’ APE in terms of predicting female, we test

H0 : αadviser = αsupervisor = αnobel = 0.

Following the penalty choices of Algorithms 6.1, 6.2 and 6.3, the estimates of APEs of these

words calculated using Algorithm 4.1 are listed as follows:

Table 6. APE estimates for “adviser,” “supervisor,” and “Nobel.”

adviser supervisor Nobel

APE estimate −0.1414 −0.1214 −0.1214

These estimates are qualitatively similar to the corresponding estimates in Wu (2018).

Using multiplier cluster bootstrap with 10, 000 bootstrap iterations, we obtain the follow

test results

Table 7. Multiple Testing Results under 1− α% Confidence level.

α MCB critical value test statistic

10% 16.0889 25.1867

5% 18.2870 25.1867

1% 22.2930 25.1867

Thus, under all three confidence levels, we reject the null hypothesis and the statistical

evidence supports Wu’s statement 12.

9. Conclusion

In this paper, we study logistic average partial effects with lasso regularization when data

is sampled under clustering. We proposed two valid estimators along with their theoretically

justified lasso penalty choices. Based on these estimators, we provide easy-to-implement al-

gorithms for simultaneous inference and confidence intervals and establish their asymptotic

validity. Simulation studies demonstrate that the proposed procedures work as predicted

by the theory in finite sample. We then apply the proposed method to conduct analysis of

textual data to examine the presence of gendered language on the EJMR forum following

12One may be concerned about the high-correlation between ”supervisor” and ”adviser.” However, re-

moving either one of them does not change the significance of the tests at 99% confidence level.
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the text regression model of Wu (2018). Our analysis provides further statistical evidence

to support Wu’s finding.
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Appendix A. Orthogonalization of the Score

In this Section, we derive the Neyman orthogonal score for αk, as defined in (5.16), following

the methodology in Section 2.2 of Belloni, Chernozhukov, Chetverikov and Wei (2018) (see

also Section 2 of Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey and Robins

(2018)). The first order condition of the population quasi-maximal likelihood and definition

of the k-th APE give EP[ 1
G

∑G
g=1

∑ng

i=1m(Wig, αk, β
0)] = 0, where

mk(Wig, α, β) =

[
∂α ˜̀(Wig, α, β)

∂β ˜̀(Wig, α, β)

]
:=

[
α · Gn − βkΛ

′(X ′igβ)

`′(Yig, X
′
igβ)Xig

]
,

where `(a, b) = a log Λ(b) + (1 − a) log(1 − Λ(b)), `′(a, b) = ∂
∂b`(a, b), `

′′(a, b) = ∂2

∂b2
`(a, b).

Note that the order of integral and derivative are interchangeable in this case. Let us define

J =∂(α,β′)′EP

[ 1

G

G∑
g=1

ng∑
i=1

mk(Wig, α, β)
]∣∣
α=αk,β=β0

=

[
1 −EP[ 1

G

∑G
g=1

∑ng

i=1(βkΛ
′′(X ′igβ)X ′ig + Λ′(X ′igβ)e′k)]

0 EP[ 1
G

∑G
g=1

∑ng

i=1 `
′′(Yig, X

′
igβ)XigX

′
ig]

]
α=αk,β=β0

=

[
Jαα Jαβ

Jβα Jββ

]
.

Now define population nuisance parameter

µk =− J−1ββ J
′
αβ

=
{

EP

[ 1

G

G∑
g=1

ng∑
i=1

`′′(Yig, X
′
igβ

0)XigX
′
ig

]}−1
EP

[ 1

G

G∑
g=1

ng∑
i=1

(β0
kΛ′′(X ′igβ

0)Xig + Λ′(X ′igβ
0)ek)

]

=
{

EP

[ 1

G

G∑
g=1

ng∑
i=1

f2igXigX
′
ig

]}−1
EP

[ 1

G

G∑
g=1

ng∑
i=1

f2igXigS
k
ig

]
+
{

EP

[ 1

G

G∑
g=1

ng∑
i=1

f2igXigX
′
ig

]}−1
EP

[ 1

G

G∑
g=1

ng∑
i=1

f2igek

]
=ζk + θk,

where Skig = βk(1 − 2Λ(X ′igβ
0)). Here we have used the property of the logistic function

Λ′′(X ′igβ
0) = Λ(X ′igβ

0)(1− Λ(X ′igβ
0))(1− 2Λ(X ′igβ

0)) and thus

β0
kΛ′′(X ′igβ

0) = f2
igβ

0
k(1− 2Λ(X ′igβ

0)) = f2
igS

k
ig.



30 CHIANG

We now define Neyman orthogonal score for αk as

ψ̄k(Wig, α, η) =∂α ˜̀(Wig, α, β)− µ′∂β ˜̀(Wig, α, β)

=α · G
n
− βkΛ′(X ′igβ) + µ′Xig{Yig − Λ(X ′igβ)}

=α · G
n
− ψk(Wig, η),

where βk is the k-th coordinate of β and η = (β′, µ′) ∈ R2p. It is straightforward to verify

the followings,

EP

[ 1

G

G∑
g=1

ng∑
i=1

ψ̄k(Wig, αk, η
k)
]

= 0, (existance condition)

∂ηEP

[ 1

G

G∑
g=1

ng∑
i=1

ψ̄k(Wig, αk, η
k)
]

= 0, (Neyman orthogonality condition)

∂αEP

[ 1

G

G∑
g=1

ng∑
i=1

ψ̄k(Wig, αk, η
k)
]

= 1 6= 0. (uniqueness condition)

Appendix B. Main Results under High-level Assumptions

In this section we introduce a version of our asymptotic results under high-level condi-

tions. They serve as building blocks for results in Section 5. Suppose that we have some

generic nuisance parameter estimators η̂k such that ηk ∈ Hk for G large enough. Denote

Ak, a bounded interval of αk shrinking with G, and Hk ⊂ Hk, a sparse neighborhood of

ηk shrinking with G, where Hk ⊂ Rp a compact and convex set that contains ηk. Write

B1G and B2G as some positive sequences of constants that can possibly diverge to infinity.

Let aG, vG, KG be some positive sequences of constants that can possibly grow to infinity,

where aG ≥ G ∨KG and vG ≥ 1 for all G ≥ 1. Let q ≥ 2 be some constant. Further, let

τG, δG and ∆G be some positive sequences of constants that converge to zero and ∆G < 1.

Assumption 5. For each G ∈ N, G ≥ G0, P ∈ PG and 1 ≤ k ≤ p, define sequences of

positive constants δG = o(1), and τG = o(1). The true parameters (αk, η
k) ∈ Ak ×Hk for

some Ak and Hk and the following are satisfied:

(i) η 7→ EP[ 1
G

∑G
g=1

∑ng

i=1 ψk(Wig, η)] is twice continuously differentiable.

(ii) It holds that

(a) supη∈Hk
EP[ 1

G

∑G
g=1(

∑ng

i=1{ψk(Wig, η)− ψk(Wig, η
k) })2] ≤ C0‖η − η̂k‖22,

(b) supη∈Hk
‖∂η′∂ηEP[ 1

G

∑G
g=1

∑ng

i=1 ψk(Wig, η)]‖2 ≤ B1G.
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Assumption 6. At least one coordinate of Xig is continuously distributed. Furthermore,

there exists sequences of positive constants ∆G = o(1), τG = o(1) such that for the same Hk
from Assumption 5, the following holds uniformly in k.

(i) η̂k ∈ Hk with probability at least 1−∆Gand supη∈Hk
‖η − ηk‖2 ≤ τG .

(ii) The collection of functions

F0 = {ψ̄k(·, αk, η) : k ∈ [p], η ∈ Hk} ∪ {0}

is pointwise measurable and satisfies that for all 0 < ε ≤ 1,

sup
Q

logN(F0, L2(Q), ε‖F0‖Q,2) ≤ vG log(aG/ε)

where the supremum is taken over the set of all finite measures and F0 is a measurable

envelope of F0 such that {EP[ 1
G

∑G
g=1 |

∑ng

i=1 F0(Wig)|q]}1/q ≤ KG.

(iii) For all f ∈ F0, we have c0 ≤ {EP[ 1
G

∑G
g=1(

∑ng

i=1 f(Wig))
2]}1/2 ≤ C0.

(iv) τG
√
vG log aG ∨G−1/2+1/qKGvG log aG . δG and

√
GB1Gτ

2
G . δG.

Remark B.1. While been adapted to our cluster sampling setting, Assumptions 5, 6 are

similar to Condition 2, 3 of Belloni, Chernozhukov and Kato (2015) and Assumption 2.1,

2.2 of Belloni, Chernozhukov, Chetverikov and Wei (2018). However, due to the additive

separability of α̂k, we do not need to assume Assumption 2.1(b) of Belloni, Chernozhukov,

Chetverikov and Wei (2018). Also, differentiability of the orthogonal score comes directly

from smoothness of logistic function.

The following result builds upon the ideas of the main results in Belloni, Chernozhukov

and Kato (2015) and Belloni, Chernozhukov, Chetverikov and Wei (2018) while allowing

for cluster sampling. Given some generic nuisance parameters estimate η̂k, we define the

generic APE estimator for the k-th continuous covariate as

α̂k =
1

G

G∑
g=1

ng∑
i=1

ψk(Wig, η̂
k). (B.23)

It is easy to verify the fact that the post-double-section estimator α̃k, as defined in (4.1),

satisfies (B.23) for η̂k = (β̃k′, µ̃k′)′ following the first order condition of (4.8), the definition

of T̃k and the definition of ψk.

Theorem 5 (Uniform Bahadur Representation).

Suppose that we have nuisance parameter estimates (η̂k)k∈[p] such that Assumptions 5 and
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6 are satisfied. For the generic (α̂k)k∈[p] defined based on (η̂k)k∈[p] following (B.23), with

probability at least 1−∆G − (logG)−1,

sup
P∈PG

max
1≤k≤p

∣∣∣∣∣√Gσ−1
k (α̂k − αk)−

1√
G

G∑
g=1

ng∑
i=1

ϕk(Wig, αk, η
k)

∣∣∣∣∣ . δG,

where ϕk(Wig, α, η) = −ψ̄k(Wig, α, η)/σk and ηk = (β0′, µk′)′.

A proof can be found in Appendix C.1.

Let {ξg}Gg=1 be independent standard normal random variables generated independently

from data. Define

W = max
1≤k≤p

1√
G

G∑
g=1

ξg

ng∑
i=1

ϕ̂k(Wig, α̂k, η̂
k) and W0 = max

1≤k≤p

1√
G

G∑
g=1

ξg

ng∑
i=1

ϕk(Wig, αk, η
k).

We also denote ĀG ≥ G and ρ̄G ≥ logG be sequences of positive constants that grow to

infinity.

Assumption 7. For all G ≥ G0 and P ∈ PG, the following holds.

(i) There exists BG ≥ 1 such that B4
G(log(p ·G))7/G ≤ C1G

−c1 for positive constants c1,

C1 and for all 1 ≤ g ≤ G and k ∈ [p]

max
b=1,2

EP

[ 1

G

G∑
g=1

∣∣∣ ng∑
i=1

ϕk(Wig, αk, η
k)
∣∣∣2+b

/Bb
G

]
+ EP

[(
max

1≤k≤p

∣∣∣ ng∑
i=1

ϕk(Wig, αk, η
k)
∣∣∣/BG)4]

≤ 4.

(ii) The collection

F̂0 =
{
Wig 7→

n̄∑
i=1

(Wig, αk, η
k)− ϕ̂k(Wig, α̂k, η̂

k)) · 1{‖|Wig|‖∞ > 0} : k ∈ {1, ..., p}
}

satisfies with probability at least 1−∆G,

logN(F̂0, L2(PG), ε) ≤ ρ̄G log(ĀG/ε), for all 0 < ε ≤ 1,

and {EP[ 1
G

∑G
g=1 f

2]}1/2 ≤ δ̄G for all f ∈ F̂0.

(iii) δ̄2
Gρ̄G log ĀG log p = o(1) and δ2

G log p = o(1).

Remark B.2. Assumption 7 (i) is required by the high-dimensional central limit theorem

of Chernozhukov, Chetverikov and Kato (2013) (see their Corollary 2.1). Assumption 7 (ii)

is discussed in the next remark. Assumption 7 (iii) is a technical assumption that turns out

to be mild, as shown in the sufficient conditions in Section 5.
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Remark B.3 (Double/debiased Machine Learning). One could potentially employ sample

splitting to eliminate the dependence between the orthogonal score and nuisance parame-

ters. This procedure is known as ”double/debiased machine learning” (cf Chernozhukov,

Chetverikov, Demirer, Duflo, Hansen, Newey and Robins (2018)). This would allow us to

relax Assumption 7 (ii). We did not make use of sample splitting due to the following

considerations. First, we do not assume each cluster is identically distributed since it is

not suitable for the sampling method used in the motivating example in Section 2. Sec-

ond, even if identical distribution is assumed, when we have binary outcome variable Yig,

sample-splitting may results in subsamples with high percentages of outcomes equal to 1 or

0. In such case, the estimate for η̂k could be very unreliable. Finally, relaxing Assumption

7 (ii) does not appear to allow us to relax any sufficient conditions presented in Secion 5.

Therefore, we do not consider sample splitting in this paper.

Corollary 2 (Multiplier Cluster Bootstrap of Maxima). Suppose that Assumptions 5, 6

and 7 are satisfied, then let cW (a) be the a-th quantile of W , we have

sup
P∈PG

sup
α∈(0,1)

∣∣∣PP

(
max

1≤k≤p
|
√
Gσ−1

k (α̂k − αk)| ≤ cW (a)
)
− a
∣∣∣ = o(1).

A proof can be found in Section C.2 in the Appendix.

Remark B.4 (Uniform in DGP). Note that all the above results are valid uniformly over

PG, the set of DGP’s such that Assumptions 5, 6, 7 are satisfied. This is due to the fact

that Lemma A.1 of Belloni, Chernozhukov, Fernández-Val and Hansen (2017) implies that

it suffices to show that these results hold for any sequence PG ∈ PG, which is satisfied since

all the bounds in this paper are established independently of DGP.

Appendix C. Proofs for Results in Section B

C.1. Proof for Theorem 5.
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Proof. By (B.23), it holds that α̂k = 1
G

∑G
g=1

∑ng

i=1 ψk(Wig, η̂
k) for an η̂k from Assumption

6. The fact that αk = EP[ 1
G

∑G
g=1

∑ng

i=1 ψk(Wig, η
k)] implies

α̂k − αk =
1

G

G∑
g=1

ng∑
i=1

ψk(Wig, η̂
k)− αk

=
1

G

G∑
g=1

ng∑
i=1

ψk(Wig, η
k)− αk +

(
EP

[ 1

G

G∑
g=1

ng∑
i=1

ψk(Wig, η̂
k)
]
− αk

)
︸ ︷︷ ︸

Ik

+
1

G

G∑
g=1

ng∑
i=1

{
ψk(Wig, η̂

k)− ψk(Wig, η
k)− EP[ψk(Wig, η̂

k)− ψk(Wig, η
k)]
}

︸ ︷︷ ︸
IIk

.

It suffices to show that |Ik| and |IIk| are of order oP(1/
√
G) uniformly over k ∈ [p] and

uniformly in PG.

