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Abstract

Vote trading is believed to be ubiquitous in committees and legislatures,

and yet we know very little of its properties. We return to this old question

with a laboratory experiment. We posit that pairs of voters exchange votes

whenever doing so is mutually advantageous. This generates trading dynamics

that always converge to stable vote allocations—allocations where no further

improving trades exist. The data show that stability has predictive power:

vote allocations in the lab converge towards stable allocations, and individual

vote holdings at the end of trading are in line with theoretical predictions.

However, there is only weak support for the dynamic trading process itself.
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1 Introduction

Considering the very rich literature on voting and committee decision-making, the

scarcity of systematic studies on vote trading is remarkable. We use "vote trading"

to indicate the exchange of votes on some issues for votes on other issues—lending

support to somebody else’s preferred position in exchange for that person’s support

of one’s own preferred position on a different issue. Political scientists have long

emphasized the vital role of vote trading and logrolling in collective decision making.

Common sense, personal experience, empirical and historical studies all suggest their

extent and importance.

To many, such behavior is not only widespread, but marginally unethical. A leg-

islator voting against the interests of the voters who elected him runs counter to basic

democratic principles of representation. However, well over a century ago, an early

pioneer in political science, Arthur F. Bentley, argued that this view is shortsighted

and unrealistic; that logrolling is vital to the practical business of legislatures, which

would essentially cease to function if members of legislatures were unable or unwilling

to trade votes:

"Log-rolling is a term of opprobrium. [...] Log-rolling is, however, in fact, the

most characteristic legislative process. [...] It is compromise, not in the abstract

moral form, which philosophers can sagely discuss, but in the practical form with

which every legislator who gets results through government is acquainted. It is trad-

ing. It is the adjustment of interests. Where interests must seek adjustment without

legislative forms, [...] they have no recourse but to take matters in their own hands

and proceed to open violence or war. When they have compromised and [..] process
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can be carried forward in a legislature, they proceed to war on each other, with the

killing and maiming omitted. It is a battle of strength, along lines of barter. The

process is a similar process, but with changes in the technique. There never was a

time in the history of the American Congress when legislation was conducted in any

other way."

-from The Process of Government, 1908 (pp.370-371)

There is a relatively small literature that attempts to document specific cases of

vote trading, mostly in the context of the U.S. Congress. Mayhew’s (1966) book is

the first comprehensive study, focusing on agricultural bills in the house, and there is

much anecdotal evidence in earlier research. Stratmann (1992) and Stratmann (1995)

identify roll call votes where a legislator votes against his constituency’s interest and

exploit econometric techniques to attribute a substantial fraction of such votes to

vote trading. More recently, Guerrero and Matter (2016) measure the extent of vote

trading by identifying reciprocity networks in roll call voting and bill cosponsorship

through big data techniques.1

Outside these studies, systematic evidence on vote trading remains scarce, in

contrast to the common belief in its prevalence. The disparity between evidence

and perceptions can be attributed in part to vote trading’s tainted reputation—

representatives voting against their constituents’ interests have no incentive to adver-

tise it—and in part to institutional features that effectively serve to mask vote trading—

for example the committee system in the US Congress, through which logrolling is

1Two key assumptions in the latter approach are that vote trades are pairwise and that a

necessary condition for a vote trade to occur is that both voters are strictly better off, assumptions

that are consistent with our experimental implementation of vote trading and the theoretical model

we use to organize the data.
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embedded in the write-up of the bills. But more generally, the belief that vote trad-

ing is common is due to our anecdotal experience of its ubiquity wherever power

is delegated to committees, across institutions, settings and countries, not only in

legislatures but also in relatively informal settings: professional associations, school

boards, faculty committees, neighborhoods and buildings’ owners associations, coop-

eratives, cultural and civic institutions boards, and many more, all settings that do

not lend themselves easily to the collection and analysis of systematic data on vote

trading.

The scarcity of empirical studies is matched by a scarcity of rigorous theoretical

research. Notwithstanding general agreement on the importance of understanding

vote trading, after an early, enthusiastic wave of work in the 1960’s and 70’s,2 the

theoretical literature mostly ran dry. One reason is that the problem is difficult.

Consider the simplest framework, the natural first step studied by Riker and Brams

(1973): a committee with an odd number of members considers several binary propos-

als, each of which may pass or fail. Voters can trade votes with each other without

enforcement or credibility problems; after trades are concluded, voting occurs by

majority rule, proposal by proposal. Every committee member can be in favor or op-

posed to any proposal and has separable preferences across proposals, with different

cardinal intensities. Even in this environment, vote trading is a difficult problem:

trades take place without the equilibrating forces of a price mechanism, impose ex-

ternalities on non-trading voters, change the overall distribution of votes, and with

2See, among others, Buchanan and Tullock (1962), Coleman (1966, 1967), Park (1967), Wilson

(1969), Tullock (1970), Haefele (1971), Kadane (1972), Bernholz (1973), Riker and Brams (1973),

Mueller (1967, 1973), Koehler (1975), Miller (1977a, 1977b), Schwartz (1975, 1977).
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it other voters’ power to affect outcomes, and induce further trades.

The use of laboratory methods to study vote trading seems particularly appropri-

ate given both the difficulty of collecting historical data and the ability of controlled

experiments to address fundamental, micro-level questions of behavior, the crucial

questions of why, when, and how vote trades emerge from the chaos of committee

wheeling and dealing. And yet, if empirical and theoretical studies of vote trading

are not numerous, experimental studies are even fewer. To our knowledge, the study

closest to ours is McKelvey and Ordeshook (1980), but the differences in methodolo-

gies (face-to-face exchanges in McKelvey and Ordeshook, computer-mediated plat-

forms in this paper) and especially in objectives (a focus on alternative cooperative

solutions in McKelvey and Ordeshook, on dynamics in this paper) make a direct

comparison impossible.3

We think of this paper as a first exploratory step towards testing a full-fledged

non-cooperative understanding of the dynamics of vote trading. In studying their

original framework, Riker and Brams conjectured that restrictions on trading may

be needed to prevent continuing cycles: one exchange of votes changes the outcomes

that would be reached if voting were held, and hence makes other voters consider new

trades, which again induce further trading. Evaluating whether Riker and Brams’

conjecture is correct requires a rigorous definition of stability and a formal model

of dynamic adjustment. Such a theoretical framework is developed in Casella and

Palfrey (2017), where stability is identified with an allocation of votes such that no

3Fischbacher and Schudy (2014) conduct a voting experiment to examine the possible behavioral

role of reciprocity when a sequence of proposals come up for vote. There is no explicit vote trading,

but voters can voluntarily vote against their short term interest on an early proposal in hopes that

such favors will be reciprocated by other voters in later votes.
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pair of voters can trade votes and induce an outcome they both prefer. Dynamic

adjustment occurs via an algorithm that selects, with some arbitrary rule, a pair of

voters with strictly improving trades; if the trade induces stability, then trading stops;

if not, a new pair of voters is selected. The process continues until a pairwise stable

allocation is reached. Contrary to the long-standing conjecture of Riker and Brams,

one can prove that such a process is always guaranteed to converge to a stable vote

allocation: continuing cycles of trading will not occur. This theoretical framework -

a definition of stability and the specification of a dynamic trading process - generates

strong predictions that can be tested in an experimental setting: specific predictions

about final vote allocations, proposals’ outcomes, and even exact sequences of trades.

The experimental design employs three treatments, corresponding to three differ-

ent preference profiles. All treatments have five member committees, and either two

or three issues. In each case, the stable outcome reachable through the theoretical

trading dynamics is unique. The experiment produces two findings that provide em-

pirical support for the theoretical framework. First, we find that stability is a useful

predictive tool. In all treatments, two thirds or more of the final vote allocations

after trading are stable. Second, the final vote allocations in the experiment are in

line with the theoretical predictions. Across all treatments, across all voters, across

all proposals, in every case in which the stable allocation is predicted to reflect a net

purchase of votes, or a net sale, we observe it in the data.

And yet the dynamic process generating the final outcomes departs significantly

from the theoretically posited dynamics. The main discrepancy, and this is our third

result, is that while we observe the gain-searching trades predicted by the theory, a
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large fraction of these trades do not lead to strict improvement for the two voters

engaging in the trade. Rather, the trades increase the number of votes held on high-

value issues without changing the outcomes associated with the new vote allocation.

Interestingly, trades that increase the number of votes on high-value issues are not

predictive of final vote allocations: trading stops when no opportunity for payoff

gains remains, as in our stability concept, even when it is still possible to increase

votes on high-value proposals.

