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1 Introduction

Information provision and bilateral contracting are ubiquitous in today’s economy. For

example, contract research organizations (CROs) provide information to downstream firms

(called sponsors), which are typically pharmaceutical or biotechnology companies. CROs do

so mainly by conducting clinical trials, but also by utilizing their internal healthcare data

in combination with data science. By providing this information, CROs are an integral part

of the pharmaceutical and biotechnology industry. The global CRO market was valued at

almost $35 billion in 2018 and is projected to reach about $55 billion in 2025. (Grand View

Research, 2019)

Sponsors, such as pharmaceutical companies, engage with CROs to outsource part of the

drug development. If an agreement is reached, the contract specifies which trials the CRO

will conduct for the given sponsor, but not which trials are performed for other sponsors.

This is a typical example of bilateral contracting: the contract is contingent only on events

that can be verified by both of the involved parties. The largest CROs generate most of

the revenue of the industry, so it is common for sponsors of the same CRO to be direct

competitors. For example, Pfizer and Novartis, are clients of the same CRO, even as they

seek to develop similar products. (Ibid.)

Leaving aside details of specific industries, three considerations are crucial for any infor-

mation provision organization determining what information to provide to clients. First, the

provider effectively commits to deliver specific information to a given client in a contract. For

example, a contract will specify exactly which medical tests will be conducted. Second, the

bilateral nature of contracting excludes commitment to a grand information structure shared

with all clients. That is, a contract will only state which tests will be conducted for a spe-

cific sponsor and will not state which tests will be performed for other sponsors.1 Third, the

receivers’ use of the information is determined within an interactive setting. Therefore, a re-

ceiver faces strategic uncertainty and needs to reason about what information other receivers

get. Crucially, the details of this reasoning process are usually unknown to the information

provider. For example, the decision for one sponsor to conduct further research on a drug

1Contracts do not specify such details for several reasons. First, CROs have reputational concerns. If
CROs disclose which trials they were conducting for a sponsor’s competitor, the CRO might reveal the com-
petitor’s private information, undermining the CRO’s relationship with the competitor. Second, a contract
that is contingent on every trial conducted for every sponsor is complex and lacks enforceability. These
reasons are broadly applicable and do not only affect CROs. In particular, the second point was raised by
McAfee and Schwartz (1994) regarding any supplier that deals with multiple downstream firms.
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depends on whether the sponsor believes its competitors are also developing a competing

drug and, if so, what information the sponsor believes its competitors are receiving.

In this paper, I provide a general, yet tractable, method for examining how an information

provider determines which information to supply bilaterally to multiple receivers, taking

into consideration each of the three aspects outlines above. In particular, motivated by the

severity of strategic uncertainty, I take an adversarial approach which ensures robustness to

details of receivers’ strategic reasoning and is tractable. That is, the information provided

to one receiver is required to be optimal for the designer no matter how that receiver thinks

about the information other receivers may get. The adversarial approach adopted here

ensures that the supplied information is optimal even if nature “chooses” the receiver’s

reasoning that is least advantageous to the provider.

The contributions of this paper are threefold. The first two are general methodological

contributions, but they provide the key tools for the analysis of bilateral information design,

which is the third contribution. I will now discuss each contribution in more detail.

First, I formalize the issue of robustness to the receivers’ reasoning. From a CRO’s point

of view, I provide a precise answer to the following question: given that a pharmaceutical

sponsor gets some information about their drug, how does the pharmaceutical sponsor de-

cide whether to bring the drug to the market or, for example, drop the project altogether?

As noted above, sponsors face strategic uncertainty because they do not know what infor-

mation their competitors have access to. This section’s primary contribution is to provide

a solution concept that captures this kind of uncertainty. The key insight is that the rea-

soning about the competitors’ information can be sidestepped: to form a best-reply the

competitors’ information is not relevant, but only the beliefs about the state of nature and

the competitor’s action matter. For this, a characterization of “rational” competitor’s action

for any information structure is needed: all belief-free rationalizable actions. Furthermore, I

demonstrate that this solution concept depends only upon players’ first-order beliefs about

the payoff state. For a CRO, this means that the solution concept depends only on the

information a sponsor receives about their own drug, but not on how a sponsor thinks about

the information its competitors have.

Second, I contribute to the foundations of information design with multiple receivers.

Mathevet et al. (forthcoming, p.2) describe information design as “an exercise in belief

manipulation;” therefore, it is crucial to characterize which beliefs can be induced by a

designer. If there is only one receiver, it is well known that there is only one restriction on
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the distribution of beliefs about the state of nature. The average belief under this distribution

is equal to the prior—a requirement deemed Bayes plausibility by Kamenica and Gentzkow

(2011). This paper extends this characterization to multiple receivers. In particular, I

explicitly characterize bounds on the dependence of beliefs if there are two receivers. These

bounds are reminiscent of, but usually tighter than, the Fréchet-Hoeffding bounds known

from copulas in probability theory and statistics.2 Furthermore, these bounds are novel not

only for information-design and the economics literature more generally, but—to the best of

my knowledge—to probability theory as well.

Third, I combine the two preceding contributions to study the problem of adversarial

bilateral information design. Here, the main result is a representation theorem that signifi-

cantly simplifies the problem of finding the optimal information structure for the environment

under consideration. Just as the optimal information for a single receiver is easy to charac-

terize if the designer’s utility function is either concave or convex, the representation theorem

provided in this paper shows that, with multiple receivers, submodular and supermodular

utility functions play a special role.3 I illustrate this in a stylized version of the problem

faced by a CRO.

The remainder of the paper is organized as follows: the next subsections elaborate on

related literature and provide the setting for the stylized model of a CRO, which will be used

as a running example throughout the paper. Section 2 develops the solution concept.4 Sec-

tion 3 characterizes the possible distributions of beliefs and discusses the belief-dependence

bounds. The main representation theorem is stated in Section 4. In Section 5, I discuss some

extensions and highlight issues related to interpretations of the model. Section 6 concludes.

All proofs are in the appendices.

1.1 Related Literature

This paper is related to several strands of the literature: a solution concept capturing a

notion of robustness, general information design, and adversarial and bilateral design. In

this section, I discuss these three strands in detail.

2A standard reference for copulas including the Fréchet-Hoeffding bounds is Nelsen (2006).
3Convexity and concavity are still relevant in the case of multiple receivers, but the modularity of the

utility function highlights a different channel. It is directly related to the supermodular stochastic ordering.
See Meyer and Strulovici (2015).

4A foundation of the solution concept is given in Appendix A.
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1.1.1 Robust Solution Concepts

Harsanyi’s (1968) theory of games with incomplete information is partially motivated by the

possibility that players’ information structures may not be common knowledge. The solu-

tion concept I develop in this paper is directly inspired by the literature on informational

robustness which later formalized Harsanyi’s insights about robustness. Early pioneers in

this area include Aumann (1987), Brandenburger and Dekel (1987), and Forges (1993, 2006).

Bergemann and Morris (2013, 2016) recently exploited the full power of informational ro-

bustness to provide robust predictions in economic environments with uncertainty. Within

this subset of the literature, my work is closest to that of Bergemann and Morris (2017). My

Proposition 4 is directly inspired by their Section 4.5, though the actual solution concept

used in this paper is different in nature. Their paper is concerned with robustness over all

information structures from the perspective of an outside observer,5 while this paper instead

focuses on the notion of robustness from a player’s perspective. This allows sharper predic-

tions because a player considers parts of the information structure that an outside observer

does not know. In this vein, a solution concept similar to mine is used by Börgers and Li

(2019) to define strategic simplicity. Like the solution concept in this paper, Börgers and Li’s

solution concept depends only on first-order beliefs. However, these authors do not assume

common belief in rationality and also do not provide a foundation for their solution concept.