Step 1: Bound for |Ik|

To upperbound |Ik|, by applying the mean-value expansion and under Assumption 5 (i),

there exists a vector η̈k with each of its coordinates lies between those of ηk and η̂k such

that

Ik =EP

[ 1

G

G∑
g=1

ng∑
i=1

ψk(Wig, η̂
k)
]
− αk

=
(

EP

[ 1

G

G∑
g=1

ng∑
i=1

ψk(Wig, η
k)
]
− αk

)
+ ∂ηEP

[ 1

G

G∑
g=1

ng∑
i=1

ψk(Wig, η
k)
]
(η̂k − ηk)

+ (η̂k − ηk)′
{
∂η′∂ηEP

[ 1

G

G∑
g=1

ng∑
i=1

ψk(Wig, η)
]∣∣∣
η=η̈k

}
(η̂k − ηk)

=0 + 0 + (η̂k − ηk)′
{
∂η′∂ηEP

[ 1

G

G∑
g=1

ng∑
i=1

ψk(Wig, η)
]∣∣∣
η=η̈k

}
(η̂k − ηk),

where the last equality follows from existence condition and Neyman orthogonality condition

defined in the end of Section A of this Appendix. Hence by the definition of induced matrix

`2-norm and Assumptions 5 (ii)(b) and 6 (i), one has

|Ik| ≤
∥∥∥∂η′∂ηEP

[ 1

G

G∑
g=1

ng∑
i=1

ψk(Wig, η)
]∣∣∣
η=η̈k

∥∥∥
2
τ2
G ≤ B1Gτ

2
G
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uniformly in k with probability at least 1 − ∆G. This, together with Assumption 6 (iv),

implies
√
GIk ≤

√
GB1Gτ

2
G . δG with the same probability.

Step 2: Bound for |IIk|

Next, we upper bound |IIk|. Note that 1 ≤ ng ≤ n̄ and ng is predetermined. For each

g ∈ {1, ..., G}, recall that Wg can be written as

Wg =

(W ′1g, ... ,W ′n̄g)
′ if ng = n̄,

(W ′1g, ...,W
′
ngg, 0, ..., 0)′ if ng < n̄.

We can assume without loss of generality that some coordinate of Xig is a random variable

that is positive a.s. (otherwise replace 1{‖Wig‖∞ > 0} by 1{‖|Wig|‖∞ > 0}). Our goal is

to find a uniform entropy bound for the class

F =
{
Wg 7→

n̄∑
i=1

ψk(Wig, η) · 1{‖Wig‖∞ > 0} : k = 1, ..., p, η ∈ Hk
}
.

It allows us to apply the maximal inequality of Corollary 3 to obtain the desired bound.

First, let us define

Gj = {Wg 7→ 1{‖Wjg‖∞ > 0}}

For each j, such a class contains only one function. Thus each of them is a VC-subgraph

class with VC index equals unity and themselves as their envelopes. Thus for any 0 < ε ≤ 1,

it holds that

sup
Q

logN(ε‖Gj‖Q,2,Gj , ‖ · ‖Q,2) . 1 + log(1/ε).

Now we define

Fj = {Wg 7→ ψk(Wjg, η) : k = 1, ..., p, η ∈ Hk}.

Apply Lemma K1(2) of Belloni, Chernozhukov, Fernández-Val and Hansen (2017) under

Assumption 6 (ii), we have for each 1 ≤ j ≤ n̄, for all 0 < ε ≤ 1,

sup
Q

logN(ε‖Fj · Gj‖Q,2,Fj · Gj , ‖ · ‖Q,2)

≤ sup
Q

logN(ε/2‖Fj‖Q,2,Fj , ‖ · ‖Q,2) + sup
Q

logN(ε/2‖Gj‖Q,2,Gj , ‖ · ‖Q,2)

.vG log(aG/ε) + log(1/ε) + C.

Also, we have F ⊂ F̄ := (F1 · G1 + ...+ Fn̄ · Gn̄).
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Define the transformation φ(f1, ..., fn̄) =
∑n̄

j=1 fj . By the triangle inequality, one has

|φ(f1, ..., fn̄) − φ(g1, ..., gn̄)| ≤
∑n̄

j=1 1 · |fj − gj |. Applying Lemma K1(4) of Belloni, Cher-

nozhukov, Fernández-Val and Hansen (2017), for the envelope F (Wg) =
∑n̄

j=1 Fj(Wg) ·
Gj(Wg) =

∑n̄
j=1 F0(Wjg)1{‖Wjg‖∞ > 0} for F , we have

sup
Q

logN(ε‖F‖Q,2,F , ‖ · ‖Q,2)

.
n̄∑
j=1

sup
Q

logN
( ε
n̄
‖Fj ·Gj‖Q,2,Fj · Gj , ‖ · ‖Q,2

)
.n̄vG log(aG/ε) + n̄ log(1/ε) + C.

Under Assumption 6 (ii), we have

√
EP

[
maxg∈[G] F 2(Wg)

]
≤ G1/qKG. Now let

F̄ =
{
Wg 7→

n̄∑
j=1

(
ψk(Wjg, η)− ψk(Wjg, η

k)
)
· 1{‖Wjg‖∞ > 0} : k = 1, ..., p, η ∈ Hk

}
.

Observe that since F̄ ⊂ F − F , it holds that supf∈F̄ |f | ≤ 2 supf∈F |f | ≤ 2F . Assumption

6 (i),(ii) now implies

sup
f∈F̄

EP

[ 1

G

G∑
g=1

f2(Wg)
]
. sup
η∈Hk

EP

[ 1

G

G∑
g=1

( ng∑
i=1

{ψk(Wig, η)− ψk(Wig, η
k) }

)2]
≤C0‖η − η̂k‖22 . τ2

G.

Under Assumptions 5 (ii)(a), 6 (ii), apply Lemma 8 (2) and Corollary 3, we have

√
G|IIk| ≤ sup

f∈F̄

∣∣∣ 1√
G

G∑
g=1

ng∑
i=1

[ f(Wig)− Ef(Wig) ]
∣∣∣

.τG
√
vG log aG +

KGvG log aG

G−1/2+1/q
. δG,

uniformly in k with probability at least 1 − C(logG)−1 as long as G ≥ 3, where the last

inequality follows from Assumption 6 (iv). Finally, the conclusion follows that 0 < σk <∞
uniformly from Assumptions 6 (i)(iii). �

C.2. Proof for Corollary 2.
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Proof. Throughout the proof, let us use the notations of ϕ̂gk :=
∑ng

i=1 ϕ̂j(Wig, α̂k, η̂
k) and

ϕgk :=
∑ng

i=1 ϕj(Wig, αk, η
k). Define

T = max
1≤k≤p

|
√
Gσ−1

k (α̂k − αk)|, and T0 = max
1≤k≤p

1√
G

G∑
g=1

ng∑
i=1

ϕk(Wig, αk, η
k).

Step 1: In this step, we bound

ρ := sup
t∈R
|PP(T0 ≤ t)− PP(Z0 ≤ t)|.

First invoke Corollary 2.1 of Chernozhukov, Chetverikov and Kato (2013) under Assump-

tion 7 (i) and obtain

ρ = sup
t∈R
|PP(T0 ≤ t)− PP(Z0 ≤ t)| ≤ CG−c

for Z0 = max1≤k≤pG
−1/2

∑n
g=1 Ygk, where {Yg}Gg=1 are independently distributed p-dimensional

centered Gaussian random vector such that G−1/2
∑G

g=1 Ygk has the same covariance matrix

as G−1/2
∑G

g=1 ϕgk.

Step 2: In this step, we show

PP(|T − T0| > θ1) < θ2 (C.24)

PP(Pξ(|W −W0| > θ1) > θ2) < θ2. (C.25)

for some appropriate θ1, θ2 = o(1). Set θ1 = δG ∨ Cδ̄G
√
ρ̄G log ĀG ≥ δG and θ2 = ∆G +

(logG)−1 ≥ ∆G + (logG)−1. By Theorem 5 (recall q ≥ 2 and G ≥ 3), (C.24) holds. We

now claim (C.25). We first show that

|W −W0| ≤ max
1≤k≤p

∣∣∣ 1√
G

G∑
g=1

ξg(ϕ̂gk − ϕgk)
∣∣∣ = OP

(
δ̄G

√
ρ̄G log ĀG

)
(C.26)

Call the event in Assumption 7 (ii) Ω1. Note that PP(Ω1) ≥ 1 −∆G. Conditional on Ω1,

G−1/2
∑G

g=1(ϕ̂gk−ϕgk)ξg is zero-mean Gaussian with variance EP
1
G

∑G
g=1[ϕ̂gk−ϕgk]2 ≤ δ̄2

G

uniformly in k with probability at least 1 − ∆G following Assumption 7 (iii). Therefore,

applying Corollary 2.2.8 of van der Vaart and Wellner (1996), conditional on Ω1, one has

Eξ

[
max

1≤k≤p

∣∣∣ 1√
G

G∑
g=1

ξg(ϕ̂gk − ϕgk)
∣∣∣] . δ̄G

√
ρ̄G log ĀG.

where the expectation is taken with respect to the law of ξg’s (recall that ξg’s are generated

independently from the data). By Corollary 3, conditional on Ω1, the left hand side of
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equation (C.26) is less than

2Cδ̄G

√
ρ̄G log ĀG +Kδ̄G logG . δ̄G

√
ρ̄G log ĀG

with probability at least 1− (logG)−1. Thus for some constant C large enough, conditional

on Ω1, one has

Pξ

(
max

1≤k≤p

∣∣∣ 1√
G

G∑
g=1

ξg(ϕ̂gk − ϕgk)
∣∣∣ > Cδ̄G

√
ρ̄G log ĀG

)
. (logG)−1 < (logG)−1 + ∆G,

which means the left hand side is greater than (logG)−1 + ∆G only if Ωc
1 is true. Recall

that θ1 ≥ Cδ̄G
√
ρ̄G log ĀG and θ2 = (logG)−1 + ∆G, therefore

PP

(
Pξ

(
max

1≤k≤p

∣∣∣ 1√
G

G∑
g=1

ξg(ϕ̂gk − ϕgk)
∣∣∣ > θ1

)
> θ2

)
≤ PP(Ωc

1) ≤ ∆G < θ2.

This verifies condition (C.25).

Step 3: Here we establish bootstrap validity based on the results from preceding steps.

Under Assumptions 5 (ii), 6 (ii), one can apply Theorem 3.2 of Chernozhukov, Chetverikov

and Kato (2013) and obtains that for every ϑ > 0,

sup
α∈(0,1)

|PP(T ≤ cW (α))− α| ≤ ρ	 + ρ,

where

ρ	 ≤ 2(ρ+ π(ϑ) + PP(∆ > ϑ)) + C3θ1

√
1 ∨ log(p/θ1) + 5θ2,

π(ϑ) := C2ϑ
1/3(1 ∨ log(p/ϑ))2/3 and ∆ := max1≤j,l≤p | 1G

∑G
g=1([ϕgjϕgl] − EP[ϕgjϕgl])|. It

then suffices to show that each component on the right hand side goes to zero.

First, set ϑ = B2
G(log p)3/2/

√
G and note that Assumption 7 (i) implies B4

G(log p)7/G =

o(1) and thus ϑ1/2 log p = o(1). By l’Hôspital’s rule, ϑ = o(1) implies ϑ1/2 log ϑ = o(1). So

π(ϑ) . ϑ1/3(log p − log ϑ)2/3 = o(1). Similarly, θ2
1 log θ1 = o(1) as long as θ1 = o(1). By

Assumption 7 (iii), set θ1 = δG∨ δ̄G
√
ρ̄G log ĀG, then θ1

√
log p = o(1) and we conclude that

θ1

√
1 ∨ log(p/θ1) = o(1). Secondly, we verify PP(∆ > ϑ) = o(1). Under Assumption 7 (i),

Lemma C.1. of Chernozhukov, Chetverikov and Kato (2013) implies

EP[∆] . (B2
G(log p)/G)1/2 ∨B2

G(log p)/
√
G.

Apply the Markov’s inequality, as long as B4
G(log p)7/G = o(1), we have PP(∆ > ϑ) = o(1)

and ϑ(log p)2 = o(1). This concludes the proof. �
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Appendix D. Proofs for Results in Section 5

D.1. Proof for Theorem 1.

Proof. For each k ∈ [p], let us define Hk = HGk , the bounded and convex sparse subset in

Rp shrinking with G, as follows

Hk = {ηk} ∪
{

(η(1), η(0)) ∈ R2p : η(0) = η(2) + η(3), ‖η(1)‖0 ∨ ‖η(2)‖0 ∨ ‖η(3)‖0 ≤ Cs,

‖η(1) − β0‖1 ∨ ‖η(2) − ζk‖1 ∨ ‖η(3) − θk‖1 ≤ C
√
sτG,

‖η(1) − β0‖2 ∨ ‖η(2) − ζk‖2 ∨ ‖η(3) − θk‖2 ≤ CτG
}
,

where τG = C ′(s log aG/G)1/2 for some sufficiently large positive constants C and C ′. The

rest of this proof is divided into three steps corresponding to the verification of the three

high-level assumptions.

Step 1. In this step, we examine Assumption 5. Assumption 5 (i) is clear since Λ is

infinitely continuously differentiable. To verify Assumption 5 (ii)(a), since for all ηk ∈ Hk,
‖ηk − η‖2 . 1, using a mean value expansion and the definition of the induced matrix `2

norm,

EP

[ 1

G

G∑
g=1

( ng∑
i=1

ψk(Wig, η)− ψk(Wig, η
k)
)2]

=EP

[ 1

G

G∑
g=1

( ng∑
i=1

∂ηψk(Wig, η̃)′(η − ηk)
)2]

=(η − ηk)′EP

[ 1

G

G∑
g=1

( ng∑
i=1

∂ηψk(Wig, η̃))
)( ng∑

i=1

∂ηψk(Wig, η̃)
)′]

(η − ηk)

≤‖η − ηk‖22
∥∥∥EP

[ 1

G

G∑
g=1

( ng∑
i=1

∂ηψk(Wig, η̃))
)( ng∑

i=1

∂ηψk(Wig, η̃)
)′]∥∥∥

2
.

where each coordinate of η̃ lies between the corresponding coordinate of η and ηk. By

Assumption 1 and the definition of τG, we know ‖η̃‖2 . 1. Notice

ng∑
i=1

∂ηψk(Wig, η̃) =

ng∑
i=1

[
∂βψk(Wig, η̃)

∂µψk(Wig, η̃)

]
=

ng∑
i=1

[
β̃kΛ

′′(X ′igβ̃)Xig + Λ′(X ′igβ̃)ek + µ̃′XigΛ
′(X ′igβ̃)Xig

−{Yig − Λ(X ′igβ̃)}Xig

]

=

[
Ag +Bg + Cg

Dg

]
.
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Thus, the sum of cross products can be denoted by∥∥∥EP

[ 1

G

G∑
g=1

( ng∑
i=1

∂ηψk(Wig, η̃)
)( ng∑

i=1

∂ηψk(Wig, η̃)
)′]∥∥∥

2

=

∥∥∥∥∥EP
1

G

G∑
g=1

[
(Ag +Bg + Cg)(Ag +Bg + Cg)

′ (Ag +Bg + Cg)D
′
g

(Ag +Bg + Cg)
′Dg DgD

′
g

]∥∥∥∥∥
2

.

To further bound the right-hand side, it suffices to bound the matrix `2 norm for each of

the product terms. Under Assumption 3 (4) and ‖µ̃‖2 . 1, we have∥∥∥EP
1

G

G∑
g=1

CgC
′
g

∥∥∥
2
≤
∥∥∥EP

1

G

G∑
g=1

(µ̃′Ug)
2UgU

′
g

∥∥∥
2
. sup
‖ξ‖2=1

EP
1

G

G∑
g=1

[(µ̃′Ug)
2ξ′UgU

′
gξ]

≤
{

EP
1

G

G∑
g=1

(µ̃′Ug)
4
}1/2

max
‖ξ‖2=1

{
EP

1

G

G∑
g=1

(ξ′Ug)
4
}1/2

≤ C1, and

∥∥∥EP
1

G

G∑
g=1

AgA
′
g

∥∥∥
2
∨
∥∥∥EP

1

G

G∑
g=1

BgB
′
g

∥∥∥
2
∨
∥∥∥EP

1

G

G∑
g=1

DgD
′
g

∥∥∥
2
.
∥∥∥ sup
‖ξ‖2=1

EP
1

G

G∑
g=1

(U ′gξ)
2
∥∥∥
2
≤ C1.

This shows Assumption 5 (ii)(a).