Shifting votes towards higher-value proposals suggests some form of prudential

behavior. The theoretical trading dynamic is instead myopic: trades are considered

profitable if the vote allocation immediately resulting from the trade strictly improves

the payoff of the traders, relative to the current vote allocation. The trading data

from the experiment suggest that the myopia assumption should be considered more

carefully. We conclude the paper with an exploration of possible extensions of the

model to allow for farsighted vote trading, and re-examine our experimental data in

this new light. We show that the definition of farsightedness leads directly to some

simple predictions that can be confronted with the data. In our experiment, fully

farsighted behavior is soundly rejected.

Methodologically related to our trading protocols are some recent experiments on

decentralized matching, in particular Echenique and Yariv (2013).4 In those experi-

ments, as in ours, a central finding is the extent to which the experimental subjects

succeed in reaching stable outcomes. The details of those environments, however,

4Other related works on matching are Nalbantian and Schotter (1995), Niederle and Roth (2011)

and Pais, Pinter and Vesztegz (2011). These papers have incomplete information and study the

effects of different offer protocols and other frictions. Kagel and Roth (2000) study forces leading

to the unraveling of decentralized matching.
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differ substantially from ours, and the substantive questions we ask are specific to

vote trading. There is a more distant relationship between the present paper and

experimental studies of network formation. In network models, an outcome is a

collection of bilateral links between agents, represented by either a directed or undi-

rected graph, and the structure of payoffs is very different from vote trading games.

Some classic theoretical analyses of network formation, however, exploit a pairwise

stability concept, as we do (Jackson and Wolinsky 2000). Most experimental pa-

pers rely on a different protocol—a simultaneous move game where agents form links

unilaterally—but some recent papers are closer to our approach: Carrillo and Gaduh

(2016) and Kirchsteiger et al. (2016) examine dynamic sequential link formation

with mutual consent.5

Finally, if seen as a trading experiment, in the spirit of good markets experiments,

a peculiarity of our design is the lack of a common unit of value. That is, these are

barter markets. To our knowledge, experimental studies of barter markets are rare.

Ledyard, Porter and Rangel (1994) is an example that demonstrates the challenges

to both design and data analysis.

The paper proceeds as follows. The next section briefly summarizes the theo-

retical model and results on which our experiment is based; section 3 discusses the

experimental design; section 4 reports the experimental results, and section 5 con-

cludes. The instructions from a representative experimental session are available in

an appendix online.

5Both papers use the random link arrival protocol of Jackson and Watts (2002): in each period

one link is randomly added to the network, and the two newly connected players simultaneously

decide to accept or reject the link.
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2 The Model

2.1 The Voting Environment

A committee of  (odd) voters must approve or reject each of  independent binary

proposals, a set denoted by  . Committee members have separable preferences

represented by a profile of values, , where  is the value attached by member 

to the approval of proposal , or the utility  experiences if  passes. Value  is

positive if  is in favor of  and negative if  is opposed. Proposals are voted upon

one-by-one, and each proposal  is decided through simple majority voting.

Before voting takes place, committee members can trade votes. Vote trades can

be reversed if the parties to the trade decide to do so, but the agreements suffer

no credibility or enforcement problems: it is helpful to think of votes as physical

ballots, each one tagged by proposal, and of a trade as an exchange of ballots. After

trading, a voter may own zero votes over some proposals and several votes over

others, but cannot hold negative votes on any proposal. Denote by  the votes

held by voter  over proposal , denote by  = (
1
   


 ) the set of votes held by

 over all proposals, and call  = (1   ) a vote allocation, i.e., the profile of

vote holdings over all voters and proposals. The initial vote allocation is denoted

by  0, and we set  0
 = (1  1) for all . That is, prior to any trade, each voter

has a single vote over each proposal. The set V contains all feasible vote allocations:
 ∈ V ⇐⇒P 


 =  for all  and  ≥ 0 for all  ∈  . 6

6Note that
P

 

 6=  is feasible because we are allowing a voter to trade votes on multiple

issues in exchange for one or more votes on a single issue. Of course, the aggregate constraintP


P
 


 =  must hold.
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Given a vote allocation  , when voting occurs, each voter’s dominant strategy is

to cast all votes in his possession over each proposal in the direction the voter sincerely

prefers—in favor of  if 

  0, and against  if 


  0.

7 P( ) ∈  indicates the set

of proposals that receive at least ( +1)2 favorable votes, and therefore pass; thus

it can be called the outcome of the vote if voting occurs at allocation  . Note that

with  independent binary proposals, there are 2 potential outcomes (all possible

combinations of passing and failing for each proposal). Finally, the utility of voter 

if voting occurs at  is denoted by ( ): ( ) =
P

∈P( ) 

 .

Although the theory allows for trading within coalitions of arbitrary size, in the

experiment trades are restricted to be bilateral. We impose such a constraint in part

because pairwise trading is typically considered more empirically relevant8, and in

part to limit complexity in what already is an unusually complicated experimental

platform. We thus specialize the model to pairwise trades only.

The focus is on the properties of vote allocations that hold no incentives for

further trading. Define:

Definition 1 An allocation  ∈ V is stable if there exists no pair of voters  0 and
no b ∈ V such that b =  for all  6=  0, and (b )  ( ), 0(b )  0( ).

Note that a stable vote allocation always exists: a feasible allocation of votes

that yields dictator power to a single voter  is trivially stable: no exchange of votes

involving voter  can make  strictly better-off; and no exchange of votes that does

7We assume that all preferences are strict, and hence rule out  = 0 for all  and all .
8Riker and Brams (1973) for example, argue that the difficulty of organizing a coalition makes

non-pairwise trading unlikely. The restriction to pairwise trades is also consistent with Guerrero

and Matter’s (2016) empirical strategy.
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not involve voter  can make anyone else strictly better-off. The interesting question

is not whether a stable allocation exists, but whether, or under what conditions,

sequential decentralized trading leads to stable vote allocations.

2.2 Trading Dynamics

To answer the question, the theory needs to specify the dynamic process through

which trades take place. The first step is the following definition.

Definition 2 A trade is minimal if it consists of a minimal package of votes such

that both members of the pair strictly gain from the trade.

By focusing on minimal trades, complex trades are decomposed into sequences

of elementary trades. In particular, multiple welfare-improving trades cannot be

bundled, and zero-utility trades cannot be bundled with strictly welfare-improving

trades.9

Although the literature does not make explicit reference to an algorithm, the

sequential myopic trades envisioned by Riker and Brams (1973) and Ferejohn (1974)

lend themselves naturally to such a formalization. In line with these earlier analyses,

Pivot Algorithms are defined as sequences of trades yielding myopic strict gains to

both traders:

Definition 3 APivot Algorithm is any mechanism generating a sequence of trades

in the following way: Start from the initial vote allocation  0. If there is no minimal

9The focus on minimal trades is consistent with the experimental design, where only elementary

trades are possible.
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strictly improving trade, stop. If there is one such trade, execute it. If there are mul-

tiple improving trades, choose one according to some tie-breaking rule . Continue

in this fashion until no further improving trade exists.

Rule  specifies how the algorithm selects among multiple possible trades; for

example,  may select each potential trade with equal probability; or give priority to

trades with higher total gains; or to trades involving specific voters. The definition

describes a family of Pivot algorithms, spanning all possible  rules.

Pivot trades are not restricted to two proposals only: a voter can trade his vote,

or votes, on one issue in exchange for the other voter’s vote(s) on more than one

issue. The only constraint is that trades be minimal: any reduction in the number

of votes traded prevents the trade from being strictly payoff-improving for at least

one of the two voters. If a trade is welfare improving and minimal, it is a legitimate

trade under Pivot.10

Trades are required to be strictly welfare improving for the participating pair.

That means that pivotal votes must be traded: trades of non-pivotal votes cannot

affect outcomes and thus cannot induce changes in utility. More than that: since

trades are restricted to be minimal, only pivotal votes can be traded. It is this

property, anticipated by Riker and Brams, that gives the name to the algorithms.

10Ruling out the bundling of multiple payoff improving trades is for simplicity only. Ruling out

the bundling of zero-utility trades with welfare improving trades plays instead a substantive role.

Zero-utility trades cause no immediate gains or losses, but affect the feasibility of future profitable

trades. Allowing them to be bundled could in principle affect the dynamics of the vote allocations,

without the discipline provided by the requirement of payoff gains.
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2.3 Pivot-Stable Allocations

An obvious question to ask is whether trading under Pivot algorithms will ever stop:

in principle there is nothing to rule out the possibility of trading cycles. Casella and

Palfrey (2017) show that with pairwise trading the answer to the question is positive:

for all ,  , , all Pivot algorithms converge to a stable vote allocation in a finite

number of steps. The term "all Pivot algorithms" refers to the arbitrariness of the

choice rule  : convergence is guaranteed for any .