Other papers dealing with related ideas about robustness include Battigalli and Sinis-

calchi (2003), Dekel et al. (2007), Liu (2015), Tang (2015), and Germano and Zuazo-Garin

(2017). As discussed in Subsection 5.3, my solution concept can be given an epistemic foun-

dation by simply modifying the arguments introduced by Battigalli and Siniscalchi (2007)

and developed further in Battigalli et al. (2011). In each of these papers players have sym-

metric knowledge about the information structure. Either the full information structure is

commonly known, or no (common) knowledge about the information structure is assumed

at all. In my case, there is no assumption about common knowledge of the information

structure, but each player knows her own information structure.

5Some of these ideas are fruitfully applied to the theory of robust mechanism design as initiated by
Bergemann and Morris (2005, 2009, 2011). Relatedly, Artemov et al. (2013) study robust mechanism design
when the designer knows the (set of) first-order beliefs. In contrast to my appraoch, the first-order beliefs
are common knowledge among the players in their setting.
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1.1.2 Information Design

The literature on information design originated from contributions of Calzolari and Pavan

(2006), Bergemann and Pesendorfer (2007), Brocas and Carrillo (2007), and Eső and Szentes

(2007). Since then the literature has grown rapdily. The interested reader is referred to two

recent reviews by Bergemann and Morris (2019) and Kamenica (2019). I highlight papers

here that are more closely related to this one, which provide general methods to analyze

information design as this paper does. The seminal paper pertaining to a single receiver

is Kamenica and Gentzkow (2011) which illustrates the usefulness of the concavification

approach for information design. Regarding multiple receivers, Taneva (2019) uses a Myer-

sonian approach, exploiting a version of the revelation principle, which can be interpreted

as a akin to partial implementation known from mechanism design.

The closest work on information design is the upcoming article by Mathevet et al. (forth-

coming). Like Taneva (2019), Mathevet et al. consider information design in cases when

the designer has the power to commit to the provision of a grand information structure.

However, for a given grand information structure, they allow for the case of adversarial equi-

librium selection. Thus, their approach is reminiscent of full implementation in mechanism

design. They show that attaining robustness to equilibrium selection requires constructing

the full hierarchy of beliefs for each receiver.6 My approach is complementary to theirs. In

my setting, strategic uncertainty arises from the bilateral contracting environment which

excludes commitment to a grand information structure. Therefore, in my case the designer

is not only concerned about equilibrium selection, but also about strategic uncertainty. My

proposed solution concept reflects this more general robustness concern. In addition, I show

that my robust solution concept depends only on induced first-order beliefs. Therefore, it is

not necessary to induce a full hierarchy of beliefs, but it suffices to look at first-order beliefs

only. Thus, the approach I propose is closer in spirit to Kamenica and Gentzkow (2011):

since they consider a single receiver, by definition only first-order beliefs matter. However, in

the present paper there are multiple receivers and therefore a new characterization in terms

of distributions of first-order beliefs is needed. This is the main result of Section 3.

6Similar to the full implementation literature the revelation does not apply in Mathevet et al.’s (forth-
coming) setting either.
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1.1.3 Adversarial and Bilateral Design

A few recent studies employ an adversarial approach to information design:7 Carroll (2016),

Goldstein and Huang (2016), Inostroza and Pavan (2018), and Hoshino (2019).8 All apply

the adversarial selection for a solution concept that relies on a grand information structure.

In this paper the adversarial selection is more severe because of the additional robustness

coming from the bilateral contracting environment. Bilateral information design with or

without adversarial robustness is, to the best of my knowledge, new to this paper.

In a recent review, Carroll (2019) discusses adversarial selection aspects in mechanism

design. Bilateral contracting has a long history in economics and has been studied exten-

sively in industrial organization.9 The relevant paper from this body of literature is Dequiedt

and Martimort (2015). Dequiedt and Martimort examine bilateral mechanism design when

the designer cannot commit to a grand mechanism. My paper shares the motivation for

analyzing a setting with limited commitment with Dequiedt and Martimort. They overcome

the limited commitment by imposing appropriate ex-post incentive constraints on side of

the principal. In equilibrium, these ex-post constraints determine all beliefs of the agents

including how they think about other agents’ contracts. My approach resolves the limited-

commitment issue in a different way. In my model, the designer does not assume that all

beliefs are in equilibrium and therefore needs consider the reasoning of the receivers. By tak-

ing an adversarial approach, the designer circumvents these issues and seeks an information

structure that is robust to the reasoning of the receivers.10

1.2 Leading Example: A Stylized CRO Model11

Consider a situation where a CRO conducts medical trials for two pharmaceutical companies

called Pfizr (P ) and Novarty (N).12 Both work on developing similar breast cancer drugs.

For simplicity, suppose that each drug could be either effective, or ineffective, and one

drug is effective if and only if the other drug is effective. Thus, there are two states of

nature, i.e. Θ = {0, 1} representing an ineffective drug and an effective drug, respectively.

7That is, in addition to Mathevet et al. (forthcoming) as mentioned above.
8I thank Nageeb Ali for making me aware of Hoshino’s paper.
9The interested reader is referred to two handbook chapters: Bresnahan and Levin (2012) and Segal and

Whinston (2012).
10In this sense, the literature on mechanism design without or with limited commitment is also related.
11For readers familiar with information design, this section can be skipped. However, in the main analysis

I will refer back to this example to illustrate some of the results.
12These companies and names are purely fictional.
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Furthermore, there are two possible actions the pharmaceutical companies can take: either

conduct further research (R), or drop the project (D). Profits (i.e. payoffs) are such that,

if firms knew the effectiveness of the drug, they would like to conduct research if and only

if the drug is actually effective. However, if a pharmaceutical company decides to conduct

further research, its payoff will be lower if the competitor also conducts further research.

The reduction in payoffs could be caused by lower expected profits in the future, because

the competitor’s drug is likely to be on the market. The following payoff tables represent

such a situation.

0 2 0 0

1 1 2 0

0
−1

0 0

−2 −2 −1 0

Novarty
R D

Novarty
R D

Pfizr
R

D

θ = 1 (effective) θ = 0 (ineffective)

For any belief (about the state of nature) that puts probability greater than 2/3 on the

state in which the drug is effective (θ = 1),13 R is the dominant action. Similarly, for

any belief less than 1/3, the dominant action becomes D. For intermediate beliefs about θ,

the best action depends beliefs about competitors’ actions. Formal analysis in this paper

shows that these predictions are exactly those which are robust to the reasoning about the

information of the competitor. For example, if Pfizr assigns probability close to one to

θ = 1, then it does not matter what information Novarty gets and Pfizr should conduct

further research. However, if the probability of θ = 1 is 1/2, Novarty’s information matters.

To see this, consider the Novarty medical trials, conducted by a CRO, that reveal with high

probability that the drug is ineffective. In such a case, Novarty will drop the project with

high probability too. This implies that Pfizr should conduct more research (given their belief

about θ). On the other hand, if the medical trials for Novarty are such that there is a high

likelihood of revealing that the drug is effective, then Novarty is likely conducting research

and Pfizr should drop the project (again given their belief about θ). Thus, Pfizrs beliefs

about Novartys information matter. Therefore, if robustness is a concern, the CRO should

take both actions, R and D, into account.

By providing information to the pharmaceutical companies, the CRO can effectively influ-

ence the actions taken by the pharmaceutical companies. For example, a natural assumption

13Henceforth, I will always associate belief with the probability of the state being θ = 1.
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is that the CRO prefers further research rather than dropping the project, because of the

likelihood that further research will include subsequent trials for the CRO to conduct. The

goal of this paper is to provide a tractable method for solving for the optimal provision of

information in such settings. In the remainder of this subsection, I highlight some specific

information structures that are part of the CRO’s choice set.

Suppose that both pharmaceutical companies have a prior belief that assigns probability

1/3 to the drugs being effective. A trivial choice of the CRO would be to provide no infor-

mation. In this case and similar to the explanation above, {R,D} is the robust prediction

for both receivers. Thus, under adversarial selection, the CRO expects both companies to

drop the project, which would be the worst possible outcome from the CRO’s perspective.