To verify Assumption 5 (ii)(b), note that we can write the matrix

ng∑
i=1

∂µ′∂µψk(Wig, η̃) =

[
Ag Bg

Bg 0

]

=

ng∑
i=1

[
β̃kΛ

′′′(X ′igβ̃)XigX
′
ig + Λ′′(X ′igβ̃)ekX

′
ig + Λ′′(X ′igβ̃)Xige

′
k + µ̃′XigΛ

′′(X ′igβ̃)XigX
′
ig Λ′(X ′igβ̃)XigX

′
ig

Λ′(X ′igβ̃)XigX
′
ig 0

]
.

So for η = [β′, µ′]′, we have∥∥∥∂µ′EP

[ 1

G

G∑
g=1

ng∑
i=1

∂µψk(Wig, η̃)
]∥∥∥

2
= max

0<‖ξ‖2≤1
ξ′EP

[ 1

G

G∑
g=1

ng∑
i=1

∂µ′∂µψk(Wig, η̃)
]
ξ

≤ max
0<‖ξ‖2≤1

(
β′EP

1

G

G∑
g=1

Aβ + 2β′EP
1

G

G∑
g=1

Bη
)
.

By Cauchy-Schwarz and the definition of induced matrix `2 norm, β′EP[ 1
G

∑G
g=1Bg]η ≤

‖β′EP[ 1
G

∑G
g=1Bg]‖2‖η‖2 ≤ ‖β‖2‖EP[ 1

G

∑G
g=1Bg]‖2‖η‖2. Thus a bound can be obtained

similarly to 5 (ii)(a).

Step 2. In this step, we check Assumption 6. To verify Assumption 6 (i), note that set

∆G = C(logG)−1 and τG = (s log aG/G)1/2, it follows from the convergence rate results of

Theorems 2, 4 and Corollary 1.
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To verify Assumption 6 (ii), recall that

ψ̄k(Wig, αk, η) =αk − βkΛ′(X ′igβ) + µ′{Yig − Λ(X ′igβ)}Xig

Pointwise measurability follows from its continuity. Let

G1iT =
{
Wg 7→ Yig − Λ(X ′igβ) : β ∈ Rp, T = support(β), ‖β − β0‖2 ≤ CτG

}
,

G2iT =
{
Wg 7→ Λ′(X ′igβ) : β ∈ Rp, T = support(β), ‖β − β0‖2 ≤ CτG

}
,

G3ikT =
{
Wg 7→ µ′Xig : µ ∈ Rp, T = support(µ), ‖µ− µk‖2 ≤ CτG

}
,

G4 =
{
Wg 7→ b : |b| ≤ C

}
,

G5 =
{
Wg 7→ α : |α| ≤ C

}
,

G6i =
{
Wg 7→ Λ′(X ′igβ

0)
}
,

G7ik =
{
Wg 7→ µk′Xig

}
,

G8i =
{
Wg 7→ Yig − Λ(X ′igβ

0)
}
.

Then the following holds

F0 ⊂F ′0 ∪ F ′′0 ∪ {0},

F ′0 =G5 − (G4) ·
n̄∑
i=1

(∪T⊂[p],|T |≤CsG2iT ) +
n̄∑
i=1

(∪k∈[p] ∪T⊂[p],|T |≤Cs G3ikT ) · (∪T⊂[p],|T |≤CsG1iT ),

F ′′0 =G5 − (G4) ·
n̄∑
i=1

G6i +
n̄∑
i=1

(∪k∈[p]G7ik) · (G8i).

Note that all these classes are uniformly bounded with the exceptions of G3ikT and G7ik. To

obtain envelopes for them, note that all classes are uniformly bounded except for G3ikT and

G7ik. To obtain an envelope for G3ikT , notice for any ikT , ‖µk‖1 ≤
√
sC1 since ‖µk‖2 ≤ C1

following Assumption 1. Therefore, ‖µ‖1 ≤ ‖µk‖1 + ‖µ − µk‖1 ≤
√
sC1 +

√
sC1τG .

√
s.

Set envelope G to be such that

G(Wg) = max
k∈[p]

max
i∈[n̄]

sup
,µ∈Rp:‖µ−µk‖1≤C

√
sτG

|µ′Xig|,

then for any µ in the index set, one has

|µ′Xig| ≤ |(µ− µk)′Xig|+ |µk′Xig| . C
√
sτG‖Ug‖∞ + |µk′Xig|.
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Since µk = ζk + θk and θk = [−γk1 , ...,−γkk−1, 1,−γkk+1, ...,−γkp−1]/τ2
k and τ−2

k = O(1)

following from Assumption 3 (1), we have

|µk′Xig| ≤|ζk′Xig|+ |θk′Xig|

.|Skig|+ |εkig|+ |Dk
ig|+ |γk′Xk

ig|

.1 + ‖Vg‖∞ + ‖Ug‖∞,

where the last inequality is due to |γk′Xk
ig| ≤ |Dk

ig|+ |Zkig| and the definition of Vg, Ug. Now,

Assumption 3 (6) implies
√
sτG = o(1), thus the above implies

|µ′Xig| . ‖Vg‖∞ + ‖Ug‖∞ ≤ 2(‖Vg‖∞ ∨ ‖Ug‖∞).

Under Assumption 3 (5)(7),

{
EP

[ 1

G

G∑
g=1

Gq(Wg)
]}1/q

.
{

EP

[ 1

G

G∑
g=1

(‖Vg‖∞ ∨ ‖Ug‖∞)q
]}1/q

≤
{

EP

[ 1

G

G∑
g=1

(‖Vg‖∞ ∨ ‖Ug‖∞)2q
]}1/2q

.MG,1 ∨MG,2. (D.27)

Similar argument holds for G7ik as well.

To obtain a bound for the uniform covering entropy number, first let us consider G3ikT

for some fixed i, k ∈ [p] and |T | ≤ Cs. Applying Lemma 21 of Kato (2017), we have that

each G3ikT is a VC-subgraph class of functions with VC-index Cs + 2 = O(s). Thus the

union of these p ·
(
p
Cs

)
class of functions is a VC-type class and has uniform covering number

satisfying that for any 0 < ε ≤ 1,

sup
Q
N(ε‖G̃‖Q,2,∪k∈[p] ∪T⊂[p],|T |≤Cs G3ikT , ‖ · ‖Q,2) . aCs+2

G

(A
ε

)Cs
.

Thus we have

log sup
Q
N(ε‖G̃‖Q,2,∪k∈[p] ∪T⊂[p],|T |≤Cs G3ikT , ‖ · ‖Q,2) . s log(aG/ε).

Similar entropy calculations hold for G1iT and G2iT as well since Λ is monotone and Λ′ =

Λ · (1− Λ) and thus Lemma 22 of Kato (2017) and Lemma 8 can be applied.

To verify Assumption 6 (iii), note that the lower bound is implied by Assumption 3 (1). It

then suffices to bound EP
1
G

∑G
g=1(µ′Xig)

2 ≤ {EP
1
G

∑G
g=1(µ′Xig)

4}1/2 . 1 for all ‖µ‖2 ≤ C.

This follows directly from Assumption 3 (4).
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To verify Assumption 6 (iv), note that set vG = s, τG = (s log aG/G)1/2, KG = MG,1 ∨
MG,2, then by Assumption 3 (6)(8) we have

s log aG
G1/2

∨
s(MG,1 ∨MG,2) log aG

G1/2−1/q
.
s(MG,1 ∨MG,2) log aG

G1/2−1/q
. δG

for δG = (log aG)−2.

Step 3. In this step, we examine Assumption 7. To verify Assumption 7 (i), we need

to find BG such that B4
G(log(pG))7/G ≤ C1G

−c1 for positive constants c1, C1 and for all

1 ≤ g ≤ G and k ∈ [p]

max
b=1,2

EP

[ 1

G

G∑
g=1

∣∣∣ ng∑
i=1

(αk − β0
kΛ(X ′igβ

0) + µk′Xig{Yig − Λ(X ′igβ
0)})

∣∣∣2+b
/σ2+b

k Bb
G

]

+EP

(
max

1≤k≤p

∣∣∣ ng∑
i=1

(αk − β0
kΛ(X ′igβ

0) + µk′Xig{Yig − Λ(X ′igβ
0)})

∣∣∣/σkBG)4
≤ 4.

Assumption 6 (iii) implies that 1 . σk . 1. For the first term, note that it suffices to bound

sup‖µ‖2=1 EP
1
G

∑G
g=1(U ′gµ)2+b, which is bounded under Assumption 3 (4). So the entire

first term is bounded by a constant. Now, for the second term, note that using (D.27),

max
g∈[G]

EP

(
max

1≤k≤p

∣∣∣ ng∑
i=1

(αk − β0
kΛ(X ′igβ

0) + µk′Xig{Yig − Λ(X ′igβ
0)})

∣∣∣)4
.EP

[ G∑
g=1

G4(Wg)
]

.G2/q(MG,1 ∨MG,2)4.

So take BG = CG1/2q(MG,1 ∨MG,2) for some C large enough, we have

B4
G(log(pG))7

G
.

(MG,1 ∨MG,2)4(log aG)7

G1−2/q
. G−c1

under the rate condition in the statement of Theorem 1.

To verify Assumption 7 (ii), note that both

F̄ =
{
Wg 7→

n̄∑
i=1

ϕk(Wig, αk, η
k)1{‖|Wig|‖∞ > 0} : k ∈ [p]

}
,

F̂ =
{
Wg 7→

n̄∑
i=1

ϕk(Wig, α̂k, η̂
k)1{‖|Wig|‖∞ > 0} : k ∈ [p]

}
,

contains only at most p functions. Thus, for any 0 < ε ≤ 1

logN(F̂0, ‖ · ‖PG
, ε) . log(p/ε) ≤ ρ̄ log(ĀG/ε)
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for ρ̄ = logG and ĀG = aG. Also, by Assumption 6 (i), with probability 1 − C(logG)−1,

we have η̂k ∈ Hk and thus by Assumption 5 (ii)(a), for any f ∈ F̂0, EP
1
G

∑G
g=1 f

2 . τ2
G so

Assumption 7 (ii) holds by setting δ̄G = τG = (s log aG/G)1/2.

Finally, Assumption 7 (iii) is satisfied by setting δ̄G = τG = (s log aG/G)1/2, vG = ρ̄G = s,

ĀG = aG and δG = (log aG)−2 under Assumption 3 (8). �

D.2. Proof for Lemma 1.

Proof. Notice that Assumption 3 (4) implies that σk . 1. By the continuous mapping

theorem, it suffices to bound

|σ̃2
k − σ2

k| ≤
∣∣∣ 1

G

G∑
g=1

( ng∑
i=1

ψ̄k(Wig, α̃k, η̃
k)
)2
− EP

[ 1

G

G∑
g=1

( ng∑
i=1

ψ̄k(Wig, αk, η
k)
)2]∣∣∣

.|α̃2
k − α2

k|+ sup
η∈Hk

|α̃k − αk|
∣∣∣ 1

G

G∑
g=1

ng∑
i=1

ψk(Wig, η)
∣∣∣

+ sup
η∈Hk

∣∣∣ 1

G

G∑
g=1

( ng∑
i=1

ψk(Wig, η)
)2
− EP

[ 1

G

G∑
g=1

( ng∑
i=1

ψk(Wig, η)
)2]∣∣∣

+ sup
η∈Hk

∣∣∣EP

[ 1

G

G∑
g=1

{( ng∑
i=1

ψk(Wig, η)
)2
−
( ng∑
i=1

ψk(Wig, η
k)
)2}]∣∣∣

=(I) + (II) + (III) + (IV )

uniformly over k ∈ [p]. First of all, (IV ) = oP(1) by the Lipschitzness of EP[ 1
G

∑G
g=1(

∑ng

i=1 ψk(Wig, ·))2]

and Assumption 5, which is verified in Theorem 1. To bound (III), let the collection of

functions

F =
{
Wg 7→

n̄∑
i=1

n̄∑
j=1

ψk(Wig, η)ψk(Wjg, η)1{‖|Wig|‖∞ ∧ ‖|Wjg|‖∞ > 0} : k ∈ [p], η ∈ Hk
}
.

Under Assumption 3 (1)(5)(6)(7), using a similar argument as in Theorem 1, we obtain

sup
Q
N(ε‖F‖Q,2,F , ‖ · ‖Q,2) .

(A
ε

)Cs
with an envelope F defined by

F (Wg) = max
k∈[p]

max
i∈[n̄]

sup
µ∈Rp:‖µ−µk‖1≤C

√
sτG

n̄2|µ′Xig|2 + C3



MANY APEs 45

for some constant C3. Furthermore, under Assumption 3 (5)-(8), it holds that

EP[max
g∈[G]

F 2(Wg)] .EP[max
g∈[G]

max
k∈[p]

sup
µ∈Rp:‖µ−µk‖1≤C

√
sτG

|(µ− µk)′Ug|4] + EP[max
g∈[G]

max
i∈[n̄]

max
k∈[p]

(µk′Xig)
4]

.G2/q
(

EP
1

G

G∑
g=1

s2τ4
G‖Ug‖2q∞ + (MG,1 ∨MG,2)2q

)2/q

.G2/q{s2τ4
GM

4
G,2 + (MG,1 ∨MG,2)4} . G2/q(MG,1 ∨MG,2)4.

Applying Corollary 3 under Assumption 3 (4)(5)(6)(7)(8), with probability at least 1 −
C(logG)−1, we have

sup
η∈Hk

∣∣∣ 1

G

G∑
g=1

( ng∑
i=1

ψk(Wig, η)
)2
− EP

[ 1

G

G∑
g=1

( ng∑
i=1

ψk(Wig, η
k)
)2]∣∣∣ .√s log aG

G
+

(MG,1 ∨MG,2)2s log aG

G1−1/q

.o(log−1 aG).

To bound (I) and (II), note that Theorem 5 suggests

α̃k − αk =
1

G

G∑
g=1

ng∑
i=1

ψk(Wig, η
k) + oP(G−1/2)

uniformly in k ∈ [p]. We may apply Corollary 3 to

F = (G4) ·
n̄∑
i=1

G6i +
n̄∑
i=1

(∪k∈[p]G7ik) · (G8i)

as the components G’s are defined in the proof of Theorem 1. An envelope can be

F (Wg) = max
k∈[p]

max
i∈[n̄]

sup
µ∈Rp:‖µ−µk‖1≤C

√
sτG

C(1 + µ′Xig)

for some C that does not depend onG. It is then implied by (D.27) that {EP
1
G

∑G
g=1 F

q}1/q .
MG,1 ∨ MG,2 and thus

√
EP[maxg∈[G] F 2(Wg)] . G1/2q(MG,1 ∨ MG,2). We also have

supf∈F EP
1
G

∑G
g=1 f

2 . C + supξ∈Rp:‖ξ‖2=1 EP
1
G

∑G
g=1(U ′gξ)

2 . 1.

Applying Corollary 3 under Assumption 3 (4)(5)(6)(7)(8) leads to

max
k∈[p]
|α̃k − αk| .

√
log aG
G

+
s(MG,1 ∨MG,2) log aG

G1−1/2q
= o(log−1 aG)

with probability at least 1− C(logG)−1. This implies (I) + (II) = oP(1). �
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Appendix E. Proofs for Results in Section 6

E.1. Proof for Theorem 2. The steps of this proof are analogous to the one of Theorem

4.1 in Belloni, Chernozhukov, Chetverikov and Wei (2018) with modifications to account

for cluster sampling. The major difference lies in the verification of Assumption 8 (2).

Proof. We will apply Lemma 3, 4 and 5 after verifying the required assumptions. Let

wig = f2
ig and

M(Yig, Xig, β) = M̂(Yig, Xig, β) = −{YigX ′igβ − log(1 + exp(X ′igβ))}.

In order to apply Lemma 6, we verify Assumption 9. Since

Sg =∂βM(Yig, Xig, β)|β=β0

=−
ng∑
i=1

{Yig − Λ(X ′igβ
0)}Xig,

we have |Sgj | ≤ n̄maxi∈[ng ] |Xig,j | = Ugj . In addition, since γ ≥ 1/G, using the fact that

1− Φ(t) ≤ 1√
2π

1
t e
t2/2, we have

Φ−1(1− γ/2p) .
√

log(pG) .
√

log aG.