The generality of the result is unexpected: the Pivot algorithms always reach

a stable vote allocation, regardless of the number of voters and proposals, for all

(separable) preferences, and regardless of the order in which different possible trades

are chosen. No such general result applies, to our knowledge, to other games in which

successive moves occur in the absence of an equilibrating price process—for example

in matching, or network formation, or barter trading, all cases in which convergence

to stability requires some randomness in rule .11 In vote trading, Riker and Brams

(1973) conjectured that convergence required limiting the number of allowed trades

per proposal; Ferejohn (1974) believed that convergence may fail.

In fact the intuition is surprisingly simple. When trades occur under a Pivot

algorithm, both voters trade away votes on proposals they value less (on which

they have a relatively low | |), in exchange for votes on proposals they value more.
Given the current vote holdings for voter , we can define the total intensity-weighted

value of ’s vote holdings, or score, as () =
P

 | | . Because () depends
11Randomness in  ensures that any cycle will be broken. See Roth and Vande Vate (1990), and

Diamantoudi et al. (2004) for matching; Jackson and Watts (2002) for network formation games;

Feldman (1973) and Green (1974) for barter trading.
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on ’s vote holdings, but not on whether  wins or loses any issue, when  trades

under a Pivot algorithm () increases, and therefore so does the total group score,

( ) =
P

 (). Since there are a finite number of issues and votes, ( ) is

bounded above, and thus at most a finite number of pairwise-improving trades are

possible for any Pivot algorithm.

Any stable vote allocation reachable by a Pivot algorithm is called a Pivot-stable

Vote Allocation, and any outcome associated with a Pivot-stable vote allocation a

Pivot-stable Outcome.

Vote trading environments are unusually complex: votes’ values depend on their

pivotality, and thus change with others’ allocations; trades by others affect the de-

sirability of further trades, and thus a single trade can generate a whole chain of new

exchanges; externalities ensure that individuals’ welfare depends on others’ trades;

no continuous price exists. Pivot algorithms are simple, intuitive rules, describing

plausible trades in such a complicated environment. Their simplicity allows some

conceptual progress, as in the stability result we just described. But we focus on

them for a second reason too: we conjecture that they may have predictive power.

We now turn to testing the Pivot algorithms in the laboratory.

3 The Experiment

The experiment was conducted at [Redacted] , with [Redacted] registered university

students recruited from the whole campus through the laboratory’s ORSEE site.

No subject participated in more than one session. After entering the computer
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laboratory, the students were seated randomly in booths separated by partitions;

the experimenter then read aloud the instructions, projected views of the computer

screens to be seen during the experiment, and answered all questions publicly.12

Because the design of the trading platform presents some challenges, we describe it

here is some detail.13

At the start of each treatment, each subject’s computer screen displayed a table

with each subject’s value per issue (in experimental points), and vote holdings. We

refer to this matrix as the vote table. The interface and the instructions associated

the two alternatives for each issue, Pass or Fail, with two colors, Orange (Pass) and

Blue (Fail). Each individual’s values were written in the color of the individual’s

preferred alternative. All experimental values were positive and indicated earnings

from one’s preferred alternative winning, relative to zero earnings if it lost.14 The

vote table also showed the votes totals on each issue and the points the subject

would win if voting were held immediately. Each subject started with one vote on

each issue.

After having observed the matrix of values and the vote allocation, a subject

could post a bid for a vote on one of the issues, in exchange for his vote on a different

issue. The bid appeared on all committee members’ monitors, together with the

ID of the subject posting the bid. A different subject could then accept the bid by

clicking the offer and highlighting it.15

12Sample instructions are provided in the online appendix.
13The computerized trading platform was implemented using the [Redacted] software program

[Redacted]
14Thus, for example, 1 = −300 in the notation of the model would appear on the screen as

voter  having a value of 300 for proposal 1 highlighted in Blue.
15Sample screenshots are provided in the online appendix.
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A central feature of vote trading is that the preferences and vote holdings of the

specific individuals making a trade determine the effect of the trade. Contrary to

standard market experiments, then, subjects must not only post potentially prof-

itable bids, but also consider the specific identity of their trading partner. In adapt-

ing the bidding platform used in market experiments, we added a confirmation step.

After a bid was accepted, a window appeared on the bidder’s screen detailing the

effects of that specific trade—what the outcome would be upon immediate voting—

and asking the bidder to confirm or reject the trade. If the trade was rejected, a

message appeared on the screen of the rejected trade partner, informing him of the

rejection; trading then continued as if the bid had never been accepted (thus the

bid remained posted and available for others to accept). If the bidder confirmed

the trade, a popup window with the updated vote table appeared on all screens for

10 seconds and trading activity was paused during that 10 second interval, to give

traders time to study the new vote allocation that resulted from the trade. The

window also reported the post-trade voting outcome that would result if voting were

to occur immediately. The vote table that was always visible on the main screen was

also updated immediately.

The market was open for three minutes.16 However, in a market where each

concluded trade can trigger a new chain of desired trades, it is important to ensure

adequate time for all desired trades to be executed. For this reason the time limit

was automatically extended by 10 seconds whenever a new trade was concluded.

The theory allows for trades of multiple votes and over multiple proposals, but

16The market was open for only two minutes in the two-proposal treatment, , because the

extent of possible trading was more limited.
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with the matrices of values assigned to subjects during the experiment minimal Pivot

trades would amount to trades of a single vote on one issue against a single vote on a

different issue. Thus, in the experiment we allowed only such trades, with the goal of

limiting the complexity of the task without affecting the theoretical predictions. No

bid could be posted if a subject did not have enough votes to execute it if accepted;

thus a voter could post multiple bids only as long as he had enough votes to execute

them all, had all been accepted. Posted bids could be canceled at any time, an

important feature in a market where somebody else’s executed trade can make an

existing posted bid suddenly unprofitable.

Once the market closed, voting took place automatically, with all votes on each

issue cast by the computer in the direction preferred by each subject. Then a new

round started.

The experiment consisted of three treatments, , 1, and 2, each

corresponding to a different matrix of values. In all three treatments, the size of

the voting committee was five ( = 5), while the number of issues depended on

the treatment:  = 2 in treatment , and  = 3 in treatments 1, and

2. In each committee, subjects were identified by ID’s randomly assigned by

the computer, and issues were denoted by  and  (in treatment ), and ,  and

 (in treatments 1 and 2). Each session started with two practice rounds;

then three rounds of treatment , and then five rounds each of 1 and 2,

alternating the order.17 We did not alternate the order of treatment  because its

smaller size ( = 2) made it substantially easier for the subjects, and thus we used

17Two of the sessions had only two treatments:  and 1 in one case, and  and 2

in the other.
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it as further practice before the more complex treatments. This is also the reason

for the smaller number of rounds (three for , versus five for 1 and 2).

Committees were randomly formed, and ID’s randomly assigned at the start of

each new treatment, but the composition of each group and subjects’ ID’s were kept

unchanged for all rounds of the same treatment, to help subjects learn. All but one

sessions consisted of 15 subjects, divided into three committees of five subjects.18 At

the end of each session, subjects were paid their cumulative earnings from all rounds,

converting experimental points into dollars via a pre-announced exchange rate, plus

a fixed show-up fee. Each session lasted about 90 minutes, and average earnings

were $36, including a $10 show-up fee.

We designed the three treatments according to the following criteria. First, we

wanted a  = 2 treatment, as further training for the subjects. Second, we chose

value matrices for which the stable vote allocation reachable via Pivot trades is unique

but requires multiple trades. In , the path to stability is itself unique, while in

both 1 and 2 the stable allocation can be reached via multiple paths, with

no path being clearly focal. Third, the older literature discussed at length, and with

contradictory results, the relationship between stable vote allocations reachable via

vote trading and the existence of the Condorcet winner. We designed matrices for

which the Condorcet winner exists, but need not correspond to the Pivot stable out-

come: it does in  and in 2, but not in 1. The two matrices 1 and

2 are superficially very similar and have Pivot trading paths of comparable mul-

tiplicity and length, allowing us to test whether the Condorcet winner has stronger

18One session had only ten subjects, divided into two groups.
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attraction. Note that we do not specify , the selection rule when multiple trades

are possible, but let the experimental subjects select which trades to conclude. For

each of the experimental matrices, the unique Pivot-stable allocation is invariant to

.

The three value matrices used in the experiment are given in Table 1.



1 2 3 4 5

 49 −29 −29 12 −12
 12 −12 −49 29 49

1

1 2 3 4 5

 23 −23 10 −10 23

 −10 −10 23 −23 10

 18 −18 −18 18 −18

2

1 2 3 4 5

 −21 15 −9 21 9

 15 9 15 −15 −15
 −9 −21 21 9 21

Table 1. Matrices of values used in the experiment.