Another possibility would be for the CRO to provide full information to each pharmaceutical

company. In this case, each company will conduct further research if and only if their drug

is effective. Overall, there will be further research (by both firms) with probability equal

to the prior, i.e. slightly above 33%. However, the CRO could increase the probability of

further research by providing information that does not fully reveal the effectiveness of the

drugs.

For illustrative purposes, consider first a case where the CRO can actually commit to a

grand information structure and therefore does not have to worry about what conjectures the

receivers form about their competitor.14 This problem can be analyzed with tools provided

by Bergemann and Morris (2016) and Taneva (2019) and the solution provides an upper

bound for the CRO under the bilateral-contracting assumptions of interest.15 Consider

the following information structure, where both companies get one of two possible reports:

either the trial reveals that the drug is ineffective (bad news, b) or the trial suggests the

drug is effective but without fully proving the drugs efficacy (good news, g). The reports

are generated according to the distribution shown in Table 1.16

For example, when getting the good news, Pfizr will update its belief to get a posterior

of 1/2, but since the designer committed to the grand information structure Pfizr knows

even more: Novarty will get bad news with probability 1/3, which is higher than the ex-

14With commitment to a grand information structure, Pfizr would exactly know what information Novarty
gets. That is, not the exact realization (i.e. the result of the trial), but the information structure overall
(i.e. which trials will be conducted).

15Applying the more robust method akin to full implementation of Mathevet et al. (forthcoming) yields
the same result for this example.

16The information structure in Table 1 is optimal for a designer with symmetric, increasing, and submod-
ular preferences, i.e. v(R,D) = v(D,R), v(R, ·) ≥ v(D, ·), and v(R,R) + v(D,D) ≤ v(D,R) + v(R,D).
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Table 1: Optimal Information with Full Commitment.

Report for Novarty

θ = 1 θ = 0

b g b g

Report for Pfizr
b 0 0 0 1/2

g 0 1 1/2 0

ante probability of bad news, equal to 1/6. Furthermore, Pfizr also knows how the state

describing the effectiveness of the drugs correlates with the Novarty reports. This reasoning

about Novarty’s reports is crucial because under these assumptions, a unique Bayes-Nash

equilibrium exists,17 where the receivers conduct further research if and only if they receive

good news. Thus, with full commitment to a grand information structure the designer can

ensure that at least one company will conduct further research with certainty, while both

will conduct research with probability equal to the prior belief of 1/3.

However, the CRO cannot actually commit to the grand information structure. Due to

the bilateral-contracting assumption, the CRO can only commit to the marginal distributions

and the receivers have to reason about the competitors’ information. For example, if the CRO

adopts the above information structure, Pfizr could nevertheless conjecture that Novarty does

not obtain any useful information from the CRO. For the information structure based on

this conjecture, a Bayes-Nash equilibrium exists wherein Pfizr will drop the project given

either report.18 Novarty could reason similarly. If the CRO is concerned about adversarial

selection, then the CRO’s worst-case scenario results in both pharmaceutical companies

dropping the project. The question then becomes, is there a way to get these companies to

conduct further research given that only bilateral contracting is possible and the designer is

concerned about adversarial selection?19

A positive answer is provided by the robust information structure described in Table 2.20

This information structure reduces the overall probability of the good report from 2/3 to

1/2. Now, after receiving the good report the posterior is 2/3, which makes R a dominant

17The equilibrium action profile is also the unique interim-correlated rationalizable profile.
18In this conjectured equilibrium, Novarty would conduct research, but this does not matter for the rest

of the analysis.
19The arguments in this paragraph relate to a foundation I give in Appendix A for the solution concept

developed in Section 2.
20As before, this information structure is optimal for the same preferences as stated in Footnote 16.
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Table 2: Optimal Information for Adversarial Bilateral design.

Report for Novarty

θ = 1 θ = 0

b g b g

Report for Pfizr
b 0 0 1/2 1/4

g 0 1 1/4 0

action. Thus, each report now has a unique dominant action21 and the conjecture about the

competitor’s information no longer plays a role. The optimal information structure exactly

balances the trade-off between inducing posteriors that are robust to receivers’ conjecture

about the information of their competitor and making further research as likely as possible.

However, to achieve this, the proposed robust information structure reduces the probability

of at least one receiver conducting further research to 2/3.22 Therefore, the CRO suffers a

loss of about 33 percent that at least one company will conduct further research relative to

the optimal full commitment information structure. This is the loss due to the constraints

of bilateral contracting.

2 A Robust Solution Concept

This section develops a solution concept that delivers predictions that are robust in the sense

that they depend on what information the player receives about the economic fundamental,

but do not depend on how the player reasons about information other players might receive.

I refer to these predictions as individual robust predictions and the corresponding solution

concept is developed in two stages. The first stage builds on the concept of belief-free

rationalizability (see Battigalli et al., 2011).23 This version of rationalizability is robust to

any information any player might get. Thus, this stage corresponds to robustness across

information structure from an outside observer. For the purposes of this paper, this solution

concept is too extreme since it does not take into account any information that a player gets

21With the exact posterior of 2/3 both actions are still undominated. Therefore, the induced posterior
should be 2/3 + ε for some small ε > 0. This example ignores this tie-breaking issue here. The full theory
presented below does account for this.

22Even with this robust information structure both receivers will conduct further research with probability
of 1/3.

23Battigalli (2003) and Battigalli and Siniscalchi (2003) introduce a more general class of versions of
rationalizability. One instance corresponds to belief-free rationalizability.
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about the state of nature, which describes, for example, the effectiveness of a drug. The

second stage of the solution concept adds exactly this information, therefore refining belief-

free rationalizability. I argue that this new solution concept reflects the robust prediction

given that a player knows his/her information about the state of nature.

There are two players i ∈ N := {1, 2}, who will be also called receivers.24 Each player

has a finite set of actions Ai and as usual A = A1 × A2 denotes the set of action profiles.25

Uncertainty is modeled via a finite set of states of nature denoted by Θ. Each agent’s

preferences are represented by a utility function ui : A×Θ→ R. All these components form

an economic environment E = 〈Θ, (Ai, ui)i∈N〉,26 which is assumed to be common knowledge.

Example 1. The economic environment for the CRO example is succinctly described by

the two payoff tables specified in Subsection 1.2. �
The economic environment does not specify any information the players might have.

Most solution concepts need a specification of the information structure. However, Battigalli

et al. (2011) provide a solution concept—belief-free rationalizability—that depends only on

the economic environment, capturing the exact behavioral implications of (correct) common

belief in rationality.27 This concept is defined inductively as follows: for i ∈ N , let BFR0
i :=

Ai and for any k ∈ N inductively define,28

BFRk
i :=

{
ai ∈ Ai : ∃µi ∈ ∆(Θ× A−i) s.t.

(1) suppµi ⊆ Θ×BFRk−1
−i , (1)

(2) ai ∈ arg max
a′i∈Ai

∑
θ,a−i

µi(θ, a−i)ui(a
′
i, a−i, θ)

}
.

24This section is concerned only with the predictions of receivers’ actions for the given information struc-
ture. The sender/designer does not play a role and will be introduced later.

25I follow the standard notation that for a fixed player i, A−i denotes the set of actions for the other player
3− i. More generally, I use this notation for any player-specific sets.

26This is different from a basic game which is widely used in information design (see e.g. Bergemann and
Morris, 2013; Mathevet et al., forthcoming). The difference is that a basic game also specifies a common
prior on the states of nature.

27Bergemann and Morris (2017) also mention this solution concept, but they call it ex post rationalizability.
They also define a notion of belief-free rationalizability, which is stronger than the version used here.

28As usual, for any set X, ∆(X) denotes the set of probability measures on X. If the underlying set X
is infinite, I will differ slightly from the standard notation by denoting the set of finite support probability
measures with ∆(X). For any µ ∈ ∆(X), suppµ denotes the support of µ.
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Then define BFRi := ∩k≥0BFR
k
i . According to the usual arguments (e.g. Wald, 1949;

Pearce, 1984), this procedure is the same as deleting ex-post dominated actions iteratively.