Using Assumption 3 (2),(3),(4), it follows that log1/2 aG . δ̌GG
1/6 and {EP

1
G

∑G
g=1 |Sgj |3}1/3 .

1 uniformly over j ∈ [p]. Thus Assumption 9 (1) is satisfied. Under Assumption 3 (1),(4),

it holds uniformly over j ∈ [p] that

EP

[ 1

G

G∑
g=1

S2
gj

]
≥ inf
‖ξ‖2=1

EP

[ 1

G

G∑
g=1

( ng∑
i=1

{Yig − Λ(X ′igβ
0)}X ′igξ

)2]
& 1 and

EP

[ 1

G

G∑
g=1

S2
gj

]
≤ EP

[ 1

G

G∑
g=1

U2
gj

]
. 1.

So Assumption 9 (2) is verified.

To apply Lemma 3, we verify Assumption 8. The convexity is trivial. To show As-

sumption 8 (2) holds, note that S2
gj ≤ U2

gj and Assumption 3 (4)(7) implies that if we

let

F =
{
Wg 7→

(
−

n̄∑
i=1

{Yig − Λ(X ′igβ
0)}Xig,j

)2
: j ∈ [p]

}
,

Fj =
{
Wg 7→

(
−

n̄∑
i=1

{Yig − Λ(X ′igβ
0)}Xig,j

)2}
,



MANY APEs 47

then each Fj is of VC-subgraph class since it consists of a single function, and F ⊂ ∪j∈[p]Fj ,
and F has an envelope F such that F (Wg) = n̄2 maxj∈[p] maxi∈[ng ] |Xig,j |2. Note that under

Assumption 3 (4)(7)(8), one has maxj∈[p] EP
1
G

∑G
g=1 U

4
gj . 1, (EP

1
G

∑G
g=1 F

2(Wg))
1/2 =

(EP
1
G

∑G
g=1 ‖Ug‖4∞)1/2 ≤ M2

G,2, MG,2 ≤ (EP
1
G

∑G
g=1 ‖Ug‖

2q
∞)1/2q ≤ (δ̌GG

1/2−1/q)1/2, and√
EP[(max1≤g≤G F (Wg))2] ≤ G1/qM2

G,2. Applying Corollary 2.1 of Chernozhukov, Chetverikov

and Kato (2013), with probability at least 1− c(logG)−1, it holds that

∣∣∣ 1

G

G∑
g=1

(S2
gj − EP[S2

gj ])
∣∣∣ .
√

log(paGM2
G,2/M

2
G,2)

G
+

M2
G,2

G1−1/q
log(paGM

2
G,2/M

2
G,2)

.

√
log(aG)

G
+

M2
G,2

G1−1/q
log(aG) = o(1),

where the last equality follows from Assumption 3 (9). This implies 1
G

∑G
g=1 S

2
gj = (1 −

o(1))EP[ 1
G

∑G
g=1 S

2
gj ] uniformly in j ∈ [p]. Similar arguments can be used to establish

the statement that 1
G

∑G
g=1(ng

∑ng

i=1X
2
ig,j) = (1 − o(1))EP[ 1

G

∑G
g=1(ng

∑ng

i=1X
2
ig,j)] with

probability at least 1− C(logG)−1. Now it suffices to show that

(1− o(1))EP

[ 1

G

G∑
g=1

S2
gj

]
≤ Ψ̂2

j . 1 (E.28)

with probability 1− c(logG)−1 uniformly over j ∈ [p]. The case of m̄ = 0 follows from the

calculations that

l̂2j,0 =
1

4

1

G

G∑
g=1

(
ng

ng∑
i=1

X2
ig,j

)
.

1− o(1)

4
EP

[ 1

G

G∑
g=1

ng∑
i=1

X2
ig,j

]
≤ 1− o(1)

4
EP

[ 1

G

G∑
g=1

U2
gj

]
. 1

with probability 1− c(logG)−1 under Assumption 3 (4) and

1

4
EP

[ 1

G

G∑
g=1

ng∑
i=1

X2
ig,j

]
≥ EP

[ 1

G

G∑
g=1

ng∑
i=1

f2
igX

2
ig,j

]
= EP

[ 1

G

G∑
g=1

ng∑
i=1

{Yig − Λ(X ′igβ
0)}2X2

ig,j

]

&EP

[ 1

G

G∑
g=1

( ng∑
i=1

{Yig − Λ(X ′igβ
0)}Xig,j

)2]
= EP

[ 1

G

G∑
g=1

S2
gj

]
,

where the Cauchy-Schwarz inequalty, the law of iterated expectations and the fact that

f2
ig ≤ ‖Λ(1− Λ)‖∞ ≤ 1/4 are used.

To show (E.28) with m ≥ 1, suppose that (E.28) holds for m̄ − 1, we can complete the

proof and has ‖figXig(β̂ − β0)‖G . (s log aG/G)1/2 with probability 1 − C(logG)−1. For

m = m̄, denote Λig = Λ(X ′igβ
0) and Λ̃ig = Λ(X ′igβ̃), use the fact that for positive a, b,
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|
√
a−
√
b| ≤

√
|a− b|, we have

|l̂j − lj | ≤
(∣∣∣ 1

G

G∑
g=1

Ŝ2
gj −

1

G

G∑
g=1

S2
gj

∣∣∣)1/2
.

In addition, it holds uniformly over j ∈ [p] that with probability at least 1− C(logG)−1,∣∣∣ 1

G

G∑
g=1

Ŝ2
gj −

1

G

G∑
g=1

S2
gj

∣∣∣
≤
∣∣∣ 1

G

G∑
g=1

( ng∑
i=1

{Λig − Λ̃ig}Xig,j

)2∣∣∣+ 2
∣∣∣ 1

G

G∑
g=1

( ng∑
i=1

{Yig − Λig}Xig,j

)( ng∑
i=1

{Λig − Λ̃ig}Xig,j

)∣∣∣
≤
∣∣∣ 1

G

G∑
g=1

( ng∑
i=1

X2
ig,j

)( ng∑
i=1

{Λig − Λ̃ig}2
)∣∣∣+ 2

∣∣∣ 1

G

G∑
g=1

( ng∑
i=1

{Yig − Λig}Xig,j

)( ng∑
i=1

{Λig − Λ̃ig}Xig,j

)∣∣∣
. max

1≤g≤G
‖Ug‖2∞

∣∣∣ 1

G

G∑
g=1

ng∑
i=1

{(figX ′ig(β0 − β̃)}2
∣∣∣+ max

1≤g≤G
‖Ug‖∞

∣∣∣ 1

G

G∑
g=1

ng∑
i=1

{(figX ′ig(β0 − β̃)}2
∣∣∣1/2

.
MG,2s log aG
G1−1/q +

MG,2(s log aG)1/2

G1/2−1/2q = o(1),

where the second inequality follows Cauchy-Schwarz inequality and the third follows As-

sumption 3 (7) and the last holds following |Λ(t + ∆t) − Λ(t)| . Λ′(t)∆t for |∆t| ≤ 1 as

in inequality (I6) in Belloni, Chernozhukov, Chetverikov and Wei (2018), the rates from

m = 1, Assumption 3 (8), and the fact Λ′ is Lipschitz. This verifies Assumption 8 (2).

We now apply Lemma 6 and obtain that with some c′ > c and γ = γG ∈ [1/G, 1/ logG],

one has

PP

( λ
G
≥ c
∥∥∥Ψ̂−1 1

G

G∑
g=1

Sg

∥∥∥
∞

)
≥ 1− γ − o(γ).

Assumption 8 (1) is trivial since we have M̂(y, x, β) = M(y, x, β) in this case. Assumption

8 (3) holds for any A and CG . (s log aG/G)1/2 following Lemma 9.

Now, let us define

q̄A = inf
δ∈A

( 1
G

∑G
g=1

∑ng

i=1wig|X ′igδ|2)3/2

1
G

∑G
g=1

∑ng

i=1wig|X ′igδ|3
.

To apply Lemma 3, we need to verify the condition

q̄A = q̄A1 ∧ q̄A2 ≥ (L+
1

c
)‖Ψ̂0‖∞

λ
√
s

Gκ̄2c̃
+ 6c̃CG

for A = ∆2c̃ ∪ {δ ∈ Rp : ‖δ‖1 ≤ 3G
λ
c‖Ψ̂−1

0 ‖∞
`c−1 CG‖

√
wigX

′
igδ‖G} = A1 ∪A2.
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Note that under Assumptions 3 (6)(7)(8) and 4, we have

q̄A1 ≥ inf
δ∈A1

( 1
G

∑G
g=1

∑ng

i=1wig|X ′igδ|2)1/2

max1≤g≤G ‖Ug‖∞‖δ‖1
&P inf

δ∈A1

( 1
G

∑G
g=1

∑ng

i=1wig|X ′igδ|2)1/2

G1/2qMG,2‖δ‖1

≥ inf
δ∈A1

( 1
G

∑G
g=1

∑ng

i=1wig|X ′igδ|2)1/2

G1/2qMG,2(1 + 2c̃)
√
s‖δT ‖2

&
κ̄2c̃

G1/2qMG,2(1 + 2c̃)
√
s

&
1

δ̌1/2G1/4
&

√
s log aG

δ̌G
.

Next, using Assumptions 3 (7)(8), since λ .
√
G log aG and CG . (s log aG/G)1/2, some

calculations yield

q̄A2 ≥ inf
δ∈A2

( 1
G

∑G
g=1

∑ng

i=1wig|X ′igδ|2)1/2

max1≤g≤G ‖Ug‖∞‖δ‖1
&P inf

δ∈A2

( 1
G

∑G
g=1

∑ng

i=1wig|X ′igδ|2)1/2

G1/2qMG,2‖δ‖1

≥ λ

3GCG

`c− 1

c

‖Ψ̂−1
0 ‖−1
∞

G1/2qMG,2
&P

λ

CGG1+1/2qMG,2

&P
1

G1/2qMG,2
√
s
≥ 1

δ̌1/2G1/4
&

√
s log aG

δ̌G
.

Furthermore, we have

(L+
1

c
)‖Ψ̂0‖∞

λ
√
s

Gκ̄2c̃
+ 6c̃CG .

√
s log aG
G

since ‖Ψ̂0‖∞ . 1 with probability 1 − C(logG)−1. So all conditions required by Lemma 3

are satisfied. An application of the Lemma leads to

‖√wigX ′ig(β̂ − β0)‖G .

√
s log aG
G

and ‖β̂ − β0‖1 .

√
s2 log aG

G
.

Now, to apply Lemma 4, we need to verify condition (F.43). First, using Assumption 3

(7)(8), we have

max
1≤g≤G

max
i∈[ng ]

|X ′ig(β̂ − β0)| .PG
1/2qMG,2‖β̂ − β0‖1 .

√
M2
G,2s

2 log aG

G1−1/q
. δ̌G = o(1).

Also, following equation (I.6) of Belloni, Chernozhukov, Chetverikov and Wei (2018), one

has |Λ(t+∆t)−Λ(t)| . Λ′(t)|∆t| uniformly over t and ∆t with |∆t| ≤ 1. It holds uniformly

over ig that

[∂βM̂(Yig, Xig, β̂)− ∂βM̂(Yig, Xig, β
0)]}′δ .|Λ(X ′igβ̂)− Λ(X ′igβ

0)| · |X ′igδ|

.Λ′(X ′igβ
0) · |X ′ig(β̂ − β0)| · |X ′igδ|.
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Since |Λ′(X ′igβ0)| . wig ≤
√
wig, with probability at least 1− C(logG)−1, we have

∣∣∣ 1

G

G∑
g=1

ng∑
i=1

[∂βM̂(Yig, Xig, β̂)− ∂βM̂(Yig, Xig, β
0)]}′δ

∣∣∣
≤C‖√wigX ′ig(β̂ − β0)‖G‖X ′igδ‖G ≤ LG‖X ′igδ‖G

for some LG . (s log aG/G)1/2. Thus condition (F.43) is satisfied. In addition, Lemma 4

implies ‖β̂‖0 . s.

Finally, to establish the convergence rates for β̃, we apply Lemma 5. We verify condition

(F.44) on q̄A for A = {δ ∈ Rp : ‖δ‖0 ≤ Cs} for a constant ŝ + s ≤ Cs with probability

1− o(1). Note it holds that

q̄A = inf
δ∈A

( 1
G

∑G
g=1

∑ng

i=1wig|X ′igδ|2)1/2

max1≤g≤G ‖Ug‖∞‖δ‖1

≥ inf
‖δ‖0≤Cs

( 1
G

∑G
g=1

∑ng

i=1wig|U ′gδ|2)1/2

max1≤g≤G ‖Ug‖∞
√
Cs‖δ‖2

&P inf
‖δ‖0≤Cs

√
φmax(Cs)

√
sG1/2qMG,2

&
log1/4 aG

δ̌GG1/4

under Assumptions 3 (7)(8) and 4. On the other hand, it follows from (F.45) that with

probability 1− C(logG)−1,

1

G

G∑
g=1

ng∑
i=1

∂βM̂(Yig, Xig, β̃)− 1

G

G∑
g=1

ng∑
i=1

∂βM̂(Yig, Xig, β
0) .

s log aG
G

since λ/G . (log aG/G)1/2, ‖β̂ − β0‖1 . (s log aG/G)1/2 and ‖Ψ̂0‖∞ . 1 with probability

1− C(logG)−1. Also CG . (s2 log aG/G)1/2,∥∥∥ 1

G

G∑
g=1

Sg

∥∥∥
∞
≤
∥∥∥Ψ̂0

∥∥∥
∞

∥∥∥Ψ̂−1
0

1

G

G∑
g=1

Sg

∥∥∥
∞

.
λ

G

with probability 1−C(logG)−1. So right-hand side of (F.44) is bounded by (s log aG/G)1/2.

So by Lemma 5, we have the desired results.

Finally, since s ≥ 1, we can without loss of generality assume the k-th coordinate is

always in the support of β̂ and this does not affect the rate of convergence in post-lasso (see

Comment D.1. of Belloni, Chernozhukov and Kato (2015)). Also, since all k ∈ [p] share the

same regularized event, the convergence rate holds uniformly for all k ∈ [p]. �

E.2. Proof for Theorem 3. The proof follows analogously of the Proof of Theorem 4.2

in Belloni, Chernozhukov, Chetverikov and Wei (2018) with modifications to account for

cluster sampling. The major difference lies in the verification of our Assumption 8 (2).
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Proof. Let r̄jig = Xj
ig(γ

j − γ̄j), wig = f̂2
ig and

M(Dj
ig, X

j
ig, γ) =f2

ig(D
j
ig −X

j
igγ − r̄

j
ig)

2,

M̂(Dj
ig, X

j
ig, γ) =f̂2

ig(D
j
ig −X

j
igγ)2. (E.29)

Then, the sparse approximation γ̄j can be identified by

γ̄j = argmin
γ∈Rp−1

EP
1

G

G∑
g=1

ng∑
i=1

M(Dj
ig, X

j
ig, γ).

We will first show that the regularized events (F.42) holds uniformly over j ∈ [p]. Subse-

quently, we apply Lemmas 3, 4 and 5 to bound different norms of (γ̃j − γ̄j). Then bounds

for (γ̂j − γj) follow from Assumption 2.

First, we verify Assumption 9. For Assumption 9 (1), note that

Sjg =

ng∑
i=1

∂γM(Dj
ig, X

j
ig, γ̄

j) = 2

ng∑
i=1

f2
ig(D

j
ig −X

j
igγ̄

j − r̄jig)(X
j
ig)
′ = 2

ng∑
i=1

f2
igZ

j
ig(X

j
ig)
′.

where aj = β0. Since Φ−1(1−γ/2p) ≤
√

log(1/t) for all t ∈ (0, 1/2), along with Assumption

3 (3), we have

{
EP

[ 1

G

G∑
g=1

|Sjgk|
3
]}1/3

Φ−1(1− γ/2p) .
{

EP

[ 1

G

G∑
g=1

|V j
g Ugk|3

]}1/3
log1/2 aG ≤ δ̌GG1/6

uniformly in j ∈ [p] and k ∈ [p] \ {j}. This shows Assumption 9 (1).