To illustrate the dynamics of the Pivot algorithm, it is useful to describe the

sequence of Pivot trades that would lead to Pivot stable allocations in each of our

experimental treatments. In all three cases, the initial vote allocation where every

voter has one vote on each issue is unstable. Consider first the matrix . At 0,

proposal  fails and proposal  passes; voters 2, 4 and 5 are all on the winning side

of the proposal each of them values most, and have no payoff-improving trade. But

voters 1 and 3 can gain from a trade reversing the decision on both  and : voter

19



1 gives a  vote to voter 3, in exchange for 3’s  vote; with no further trade, the

outcome would be P(1) = {}, which both 1 and 3 prefer to P(0) = {}. At 1,
however, 2 and 4 have a payoff-improving trade: 2 gives a  vote to 4, in exchange

for an  vote, and with no further trade the outcome reverts to {} = P(2).

No further trade can now occur: all pivotal votes are held by voters 2, 4 and 5,

none of whom can gain from trading. It is straightforward to verify that there are

no other trading sequences that are consistent with a Pivot algorithm. The Pivot

algorithm thus follows a unique path, of length two (i.e. consists of a sequence of

two trades). Indicating first the ID’s of the trading partners, and then, in lower-case

letters, the issue on which an extra vote is acquired by the voter listed first, the path

is {13 24}. The unique Pivot-stable outcome is P = {}, which is also the
Condorcet winner, and thus the two coincide in the case of matrix .

With matrix 1, the Condorcet winner exists and corresponds to P = {},
but the unique Pivot-stable outcome is P = {}. The Pivot algorithm can

follow three alternative paths, two of them of length four (i.e. consisting of four

trades), and one of length three. The three paths are: {13 45 23 45},
{23 45 45 13}, and {23 45 13}. In matrix2, the Condorcet win-
ner is P = {}, and corresponds to the unique Pivot stable outcome. Again,
the Pivot algorithm can follow three alternative paths, two of them of length four,

and one of length three. They are: {15 34 24 15}, {24 15 15 34},
and {24 15 34}.19

Table 2 reports the experimental design.

19Notice that for all three matrices, the experimental limitation that trades must be one-for-one

is inessential, as the theoretically possible Pivot trading sequences involved only such trades.
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Session Treatments # Subjects # Groups # Rounds

s1 1 2 10 2 3,5,5

s2 2 1 15 3 3,5,5

s3 1 2 15 3 3,5,5

s4 2 1 15 3 3,5,5

s5 2 15 3 3,5

s6 1 15 3 3,5

Table 2. Experimental Design.20

4 Experimental Results.

4.1 Trading and Bidding Volume

How much trading did we see? Table 3 reports basic statistics on observed trades.

"Pivot" refers to the predicted number of trades under the Pivot algorithm. The

unit of analysis is the group per round.

Treatment Tot trades groups × rounds Mean trades Median s.d Max Pivot

 115 51 2.25 2 1.92 13 2

1 211 70 3.0 3 1.67 9 3,3,4

2 175 70 2.5 2 1.36 7 3,3,4

Table 3. Number of trades.

A histogram of the number of trades per treatment (per group per round) (Fig-

ure 1) shows the higher frequency of shorter trade paths in the  treatment, with

20A programming error in sessions s5 and s6 made the last five rounds of data unusable.
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 = 2. Between the two  = 3 treatments, 2 has higher fractions of shorter

trades, but the differences are not striking—56 percent of rounds end with two or

fewer trades in 2, as opposed to 41 percent in 1, and 80 percent end with

three or fewer trades in 2, as opposed to 76 percent in 1. In all treatments,

few rounds include five or more trades.

Figure 1. Number of trades. Frequencies.

As expected, the bidder’s option of rejecting trades, and thus discriminating over

who accepted the original bid, was important. In columns 2-4 of Table 4, we report

the total number of bids, how many of these bids found a taker in the market, and

how many of these acceptances were then rejected by the bidder. A large fraction of

all posted bids found a counterpart—from a minimum of 77 percent in 2 to more

than 95 percent in —but about a third of these accepted trades were rejected by

the bidder— 32 percent in , 29 percent in 1, and 34 percent in 2. As the

last column of the table shows, some rejected trades were associated with a strict

increase in myopic payoff for the bidder, but the number is small—between 10 and 20
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percent of rejections in all treatments.

Treatment Tot bids Accepted Rejected by bidder Rejected with payoff gain

 177 169 54 6

1 368 296 85 15

2 345 267 92 11

Table 4. Bids, accepted bids, and rejected trades.21

Whether in terms of number of trades or of any other variable studied below, the

data show no evidence of learning or of order effects—behavior appears very consistent

across rounds, and regardless of whether 1 or 2 was played first. Thus we

present the experimental results aggregating over rounds and order.

4.2 Stability of final vote allocations

Our point of departure is the definition of stable vote allocations. Is the stability

requirement satisfied in the vote allocation to which our subjects converge at the end

of each round? Figure 2 shows the CDF of steps to stability for the three treatments,

in black, as well as in 5,000 simulations with random trading, in red. The horizontal

axis measures the minimal number of Pivot trades necessary to reach stability, and

the vertical axis the proportion of final vote allocations not further from stability

than the corresponding number of trades.

21Tot bids excludes canceled bids.
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Figure 2. Steps to stability. Cumulative distribution functions.

The fraction of stable vote allocations in the experimental data was 76 percent in

, and 64 percent in both treatments 1 and 2. In all treatments, more

than 80 percent of all vote allocations were within one step (one trade) of stability,

although the figure also shows the predictably easier convergence to stability in the

 treatment, with only two proposals. In all three treatments, the distribution

corresponding to random trading first order stochastically dominates the distribution

for the experimental data.

The simulation of random trades provides the yardstick of comparison for our

data. We will use it repeatedly in what follows, and it is worth describing the

methodology in some detail. In each treatment, we constructed the random trades

by randomly selecting an individual, one or two issues (in the two- and three-issue

treatments, respectively), a partner, and a direction of trade, all with equal probabil-

ity, and enacting the trade as long as both traders’ budget constraints were satisfied.

If budget constraints are violated, we cancel the proposed trade and restart. In

each group, a trade occurs with specified probability over a short time interval, with
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both parameters calculated to match the observed average length of rounds and the

average number of trades in the treatment.22 For each treatment, we repeated the

procedure 5,000 times, each time focusing on a group.

Random trading is a demanding comparison when applied to the stability of vote

allocations because a large fraction of feasible trades take the vote allocation away

from minimal majority, and hence make Pivot trades impossible, and the allocation

stable.23 But Figure 2 is informative beyond the comparison to random trading, and

that is because our soft timing constraint de facto allows subjects to choose when

to stop trading. A high fraction of stable allocations at the end of the rounds is

indicative of either a search for or at least of a recognition of stability, of opportunities

for payoff gains having been exploited.

Figure 2 reports information on the stability of the vote allocations reached at

the end of trading. But our data also give us information on dynamic convergence.

Do successive trades move the vote allocation towards stability?

Figure 3 shows, for each treatment, the dynamic path of the vote allocation, as

captured by the succession of trades. The horizontal axis measures time, in seconds.

A marker corresponds to a trade. Thus, for any given marker, the horizontal axis

indicates when the trade took place, within the maximal round length observed in the

data for each treatment. The vertical axis measures distance from stability, defined,

as in Figure 2, by the minimal number of Pivot trades necessary to reach a stable

22Given the average length of a round in the treatment, time is divided into a grid of 100 cells,

and in each cell a group can trade with probability , such that 100 equals the mean number of

trades per round in the treatment.
23For example, in treatment , where breaking minimal majority on a single issue is sufficient

to induce stability, a single random vote trade from any unstable allocation has never less than a

30 percent chance of inducing stability.
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allocation. Such number is calculated first for the vote allocation characterizing

each group in the treatment at that moment in that round, and then averaging over

the groups. The figure is drawn pooling over all groups and all sessions, for given

treatment, and each curve, with its own shade and marker symbol, reports data from

the same round (1-3 for  and 1-5 for 1 and 2). The jumps between

dots are relatively small because a trade concerns a single group, while the others’

vote allocations remain unchanged.
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Figure 3. Dynamic convergence to Pivot stable outcomes. Data vs. Random.

All curves decline, almost perfectly monotonically, showing the dynamic conver-

gence towards stability. To help us evaluate such convergence, the black curve in

each panel reports the steps from stability calculated from the 5,000 simulations

with random trading. After the first minute, in all three treatments, the curve cor-

responding to random trades remains higher than the curve corresponding to any

round of experimental data.24 Notice also the lack of learning in the data—there is

no systematic difference between earlier and later rounds.25

4.3 Vote Allocations

For all three value matrices used in our experiment, the Pivot algorithms predict

a unique stable vote allocation. Is such an allocation reached by the experimental

24With the exception of two trades in round 5 in 2.
25To verify that results were not driven by averaging, we computed CDF’s of steps to stability for

the data and for the random simulations, as in Figure 2, at all 30-second intervals. In all treatments

and at all times, the CDF corresponding to random trading FOSD’s the CDF from the data.
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subjects? Figure 4 reports the number of votes held by each voter at the end of a

round, averaged over all rounds of the same treatment. Each panel corresponds to a

treatment and reports the number of votes by voter ID, i.e. by the vector of values

corresponding to each column of the value matrix. The blue columns represent the

experimental data, the grey columns the Pivot prediction, and the red line the no-

trade status quo (or equivalently, the average vote holding after random trading).