An action ai ∈ Ai is ex-post dominated (relative to X−i ⊆ A−i), if there exists αi ∈ ∆(Ai)

such that

∑
a′i

α(a′i)ui(a
′
i, a−i, θ) > ui(ai, a−i, θ), for all (a−i, θ) ∈ X−i ×Θ.

Example 2. In the CRO example from Subsection 1.2 it is easy to see that no action is

ex-post dominated; hence BFRi = Ai. �
As mentioned at the beginning of this section, belief-free rationalizability only takes

the economic environment and rationality as primitive objects. In the current situation, a

player has some information about the state of nature which affects his/her individual robust

predictions.29 Thus, Player 1 is assumed have a prior π1 ∈ ∆(Θ) and gets some information

about the state of nature, which is described by a marginal information structure.30

Definition 1. Fix an economic environment E. A marginal information structure (for E) is

I1 = 〈S1, ψ1〉, where

1. S1 is a finite set of signals, and

2. ψ1 : Θ→ ∆(S1) is a conditional signal distribution.

This marginal information structure does not specify any possible signals for the other

player, nor does it it specify the signal distribution for the other player. Thus, this marginal

information structure provides information only about the state of nature. The solution

concept depends only on the marginal information structure.31 This solution concept will

be a set of pure strategies denoted by R1(I1, π1) ⊆ AS1
1 and is formally defined as follows.

29The remainder of this section describes the perspective of Player 1. To apply it to Player 2, switch the
player indicies.

30A marginal information structure is equivalent to a statistical experiment as introduced by Blackwell
(1951, 1953). The restriction to finite signals is generally not without loss. I conjecture that finite signals
are sufficient for the design question studied in Section 4 but do not have a proof. In this section, I also
assume that each signal realization s1 ∈ S1 has (ex-ante) positive probability. This can be relaxed at the
cost of more cumbersome notation. See Appendix A.

31Similar to before, the solution concept also depends on the economic environment, but this dependence
will be implicit.
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Each signal realization s1 ∈ S1 induces a posterior belief32 µs1 ∈ ∆(Θ) by Bayesian

updating:

µs1(θ) :=
ψ1(s1|θ)π(θ)∑
θ′ ψ1(s1|θ′)π(θ′)

. (2)

Since these signals only induce a belief about the state of nature θ, these beliefs are not rich

enough to form a best-reply in an interactive setting. To form a best-reply, beliefs about

the actions of the other player are also needed. A rational-extended belief incorporates this

additional requirement by assigning positive probability only to the belief-free rationalizable

actions of the other player.

Definition 2. Fix an economic environment E, a prior π1 ∈ ∆(Θ) and a marginal infor-

mation structure I1. A rational-extended belief for s1 ∈ S1 is a belief µ̃1 ∈ ∆ (Θ× A2)

such that (i) margΘ µ̃1 = µs1 as given by Equation 2 and (ii) supp µ̃1 ⊆ Θ × BFR2. Let

M1 : S1 ⇒ ∆ (Θ× A2) denote the set of rational-extended beliefs for each s1 ∈ S1, i.e.

M1(s1) = {µ̃ ∈ ∆ (Θ× A2) : µ̃ is a rational-extended belief for s1} .

Finally, these rational-extended beliefs allow me to define the individual robust predic-

tion.

Definition 3. Fix an economic environment E, a prior π1 ∈ ∆(Θ), and a marginal infor-

mation structure I1. A pure strategy b : S1 → A1 is conceivable for (π1, I1) if b is optimal

for at least one selection of M1, i.e. b is optimal given µ1, i.e. for each s1 ∈ S1, there exists

µ̃1 ∈Mi(s1) such that

b(s1) ∈ arg max
a′1∈A1

∑
θ,a2

µ̃1(θ, a2)u1(a′1, a2, θ).

The individual robust prediction is the set of all conceivable strategies and is denoted by

R1(I1, π1).

A foundation in terms of explicit epistemic assumptions is discussed Subsection 5.3: the

individual robust prediction corresponds to the behavioral implications of common knowl-

edge of the economic environment, common belief in rationality, and knowledge of the

32To save on notation, the player’s index is kept implicit by using the signals’ index.
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marginal information structure. Thus, the prediction does not rely on implicit or explicit

common knowledge assumptions about the marginal information structure. This is relevant

for later questions about information design. The nature of bilateral contracting allows the

designer to only commit to a marginal information structure. The receiver understands this

marginal information, but needs to reason about what actions their opponent chooses. This

reasoning process is not transparent to the designer. Thus, all actions the designer can rule

out are exactly those strategies that are not part of the individual robust prediction. This

is the essence of Definition 3.

In Appendix A, I provide another foundation of this solution concept in terms of infor-

mational robustness and Bayes-Nash equilibirum analyis similar in spirit to Bergemann and

Morris (2013, 2016, 2017). This foundation relies on a theory of how player’s resolve uncer-

tainty about the grand information structure: each player conjectures a grand information

structure consistent with their marginal information structure. Given this conjecture, each

player chooses a strategy as predicted by a Bayes-Nash equilibrium. The individual robust

predictions correspond to the union across all such conjectures and all corresponding equi-

libria. Independently of the foundations, the robust predictions are often simple to calculate

as the following example shows.

Example 3. Table 3 shows the marginal information for Pfizr induced by the full com-

mitment optimal information structure described in Table 1. The bad report leads to a

Table 3: Pfizr’s marginal information derived from the information structure of Table 1.

θ = 1 θ = 0

Report for Pfizer
b 0 1/2

g 1 1/2

posterior33 of zero, whereas the good report induces a posterior belief of 1/2. Example 2

established that all actions are belief-free rationalizable. Thus, the sets of rational-extended

beliefs for each signal are given by:

MP (b) = {µ̃ ∈ ∆(Θ× AN) : µ̃(1, R) + µ̃(1, D) = 0} , and

MP (g) = {µ̃ ∈ ∆(Θ× AN) : µ̃(1, R) + µ̃(1, D) = 1/2} .

33Recall that within this example beliefs correspond to the likelihood of the state of the drug being effective
(θ = 1).
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Since Research (R) is a dominated action if the drug is ineffective, R cannot be part of the

individual robust prediction for the bad report. However, for the good report both actions

are conceivable. For example, D is a best-reply to µ(1, R) = 1− µ(0, R) = 1/2, whereas R is

a best-reply µ(1, D) = 1 − µ(0, D) = 1/2. Both beliefs are valid rational-extended belief for

the good signal. Thus, the individual robust prediction for Pfizr is

RP (Table 3, 1/3) = {(D,D), (D,R)} ,

where the first coordinate indicates the action after the bad report, and the second coordinate

corresponds to the good report. �
Thus far the solution concept has been stated from an ex-ante perspective, which is

relevant for later questions about information design question. However, it will also be useful

to have the solution concept in an interim form. This is done by defining a correspondence

R1(·|I1, π1) : S1 ⇒ A1 as

R1(s1|I1, π1) := {a1 ∈ A1 : ∃b ∈ R1(I1, π1) s.t. a1 = b(s1)} .

The interim individual robust prediction relies only on the belief about the state of nature

that is induced by the signal. Thus, the solution concept does not depend on the (marginal)

information structure it is defined for, but only on the posteriors it generates. Moreover,

the robust predictions can be strategically distinguished by changing the economic environ-

ment. The following proposition formalizes these simple observations, which will be useful

to address the information-design question.

Proposition 1. Fix a set of states of nature Θ. Consider an economic environment E
(with states of nature given by Θ), two priors π1, π

′
1 ∈ ∆(Θ) and two marginal information

structures I1 = 〈S1, ψ1〉 and I ′1 = 〈S ′1, ψ′1〉. For all (s1, s
′
1) ∈ S1 × S ′1, if µs1 = µs′1, then

R1(s1|I1, π1) = R1(s′1|I ′1, π′1).