To show Assumption 9 (2), notice that Assumption 3 (2) implies EP
1
G

∑G
g=1 |S

j
gk|

2 & 1

and

EP

[ 1

G

G∑
g=1

(Sjgk)
2
]
≤ EP

[ 1

G

G∑
g=1

(V j
g Ugk)

2
]
≤ EP

[ 1

G

G∑
g=1

(|V j
g |4 + |Ugk|4)

]
. 1

uniformly over j ∈ [p] and k ∈ [p] \ {j} by Assumption 3 (4).

The convexity requirement is trivially satisfied. To show Assumptions 8 (1), we first

claim that with probability 1− C(logG)−1,

max
j∈[p]
‖(f̂2

ig − f2
ig)Z

j
ig/f̂ig‖G . (s log aG/G)1/2. (E.30)

Now, since by Theorem 2 and Assumption 3 (7)(8), one has

max
i,g
|X ′ig(β̂ − β0)| ≤ max

i,g
‖Xig‖∞‖β̂ − β0‖1 .P G

1/2qMG,2(s2 log aG/G)1/2 ≤ δ̌G = o(1)
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with probability 1− C(logG)−1, we then have with probability 1− C(logG)−1

|f̂2
ig − f2

ig| ≤ |Λ(X ′igβ̃)− Λ(X ′igβ
0)| . Λ′(X ′igβ

0)|X ′ig(β̂ − β0)| ≤ f2
ig/2 ≤ 1 (E.31)

uniformly over all i, g. Note we have used the fact that for |t̃ − t| ≤ 1, |Λ(t) − Λ(t̃)| .
Λ′(t)|t− t̃|. Also, some calculations give that for G large enough, let t̃ig = Xigβ̃, tig = Xigβ

0,

then it holds that

|f̂2
ig − f2

ig| =|Λ(t̃ig)− Λ2(t̃ig)− Λ(tig) + Λ2(tig)|

≤|Λ(t̃ig)− Λ(tig)|+ |Λ2(t̃ig)− Λ2(tig)|

≤|Λ(t̃ig)− Λ(tig)|+ Λ(t̃ig)|Λ(t̃ig)− Λ(tig)|+ Λ(tig)|Λ(t̃ig)− Λ(tig)|

.|Λ(t̃ig)− Λ(tig)| . Λ′(t̃ig)|t̃ig − tig| = f2
ig|t̃ig − tig|.

Thus, with probability at least 1− C(logG)−1, one has

max
j∈[p]

1

G

G∑
g=1

ng∑
i=1

(f̂2
ig − f2

ig)
2(Zjig/f̂ig)

2 .max
j∈[p]

1

G

G∑
g=1

ng∑
i=1

(Λ′(X ′igβ̃))2|X ′ig(β0 − β̃)|2(Zjig/f̂ig)
2

.max
j∈[p]

1

G

G∑
g=1

ng∑
i=1

|X ′ig(β0 − β̃)|2(Zjig)
2

≤max
j∈[p]

sup
‖δ‖0≤Cs,‖δ‖2=1

s log aG
G

1

G

G∑
g=1

ng∑
i=1

(X ′igδ)
2(Zjig)

2

≤s log aG
G

O(1),

where the last inequality follows from Assumption 4. Therefore, with probability 1 −
C(logG)−1, we have

max
j∈[p]
‖(f̂2

ig − f2
ig)Z

j
ig/f̂ig‖G . max

j∈[p]
‖(f̂2

ig − f2
ig)Z

j
ig/fig‖G.
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Recall that r̄jig = Xj
ig(γ

j − γ̄j). Assumption 8 (1) can be examined by noting that it holds

uniformly in j ∈ [p] that∣∣∣[ 1

G

G∑
g=1

ng∑
i=1

(
∂γM̂(Yig, Xig, γ̄

j)− ∂γM(Yig, Xig, γ̄
j)
)]′

δ
∣∣∣

≤
∣∣∣2 1

G

G∑
g=1

ng∑
i=1

(f̂2
ig r̄

j
ig + (f̂2

ig − f2
ig)Z

j
ig)X

j
igδ
∣∣∣

≤2
(
‖f̂ig r̄jig‖G + ‖(f̂2

ig − f2
ig)Z

j
ig/f̂ig‖G

)
‖√wigXj

igδ‖G

≤CG‖
√
wigX

′
igδ‖G.

We now verify the condition CG . (s log aG/G)1/2 in Assumption 8 (1). Notice that one

has

‖f̂ig r̄jig‖G ≤ ‖r̄
j
ig‖G . (s log aG/G)1/2 (E.32)

with probability at least 1 − C(logG)−1 following the same arguments as in Lemma J1 of

Belloni, Chernozhukov, Chetverikov and Wei (2018) under Assumption 1, 2, 3, 4. To see

this, let

G = {Wg 7→
n̄∑
i=1

Xj
ig(γ

j − γ̄j) : j ∈ [p]},

GijT = {Wg 7→ Xj
ig(γ

j − γjT ) : j ∈ [p]}.

Note γ̄j = γjT for some T by Assumption 1. Thus one has G ⊂ ∪j∈[p],T≤s
∑n̄

i=1 GijT . So for

G2, we have an envelope G(w) = ‖u(w)‖∞maxj∈[p] ‖γ̄j − γj‖21 with

{
EP

[ 1

G

G∑
g=1

max
1≤g≤G

G2(Wg)
]}1/2

.
s2MG,2 log aG

G1−1/q
.

In addition, for all finite discrete measures Q and 0 < ε ≤ 1, it holds that

sup
Q

logN(ε‖G‖Q,2,G2, ‖ · ‖Q,2) . s log(aG/ε).

Thus by applying Corollary 3, one has with probability at least 1− C(logG)−1,

max
j∈[p]

∣∣∣( 1

G

G∑
g=1

ng∑
i=1

(r̄2
ig − EPr̄

2
ig

)∣∣∣ . s log aG
G

.

Finally, EP
1
G

∑G
g=1

∑ng

i=1 r̄
2
ig . sup‖ξ‖2=1 EP

1
G

∑G
g=1(U ′gξ)

2‖γj − γ̄j‖22 . s log aG/G by As-

sumption 1. This shows (E.32) and thus Assumption 8 (1).
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Note that Assumption 8 (3) holds with ∆̌G = 0 and q̄A =∞ for any A since

1

G

G∑
g=1

ng∑
i=1

M̂j(D
j
ig, X

j
ig, γ̄

j + δ)− 1

G

G∑
g=1

ng∑
i=1

M̂(Yig, Xig, γ̄
j)

− 2
1

G

G∑
g=1

ng∑
i=1

f̂2
ig(D

j
ig −X

j γ̄j)Xj
igδ =

1

G

G∑
g=1

ng∑
i=1

(f̂igX
j
igδ)

2

and 1
G

∑G
g=1

∑ng

i=1(f̂igX
j
igδ)

2 = ‖√wigXj
igδ‖2G.

To check Assumption 8 (2), note that under Assumption 3 (5)(6)(7)(8), one has

EP

[
max

1≤g≤G
max
j∈[p]

∥∥∥ ng∑
i=1

f2
igZ

j
igX

j
ig

∥∥∥2

∞

]
≤EP

[
max

1≤g≤G
max
j∈[p]
|V j
g |2‖Ug‖2∞

]
.G2/q(MG,1 +MG,2).

Thus, an application of Lemma 7 gives

max
k∈[p]

max
j∈[p]\{k}

∣∣∣ 1

G

G∑
g=1

[( ng∑
i=1

Sjgk

)2
− EP

( ng∑
i=1

Sjgk

)2]∣∣∣ .PG
−(1/2−1/q)(M2

G,1 +M2
G,2) log aG

≤δ̌G log aG = o(1).

where the last equality follows the rate assumption in statement of the Theorem. Therefore,

since lj0k = { 1
G

∑G
g=1(

∑ng

i=1 S
j
gk)

2}1/2, we have 1 . Ψ̂γ
j0k . 1 with probability at least

1− C(logG)−1 uniformly over j ∈ [p] and k ∈ [p] \ {j}.

For m = 0, with probability 1− C(logG)−1, we have

l̂jk,0 & 2
{ 1

G

G∑
g=1

( ng∑
i=1

f̂2
igZ

j
igX

j
ig,k

)2}1/2
& 2
{ 1

G
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( ng∑
i=1

f2
igZ

j
igX

j
ig,k

)2}1/2
& 1

uniformly over j ∈ [p] and k ∈ [p] \ {j}. This follow from the fact that |f̂2
ig − f2

ig| ≤ f2
ig with

probability 1−C(logG)−1. To obtain an upperbound, note under Assumption 3 (4)(7) and

the fact that f̂ig ≤ 1, one has

l̂jk,0 . 2 max
g∈[G]

max
i∈[ng ]

|f̂igXig,k|
{ 1

G

G∑
g=1

( ng∑
i=1

f̂igD
j
ig

)2}1/2
.P G

1/2qMG,2.

Thus for m = 0, Assumption 8 (2) holds with L . G1/2qMG,2 log1/2 aG and ` & 1. For

m ≥ 1, suppose that the statement holds for m = m̄ − 1, we can complete the proof and
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obtain the bound

max
j∈[p]
‖f̂ig(γ̃j − γ̄j)‖G . (L+ 1)(s2 log aG/G)1/2

for L . G1/2qMG,2 log1/2 aG. In addition, under Assumption 2 and 3 (7), it holds uniformly

over j ∈ [p] that

‖f̂igXj
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Thus by the triangle inequality, we have

max
j∈[p]
‖f̂igXj

ig(γ̃
j − γj)‖G . (L+ 1)(s2 log aG/G)1/2
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where Ẑjig = Dj
ig − X

j
igγ̃

j . To bound the right-hand side, note by adding and subtracting

terms and the triangle inequality,
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uniformly over j ∈ [p], k ∈ [p− 1] with probability at least 1− C(logG)−1. The inequality

holds following the Cauchy-Schwarz inequality. Then under Assumption 3 (7)(8), with
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probability at least 1− C(logG)−1, one has
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uniformly over j ∈ [p], k ∈ [p−1]. Here, we have used ‖(f̂2
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ig/f̂ig‖G . (s log aG/G)1/2

with probability at least 1− C(logG)−1 by equation (E.30). Similar arguments show that

by Assumption 3 (8), with probability at least 1− C(logG)−1, we have
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uniformly over j ∈ [p], k ∈ [p−1]. Furthermore, by the Cauchy-Schwarz inequality, we have
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From the preceding results, it suffices to show the claim uniformly over j ∈ [p] and k ∈
[p− 1],
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Under Assumption 3 (4)(7), since f̂2
ig ≤ 1, the Cauchy-Schwarz inequality gives
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by Assumption 3 (4). The same bound holds even if f̂ig is used in place of fig. The claim

then follows from Assumption 3 (9). Thus for m = m̄, the result holds for some L, `, ∆̌G

with L . 1, ` & 1 and ∆̌G = o(1). This verifies Assumption 8 (2).

Note that ‖Ψ̂0‖∞ . 1 and ‖Ψ̂−1
0 ‖∞ . 1 with probability 1−C(logG)−1 following the pre-

ceding arguments. By Lemma 6, (F.42) holds with probability 1−C(logG)−1. Furthermore,
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following Assumption 4 and the fact |f̂2
ig − f2

ig| ≤ f2
ig/2 with probability 1−C(logG)−1, we

have, for some `G →∞, it holds that
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Thus, by Lemma 3, one has
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By the Cauchy-Schwarz inequality and the fact that f̂ig ≤ 1, we have

∣∣∣{ 1

G

G∑
g=1

ng∑
i=1

[∂γM̂(Yig, Xig, γ̂
j)− ∂γM̂(Yig, Xig, γ̄

j)]
}′
δ
∣∣∣ ≤ ‖f̂igXj

ig(γ̂
j − γ̄j)‖G‖f̂igXj

igδ‖G ≤ LG‖X
′
igδ‖G

with probability 1−C(logG)−1 uniformly over j ∈ [p] for some LG . (s log aG/G)1/2. Since

Assumption 4 implies that there is a `G → ∞ such that φmax(`Gs) . 1 with probability

1−C(logG)−1, it follows Lemma 4 that ‖γ̂j‖0 . s with probability 1−C(logG)−1 uniformly

over j ∈ [p].

Note that condition (F.44) holds with q̄A =∞. Also, with probability 1−C(logG)−1, it

holds that

1

G

G∑
g=1

ng∑
i=1

M̂(Yig, Xig, γ̂
j)− 1

G

G∑
g=1

ng∑
i=1

M̂(Yig, Xig, γ̄
j) . s log aG/G

since λ/G . (s log aG/G)1/2, maxj∈[p] ‖γ̂j − γ̄j‖1 . (s2 log aG)1/2 and maxj∈[p] ‖Ψ̂j0‖∞ . 1

with probability 1− C(logG)−1. Finally, one has CG . (s2 log aG/G)1/2,

∥∥∥ 1

G

G∑
g=1

Sjg

∥∥∥
∞
≤ ‖Ψ̂0‖∞

∥∥∥Ψ̂−1
0

1

G

G∑
g=1

Sjg

∥∥∥
∞

.
λ

G

with probability 1− C(logG)−1. This concludes the proof. �

E.3. Proof for Corollary 1.

Proof. Define r̈kig = X ′ig(ζ̄
k − ζk) and the lost functions be

M(Skig, Xig, ζ) =f2
ig(S

k
ig −X ′igζ − r̈kig)2,

M̂(Skig, X
′
ig, ζ) =f̂2

ig(Ŝ
k
ig −Xigζ)2.
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The sparse approximation ζ̄k is identified by

ζ̄k = argmin
ζ∈Rp

EP

[ 1

G

G∑
g=1

ng∑
i=1

M(Skig, Xig, ζ)
]
.

Then the proof follows the same steps in the proof for Theorem 3 as long as one can verify

that Assumption F.40 (1) is still satisfied with Ŝkig in place of Skig. Thus, it suffices to show∣∣∣[ 1

G

G∑
g=1

ng∑
i=1

{f̂2
ig(Ŝ

k
ig − Skig)Xig}

]′
δ
∣∣∣ =
∣∣∣[ 1

G

G∑
g=1

ng∑
i=1

{f̂2
ig(Ŝ

k
ig −X ′igζk)Xig − f̂2

ig(S
k
ig −X ′igζk)Xig}

]′
δ
∣∣∣

.‖β̃ − β0‖2
{ 1

G

G∑
g=1

ng∑
i=1

(f̂igX
′
igδ)

2
}1/2

.

Observe that the left-hand side equals[ 1

G

G∑
g=1

ng∑
i=1

{f̂2
ig(Ŝ

k
ig − S̃kig)Xig + f̂2

ig(S̃
k
ig − Skig)Xig}

]′
δ = (i) + (ii).

Notice that

|(ii)| ≤ 2‖Λ‖∞|β̃kk − β0|
∣∣∣[ 1

G

G∑
g=1

ng∑
i=1

f̂2
igXig

]′
δ
∣∣∣ . |β̃kk − β0

k|max
i,g
|fig|

{ 1

G

G∑
g=1

ng∑
i=1

(f̂igX
′
igδ)

2
}1/2

.

A mean value expansion and an application of Hölder’s inequality give that with probability

at least 1− C(logG)−1,

|(i)| ≤2|β̃kk |‖Λ′‖∞
1

G

G∑
g=1

[ ng∑
i=1

{f̂2
igX

′
ig(β̃ − β0)Xig

]′
δ

.
{ 1

G

G∑
g=1

ng∑
i=1

(
f̂igX

′
ig(β̃ − β0)

)2}1/2{ 1

G

G∑
g=1

ng∑
i=1

(
f̂igX

′
igδ
)2}1/2

≤(s log aG/G)1/2‖√wigX ′igδ‖G

≤CG‖
√
wigX

′
igδ‖G.

This concludes the proof. �

E.4. Proof for Lemma 2.

Proof. Throughout the proof, we denote ‖v‖2G = v′v/G and (u, v)G = u′v/G for u, v ∈ Rn.