The figure reports data from all rounds, but remains effectively identical if we select

stable vote allocations only.

The vote distribution in the data is less sharply variable across issues than theory

predicts, as we would expect in the presence of noise. Yet, the qualitative predictions

are strongly supported. There are five voters in each treatment, holding votes over

two (in ) or three issues (in 1 and 2)—a total of forty points. Of these

forty, the theory predicts that 14 should be above 1—the voter should be a net buyer

over that issue— and 15 below 1—the voter should be a net seller. The prediction is

satisfied in every single case, across all treatments. When the theory predicts holding

a single vote—11 cases for which the voter should exit trade with the same number

of votes held at the start—, the data show three cases where the average vote holding

is below 1, five where it is above, and three where it is effectively indistinguishable

from 1. On average, our subjects hold 0.56 votes when the theory predicts 0; 1.05

when the theory predicts 1, and 1.43 when the theory predicts 2.07.26

26The theory predicts that voter 3 in treatment 1 should hold three votes.
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Figure 4. Average vote allocations at the end of each round, by voter type.
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4.4 Trades

According to our results so far, final vote allocations tend to be stable; dynamic trad-

ing moves towards stability, and final individual vote holdings mirror qualitatively

the properties of Pivot-stable allocations. But can we say more about the specific

trades we see in the lab? In particular, are these trades compatible with the Pivot

algorithm?

4.4.1 Pivot trades.

The class of pairwise Pivot algorithms is a class of mechanical selection rules among

feasible pairwise trades. Accordingly, we test it on binary trades—i.e. by considering

the fraction of all trades associated with myopic strict increases in payoff for both

traders.27 We plot such a fraction in Figure 5. The black columns correspond to

the experimental data, the grey columns to the simulations with random trading,

and the error bars indicate 95 percent confidence intervals (under the null of random

trading).28

27Alternatively, we could consider the fraction of trades that induce strict (myopic) gains for the

individual making the trade (as opposed to the pair), a substantially weaker test of our model.

But Pivot algorithms are not equivalent to optimizing rules of individual behavior—the latter would

presumably include a search for maximal gain, competition for specific traders, endogenous surplus

division, etc..
28Note that under the null all observations are independent. Thus no correction for correlation

is required.
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Figure 5. Fraction of Pivot trades.

The figure shows clearly the subjects’ search for gains. With random trading, the

frequency of payoff gains for both traders is 3 percent in  and 1 percent in 1

and 2, or less than one fifth of what we observe in , and less than one tenth

in 1 and 2. In all cases, the probability that the data are generated by

random trades is negligible.

But if the trading behavior of the experimental subjects is not random, it is also

true that the fraction of trades consistent with the Pivot algorithm is small: 17

percent in , 26 percent in 1 and 18 percent in 2.29 Which other trades

are observed?

4.4.2 Other trades.

We find that a much larger share of the data can be explained by extending the

Pivot algorithms in one of two directions. First, while the Pivot algorithms select

29The fractions of individual trades associated with strict gains are respectively 41, 32, and 39

percent in the three treatments.
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trades with strict gains in payoffs, in every treatment more than 40 percent of all

trades result in no change in payoff for either trader. Zero-gain trades are trades

involving non-pivotal votes, and thus preserving the status quo outcome. They need

not be irrational: they could be the result of buying votes from allies with weak

preferences, for example, or of buying losing votes, to strengthen one’s favorite side’s

margin of victory. Pivot algorithms can be extended to weakly-improving trades.30

The fraction of observed trades consistent with the model would then increase to

70 percent in  and 1 and 58 percent in 2.31 But our goal here is not

to find support for the model, but to understand whether the zero-gain trades were

intentional, and if so why.

Second, every Pivot trade requires increasing the number of votes held on high-

value proposals while reducing the number of votes held on low-value proposals.

However, not all such trades are Pivot trades: a trade that induces strict payoff

gains must also change the resolution of the proposals concerned. Recall our previous

definition of a voter’s score (at time ) as the product of the subject’s number of votes

and absolute valuation, summed over all proposals:

() =

X
=1

| |

30Pivot trades are a subset of weak Pivot trades, and thus a Pivot stable allocation of votes is

also reachable via weak Pivot trades. It follows that convergence to stability extends to weak Pivot

trades under some constraint on the rules  through which trades are prioritized. For example, a

rule  that executes first trades with strict payoff gains will reproduce the Pivot stable allocations

reachable via strict Pivot algorithms; a rule  that allows infinite back-and-forth trades between

two voters with identical preferences will not lead to convergence.
31And if the model is evaluated in terms of the fraction of weakly-improving indvidual trades,

then the support from the data is very high: 84 percent in , 85 percent in 1, and 79 percent

in 2.
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As noted earlier, the score is a shadow value of the total votes held by a voter,

reflecting the voter’s intensity of preferences and the number of votes held, and

remains unchanged whether the voter wins or loses any proposal. We call score-

improving trades all trades that increase a subject’s score. Trades may be score-

improving but not payoff-improving (and hence Pivot trades) either because the

proposals on which votes are traded continue to be lost or because they were already

won. Such trades could reflect difficulties understanding pivotality, but could also

mirror behavior that is more forward-looking than Pivot algorithms. Myopic gains

are evaluated assuming voting occurred immediately. In fact, in the uncertain and

complex environment of our experiment, subjects may want to accumulate votes on

high value proposals, regardless of their resolution under immediate voting, because

they conjecture that further trades are likely to take place before voting actually

occurs.

Figure 6 shows, for each treatment, the fraction of trades consistent with Pivot

trades (dark blue), weak payoff increases for both traders (light blue), and score

increases, again for both traders (yellow).32

32If evaluated in terms of individual trades, the fractions of score increases are 75 percent for

, 72 percent for 1, and 75 percent for 2. All score increases are strict, because the

experimental matrices do not allow for weak score increases.
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Figure 6. Types of trades.

By construction, Pivot trades are a subset of both of the other two categories,

and thus must explain a smaller fraction of observed trades. What is surprising is

how much smaller. The figure shows that Pivot trades are of the order of one third

of all weakly-payoff-improving trades in treatments  and 2, and about two

fifths in treatment 1. Similar numbers apply to score-improving trades.

The frequency of different types of trades is informative, but what we need to

understand is the intentionality of such trades. As we remarked about Figure 5, Pivot

trades are not very frequent, but they appear intentional: they cannot be explained

by random trading. Is that true of other types of trades?

Figure 7 plots, for the representative case of the  treatment, the observed

fractions of Pivot trades, zero-payoff change trades, and score-increasing-not-Pivot

trades, together with the corresponding fractions under random trading, and the 95

percent confidence interval under the null hypothesis of random trading.
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Figure 7. AB trades by type v/s random.

The figure makes clear that although the fraction of zero-payoff changing trades

is large, we cannot rule out that it is the result of noisy trading: because all non-

pivotal trades have zero effect on payoffs, for any given vote distribution a large share

of feasible trades belongs to this class and thus is chosen under random trading. The

figure does show, however, that this is not true for non-Pivot-score-increasing trades:

the fraction observed in the data is significantly higher than under random trading

(  00001).

It is useful to explore these observations in more detail through a simple statistical

model.

4.4.3 A simple statistical model

The model we present in this subsection is purely statistical, i.e. it aims not at

explaining behavior but at classifying the types of trades, lending some rigor to

the comments suggested by the figures. In line with the data just reported, we
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suppose that executed trades are selected according to four myopic criteria, synthetic

summaries of the rules followed by the pairs of traders: (1) Pivot trades; (2) zero-

payoff changing trades; (3) score-improving trades; (4) some other criterion we ignore,

and such that the trade appears to us fully random. When executing a trade, each

pair of traders follows one of these rules. Each trade can then be written in terms

of the probability of following the four criteria:  for Pivot trading; 0

for zero-payoff changing trades,  for score improving trades, and  for

random trades. Call  the set of all trades feasible at , where a trade is defined

by a pair of traders, a pair of proposals, and the direction of trade. Similarly, call


 the set of all feasible Pivot trades,  0 the set of all feasible zero-payoff trades,

and 
 the set of all feasible score-improving trades. Suppose that we observe a

Pivot trade. The probability of such a trade equals |
 | + | 

 | +
||. Similarly, the probability of a score-improving but not Pivot trade is
given by |

 | + ||. Assuming that different trades are independent,
the likelihood of observing the data set is simply the product of the probabilities of

each trade. The probabilities  , 0, , and  can then be estimated

through maximum likelihood. The only challenge is that the sets of feasible trades,

, 

 , 

0
 , and 


 , all evolve over time, as budget constraints become binding and

the changes in vote allocations alter the payoff effects of different vote exchanges.33

We report our estimates in Table 5, together with the 95 percent confidence

33The unit of analysis is the trade itself, evaluated with respect to the set of feasible trades at .