Conversely, consider two priors π1, π
′
1 ∈ ∆(Θ) and two marginal information structures

I1 = 〈S1, ψ1〉 and I ′1 = 〈S ′1, ψ′1〉. If there exists (s1, s
′
1) ∈ S1 × S ′1 and θ ∈ Θ such that

µs1(θ) 6= µs′1(θ) then there exists a (finite) economic environment (holding Θ fixed) such that

R1(s1|I1, π1) ∩R1(s′1|I ′1, π′1) = ∅.
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With Proposition 1 in mind,34 I abuse notation for the interim version of the solution

concept and write it as a correspondence defined on belief space, i.e. R1 : ∆(Θ)⇒ A1. Thus,

R1 denotes the ex-ante version, whereas R1(µ1) denotes the interim version. The interim

notion is illustrated by applying it to the CRO example.

Example 4. Due to the binary state space, the interim individual robust predictions (defined

on belief space) can be illustrated by means of a simple diagram. Figure 1 shows these

predictions for both companies, where, a belief corresponds to the probability of the drug

being effective. It was already argued in the introduction, that for beliefs greater than 2/3 R

µN

µP0 1

1

{(D,D)}

{R,D}
×

{R,D}

{D}
×

{R,D}

{R,D}
×
{D}

{(D,R)}

{(R,D)}

{R,D}
×
{R}

{R}
×

{R,D}

{(R,R)}

Figure 1: Individual robust predictions of the CRO game.

is uniquely undominated, whereas for beliefs lower than 1/3 D is the only dominant action.

For all intermediate beliefs, a similar argument as in the previous example can establish that

both actions are the individual robust prediction. �

3 Distributions over Beliefs

In the previous section a solution concept was developed that captures robust predictions

accoutning for the knowledge of the (marginal) information. One of the key features of this

solution concept is that it depends only on beliefs about the states of nature. Kamenica and

34As stated the proposition requires that every signal happens with positive probability. If any signals
have zero ex-ante probability, then the proposition needs to be adjusted to condition on positive probability
signals only.
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Gentzkow (2011) proposed to work in the belief space, rather than in the information space.

They show that this approach can significantly simplify the information-design problem if

there is a single receiver. For multiple receivers, this approach does not readily extend

itself because the designer has to address the full hierarchy of beliefs. This approach has

been studied by Mathevet et al. (forthcoming). As discussed in more detail in Section 4,

in the present paper the information designer can only commit to the marginal information

structures because of the bilateral contracting assumption. In this setting, the players know

what information they will receiver about the state of nature, but they do not know what

information their opponent receives. The individual robust prediction corresponds to such

an environment. Thus, in the current setting, only beliefs about the state of nature matter,

raising a question about which distribution over beliefs can be induced by an information

structure.35 This section answers this question by providing a characterization of these

distributions over beliefs.

As before, there is a fixed economic environment E throughout.36 Furthermore, both

players are endowed with the same prior π1 = π2 =: π ∈ ∆(Θ), which is assumed to have full

support.37 A (grand) information structure specifies signals and distributions over signals

for both receivers:

Definition 4. Fix an economic environment E. A (grand) information structure (for E) is

I = 〈(S1, S2),Ψ〉, where for each player i ∈ N ,

1. Si is a finite set of signals, and

2. Ψi : Θ→ ∆(S1 × S2) is a conditional signal distribution.

Let I denote the set of information structures (for E).

As before, I assume that each signal happens with positive probability.38 Additionally, a

given information structure I induces a marginal information structure, denoted by margi I

35Indeed, this is an open question in the literature. Ely (2017, p. 47) raises this concern quite directly by
stating that “[...] there is no useful generalization for the multi-agent case”.

36Only Θ, the set of states of nature, is relevant for this section.
37 Heterogeneous priors with the same support can be incorporated along the lines of Alonso and Câmara

(2016). If priors with different supports are allowed, an extension is not straightforward. Galperti (2019)
addresses some of the subsequent issues in the case of a single receiver. Applying Galperti’s approach to the
multiple receivers setting of this paper seems interesting for future research.

38This is without loss in this section.
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(or sometimes just Ii—no confusion should arise), by marginalization. That is,

ψi(·|θ) = marg
Si

Ψ(·|θ), for all θ ∈ Θ,

which justifies the naming.

Like Equation 2, Bayesian updating gives rise to a posterior belief about the state of

nature:39

µsi(θ) :=

∑
s−i

Ψ(si, s−i|θ)π(θ)∑
s−i,θ′

Ψ(si, s−i|θ′)π(θ′)
. (3)

Thus, the information structure gives rise to a distribution over beliefs, i.e. an element

of ∆(∆(Θ)×∆(Θ)). Formally, this distribution τ is given by

τ(µ1, µ2) =
∑
θ∈Θ

∑
i∈N

∑
si:µsi=µi

π(θ)Ψ(s1, s2|θ). (4)

Say a distribution over beliefs τ is induced by some information structure, if there exists

an information structure such that τ can be derived from the information structure by

applying Equation 3 and Equation 4. The question raised earlier can now be restated as

characterizing a subset of ∆(∆(Θ) ×∆(Θ)) so that every element of this subset is induced

by some information structure.

It is well known that one requirement that needs to be satisfied for any distribution over

beliefs is that the belief of each player averages out to the prior, i.e. for each i ∈ N

∑
µ1,µ2

µiτ(µ1, µ2) = π. (5)

Kamenica and Gentzkow (2011) show that this condition is also sufficient to characterize

the marginal distribution over beliefs for each player. However, these martingale properties

on the marginals are not enough to characterize the possible joint distributions. Intuitively,

what is missing is a constraint on how correlated across players the beliefs can be. That

is, the posteriors cannot be too negatively correlated and if the marginal distributions are

39Mechanically, Bayesian updating gives rise to a belief about the opponent’s signals as well. However,
anticipating the bilateral information-design question, only beliefs about the states matter.
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sufficiently different then the posteriors cannot be too positively correlated either. However,

for general distributions correlation is not the appropriate measure of dependence.

3.1 Measuring Dependence of Random Variables

A bit more notation is needed to introduce the relevant measure of dependence for random

variables that is also relevant when realizations are beliefs. Let X and Y be real-valued

random variables.40 distributed according to cumulative distribution functions (CDFs) FX

and FY , respectively. Then the Fréchet class F(FX , FY ) is the set of all joint CDFs with

marginals given by FX and FY .

Definition 541 (Joe, 1997, Section 2.2.1). Fix two univariate CDFs F1 and F2. Consider

F, F ′ ∈ F(F1, F2). F ′ is said to be more concordant than F (denoted by F - F ′) if

F (x, y) ≤ F ′(x, y),

for all (x, y) ∈ R2,

Intuitively, this stochastic ordering formalizes the idea that large values happen more

often together (across both dimensions) under F ′ than under F . Furthermore, the Fréchet

class F can be bounded according to this stochastic ordering. That is, for given univariate

CDFs F1 and F2, for every F ∈ F(F1, F1), F - F - F , where

F (x, y) := max{0, F1(x) + F2(y)− 1}, and (6)

F (x, y) := min{F1(x), F2(y)}. (7)

These bounds are often called Fréchet-Hoeffding bounds42 and they correspond to extremal

dependence across the two dimensions. The lower bound corresponds to countermonotonic

random variables (i.e. low realizations in one dimension happen only with high realizations

in the other dimension), whereas the upper bound describes comonotonic random variables

(i.e. perfect positive dependence). These bounds also describe the extremal dependence for

40The definition readily extends to random variables taking values in a totally ordered set.
41This stochastic order is also known as the positive quadrant dependent (PQD) ordering. See, e.g., Shaked

and Shanthikumar (2007, Chapter 9).
42They were discoverd by Hoeffding (1940) and Fréchet (1951). They play an important role in Copula

theory. For more see, for example, Nelsen (2006).
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information structures.43 This is illustrated with the help of the information structures from

the CRO example next.