For each j = 1, ..., p, denote Dj = {Dj
ig : 1 ≤ i ≤ ng, 1 ≤ g ≤ G}, an n × 1 vector,

Xj = {Xj
ig : 1 ≤ i ≤ ng, 1 ≤ g ≤ G}, a n × (p − 1) matrix. We also make use of the

notations F̂ = diag{f̂ig : i ∈ [ng], g ∈ [G]} and F = diag{fig : i ∈ [ng], g ∈ [G]}.
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Step 1. We first derive the identity

τ̂2
j = Dj′F̂ 2(Dj −Xj γ̃j)/G. (E.33)

The first order condition of nodewise post-lasso gives

−Xj′
T̂ j
F̂ 2(Dj −Xj γ̃j)/G = 0 (E.34)

where T̂ j = support(γ̃j).

Multiplying both sides by γ̃′j , we have

−γ̃j′Xj′F̂ 2Dj/G+ γ̃j′Xj′F̂ 2Xj γ̃j/G = 0. (E.35)

Using its definition, some calculations yield that

τ̂2
j = Dj′F̂ 2Dj/G− 2γ̂j′Xj′F̂ 2Dj/G+ γ̂j′Xj′F̂ 2Xj γ̂j/G.

Subtracting (E.35) from this gives (E.34).

Step 2. Applying Theorem 3, we have the convergence rates

‖γ̃j − γj‖1 . s

√
log aG
G

and ‖f̂igXj′
ig(γ̃

j − γj)‖G ∨ ‖γ̃j − γj‖2 .

√
s log aG
G

uniformly in j with probability 1− C(logG)−1.

Step 3. Since FDj = FXjγj + FZj , by Step 1, one has

τ̂2
j =Dj′F̂ 2(Dj −Xj γ̃j)/G

=Dj′(F̂ 2 − F 2)(Dj −Xj γ̃j)/G+Dj′F 2(Dj −Xj γ̃j)/G.

Note we only need to consider bounding Dj′F 2(Dj − Xj γ̃j)/G term since the first term

is of smaller order following the fact that |f̂ig − fig| . fig holds with probability at least

1− C(logG)−1 by (E.31) in the proof of Theorem 3. Now, decompose it into

Dj′F 2(Dj −Xj γ̃j)/G =Dj′F 2Xj(γj − γ̃j)/G+ γjXjF 2Zj/G+ Zj′F 2Zj/G

=(I)j + (II)j + (III)j .
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First, we bound (I)j . Under Assumption 2, 3 (4) and Cauchy-Schwarz inequality, it holds

uniformly that

max
j∈[p]
|(I)j | ≤max

j∈[p]
(Dj′F, FXj(γ̃j − γj))G

≤max
k∈[p]

{ 1

G

G∑
g=1

ng∑
i=1

X2
ig,k

}1/2
max
j∈[p]
‖figXj′

ig(γ̃
j − γj)‖G

.P OP(1) ·
√
s log aG
G

with probability 1− C(logG)−1.

We now bound (II)j . The property of projection implies EP
1
G

∑G
g=1

∑ng

i=1 f
2
igX

j
igZ

j
ig = 0,

max
j∈[p]
|(II)j | ≤max

j∈[p]
‖γj‖1‖XjF 2Zj/G‖∞

≤max
j∈[p]
‖γj‖1 max

j,k

∣∣∣ 1

G

G∑
g=1

ng∑
i=1

f2
igX

j
ig,kZ

j
ig

∣∣∣
≤C1

√
smax

j,k

∣∣∣ 1

G

G∑
g=1

ng∑
i=1

(
f2
igX

j
ig,kZ

j
ig − EPf

2
igX

j
ig,kZ

j
ig

)∣∣∣.
For each j, k ∈ [p], denote the classes of functions

G =
{
Wg 7→

n̄∑
i=1

Λ′(X ′igβ
0)Xj

ig,kZ
j
ig1{‖|Wig|‖∞ > 0} : j, k ∈ [p]

}
,

Gj,k =
{
Wg 7→

n̄∑
i=1

Λ′(X ′igβ
0)Xj

ig,kZ
j
ig1{‖|Wig|‖∞ > 0}

}
.

Then each Gj,k contains only one function and thus is a VC-subgraph class with VC index

equals unity with itself as an envelope. Also G ⊂ ∪j,k∈[p]Gj,k. Since |fig| ≤ 1, a measurable

envelope for G is H(Wg) = maxj,k |UgkV j
g |.

Some calculations and Assumption 3 (5)(6)(7)(8) give

EP[max
g
|H(Wg)|2] .EP[max

g
‖Ug‖4∞] + EP[max

g
max
j∈[p]
|V j
g |4] . G2/q(M4

G,1 +M4
G,2).

The fact that
√
a+ b ≤

√
a+
√
b for a, b > 0 suggests {EP maxg |H(Wg)|2}1/2 . G1/q(M2

G,1+

M2
G,2). Similarly, under Assumption 3 (4), we have supg∈G EP

1
G

∑G
g=1[G2(Wg)] . 1. Ap-

plying Lemma 8 (1) and (2), we have for any 0 < ε ≤ 1,

N (ε‖H‖Q,2,G, ‖ · ‖Q,2) . p2 max
j,k

N(ε‖Gj,k‖Q,2,Gj,k, ‖ · ‖Q,2) . p2
(1

ε

)
.
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Thus one has supQ logN (ε‖H‖Q,2,G, ‖ · ‖Q,2) . log p . log aG. Applying Corollary 3, we

have with probability at least 1− C(logG)−1,

max
j,k∈[p]

∣∣∣ 1

G

G∑
g=1

ng∑
i=1

(
f2
igX

j
ig,kZ

j
ig − EPf

2
igX

j
ig,kZ

j
ig

)∣∣∣ .√ log aG
G

+
(M2

G,1 ∨M2
G,2) log aG

G1−1/q
.

Therefore, under Assumption 3 (6)(8),

max
j∈[p]
|(II)j | .

√
s log aG
G

+

√
s log aG(M2

G,1 ∨M2
G,2)

G1−1/q
. (s log aG/G)1/2.

Now, we show |(III)j − τ2
j | = oP(1). Under Assumption 3 (4)(5)(6), using Lemma 8 (1)

and (2), a similar argument leads to that with probability at least 1− C(logG)−1,

max
j∈[p]
|Zj′F 2Zj/G− τ2

j | .
√

log aG
G

+
M2
G,1 log aG

G1−1/q
.

√
s log aG
G

.

Therefore, we conclude that with probability at least 1− C(logG)−1, one has

max
j∈[p]
|τ̂2
j − τ2

j | .
√
s log aG
G

.

Step 4. By invoking Assumption 3 (1), we have for any G, one has τ2
j = 1/Θj,j ≥

1/Λmax(Θ) = Λmin(Σ) = min‖ξ‖2=1 EP[ 1
G

∑G
g=1

∑ng

i=1(figX
′
igξ)

2] = c1 > 0. This implies

that with probability at least 1− C(logG)−1, one has

max
j∈[p]
|1/τ̂2

j − 1/τ2
j | .

√
s log aG
G

.

Step 5. We now conclude the proof by deriving a bound for maxj∈[p] ‖Θ̂j − Θj‖2. By

(F.38), Assumption 2 and use preceding steps, we have

max
j∈[p]
‖Θ̂j −Θj‖2 = max

j∈[p]
‖Ĉj/τ̂2

j − Cj/τ2
j ‖2

≤max
j∈[p]
‖γ̃j − γj‖2/τ̂2

j + max
j∈[p]

(‖γ̄j‖2 + ‖γj − γ̄j‖2)|1/τ̂2
j − 1/τ2

j |

.

√
s log aG
G

·OP(1) +OP(1) ·
√
s log aG
G

.

√
s log aG
G

with probability at least 1 − C(logG)−1. Similar arguments give maxj∈[p] ‖Θ̂j − Θj‖1 .

s
√

log aG
G with probability at least 1− C(logG)−1. �
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E.5. Proof for Theorem 4.

Proof. Since ‖Λ′′‖∞ . 1, one has

max
k∈[p]
‖θ̂k − θk‖2 ≤max

k∈[p]
‖Θ̂k −Θk‖2

∣∣∣ 1

G

G∑
g=1

ng∑
i=1

Λ′(X ′igβ̃)
∣∣∣+ max

k∈[p]
‖Θk‖2

∣∣∣ 1

G

G∑
g=1

ng∑
i=1

(
Λ′(X ′igβ̃)− Λ′(X ′igβ

0)
)∣∣∣.

Assumptions 1 and 3 (2) imply maxk∈[p] ‖Θk‖2 ≤ C1. Furthermore, using equation (I.6) of

Belloni, Chernozhukov, Chetverikov and Wei (2018) and the fact Λ′ = Λ · (1− Λ), suppose

that |X ′ig(β̃ − β0)| ≤ 1, it holds that∣∣∣ 1

G

G∑
g=1

ng∑
i=1

(
Λ′(X ′igβ̃)− Λ′(X ′igβ

0)
)∣∣∣ =

∣∣∣ 1

G

G∑
g=1

ng∑
i=1

(
Λ̃ig(1− Λ̃ig)− Λig(1− Λ̃ig) + Λig(1− Λ̃ig)− Λig(1− Λig)

)∣∣∣
.(‖Λ‖∞ + ‖1− Λ‖∞) max

i,g
|fig|

∣∣∣ 1

G

G∑
g=1

ng∑
i=1

figX
′
ig(β̃ − β0)

∣∣∣
.O(1) · ‖figX ′ig(β̃ − β0)‖G

.

√
s log aG
G

with probability 1 − C(logG)−1/2, where Λig = Λ′(X ′igβ), Λ̃ig = Λ′(X ′igβ̃) and the second

inequality is due to an application of Cauchy-Schwarz inequality. The condition |X ′ig(β̃ −
β0)| ≤ 1 holds asymptotically with probability 1− o(1) since

max
i,g
‖Xig‖∞‖β̃ − β0‖1 .P

MG,2s(log aG)1/2

G1/2−1/2q
= o(1)

with probability 1− C(logG)−1 under Assumption 3 (7)(8) and Theorem 2. Furthermore,

max
k∈[p]
‖Θ̂k −Θk‖2 .P

√
s log aG
G

following Theorem 3 and τ̂−2 = O(τ−2) = O(1). So

max
k∈[p]
‖θ̃k − θk‖2 ≤

√
s log aG
G

.

The bound maxk∈[p] ‖θ̃k − θk‖1 ≤ s
√

log aG
G with probability at least 1−C(logG)−1 can be

established following similar arguments and the fact that maxk∈[p] ‖Θk‖1 ≤
√
sC1. �
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This supplementary appendix includes sections that contain additional theoretical results

used in proving the main results in the previous sections as well as their proofs. Most of these

results follow closely from existing results in the literature under some minor modifications.

We include them for the sake of completeness.

Appendix F. Additional Theoretical Results

F.1. Properties of τ2
j .

In this Section, we derives some important properties of τ2
j , which is based on the work of

Kock (2016), a panel data generalization of the nodewise lasso in van de Geer, Bühlmann,

Ritov and Dezeure (2014). Denote Σ = EP
1
G

∑G
g=1

∑ng

i=1 f
2
igXigX

′
ig. Let Σ−j,−j be the

(p − 1) × (p − 1) submatrix of Σ with the j-th column and row removed. Σj,−j represents

the j-th row of Σ with its j-th element removed and Σ−j,j is defined analogously. From the

inverse formula of a partitioned matrix, we have

Θj,j = (Σj,j − Σj,−jΣ
−1
−j,−jΣ−j,j)

−1

Θj,−j = (Σj,j − Σj,−jΣ
−1
−j,−jΣj,−j)Σj,−jΣ

−1
−j,−j = −Θj,jΣj,−jΣ

−1
−j,−j .

Now, by solving (5.20), we have

γj =
{

EP

[ 1

G

G∑
g=1

ng∑
i=1

f2
igX

j′
igX

j
ig

]}−1
· EP

[ 1

G

G∑
g=1

ng∑
i=1

f2
igX

j′
igD

j
ig

]
=Σ−1
−j,−jΣ

′
j,−j

Combining with above, we have

Θj,−j = −Θj,jγ
j′. (F.36)
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Furthermore, using Dj = Xjγj + Zj and EP[Zj′F 2Xj ] = 0, we have

Σj,j =EP[Dj′F 2Dj ]

=γj′EP[Xj′F 2Xj ]γj + EP[Zj′F 2Zj ] + 2EP[Zj′F 2Xj ]γj

=Σj,−jΣ
−1
−j,−jΣ

′
−j,j + τ2

j + 0.

Therefore we have

τ2
j = Σj,j − Σj,−jΣ

−1
−j,−jΣ

′
−j,j = 1/Θj,j . (F.37)

Now define

C =


1 −γ1

1 . . . −γ1
p−1

−γ2
1 1 . . . −γ2

p−1
...

...
. . .

...

−γp1 −γp2 . . . 1


and T 2 = diag{τ2

1 , ..., τ
2
p }, using (F.36) and (F.37), we have

Θ = T−2C. (F.38)

F.2. Results for Nuisance Parameters Estimation.

The following results generalizes lemmas in Appendix L of Belloni, Chernozhukov, Chetverikov

and Wei (2018) to cluster sampling. Their proofs follow closely those of Lemma L1-L4 of

Belloni, Chernozhukov, Chetverikov and Wei (2018) but we only consider an increasing

finite index set for simplicity.

F.2.1. `-1 Penalized M-Estimation with Clustered Data. Consider a data generating process

with an outcome variable Y k
ig and p-dimensional covariates Xk

ig, both indexed by k ∈ UG
for some UG ⊂ [p]. We maintain the cluster sampling setting as before. The parameter of

interest

µk ∈ argmin
µ∈Rp

EP

[ 1

G

G∑
g=1

ng∑
i=1

Mk(Y
k
ig, X

k
ig, µ)

]
. (F.39)

Define the lasso and post-lasso estimators

µ̂k ∈ argmin
µ∈Rp

1

G

G∑
g=1

ng∑
i=1

M̂(Y k
ig, X

k
ig, µ) +

λ

G
‖Ψ̂kµ‖1, (F.40)

µ̃k ∈ argmin
µ∈support(µ̂k)

1

G

G∑
g=1

ng∑
i=1

M̂k(Y
k
ig, X

k
ig, µ). (F.41)
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For each k ∈ UG, denote the ideal penalty loadings Ψ̂k0 = diag({lk0j : j ∈ [p]}), where

lk0j =
{ 1

G

G∑
g=1

( ng∑
i=1

∂µjMk(Y
k
ig, X

k
ig, µ

k)
)2}1/2

=
{ 1

G

G∑
g=1

(Skgj)
2
}1/2

,

where Skgj =
∑ng

i=1 ∂µjMk(Y
k
ig, X

k
ig, µ

k). We also denote the feasible penalty loadings by

Ψ̂k = diag({lkj : j ∈ [p]}) for some lkj

lkj =
{ 1

G

G∑
g=1

( ng∑
i=1

∂µjM̂k(Y
k
ig, X

k
ig, µ̂

k)
)2}1/2

=
{ 1

G

G∑
g=1

(Ŝkgj)
2
}1/2

,

where Ŝkgj =
∑ng

i=1 ∂µjM̂k(Y
k
ig, X

k
ig, µ̂

k). Also write Skg = ({Skgj : j ∈ [p]}) and Ŝkg = ({Ŝkgj :

j ∈ [p]}). Denote Tk = support(µk) and T̂k = support(µ̂k). We assume λ is chosen such

that with high probability,

λ

G
≥ c max

k∈UG
‖Ψ̂−1

0

ng∑
i=1

∂µM(Y k
ig, X

k
ig, µ

k)‖∞, (F.42)

for a fixed constant c > 1. This will be shown to happen under some sufficient conditions

in Section F.2.2. Let L ≥ ` > 1/c be some fixed constants and let

c̃ =
Lc+ 1

`c− 1
max
k∈UG

‖Ψ̂k0‖∞‖Ψ̂−1
k0 ‖∞.