It is the constantly changing set of feasible trades that determines the classification of the trade.

Although the data were collected over multiple rounds, the changing set , outside the control of

any individual trader, makes the assumption of independence less problematic than in a standard

set-up with individual decision-making and a small set of possible states. It greatly simplifies an

estimation procedure that is computationally quite demanding.
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intervals.34

 1 2

 0.06 [0, 0.14] 0.19 [0.13, 0.25] 0.11 [0.05, 0.17]

0 0.11 [0, 0.23] 0.07 [0, 0.16] 0 [0, 0.10]

 0.41 [0.28, 0.55] 0.34 [0.25, 0.43] 0.39 [0.29, 0.49]

 0.42 [0.27, 0.57] 0.40 [0.29, 0.52] 0.50 [0.35, 0.59]

Table 5. Model parameter estimates with 95% confidence intervals.

The results of the estimation indicates that trade is quite noisy and, as Figure

7 led us to expect, there is essentially no evidence of intentional zero-profit trades

in any of the three treatments (in all treatments the 95 percent confidence interval

for 0 includes 0). There is however a significant probability of Pivot trades in

treatments 1 and 2, and of score-improving trades in all three treatments.

Again as implied by the figures,  and  are not fully collinear and can be

estimated separately.

4.4.4 Score-improving trades

Observing that a rising score can explain a substantial fraction of the experimental

trades does not imply that the increase in score is the final objective pursued by our

subjects. A first reason to be skeptical is the frequency of rejected trades reported

in Section 4.1. Recall that about a third of all accepted bids are rejected by the

bidder. Contrary to payoff changes, score increases do not depend on the identity

34We constructed the confidence intervals by bootstrapping the data and estimating the model’s

parameters 1000 times.
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of the trading partner: if score increases were the goal of the trades, they could be

secured by the bidder and there would be no reason to reject any partner. In all

treatments more than two thirds of the trades rejected by the bidder would have

caused the bidder an increase in score.

A second cause for doubt comes from investigating whether subjects have indeed

exploited all opportunities for score increases when trade comes to an end. We

have defined stability as the absence of any feasible strictly payoff-improving trade.

We can construct the similar concept of score stability, defined as the absence of

any feasible score-improving trade, and enquire whether score stability is a useful

characterization of final vote allocations.35 Figure 8 plots the CDF’s of minimal

steps from score stability in the three treatments (in yellow), together with the CDF

of minimal steps to payoff stability (in blue).

Figure 8. Score and payoff stability. Cumulative distribution functions.

Score stability is a much weaker explanation of final vote allocations than payoff

stability: the fraction of score-stable final vote allocations is 34 percent in , 14

35A score-stable allocation always exists in pairwise trading. Indeed it is this property that leads

to the convergence of the Pivot algoritms to payoff-stable vote allocations.
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percent in 1, and 6 percent in 2; the corresponding numbers for payoff-

stability are 76 percent, 64 percent, and again 64 percent. Not only does the orange

CDF FOSD’s the blue CDF (in  and 1), but the gaps are large.

The takeaway from these numbers is that subjects appear to recognize payoff-

stable vote allocations and tend to stop trading at that point, but they stop trading

long before achieving maximal score improvements. Our conclusion is that subjects

do not pursue score improvements for their own sake. Thus we conjecture that

non-Pivot score-improving trades are unlikely to reflect primarily confusion about

pivotality or payoffs, and more likely to result from some cautionary behavior in

front of uncertainty about future trades.

4.4.5 Are Subjects Farsighted?

Can the conjecture of forward-looking behavior be made more rigorous? The char-

acteristics of votes trading for votes—a dynamic barter model in which others’ trades

affect both the feasibility and the desirability of one’s own trades—make a fully strate-

gic analysis a daunting prospect.36 It is possible however to make some small progress

by borrowing from cooperative games. Again, because of the externalities involved

and because the opportunities for trade depend on the current vote allocation, vote

trading cannot be represented under any of the existing cooperative models of far-

sightedness.37 We can however adopt to our problem, and test on our data, some

36The difficulty is shared by other games with similar structure, for example matching and net-

work formation games. And indeed such games are typically analyzed under myopia or other

strongly restrictive conditions.
37See for example Chwe (1994), Mauleon et al. (2011), Ray and Vohra (2015), Dutta and Vohra

(2015), and the references therein.
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basic concepts from this literature.

To model this formally, we need three definitions:

Definition 4 Given two vote allocations  and  0, a pair of voters  = { } is
said to be effective for (  0) if  0 ∈ V ( 0 is feasible) and  0

 =  for all  6=  .

That is, voters  and  can move the vote allocation from  to  0 by reallocating

votes among themselves only.

Definition 5 A pairwise chain from  to  0 is a collection of vote allocations

 1  2  , with  1 =  and   =  0, and a corresponding collection of effective

pairs 2  such that for all  = 1 − 1 +1 is effective for (   +1).

Finally:

Definition 6 (Harsanyi, 1974) A a collection of vote allocations  1  2  , with

 1 =  and   =  0 is a pairwise farsighted chain if it is a pairwise chain, and, in

addition, (
)  (

0) for all  ∈ +1. If there exists a pairwise farsighted chain

from  to  0, then  0 is said to pairwise farsightedly dominate (PF-dominate)  .

Using these basic concepts, there are several possible ways to define farsightedly

stable vote allocations. The most intuitive is the pairwise parallel of the farsighted

core: it states that an allocation  is pairwise farsightedly stable if there exists no

 0 that PF-dominates  .38 Other definitions are possible, and in general problems

38Note the difference between this definition and the definition we used earlier. Myopic stability

holds if there is no alternative vote allocation that a pair of voters can move to such that the pair

would gain if voting occurred without further trades. Farsighted stability is much more demand-

ing:  0 can PF-dominate  even if trades generate temporary myopic losses, as long as the final

allocation  0 is preferred to the allocation at which each voter trades. What matters is the utility
comparison beween the end point of the chain and the vote allocation at which trading occurs.
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of existence are not trivial.39 Developing a full analysis goes well beyond the scope

of this paper, but our goal is much more limited: farsightedness builds on Harsanyi’s

notion of indirect dominance, defined above. If subjects in our experiment were

farsighted, then their trades should be such that the final vote allocation reached at

the end of the round should be associated with a payoff gain for each trader, relative

to the vote allocation at which the subject traded. Was this the case?

Table 6 reports, for each treatment, the fraction of trades associated with far-

sighted gains for both traders (F-gains, in column 2), with farsighted losses (F-losses,

in column 3), and, for comparison, the fraction of Pivot trades (that is, trades asso-

ciated with myopic gains, in column 4).

F-gains F-losses Pivot

 52 26 174

1 38 118 256

2 63 143 183

Table 6. Percentage of trades yielding farsighted gains and losses, and share of

Pivot trades.

In all treatments, the fraction of trades with farsighted gains is less than 10

percent, and about a third of the fraction of Pivot trades; in the two three-proposal

treatment, it is less than half of the fraction of farsighted losses. On the basis of

39A vote allocation that gives dictatorship power to a single voter is in the fairsghted core and

thus is pairwise farsighted stable, according to this definition. Other plausible definitions, however,

do not guarantee existence in our setting. In addition, none addresses the more interesting question

of whether stability can be reached from the starting vote allocation. For questions of existence, in

environments that differ from ours, see the discussions in the references cited above.
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the these numbers alone, it is hard to put much weight on farsighted domination as

engine of trade.40

The evidence of score-improving trades suggests that subjects gave some thought

to the possible path of future trades, but standard notions of farsightedness adapted

from recent approaches in cooperative game theory do not help explain the experi-

mental data.

4.5 Outcomes

Which outcomes did the experimental subjects reach? Figure 9 plots the frequency

of different outcomes observed over the full data, or restricting attention to stable

outcomes only.

40Note that the test here is weak: farsighted dominance relations are based on on farsighted

chains, the logic of which requires that all trades on a chain produce farsighted payoff gains to the

trading pair.
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Figure 9. Frequency of outcomes. All data and stable allocations only.