Example 5. Consider the information structures described by Table 1 and Table 2. Table 4

shows their corresponding CDFs.44 Both CDFs correspond to the lower Fréchet-Hoeffding

bound (given their respective marginal distributions).

Table 4: CDFs corresponding to the information structures from Subsection 1.2.

Report for Novarty

θ = 1 θ = 0

b g b g

Report for Pfizr
b 0 0 0 1/2

g 0 1 1/2 1

CDF for Table 1

Report for Novarty

θ = 1 θ = 0

b g b g

b 0 0 1/2 3/4

g 0 1 3/4 1

CDF for Table 2

With the information from Table 4 the upper bound can be obtained by using Equation 7.

The resulting CDFs are shown in Table 5. With these CDFs, the signals are perfectly

aligned. For example, the distribution coniditonal on the state θ = 0 defined by the left side

of Table 5 corresponds to sending the bad report to both receivers with probability 1/2 and

sending the good report with the remaining probability of 1/2 to both companies. Therefore,

both companies will always get the exact same report in the case the drug is ineffective. This

is also true for the distribution described on the right side, but in this case the probabilities

differ. �
Table 5: F for same marginals as in Table 4.

Report for Novarty

θ = 1 θ = 0

b g b g

Report for Pfizr
b 0 0 1/2 1/2

g 0 1 1/2 1

F for Table 1

Report for Novarty

θ = 1 θ = 0

b g b g

b 0 0 3/4 3/4

g 0 1 3/4 1

F for Table 2

43For this, the set of individual signals needs be endowed with any total order. Recall that information
structures are distributions over signals conditional on the state of nature, see Definition 4. If all conditional
distributions are equal to their (upper or lower) Fréchet-Hoeffding bound (fixing the conditional marginal
distributions), then I say the information structures attains its bound.

44Signals are ordered so that g is assumed to be greater than b.
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A complication arises if one wants to directly apply the Fréchet-Hoeffding bounds to

distributions over beliefs. Examples best illustrate this issue. First, Example 6 shows that,

although the information structure from Table 1 attains45 the lower Fréchet-Hoeffding bound,

the induced belief distribution does not attain the Fréchet-Hoeffding bound. Second, Ex-

ample 7 and Example 8 show belief distributions that attain the lower and upper Fréchet-

Hoeffding bounds, respectively. However, I argue that neither of these belief distributions can

be induced by an information structure, meaning that the usual Fréchet-Hoeffding bounds

are not tight enough to characterize the distributions of beliefs induced by any information

structure.

Example 6. Consider the economic environment from the previous examples, but change

the prior to π = 1/2. Suppose the information structure in Table 6 is given. The information

structure attains the Fréchet-Hoeffding lower bound and induces two posteriors: 1/4 and 3/4.

Table 6: Non-revealing symmetric information structure.

Report for Novarty

θ = 1 θ = 0

b g b g

Report for Pfizer
b 1/2 1/4 0 1/4

g 1/4 0 1/4 1/2

The induced distribution over beliefs is given in Table 7: the bivariate uniform distribu-

tion. This clearly differs the Fréchet-Hoeffding lower bound, which is shown on the right.

Thus, although the information structure attains the lower bound, the induced distribution

over beliefs does not attain the Fréchet-Hoeffding lower bound. As shown later, the belief

distribution on the right (i.e. the Fréchet-Hoeffding lower bound) cannot be induced by any

information structure. Indeed, any distribution that shows more negative dependence than

the actual belief distribution (i.e. the distribution on the left) cannot be a belief distribution

induced by any information structure. Therefore, the usual Fréchet-Hoeffding bounds are

not tight enough. This becomes even more transparent in the next example. �
Example 7. Again, fix the economic environment from the previous examples with prior

π = 1/2. Consider an extreme distribution over beliefs as described by Table 8, where both

45See Footnote 43.
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Table 7: Belief distribution induced by the information structure of Table 6.

Belief of Novarty

PMF CDF F

1/4 3/4 1/4 3/4 1/4 3/4

Belief of Pfizr
1/4 1/4 1/4 1/4 1/2 0 1/2

3/4 1/4 1/4 1/2 1 1/2 1

Table 8: Belief distribution not induced by any information structure.

Belief of Novarty

PMF

0 1

Belief of Pfizr
0 0 1/2

1 1/2 0

receivers have fully-revealing beliefs only: either they are certain that the drug is effective

(belief equal to 1) or they are certain the drug is ineffective (belief of 0). Moreover, both

beliefs are fully negatively dependent, i.e., the distribution achieves the Fréchet-Hoeffding

lower bound: Novarty has belief 1 if and only if Pfizr has belief 0. However, no information

structure induces such a distribution over beliefs, even though the marginal beliefs average

out to the prior of 1/2. Intuitively, why no information structure can give rise to such a pos-

terior distribution is easily seen: the extreme posteriors reflect the idea that the information

structure fully reveals the state to the receivers. But if this is the case, there is no way to

reveal one state to Pfizr and, at the same time, reveal the other state to Novarty, providing

further evidence that the Fréchet-Hoeffding bounds are not sufficient for distributions over

beliefs. Furthermore, this intuition suggests that if beliefs correspond to fully revealing sig-

nals, then there is only one possible joint distribution over beliefs: full positive dependence,

i.e. the upper Fréchet-Hoeffding bound describes the unique joint distribution. �
Example 8. The two prior examples considered only the lower bound on distributions over

beliefs, i.e. how negatively dependent the beliefs can be. This example addresses the upper

bound, illustrating a case where beliefs cannot be be fully positively dependent. Again

consider, the economic environment from the previous examples with prior π = 1/2, but



23

the beliefs of the two receivers are no longer not symmetric.46 As shown in Table 9, Pfizr

has beliefs that fully reveal the state as before. However, Novarty has only strictly interior

beliefs, so they are not certain about either state. For either receiver, the marginal averages

out to the prior and the joint distribution attains the upper Fréchet-Hoeffding bound.

Table 9: Another belief distribution not induced by any information structure.

Belief of Novarty

PMF

1
3

2
3

Belief of Pfizr
0 1/2 0
1 0 1/2

Here, the intuition about why this belief distribution cannot be induced by any informa-

tion structure is slightly more involved than in the previous example. Consider the signal

that reveals that the drug is effective to Pfizr. Conditional on this signal, if there was only

one signal for Novarty, this signal would reveal the state as well. Thus, there must be (at

least) two signals for Novarty realizing with positive probability: one leading to a posterior

belief of 1/3 and the other to a belief of 2/3. This contradicts the proposed belief distribution

in Table 9, since this distributions prescribes that if state θ = 1 is revealed to Pfizr, then

Novarty must have the belief of 2/3 with certainty. Later, I show that these beliefs are too

positively dependent. Thus, the Fréchet-Hoeffding upper bound here is not tight enough. �

3.2 Dependence Bounds for Beliefs

The previous examples established that the usual Fréchet-Hoeffding bounds are not tight

enough when considering distributions over beliefs induced by information structures. In

this section, I introduce and discuss the bounds that are used to characterize the set of dis-

tributions over beliefs induced by information structures. Since these bounds concern CDFs

defined on beliefs, the space of beliefs needs to be ordered. Although the main characteri-

zation holds for any total order, establishing some specific properties of the bounds requires

the use of first-order stochastic dominance. Thus, it is convenient to take a linear extension

of the first-order stochastic dominance order.47 To do this, endow the state of nature Θ with

46Asymmetry is crucial for this example, because for symmetric belief distributions the upper bound will
be the standard Fréchet-Hoeffding bound. See Corollary 2.

47Such a completion always exists due to Szpilrajn’s extension theorem. See Aliprantis and Border (2006,
Theorem 1.9).
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a total order, i.e. Θ = {θ1, . . . , θK} for some finite K < ∞ and the order corresponds to

the indexing set. Then endow ∆(Θ) with a completion of first-order stochastic dominance

giving rise to a lattice structure. Given µ, µ′ ∈ ∆(Θ), a sufficient condition for µ ≥ µ′ is µ

first-order stochastic dominating µ′, i.e. for every L = 1, . . . , K,

L∑
k=1

µ(θk) ≤
L∑
k=1

µ′(θk).