Denote sk = ‖µk‖0 and let ∆̃G be a sequence of positive constants converging to zero, let C̃G

be a sequence of random variables and wig = w(Xig) be some weights such that 0 ≤ wig ≤ 1

almost surely. Finally, let Ak be a random subset of Rp and q̄Ak
a random variable depends

possibly on Ak.

Assumption 8. Suppose that maxk∈UG ‖µk‖0 = s and for each k ∈ [p] µ 7→ M̂k(y, x, µ) is

convex almost surely and with probability at least 1− ∆̃G for all δ ∈ Rp, it holds that for all

k ∈ UG,

(1)
∣∣∣{ 1

G

∑G
g=1

∑ng

i=1[∂µM̂k(Y
k
ig, X

k
ig, µ

k)−∂µMk(Y
k
ig, X

k
ig, µ

k)]
}′
δ
∣∣∣ ≤ CG‖√wigXk′

igδ‖G for

all δ ∈ Rp;
(2) `Ψ̂k0 ≤ Ψ̂k ≤ LΨ̂k0;

(3) for all δ ∈ Ak,

1

G

G∑
g=1

ng∑
i=1

M̂k(Y
k
ig, X

k
ig, µ

k + δ)− 1

G

G∑
g=1

ng∑
i=1

M̂k(Y
k
ig, X

k
ig, µ

k)− 1

G

G∑
g=1

ng∑
i=1

[∂µM̂k(Y
k
ig, X

k
ig, µ

k + δ)]′δ

+2CG‖
√
wigX

k′
igδ‖G ≥ {‖

√
wigX

k′
igδ‖2G} ∧ {q̄Ak

‖√wigXk′
igδ‖G}.
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Define the restricted eigenvalue

κ̄2c̃ = min
k∈UG

inf
δ∈∆2c̃,k

‖√wigX ′igδ‖G
‖δTk‖2

,

where ∆2c̃,k = {δ ∈ Rp : ‖δT c
k
‖1 ≤ 2c̃‖δTk‖1}. In addition, define minimum and maximum

sparse eigenvalues

φmin(m, k) = min
1≤‖δ‖0≤m

‖√wigXk′
igδ‖2G

‖δ‖22
and φmax(m, k) = max

1≤‖δ‖0≤m

‖√wigXk′
igδ‖2G

‖δ‖22
.

Boundedness of minimum and maximum sparse eigenvalues with probability goes to 1 im-

plies that restricted eigenvalue is bounded away from 0 with probability goes to 1. For its

proof, see Lemma 4.1 of Bickel, Ritov and Tsybakov (2009).

Lemma 3. Suppose that Assumption 8 holds with

Ak = ∆2c̃,k ∪ {δ ∈ Rp : ‖δ‖1 ≤
3G

λ

c‖Ψ̂−1
k0 ‖∞

`c− 1
CG‖
√
wigX

k′
igδ‖G},

and q̄Ak
≥ (L+ 1

c )‖Ψ̂k0‖∞ λ
√
s

Gκ̄2c̃
+ 6c̃CG. In addition, suppose that λ satisfies condition F.42

with probability at least 1− ∆̃G. Then, with probability at least 1− 2∆̃G, we have

‖√wigXk′
ig (µ̂k − µk)‖G ≤

(
L+

1

c

)
‖Ψ̂k0‖∞

λ
√
s

Gκ̄2c̃
+ 6c̃CG,

‖µ̂k − µk‖1 ≤
((1 + 2c̃)

√
s

κ̄2c̃
+

3G

λ

c‖Ψ̂−1
k0 ‖∞

`c− 1
CG

)((
L+

1

c

)
‖Ψ̂−1

k0 ‖∞
λ
√
s

Gκ̄2c̃
+ 6c̃CG

)
uniform for k ∈ UG.

Lemma 4. In addition to conditions of Lemma 3, suppose that with probability 1− ∆̃G, for

some random variable LG such that for all δ ∈ Rp, it holds that

∣∣∣{ 1

G

G∑
g=1

ng∑
i=1

[∂µM̂k(Y
k
ig, X

k
ig, µ̂

k)− ∂µM̂k(Y
k
ig, X

k
ig, µ

k)]
}′
δ
∣∣∣ ≤ LG‖Xk′

igδ‖G. (F.43)

Then with probability 1− 3∆̃G, we have for all k ∈ UG,

ŝk ≤ min
m∈Mk

φmax(m, k)L2
k,

where Mk = {m ∈ N : m ≥ 2φmax(m, k)L2
k} and Lk =

c‖Ψ̂−1
k0 ‖∞
c`−1

G
λ {CG + LG}.



MANY APEs 5

Lemma 5. Suppose that Assumption 8 holds with Ak = {δ ∈ Rp : ‖δ‖0 ≤ ŝk + sk} and

q̄Ak
> 2 max

{( 1

G

G∑
g=1

ng∑
i=1

[M̂k(Y kig, X
k
ig, µ̃

k)− M̂k(Y kig, X
k
ig, µ

k)]
)1/2
+
,

(√ŝk + sk‖ 1
G

∑G
g=1

∑ng

i=1 ∂µMk(Y kig, X
k
ig, µ

k)‖∞√
φmin(ŝk + sk)

+ 3CG

)}
. (F.44)

Then with probability at least 1− ∆̃G,

‖√wigXk′
ig (µ̃k − µk)‖G ≤

{ 1

G

G∑
g=1

ng∑
i=1

[M̂k(Y
k
ig, X

k
ig, µ̃

k)− M̂k(Y
k
ig, X

k
ig, µ

k)]
}1/2

+

+

√
ŝk + sk‖ 1

G

∑G
g=1

∑ng

i=1 ∂µMk(Y
k
ig, X

k
ig, µ

k)‖∞√
φmin(ŝk + sk)

+ 3CG

uniform for k ∈ UG. In addition, with probability at least 1− ∆̃G, one has

1

G

G∑
g=1

ng∑
i=1

∂µM̂k(Y
k
ig, X

k
ig, µ̃

k)− 1

G

G∑
g=1

ng∑
i=1

∂µM̂k(Y
k
ig, X

k
ig, µ

k) ≤ L λ
G
‖µ̂k − µk‖1‖Ψ̂k0‖∞.

(F.45)

Therefore, with probability at least 1− ∆̃G, we have

‖µ̃k − µk‖1 ≤
√
ŝk + sk√

φmax(ŝk + sk) mini,g w2
ig

(
L
λ

G
‖µ̂k − µk‖1‖Ψ̂k0‖∞ +

λ
√
ŝk + sk

cG
√
φmin(ŝk + sk)

+ 3CG

)
uniform for k ∈ UG.

F.2.2. Concentration for Regularized Events. We now provide sufficient conditions for F.42.

Denote |UG| = p̃.

Assumption 9. Suppose that the following holds for each G,

(1) maxk∈UG maxj∈[p](EP
1
G

∑G
g=1 |Skgj |3)1/3Φ−1(1− γ/2p) ≤ ϕ̃GG1/6 for j ∈ [p̃].

(2) C ≤ (EP
1
G

∑G
g=1 |Skgj |2)1/2 ≤ C for all k ∈ UG for j ∈ [p̃].

Let

λ = c′
√
GΦ−1(1− γ/2pp̃), (F.46)

where γ = γG = o(1).
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Lemma 6. Suppose that 9 holds and λ satisfies (F.46) with some c′ > c and γ = γG ∈
[1/G, 1/ logG]. Then

PP

 λ

G
≥ c max

k∈UG

∥∥∥∥∥∥Ψ̂−1
k

1

G

G∑
g=1

Skg

∥∥∥∥∥∥
∞

 ≥ 1− γ − o(γ).

Appendix G. Proof for Additional Results

G.1. Proof for Lemma 3.

Proof. Denote δk = µ̂k − µk. Assume the events of Assumption 8 and (F.42) holds. This

happens with probability at least 1− 2∆̃G. By definition of µ̂,

1

G

G∑
g=1

ng∑
i=1

M̂k(Y
k
ig, X

k
ig, µ̂

k)− 1

G

G∑
g=1

ng∑
i=1

M̂k(Y
k
ig, X

k
ig, µ

k) ≤ λ
G
‖Ψ̂µk‖1 −

λ

G
‖Ψ̂µ̂k‖1

≤L λ
G
‖Ψ̂k0δk,Tk‖1 − `

λ

G
‖Ψ̂k0δk,T c

k
‖1.

(G.47)

Furthermore, Assumption 8 (a) and the convexity of M in µ as well as condition (F.42)

suggest

1

G

G∑
g=1

ng∑
i=1

M̂k(Y
k
ig, X

k
ig, µ̂

k)− 1

G

G∑
g=1

ng∑
i=1

M̂k(Y
k
ig, X

k
ig, µ

k)

≥ 1

G

G∑
g=1

ng∑
i=1

[∂µM̂k(Y
k
ig, X

k
ig, µ

k)]′δk ≥ −
λ

G

1

c
− CG‖

√
wigX

k′
igδk‖G. (G.48)

Combining (G.47) and (G.48) gives

λ

G

`c− 1

c
‖Ψ̂k0δk,T c

k
‖1 ≤

λ

G

Lc+ 1

c
‖Ψ̂k0δk,Tk‖1 + CG‖

√
wigX

k′
igδk‖G. (G.49)

Thus

‖δk,T c
k
‖1 ≤ c̃‖δk,Tk‖1 +

G

λ

c‖Ψ̂−1
k0 ‖∞

`c− 1
CG‖
√
wigX

k′
igδk‖G.

Consider the case that δ 6∈ ∆2c̃,k, then since c̃ ≥ 1,

‖δk,Tk‖1 ≤
G

λ

c‖Ψ̂−1
k0 ‖∞

`c− 1
CG‖
√
wigX

k′
igδk‖G.

Also from above,

‖δk,T c
k
‖1 ≤

1

2
‖δk,T c

k
‖1 +

G

λ

c‖Ψ̂−1
k0 ‖∞

`c− 1
CG‖
√
wigX

k′
igδk‖G,
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and thus

‖δk,T c
k
‖1 ≤

2G

λ

c‖Ψ̂−1
k0 ‖∞

`c− 1
CG‖
√
wigX

k′
igδk‖G.

Adding them up, one has

‖δk‖1 ≤
3G

λ

c‖Ψ̂−1
k0 ‖∞

`c− 1
CG‖
√
wigX

k′
igδk‖G := Ik.

Now suppose that δ ∈ ∆2c̃,k, the definition of κ̄2c̃ gives

‖δk,Tk‖1 ≤
√
s‖δk,Tk‖2 ≤

√
s

κ̄2c̃
‖√wigXk′

igδk‖G = IIk.

So by combining two cases, we have

‖δk,Tk‖1 ≤ Ik + IIk. (G.50)

Recall that

Ak =

{
δ ∈ Rp : ‖δ‖1 ≤

3G

λ

c‖Ψ̂−1
k0 ‖∞

`c− 1
CG‖
√
wigX

k′
igδ‖G

}
.

By invoking Assumption 8 (3), we have

{‖√wigXk′
igδk‖2G} ∧ {q̄Ak

‖√wigXk′
igδk‖G}}

≤ 1

G

G∑
g=1

ng∑
i=1

M̂k(Y
k
ig, X

k
ig, µ

k + δk)−
1

G

G∑
g=1

ng∑
i=1

M̂k(Y
k
ig, X

k
ig, µ

k)− 1

G

G∑
g=1

ng∑
i=1

[∂µM̂k(Y
k
ig, X

k
ig, µ

k + δk)]
′δk

+ 2CG‖
√
wigX

k′
igδk‖G

≤
(
L+

1

c

) λ
G
‖Ψ̂k0δk,Tk‖1 + 3CG‖

√
wigX

k′
igδk‖G

≤
(
L+

1

c

) λ
G
‖Ψ̂k0‖∞(Ik + IIk) + 3CG‖

√
wigX

k′
igδk‖G

≤
{(
L+

1

c

)
‖Ψ̂k0‖∞

λ
√
s

Gκ̄2c̃
+ 6c̃CG

}
‖√wigXk′

igδk‖G.

The definition of A implies that the minimum on the left-hand side must be achieved by

the quadratic term and thus

‖√wigXk′
igδk‖G ≤

{(
L+

1

c

)
‖Ψ̂k0‖∞

λ
√
s

Gκ̄2c̃
+ 6c̃CG

}
.

Finally,

‖δk‖1 ≤ (1 + 2c̃)IIk + Ik ≤
((1 + 2c̃)

√
s

κ̄2c̃
+

3G

λ

c‖Ψ̂−1
k0 ‖∞

`c− 1
CG

)
uniform for k ∈ UG. �
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G.2. Proof for Lemma 4.

Proof. Let SkG = 1
G

∑G
g=1

∑ng

i=1Mk(Y
k
ig, X

k
ig, µ

k). Assume the events of Assumption 8, con-

ditions (F.42) and (F.43) holds. This happens with probability at least 1− 3∆̃G.

By definition of µ̂k, for all j ∈ T̂k,

∣∣∣(Ψ̂−1
k

1

G

G∑
g=1

ng∑
i=1

∂µjM̂k(Y
k
ig, X

k
ig, µ̂

k)
∣∣∣ =

λ

G
.

Therefore, using Assumption 8 (1),(2), and inequalities (F.42),(F.43),

λ

G

√
sk = ‖(Ψ̂−1

k

1

G

G∑
g=1

ng∑
i=1

∂µM̂k(Y
k
ig, X

k
ig, µ̂

k))
T̂k
‖2

≤‖(Ψ̂−1
k SkG)

T̂k
‖2 + ‖(Ψ̂−1

k {
1

G

G∑
g=1

ng∑
i=1

∂µM̂k(Y
k
ig, X

k
ig, µ

k)− SkG})T̂k‖2

+ ‖(Ψ̂−1
k

1

G

G∑
g=1

ng∑
i=1

{∂µM̂k(Y
k
ig, X

k
ig, µ̂

k)− ∂µM̂k(Y
k
ig, X

k
ig, µ

k)})
T̂k
‖2

≤
√
s‖Ψ̂−1

k Ψ̂k0‖∞‖SkG‖∞ + ‖Ψ̂−1
k ‖∞CG sup

‖δ‖2=1,‖δ‖0≤ŝk
‖√wigXk′

igδ‖G

+ ‖Ψ̂−1
k ‖∞ sup

‖δ‖2=1,‖δ‖0≤ŝk

∣∣∣ 1

G

G∑
g=1

ng∑
i=1

[∂µM̂k(Y
k
ig, X

k
ig, µ̂

k)− ∂µM̂k(Y
k
ig, X

k
ig, µ

k)]′δ
∣∣∣

≤ λ

c`G

√
sk +

‖Ψ̂−1
k0 ‖∞
`

{CG + LG} sup
‖δ‖2=1,‖δ‖0≤ŝk

‖Xk′
igδ‖G.

Note that sup‖δ‖2=1,‖δ‖0≤ŝk ‖X
k′
igδ‖G = φmax(ŝk, k),

ŝk ≤ φmax(ŝk)L
2
k.

The rest follows from the sublinearity of maximum sparse eigenvalue and minimizing over

M ∈Mk. �

G.3. Proof for Lemma 5.
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Proof. First, note that by definition of µ̃k and µ̂k

1

G

G∑
g=1

ng∑
i=1

∂µM̂k(Y
k
ig, X

k
ig, µ̃

k − 1

G

G∑
g=1

ng∑
i=1

∂µM̂k(Y
k
ig, X

k
ig, µ

k)

≤ 1

G

G∑
g=1

ng∑
i=1

∂µM̂k(Y
k
ig, X

k
ig, µ̂

k)− 1

G

G∑
g=1

ng∑
i=1

∂µM̂k(Y
k
ig, X

k
ig, µ

k)

≤L λ
G
‖µ̂k − µk‖1‖Ψ̂k0‖∞

with probability at least 1− ∆̃G.