Outcomes are ordered from lowest to highest aggregate payoff (thus the order is

different in 1 and 2). A star indicates the Condorcet winner, and a dot

the Pivot stable outcome. The Condorcet winner always corresponds to the no-trade

outcome.41

The figure shows two immediate regularities. First, in all treatments, the Con-

dorcet winner is the most frequent outcome, whether we consider all outcomes, or

stable outcomes only. Second, in all treatments, the frequency of outcomes corre-

lates positively and significantly with aggregate payoffs. However, because both the

41This is a well-known result when the initial allocation of votes grants to each voter one vote

per proposal, as in our experiment. See Park (1967) and Kadane (1972).
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Condorcet winner and aggregate payoffs also correlate perfectly with persistence of

pre-trade outcomes42, both results may reflect the inertia built into the market by

the frequent zero-gain trades.

In terms of Pivot predictions, we see a higher frequency of the Condorcet winner,

relative to the second most frequent outcome, in treatments  and 2, where

the Condorcet winner is Pivot-stable. And among stable outcomes we see a small

spike in the frequency of outcome {} in treatment 1 where it is Pivot-
stable, relatively to the outcome’s low payoff-rank. On the whole, however, the

clean predictions on outcomes derived from the Pivot algorithm are not evident in

the data. Since final vote allocations, on the contrary, are in line with theory, the

divergence of outcomes from predictions is surprising: outcomes are the automatic

result of vote allocations. The divergence highlights the high sensitivity of outcomes

to noise—contrary to good markets, one subject’s missed trading opportunity (and

thus a small deviation of final vote allocations from the theory) affects the final result

of voting for all.

As shown by Figure 10 , the outcomes we observe are consistent with the trades’

characteristics highlighted by the statistical model. The figure reports the frequency

of different outcomes in the data (considering here all final vote allocations, whether

stable or unstable) and, in columns denoted by diagonal stripes, in 5,000 trading

simulations in which, given the vote allocation, a trade is selected randomly, following

the estimated probabilities in Table 5. As in all simulations in the paper, at each time

interval the probability of a trade occurring is calculated so as to replicate, on average,

42In our matrices, the fewer the changes in the resolution of the different issues, the higher the

aggregate payoff.
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the observed number of trades in the treatment. The model simulations match

the ordinal ranks of the different outcomes’ frequencies, although they consistently

overestimate the frequency of the Condorcet winner. Such overestimation, however,

is mostly mechanical: the result of the relatively high probability of random trades,

and the likelihood that such random trades leave outcomes unchanged. Because

zero-gain trades result in non-minimal majority vote allocations, they make Pivot-

trades impossible, and thus bias the simulations towards pre-trade outcomes and the

Condorcet winner.

Figure 10: Simulated outcomes v/s data.
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5 Conclusions

This paper presents the results of a laboratory experiment designed to explore the

theoretical implications of a dynamic model of vote trading. The theoretical approach

has two essential features: (1) a notion of stability; and (2) a rational vote trading

process. Stable vote allocations are those for which there are no strictly payoff-

improving vote trades for any pair of voters. The trading process defines the possible

sequences of payoff-improving trades that converge to a stable vote allocation.

The experiment delivers four main findings. First, the stability concept is useful

in organizing the experimental data. Overall, two-thirds of all final vote allocations

in the experiment are stable, and more than eighty percent are at most one trade

away from stability. Second, final vote allocations are in line with the theory: across

all treatments, each subject’s vote allocation at the end of the round, averaged over

rounds, always changes in the direction predicted by the theory: increasing, relative

to the initial allocation, when the theory predicts that the subject will be a net buyer

of votes, and decreasing when the theory predicts net selling.

However, and this is our third finding, the final proposal outcomes show a clear

bias towards the pre-trade outcome. In vote trading environments, there is great

scope for path dependence, and a single deviation from predicted trading behavior

can have large impacts on proposal outcomes, because subsequent trades are easily

triggered (or inhibited) by the current trade. In particular, trades that increase

the size of the winning majority make pivotal trades impossible and consolidate the

pre-trade outcome.

The analysis of trade-by-trade data sheds light on the source the such devia-
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tions. We classify trades though a simple statistical model and conclude—our forth

finding—that when noise is accounted for most trades are score-improving, but not

necessarily payoff-improving—the trades that are posited by the theoretical trading

process. Score-improving trades are vote exchanges in which each voter trades a

vote on a less important issue in exchange for a vote on a more important issue,

but does not necessarily benefit from the trade (either because the outcome does

not change, or because the directions of preferences are such that one voter suffers

a loss). Because such trades coexist with the subjects’ ability to recognize stable

vote allocations—i.e. to stop trading in the absence of further opportunities for pay-

off increases, we conjecture that they may be precautionary more than irrational,

suggesting the possibility of some farsighted behavior. This said, rational farsighted

trading behavior is unambiguously rejected by our data: on average, a trade is twice

as likely to leave the traders worse off in the final outcome as it is to make them

better off.

This study only scratches the surface of possibilities for laboratory analyses of

vote trading and logrolling. There are many interesting environments that are not

represented by the three studied in the paper. First, a Condorcet winner exists for all

three environments in this study, but we know that more generally Condorcet winners

may not exist. It would be interesting to explore such preference configurations and

study whether the inertia towards pre-trade outcomes we observe in our data remains

true in the absence of a Condorcet winner. Second, the experiment studies pairwise

trading, but it would also be interesting to explore more complex coalitional trades.

The pairwise vote trading model extends quite naturally to coalitional vote trading,
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although designing a user friendly trading interface would be a major challenge.

Related to this point, there are alternative ways to organize the market. For example,

one could allow communication to take place either concurrently with or prior to the

actual trading protocol. This might make it easier for voters to identify beneficial

trading partners. In the current trading scheme, voters who offer a trade might

have to reject a trading partner, which leads to delays and leaves room for accidental

trades. Other extensions of the trading process would include allowing package trades

or allowing voters to target their offers to specific other members.

The experimental findings are also suggestive of useful extensions of the theoreti-

cal framework. The evidence we find for vote hoarding, whereby voters acquire extra

non-pivotal votes on high-salience issues, is indicative of precautionary incentives to

trade for votes, so as to guarantee passage or failure of those issues. Understand-

ing such precautionary motives requires allowing for risk aversion and modeling the

strategic uncertainty faced by vote traders - uncertainty about trades that future

voters might engage in. As presently formulated, the model of vote trading operates

only on the ordinal preferences of voters over the profile of final outcomes. With

uncertainty, preferences would be defined on the space of lotteries over outcomes

and would require a somewhat different theoretical approach.
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 APPENDIX
SAMPLE EXPERIMENT INSTRUCTIONS

Make yourself comfortable, and then please turn o¤ phones and don�t talk or

use the computer. Thank you for agreeing to participate in this decision making

experiment. You will be paid for your participation in cash, at the end of the

experiment. Di¤erent participants may earn di¤erent amounts. What you earn

depends partly on your decisions and partly on the decisions of others. If you have

any questions during the instructions, raise your hand and your question will be

answered. If you have any questions after the experiment has begun, raise your hand

and an experimenter will come and assist you.

The experiment today is a committee voting experiment, where you will have an

opportunity to trade votes before voting on an outcome. The experiment will be in

three parts. At the end of the experiment you will be paid the sum of what you

have earned in all three parts of the experiment, plus your promised show-up fee of

10 dollars. Everyone will be paid in private and you are under no obligation to tell

others how much you earned. Your earnings during the experiment are denominated

in POINTS. For this experiment every 100 POINTS earns you 6 DOLLARS.

Here are the instructions for Part 1.

You will be randomly assigned to one of 3 committees, each composed of 5 mem-

bers. Each committee is completely independent of the others, and the decision

taken in one committee has no e¤ect on the others. The committee will vote using

majority rule to decide on 2 di¤erent motions, denoted A and B. Each motion can
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either pass or fail depending on how the committee votes. There will be a separate

vote on each motion. The computer will assign you a committee member number

(1, 2, 3, 4, or 5). Part 1 consists of 3 rounds.

You will be told, for each motion, whether you prefer it to pass or to fail. The

computer will assign you (and each other member) a value for each motion which

will be a number between 1 and 100. You will earn your value for a motion if you

prefer that motion to pass and it passes, or if you prefer it to fail and it fails. This

is your only source of earnings. Your earnings for the round are equal to the sum of

your earnings over the two motions.

Each committee member starts a round with 1 vote to cast on each motion. Then

there will be a 2 minute trading period, during which you and the other members

of your committee will have an opportunity to trade votes with each other. For

example, you may wish to trade your A vote in exchange for some other member�s

B vote. We will describe exactly how to do this shortly.