Given this order, define CDFs over beliefs analogously to the case of CDFs of real-valued

random variables. That is, for a given distribution τ ∈ ∆(∆(Θ)), define the associated CDF

by T (µ) =
∑

µ′≤µ τ(µ′). Similarly, ∆(Θ)×∆(Θ) is endowed with the product order derived

from the order on each dimension. Then, for any joint distribution τ ∈ ∆(∆(Θ) × ∆(Θ))

the associated (joint) CDF is given by

T (µ) = T (µ1, µ2) =
∑

µ′1≤µ1,µ′2≤µ2

τ(µ′1, µ
′
2).

With these definitions in hand, the belief-dependence bounds can be defined. Similar to the

Fréchet-Hoeffding bounds, these bounds are defined for given marginal distributions.

Definition 6. Fix two univariate distributions over beliefs τ1, τ2 ∈ ∆(∆(Θ)) and a prior

π ∈ ∆(Θ). The lower belief-dependence bound is defined as

T (µ1, µ2) = max
0≤L≤K

max {T 1(µ1, µ2;L), T 2(µ1, µ2;L)} , (8)

where for each48 L = 0, . . . , K,

T 1(µ1, µ2;L) =
∑
µ′1≤µ1

τ1(µ′1)
L∑
k=1

µ′1(θk) +
∑
µ′2≤µ2

τ2(µ′2)
L∑
k=1

µ′2(θk)−
L∑
k=1

π(θk),

and (9)

T 2(µ1, µ2;L) =
∑
µ′1≤µ1

τ1(µ′1)
K∑

k=L+1

µ′1(θk) +
∑
µ′2≤µ2

τ2(µ′2)
K∑

k=L+1

µ′2(θk)−
K∑

k=L+1

π(θk).

48By convention, empty sums are defined to be zero.
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The upper belief-dependence bound is defined as

T (µ1, µ2) = min
1≤L≤K

min
{
T 1(µ1, µ2;L), T 2(µ1, µ2;L)

}
, (10)

where for each49 L = 0, . . . , K,

T 1(µ1, µ2;L) =
∑
µ′1≤µ1

τ1(µ′1)
L∑
k=1

µ′1(θk) +
∑
µ′2≤µ2

τ2(µ′2)
K∑

k=L+1

µ′2(θk),

and (11)

T 2(µ1, µ2;L) =
∑
µ′1≤µ1

τ1(µ′1)
K∑

k=L+1

µ′1(θk) +
∑
µ′2≤µ2

τ2(µ′2)
L∑
k=1

µ′2(θk).

A few observation are in order. First, as argued in the previous section, the usual Fréchet-

Hoeffding bounds are not tight enough to characterize the distributions over beliefs induced

by information structures. Thus, the belief-dependence bounds should be tighter, which is

indeed the case. Formally, for the lower bound we have that F (µ1, µ2) ≤ T (µ1, µ2) since

F (µ1, µ2) = maxL∈{0,K} T (µ1, µ2;L) ≤ T (µ1, µ2). For the upper bound the reversed inequal-

ity, F (µ1, µ2) ≥ T (µ1, µ2), holds because F (µ1, µ2) = min
{
T 1(µ1, µ2;K), T 2(µ1, µ2;K)

}
≥

T (µ1, µ2). Second, if the marginal distributions are equal, i.e. τ1 = τ2, then the upper

belief-dependence bound is actually the same as the upper Fréchet-Hoeffding bound. In this

case the upper bound is also a sharp bound. The lower bound, on the other hand, is sharp

if first-order stochastic dominance is a total order.50

The relationship of the belief-dependence bounds with the Fréchet-Hoeffding bounds is

illustrated by a simple example. Fréchet-Hoeffding bounds have a natural representation in

the case both marginal distributions are uniform distributions on the unit interval [0, 1].51

If the marginal distributions are continuously distributed, then the restriction to uniform

distributions is without loss of generality for the Fréchet-Hoeffding bounds. For this reason,

the focus in probability theory is often only on the Fréchet-Hoeffding bounds with uniform

marginals. The following illustration shows how the Fréchet-Hoeffding bounds differ from the

belief-dependence bounds if the marginal distributions are uniform distributions. However,

49Again, by convention, empty sums are defined to be zero.
50See Corollary 2 and Corollary 3 for formal statements of these observations.
51Formally, the definition of the belief-dependence bounds is given only for distribution with a finite sup-

port. However, the belief-dependence bounds readily extend to marginals that are continuously distributed.
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since beliefs have an intrinsic cardinal meaning, the assumption of uniformity is with loss of

generality for beliefs.

Example 9 (Illustration of the belief-dependence bounds). Let Θ = {0, 1} and fix a prior

π(0) = π(1) = 1/2. As in the preceding examples, a belief is uniquely associated with the

probability of state being θ = 1. First, to illustrate the lower bound, consider marginal

belief distributions that are both uniformly distributed on [0, 1]. For these marginals, the

lower Fréchet-Hoeffding bound takes a particular simple form: it corresponds to a uniform

distribution on the diagonal µ2 = 1 − µ1. The CDF and the support of the corresponding

joint distribution is shown in Figure 2.
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Figure 2: Lower Fréchet-Hoeffding bound for uniform marginals.

In this example, the lower bound on belief distributions is also tighter than the lower

Fréchet-Hoeffding bound. The functional form of the lower belief-dependence bound is a bit
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more complicated, but is easily derived analytically. For illustrative purposes the analytic

expressions are not presented, but Figure 3 instead shows the CDF and the support of

the distribution corresponding to the lower bound. Note the difference from the Fréchet-

Hoeffding bound: conditional on one belief, the supported belief for the other player is not

unique anymore, but there are two beliefs generically. The Fréchet-Hoeffding bound allows

for too much negative dependence. The belief bound corrects for this by spreading the beliefs

out from the diagonal.
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Figure 3: Lower belief-dependence bound for uniform marginals.
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Second, to illustrate the upper bound, a break in the symmetry is needed to obtain a

difference from the usual Fréchet-Hoeffding bound as discussed above. Thus, change the

marginal distribution of beliefs for player 2 to be uniform over [1/3, 2/3], while keeping the

[0, 1]-uniform marginal for player 1. Here, too, the upper Fréchet-Hoeffding bound takes a

simple form as illustrated in Figure 4: the highest dependence is achieved by having support

only along the “diagonal” µ2 = (1+µ1)/3. As before, this distribution achieves a dependence

that is too high for distributions over beliefs if they are derived from an information structure.

Therefore, the support must be spread out from the diagonal to achieve a lower dependence,

which is exactly what the upper bound for belief distributions demonstrates in Figure 5.
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Figure 4: Upper Fréchet-Hoeffding bound for uniform marginals.
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Figure 5: Upper belief-dependence bound for uniform marginals.
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Example 10. Consider the distribution over beliefs from the left and middle panels in

Table 7. Although this distribution does not attain the Fréchet-Hoeffding lower bound, it

attains the lower belief-dependence bound. However, the distributions described by Table 8

and Table 9 do not satisfy the belief bounds, which confirms that these distributions are not

induced by any information structure. The CDF corresponding to Table 8 has T (0, 0) = 0,

but for the same marginals, the lower belief bound is violated since

T (0, 0) = max

{
0,

1

2
× 1 +

1

2
× 1− 1

2
,
1

2
+

1

2
− 1

}
=

1

2
> T (0, 0).

For the distribution in Table 9, conversely, the upper belief bound is violated. The corre-

sponding CDF has T (0, 1/3) = 1/2, but

T

(
0,

1

3

)
= min

{
1

2
× 1 +

1

2
× 2

3
,
1

2
× 0 +

1

2
× 1

3
,
1

2

}
=

1

6
<

1

2
.