To show the first claim, let us suppose the events of Assumption 8 holds with prob-

ability 1 − ∆̃G. Denote δk = µ̃k − µk and SkG = 1
G

∑G
g=1

∑ng

i=1Mk(Y
k
ig, X

k
ig, µ

k) and

tk = ‖√wigXk′
igδk‖G. Assumption 8 (3) gives

t2k ∧ {q̄Ak
tk} ≤

1

G

G∑
g=1

ng∑
i=1

M̂k(Y
k
ig, X

k
ig, µ̃

k)− 1

G

G∑
g=1

ng∑
i=1

M̂k(Y
k
ig, X

k
ig, µ

k)

− 1

G

G∑
g=1

ng∑
i=1

[∂µM̂k(Y
k
ig, X

k
ig, µ

k)]′δk + 2CGtk

≤ 1

G

G∑
g=1

ng∑
i=1

M̂k(Y
k
ig, X

k
ig, µ̃

k)− 1

G

G∑
g=1

ng∑
i=1

M̂k(Y
k
ig, X

k
ig, µ

k)

+ ‖SkG‖∞‖δk‖1 + 3CGtk

≤ 1

G

G∑
g=1

ng∑
i=1

M̂k(Y
k
ig, X

k
ig, µ̃

k)− 1

G

G∑
g=1

ng∑
i=1

M̂k(Y
k
ig, X

k
ig, µ

k)

+
( √ŝk + sk‖SkG‖∞√

φmin(ŝk + sk, k)
+ 3CG

)
tk.

where the last inequality follows from

‖δk‖1 ≤
√
ŝk + sk‖δk‖2 ≤

√
ŝk + sk√

φmin(ŝk + sk, k)
‖√wigXk′

igδk‖G.

We then consider two cases. First, suppose t2k > q̄Ak
tk, by definition of q̄Ak

q̄Ak
tk ≤

q̄Ak

2

{ 1

G

G∑
g=1

ng∑
i=1

M̂k(Y
k
ig, X

k
ig, µ̃

k)− 1

G

G∑
g=1

ng∑
i=1

M̂k(Y
k
ig, X

k
ig, µ

k)
}1/2

+
+
q̄Ak

2
tk,
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and thus tk ≤ { 1
G

∑G
g=1

∑ng

i=1 M̂k(Y
k
ig, X

k
ig, µ̃

k) − 1
G

∑G
g=1

∑ng

i=1 M̂k(Y
k
ig, X

k
ig, µ

k)}1/2+ . Now

suppose t2k ≤ q̄Ak
tk, then

t2k ≤
{ 1

G

G∑
g=1

ng∑
i=1

M̂k(Y
k
ig, X

k
ig, µ̃

k)− 1

G

G∑
g=1

ng∑
i=1

M̂k(Y
k
ig, X

k
ig, µ

k)
}

+
( √ŝk + sk‖SkG‖∞√

φmin(ŝk + sk, k)
+ 3CG

)
tk.

Since for any positive numbers a, b, c, a2 ≤ b+ ac implies a ≤
√
b+ c, one has

tk ≤
{ 1

G

G∑
g=1

ng∑
i=1

M̂k(Y
k
ig, X

k
ig, µ̃

k)− 1

G

G∑
g=1

ng∑
i=1

M̂k(Y
k
ig, X

k
ig, µ

k)
}1/2

+
+
( √ŝk + sk‖SkG‖∞√

φmin(ŝk + sk, k)
+ 3CG

)
.

�

G.4. Proof for Lemma 9.

Proof. By Assumption 9, we have for `G = c′′/ϕ̃G, c′′ a constant depends only on C, C,

0 ≤ Φ−1(1− γ/2p) ≤
G1/6(EP

1
G

∑G
g=1 |Skg |2)1/2/(EP

1
G

∑G
g=1 |Skg |3)1/3

`G
− 1.

for all k ∈ UG. Applying inequalty for self-normalized sums (Lemma 5 in Belloni, Cher-

nozhukov, Chen and Hansen (2012)), we have

PP

( λ
G
≥ c max

k∈UG
‖Ψ̂−1

k

1

G

G∑
g=1

Skg ‖∞
)

≥PP

(
Φ−1(1− γ/2pp̃) ≥ max

k∈UG
max
j∈[p]

|
√
G 1
G

∑G
g=1 S

k
gj |√

1
G

∑G
g=1(Skgj)

2

)

≥1− γ − o(γ).

�

Corollary 3. Given the Assumptions of Lemma 7. Denote M = EP
1
G

∑G
g=1[F ]1/2. Suppose

there exist constants a ≥ n and v ≥ 1 such that

log sup
Q
N(ε‖F‖Q,2,F , ‖ · ‖Q,2) ≤ v log(a/ε), 0 < ε ≤ 1.

Then with probability > 1− C(log n)−1, one has∥∥∥ 1√
n

n∑
i=1

(f(Xi)− Ef)
∥∥∥
F
. σ

√
v log

(aM
σ

)
+
vB√
n

log
(aM
σ

)
.

Proof. It follows immediately from Lemma 7 and the Proof of Lemma 2.2 of Chernozhukov,

Chetverikov and Kato (2014). �
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Appendix H. Technical Lemmas

For completeness, we collect some of the technical results used in our proofs in this

Section. They are either direct restated from other papers or their straightforward modifi-

cations.

H.1. A Maximal Inequality. In this section we present a slight modification of Theorem

5.2 in Chernozhukov, Chetverikov and Kato (2014). The main difference is that we assume

independence instead of i.i.d. of data. Let F be a pointwise measurable class of measurable

functions S 7→ R with measurable envelope F . For all 0 < δ < ∞, define the integrated

Koltchinskii-Pollard entropy of F as

J(F , F, δ) :=

∫ δ

0
sup
Q

√
log 2N(F , L2(Q), ε‖F‖L2(Q))dε

where the supremum is taken over all discrete probabilities with a finite number of atoms

and rational weights.

Lemma 7.

Given X1, ..., Xn independent S-valued random variables. Suppose 0 < EP
1
G

∑G
g=1 F

2 <

∞, and let σ2 > 0 be any positive constant such that supf∈F EP
1
G

∑G
g=1 f

2 ≤ σ2 ≤
EP

1
G

∑G
g=1 F

2. Let δ = σ/(EP
1
G

∑G
g=1 F

2)1/2. Define B =
√

E[max1≤i≤n F 2(Xi)]. Then

E
[∥∥∥ 1√

n

n∑
i=1

(f(Xi)− Ef)
∥∥∥
F

]
≤ C

{
J(δ,F , F )(EP

1

G

G∑
g=1

F 2)1/2 +
BJ2(δ,F , F )

δ2
√
n

}
where C > 0 is a universal constant.

Proof. The proof follows almost exactly the same steps as in Chernozhukov, Chetverikov

and Kato (2014). We provide the proof for completeness.

In this proof, denote C as a universal constant that the value may change from place

to place. We assume F is positive everywhere without loss of generality and abbreviate

J(F , F, δ) as J(δ). Let σ2
n = supf∈F Enf2. Given any i.i.d. Rademacher random variables

ε1, ..., εn independent of X1, ..., Xn, the symmetrization inequality (Theorem 3.1.21 in Giné

and Nickl (2016)) implies

E
[∥∥∥ 1√

n

n∑
i=1

(f(Xi)− Ef)
∥∥∥
F

]
≤ E

[∥∥∥ 1√
n

n∑
i=1

εif(Xi)
∥∥∥
F

]
.
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Using Remark 3.5.2 in Giné and Nickl (2016),

Eε

[∥∥∥ 1√
n

n∑
i=1

εif(Xi)
∥∥∥
F

]
≤ C

∫ σn

0

√
1 + logN(F , ‖ · ‖Pn,2, ε)dε

≤ C‖F‖Pn,2

∫ σn/‖F‖Pn,2

0

√
1 + logN(F , ‖ · ‖Pn,2, ε‖F‖Pn,2)dε

≤ C‖F‖Pn,2J(σn/‖F‖Pn,2).

Hence by Lemma 3.5.3 part (c) of Giné and Nickl (2016) and applying Jensen’s inequality,

Z := E
[∥∥∥ 1√

n

n∑
i=1

εif(Xi)
∥∥∥
F

]
≤ C(EP

1

G

G∑
g=1

F 2)1/2J(F , F, {E[σ2
n]/EP

1

G

G∑
g=1

F 2}1/2).

Now we bound E[σ2
n] by the contraction principle (Corollary 3.2.2 of Giné and Nickl (2016))

and the Cauchy-Schwarz inequality,

E[σ2
n] ≤ σ2 + 8E

[
max

1≤i≤n
F (Xi)

∥∥∥ 1√
n

n∑
i=1

εif(Xi)
∥∥∥
F

]

≤ σ2 + 8

√
E
[

max
1≤i≤n

F 2(Xi)
]√√√√E

[∥∥∥ 1√
n

n∑
i=1

εif(Xi)
∥∥∥2

F

]
.

Further by Hoffmann-Jørgensen inequality (Theorem A.1 in Chernozhukov, Chetverikov

and Kato (2014)), √√√√E
[∥∥∥ 1√

n

n∑
i=1

εif(Xi)
∥∥∥2

F

]
≤ C

{ 1√
n
Z +

1

n
B
}
.

Hence we obtain

√
E[σ2

n] ≤ C(EP
1

G

G∑
g=1

F 2)1/2J(∆ ∨
√
DZ),

where ∆2 := max{σ2, B2/n}/EP
1
G

∑G
g=1 F

2 ≥ δ2 and D := B/(
√
nEP

1
G

∑G
g=1 F

2). There-

fore, applying Lemma A.2 (ii) of Chernozhukov, Chetverikov and Kato (2014), we have

Z ≤ C(EP
1

G

G∑
g=1

F 2)1/2J(∆ ∨
√
DZ).

The rest follows exactly the same analysis of two cases as in Chernozhukov, Chetverikov

and Kato (2014)) with only difference being (EP
1
G

∑G
g=1 F

2)1/2 in place of their ‖F‖P,2. �
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H.2. Additional Technical Lemmas.

The following is a restate of Lemma K.1 in Belloni, Chernozhukov, Fernández-Val and

Hansen (2017).

Lemma 8.

Let F denote a class of measurable functions f :W → R with a measurable envelope F .

(1) Let F be a VC subgraph class with a finite VC index k or any other class whose entropy

is bounded above by that of such a VC subgraph class, then the uniform entropy numbers of

F obey

sup
Q

logN(ε‖F‖Q,2,F , ‖ · ‖Q,2) . 1 + k log(1/ε) ∨ 0

(2) For any measurable classes of functions F and F ′ mapping W to R,

logN(ε‖F + F ′‖Q,2,F + F ′, ‖ · ‖Q,2)

≤ logN
(
ε
2‖F‖Q,2,F , ‖ · ‖Q,2

)
+ logN

(
ε
2‖F

′‖Q,2,F ′, ‖ · ‖Q,2
)
,

logN(ε‖F · F ′‖Q,2,F · F ′, ‖ · ‖Q,2)

≤ logN
(
ε
2‖F‖Q,2,F , ‖ · ‖Q,2

)
+ logN

(
ε
2‖F

′‖Q,2,F ′, ‖ · ‖Q,2
)
,

N(ε‖F ∨ F ′‖Q,2,F ∪ F ′, ‖ · ‖Q,2)

≤ N (ε‖F‖Q,2,F , ‖ · ‖Q,2) +N
(
ε‖F ′‖Q,2,F ′, ‖ · ‖Q,2

)
.

(3) For any measurable class of functions F and a fixed function f mapping W to R,

log sup
Q
N(ε‖|f | · F‖Q,2, f · F , ‖ · ‖Q,2) ≤ log sup

Q
N (ε/2‖F‖Q,2,F , ‖ · ‖Q,2)

(4) Given measurable classes Fj and envelopes Fj, j = 1, . . . , k, mappingW to R, a mapping

φ : Rk → R such that for fj , gj ∈ Fj, the following Lipschitz condition holds: |φ(f1, . . . , fk)−
φ(g1, . . . , gk)| ≤

∑k
j=1 Lj(x)|fj(x)− gj(x)| for Lj(x) ≥ 0, and some fixed functions f̄j ∈ Fj,

the class of functions L = {φ(f1, . . . , fk)− φ(f̄1, . . . , f̄k) : fj ∈ Fj , j = 1, . . . , k} satisfies

log sup
Q
N

ε∥∥∥ k∑
j=1

LjFj

∥∥∥
Q,2
,L, ‖ · ‖Q,2


≤

k∑
j=1

log sup
Q
N
(
ε
k‖Fj‖Q,2,Fj , ‖ · ‖Q,2

)
.

The following generalizes Lemma 9 of Belloni, Chernozhukov and Wei (2016) to allow for

cluster sampling. The proof follows closely to the orginal. DenoteM = 1
G

∑G
g=1

∑ng

i=1 f
2
igXigX

′
ig.
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Lemma 9 (Minoration Lemma).

Suppose that for each G, L(β) = − 1
G

∑G
g=1

∑ng

i=1{YigX ′igβ − log(1 + exp(X ′igβ))}. For any

δ ∈ A ⊂ Rp,

L(β0 + δ)− L(β0)−∇L(β0)′δ ≥ 1

3G
δ′Mδ ∧ 1

3G
q̄A
√
δ′Mδ

Proof. The proof is divided into two steps.

Step 1. (Minoration) Write F (δ) = L(β0 + δ)− L(β0)−∇L(β0)′δ. Define

rA =: sup
{
r ∈ R : F (δ) ≥ 1

3G
δ′Mδ for all δ ∈ A,

√
δ′Mδ ≤ r

}
So for any δ ∈ A, if

√
δ′Mδ ≤ rA, then by construction of rA,

F (δ) ≥ 1

3G
δ′Mδ.

Otherwise if
√
δ′Mδ > rA, by convexity of t 7→ F (tδ) and the fact that rA√

δ′Mδ
< 1,

F (δ) ≥
√
δ′Mδ

rA
F
( rA√

δ′Mδ
δ
)

Now, let δ̄ = rA√
δ′Mδ

δ, then
√
δ̄′Mδ̄ ≤ rA and thus

F (δ) ≥
√
δ′Mδ

rA
F (δ̄) ≥

√
δ′Mδ

rA

1

3G
r2
A ≥

1

3G
q̄A
√
δ′Mδ.

where the last inequality follows from rA ≥ q̄A that is shown in the next step. Combining

these two cases, we have

F (δ) ≥ 1

3G
δ′Mδ ∧ 1

3G
q̄A
√
δ′Mδ.

Step 2. We now prove rA ≥ q̄A. Define fig(t) = log{1 + exp(X ′igβ
0)}, then

F (δ) =
1

G

G∑
g=1

ng∑
i=1

[fig(1)− fig(0)− 1 · f ′ig(0)].

By Lemma 7 and 8 of Belloni, Chernozhukov and Wei (2016), we have

fig(1)− fig(0)− 1 · f ′ig(0) ≥ f2
ig

{ |X ′igδ|2
2

−
|X ′igδ|3

6

}
.

Summing over i, we have

F (δ) ≥ 1

2

1

G

G∑
g=1

ng∑
i=1

f2
ig|X ′igδ|2 −

1

6

1

G

G∑
g=1

ng∑
i=1

f2
ig|X ′igδ|3.
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Now, for any δ ∈ A such that
√
δ′Mδ ≤ q̄A, the definition of q̄A gives

√
δ′Mδ ≤ q̄A ≤

(δ′Mδ)3/2

1
G

∑G
g=1

∑ng

i=1 f
2
ig|X ′igδ|3

This implies 1
G

∑G
g=1

∑ng

i=1 f
2
ig|X ′igδ|3 ≤ 1

G

∑G
g=1

∑ng

i=1 f
2
ig|X ′igδ|2 and thus

F (δ) ≥ 1

2

1

G

G∑
g=1

ng∑
i=1

f2
ig|X ′igδ|2 −

1

6

1

G

G∑
g=1

ng∑
i=1

f2
ig|X ′igδ|3 ≥

1

3

1

G

G∑
g=1

ng∑
i=1

f2
ig|X ′igδ|2 =

1

3G
δ′Mδ.

The definition of rA then suggests rA ≥ q̄A. �

(Harold D. Chiang) Department of Economics, Vanderbilt University, United States