After the trading period ends, you will proceed to the voting stage. Once everyone

has voted, you will be told what the �nal votes were in your committee and how much

you earned in that round. This will complete the �rst round. The remaining 2 rounds

in Part 1 follow the same rules. Each committee member starts the round with a

single vote on each motion. Your committee member number, preferences for each

motion (pass or fail), your value for each motion, and the preferences and values of

the other four members of your committee all stay the same for all 3 rounds of part

1 of the experiment.

Your earnings for part 1 are the sum of your earnings in all 3 rounds. After round
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3 ends, I will read you instructions for part 2 of the experiment.

We now describe in detail how you and the other members of your committee

can trade votes. When we begin a round, you will see a screen like this, although

the exact numbers may be di¤erent. [Display Screen 1] On the right of the screen is

an Information Table that contains a lot of information, so please listen carefully. It

displays each member�s preference for each motion (pass or fail), value, and number

of votes. If the member prefers the motion to fail, then the value is written in a

blue color. If the member prefers the motion to pass, then the value is written in an

orange color. You can simply think of there being two sides - the orange side and

the blue side - on each motion. The number of votes held by each member on each

motion is in parentheses. Because no trading has occurred yet, each member holds

exactly one vote on each motion.

Your own row is speci�cally labeled and the label is highlighted in gray. The last

row in the table is labeled "outcome". This row tells you, for each motion, what the

total vote would be if voting took place now, by showing the column sum of votes

on each motion. The number of votes for is given �rst, in orange, and the number

of votes against is given second, in blue. If the votes in favor of a motion exceed

the votes against, then all voters who prefer the motion to pass will earn their value

for that motion, and all voters who prefer the motion to fail will earn zero for that

motion. Similarly, if the votes in favor of a motion failing exceed the votes in favor

of it passing, then all voters who prefer the motion to fail will earn their value for

that motion, and all voters who prefer the motion to pass will earn zero for that

motion. There is a check mark next to your value if the outcome of that motion is
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the outcome you prefer. This means that you earn your value for that motion. In

this example, if there were no votes traded at all, then on motion A, there are 2 votes

held by members who prefer A to pass and 3 held by members who prefer A to fail,

so motion A fails. On motion B, there are 3 votes held by members who prefer B to

pass and 2 held by members who prefer B to fail, so motion B passes. Since ID 1

(You) prefers both motions to pass, he earns his value for motion B but earns 0 for

motion A.

To the left of the table, in grey, is the trading window. At any time during the

trading period, any committee member may post a trade o¤er by requesting 1 vote

on one motion in exchange for 1 vote on some other motion. Suppose the participant

on the slide in front of the room wanted to post a trade requesting one A vote in

exchange for one B vote. This is done by entering a 1 in the A box under "Requests"

and a 1 in the B box under "O¤ers". [Screen 2]. You can only trade 1 vote for 1

vote; you can neither request nor o¤er multiple votes.

After you have entered this trade request and clicked the "submit trade o¤er"

button, the trade is posted in the trading panel for everyone in your committee to

see. [SCREEN 3] If another committee member wants to accept your trade request,

they may click on it to highlight it, and then click on the "accept selected o¤er"

button.[SCREEN 4] You now have 10 seconds to either con�rm or reject the accepted

trade. A message will pop-up on your screen. [SCREEN 5]. The message tells you

what the outcome of the vote would be if you either accept or reject the trade and

voting took place without any further trade. If you reject the trade or do nothing

for 10 seconds, the trade does not occur. The committee member who had accepted
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your o¤er is informed that you declined to con�rm the trade.[SCREEN 6]. Your

o¤er is re-posted in the trading window, and some other voter can accept it. If you

con�rm the trade, then the voter who accepted the o¤er now holds 0 A votes and

2 B votes, you now hold 2 A votes and 0 B votes, and the Information Table is

updated accordingly. The new Information Table is displayed for 10 seconds on a

popup screen for everyone in your group to see. [SCREEN 7]

If you have a standing o¤er listed in the trading window, you may cancel it by

�rst clicking on it and then clicking the "cancel selected o¤er" button.[SCREEN 8]

The trading period continues for 2 minutes. The timer at the top tells you how

much time remains in the trading period. The clock is frozen when the Information

Table is shown after a trade, with the new vote holdings. If a trade occurs within

10 seconds of the end of the trading period, the trading period is automatically

lengthened by 10 more seconds.

You are free to post trade requests at any time, but you are not allowed to o¤er

to trade away a vote on a motion if you currently hold 0 votes for that motion or

already have an o¤er posted on the trading window that would result in holding 0

votes if accepted. In that case you would �rst have to cancel your existing posted

o¤er. Also remember that you can only trade one vote for one motion in exchange

for one vote for another motion. If you try to do a trade that is not allowed, you

will either receive an error message, or the action buttons will become gray and be

deactivated, preventing you from proceeding with that trade.

When the trading period for the round is over, we proceed to the voting stage.

Your screen will now look something like this: [SCREEN 9]. In this stage you do not
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really have any choice. You are simply asked to click a button to cast all the votes

you hold at the end of trading. The computer will automatically cast your votes

on each motion according to the preferences you were assigned. For example, if you

prefer motion B to fail and you hold two B votes after the trading period, those two

votes will be cast automatically against motion B. Please cast all your votes without

delay by clicking on the vote button.

After you and the other members of the committee have voted, the results are

displayed and summarized. [SCREEN 10]

As the experiment proceeds, at the bottom of each screen you will see a history

table, summarizing the results of the previous rounds [SCREEN 11. Go over the

di¤erent columns] If you switch to tab view, each round will be shown separately].

We then proceed to the next round, where you again start out with one vote on

each motion and the rules are the same as in the �rst round. Remember that your

assigned committee number, preferences for motions, values for motions, and those

of the other members of your committee all stay the same for all 3 rounds of part 1

of the experiment. After the �rst 3 rounds are completed, we will read instructions

for the second part of the experiment.

To give you some experience with the trading screen, we will conduct two practice

rounds. The rules will be the same as they will be in the paid rounds, but the values

and preference assignments, for or against a motion, are not the same as they will

be in the paid rounds. You are not paid for the practice rounds, so they have no

e¤ect on your �nal earnings. The only purpose of the practice rounds is to help you

become familiar with the computer interface and the trading rules.
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This summary slide [SCREEN 12: Summary slide] will remain up during the

experiment to remind you of the rules on trading and on time.

Are there any questions before we proceed to the �rst practice round? [START

SERVER]

Please click on the icon marked Multistage Client on your desktop. Then enter

the number of your carrel (on the right side of the carrel), click enter, and then wait.

Remember that you are not allowed to use the computer for any other purposes while

waiting during the experiment (email, browsing, etc.).

[CONNECT EVERYONE AND START]

Please complete the practice rounds on your own. Feel free to raise your hand if

you have a question.

[WAIT FOR SUBJECTS TO COMPLETE PRACTICE ROUNDS]

The practice rounds are now over. Remember, you will not be paid the earnings

from the practice rounds.

If you have any questions from now on, raise your hand, and an experimenter

will come and assist you. We will now begin the paid rounds.

(Play 3 real rounds for Part 1) [After last ROUND, read:]

We will now proceed to Part 2. The rules for part 2 are the same as for part

1, but there are now 3 motions for your group to vote on. You can only trade one

vote on one motion for one vote on another motion. The trading period will last

3 minutes. As before, 10 seconds will be added to the clock if a trade takes place

within 10 seconds of the time limit.

The values and pass/fail preferences will be di¤erent from part 1, and your com-
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mittee number as well as the composition of your committee may change. However,

both the preferences and the composition of the committee will remain the same for

all of Part 2. Part 2 will last for 5 rounds. At the end of the 5 rounds, we will stop

and read the instructions for Part III.

Are there any questions before we begin?

(Play 5 real rounds for part 2) [After last ROUND, read:]

We will now proceed to Part 3. Part 3 is identical to Part 2, but the values

and pass/fail preferences may be di¤erent. Your committee number as well as the

composition of your committee may also change. Part 3 will again last for 5 rounds

and again the trading period is 3 minutes (plus 10 seconds if a trade is concluded

within 10 seconds of the time limit).

This is the end of the experiment. You should now see a popup window, which

displays your total earnings in the experiment. Please record this and your Computer

ID on your payment receipt sheet, rounding up to the nearest dollar. After you are

done, please, click ok to close the popup window. Do not close any other windows on

your computer and do not use your computer for anything else. Also enter 10 dollars

on the show-up fee row. Add the two numbers and enter the sum as the total.

[Write output]

We will pay each of you in private in the next room in the order of your computer

numbers. Remember you are under no obligation to reveal your earnings to the other

players. Please do not use the computer; be patient, and remain seated until we call

you to be paid. Do not converse with the other participants or use your cell phone.

Thank you for your cooperation.
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Figure 1A. Screenshots for a subject posting a bid (on the left), and for a subject

accepting a posted bid (on the right).

Figure 2A. Con�rmation request for the bidder.

9