�
The previous examples show that the belief bounds capture some of the aspects that

are needed for distributions over beliefs to be induced by information structures. It is

still necessary to establish that the belief-dependence bounds are necessary and sufficient

(together with the usual marginal constraints from Equation 5) to characterize the set of all

distributions over beliefs induced by information structures. Theorem 1 formally addresses

this.

Theorem 1. Fix an economic environment E and a full-support prior π ∈ ∆(Θ). τ ∈
∆(∆(Θ)×∆(Θ)) is induced by an information structure if and only if52

1.
∑

µ1,µ2
τ(µ1, µ2)µ1 =

∑
µ1,µ2

τ(µ1, µ2)µ2 = π, and

2. T - T - T .

This characterization theorem can be viewed as a generalization of Kamenica and Gentzkow

(2011) to a setting with two receivers, which is formally stated as a corollary to the theorem:

52Here, a slight abuse of notation appears: the belief bounds are formally only defined for two marginal
beliefs. In the statement there is only the joint distribution τ . The belief bounds correspond to the bounds
defined by using the two marginals distributions derived from τ .
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Corollary 1 (Kamenica and Gentzkow, 2011). Fix an economic environment E and a full-

support prior π ∈ ∆(Θ). Consider τ ∈ ∆(∆(Θ) × ∆(Θ)) with marginals τ1 and τ2 and

suppose that53 τ2 = δπ. Then, τ is induced by an information structure if and only if∑
µ1
τ1(µ1)µ1 = π.

As mentioned above, if more structure on the marginal distributions is assumed, then

the bounds become analytically simpler and sharp.

Corollary 2. Fix an economic environment E and a full-support prior π ∈ ∆(Θ). Consider

two univariate distributions τ1, τ2 ∈ ∆(∆(Θ)) such that τ1 = τ2 and suppose that Eτ1 [µ1] = π.

Then, the upper belief-dependence bound is the usual upper Fréchet-Hoeffding bound, i.e.

T = F .

Corollary 3. Fix an economic environment E and a full-support prior π ∈ ∆(Θ). Consider

two univariate distributions τ1, τ2 ∈ ∆(∆(Θ)) and suppose that Eτi [µi] = π for i = 1, 2.

1. If both supp τi, i = 1, 2, are totally ordered by first-order stochastic dominance, then T

is a sharp bound.54

2. If τ1 = τ2, then T is sharp.

The proof of Theorem 1 is stated in Subsection B.2. Here, I provide a sketch of the main

steps of the proof.

Step 1 [Characterization of state-dependent distributions over beliefs]: First, I character-

ize the distributions λ ∈ ∆(∆(Θ) × ∆(Θ) × Θ) that can arise from any information

structure, where the third dimension corresponds to the actual state of nature. It is

convenient to describe the third dimension in terms of Dirac measures concentrated on

the states of natures. The first requirement is obvious, namely that Eλ[δθ] = π. The

other requirement also takes a familiar form similar to the martingale constraints of

Bayes plausibility: Eλ[δθ|µi] = µi for every µi ∈ supp margi λ. These conditions are

necessary and sufficient for a trivariate distribution λ to be induced by an information

structure.55 This first step is formalized in Lemma 1.

53For a given set X and any x ∈ X, δx ∈ ∆(X) denotes the Dirac measure concentrated at x.
54A bound for a given set is called sharp if the bound itself is a member of this set.
55There are no Bayes plausibility requirements on the first two marginal distributions—they are implied

by the stated conditions. See Lemma 2.



31

Step 2 [From τ to marginals of λ]: Consider τ satisfying the properties of Theorem 1.

By Step 1, I do not need to construct an information structure, but only a distri-

bution λ with the properties stated above such that marg1,2 λ = τ . For this define

λi,θ(µi, θ) = µi(θ)
∑

µ−i
τ(µi, µ−i). It can be verified, that any distribution λ with bi-

variate marginals τ , λ1,θ, and λ2,θ satisfies the properties of Step 1. All that remains

is to verify that such a distribution exists.

Step 3 [Higher-order Fréchet-Hoeffding bounds]: Joe (1997, Theorem 3.11) extends the

usual Fréchet-Hoeffding bounds to trivariate distribution with given bivariate marginals.

For the distribution here, these bounds say that the desired λ exists if and only if

Γ (τ, λ1,θ, λ2,θ) ≤ Γ (τ, λ1,θ, λ2,θ) , (12)

where Γ and Γ are functionals mapping to CDFs of trivariate distributions. Since both

λi,θ’s depend only on τ , establishing one direction of the argument is just a matter of

verifying that the conditions on τ given in Theorem 1 are sufficient for the inequality

to be satisfied.

Step 4 [From information structures to bounds]: For the converse, suppose τ is induced by

an information structure. By Step 1, there exists λ with the properties stated there

and λ has the three bivariate marginals as described above. By contradiction, suppose

that τ does not satisfy the bounds of Theorem 1. Then, simple alegbra shows that

the inequality of Joe (1997) described in Equation 12 is violated, which implies that λ

does not exists. Contradiction. QED.

4 Adversarial Bilateral Information Design

The previous sections prepared the stage to finally address the question of information design

with bilateral contracting. Due to the nature of bilateral contracting, receivers’ behavior is

not uniquely predicted and the information designer is concerned about robustness to this

uncertainty. For this, Section 2 introduced a solution concept that captures robust predic-

tions of receivers’ actions. Crucially, this solution concept depends only on the receiver’s

belief about the states of nature. This feature, in combination with the belief space char-

acterization of Section 3, produces a general representation theorem for information design



32 Adversarial Bilateral Information Design

with an adversarial and bilateral aspect. This section develops this theorem by exploiting

the results from previous sections.

To formally address the design question, the economic environment E needs to be ap-

pended with the preferences of the designer (she) v : A→ R, which describes the utility she

gets if the receivers take actions a = (a1, a2). Furthermore, I assume that she knows the

receivers’ priors, and that these priors are the same as her prior, i.e. π1 = π2 = π ∈ ∆(Θ).56

Given this assumption, it is without loss to assume that the prior has full support. Together

these components form a design environment D = 〈E , π, v〉.
The timeline of the overall design game is as follows and schematically shown in Figure 6.

Step 1: Designer chooses an information structure I ∈ I.

Step 2: Receivers learn their respective marginal information structure Ii.

Step 3: The state of nature θ realizes and signals (s1, s2) are sent according to Ψ(·|θ).

Step 4: For each signal (s1, s2), Nature recommends a conceivable action for each receiver

to minimize the payoff of the designer.

Step 5: Each receiver plays as recommended by Nature.

Step 6: Payoffs are realized.

1 2 3 4 5 6

D chooses I i learns Ii θ realizes,

(s1, s2) sent

Nature

recommends

(a1, a2)

i plays ai payoffs

realize

Figure 6: Timeline of the design game.

The bilateral contracting assumption is reflected in Step 2: a contract only specifies the

marginal information structure for each player. Step 4 corresponds to the adversarial selec-

tion of the receivers’ actions. Due to bilateral contracts, there might be multiple conceivable

56The assumption says the designer knows the prior of the receivers, which happens to be the same prior.
It does not state that players know the prior of their opponent, i.e. there is no common prior. Relaxing
the assumption of the designer knowing the receivers’ priors is active research even for the single receiver
case. See, for example, Beauchêne et al. (2019), Kosterina (2019), and Pahlke (2019). Footnote 37 addresses
heterogeneous priors.
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actions for each receiver, giving rise to uncertainty as to which actions will be played. Here,

the designer is assumed to be very sensitive to this uncertainty and she considers a worst-case

scenario.

4.1 The Problem and its Representation

With this timing in mind, the information-design problem can be stated formally as

sup
I∈I

V (I),

where

V (I) :=
∑

θ∈Θ,s∈S

π(θ)ψ(s|θ) min
(ai∈Ri(si|Ii,π))i∈N

v(a1, a2), (13)

and recall that Ii is the marginal information structure derived from I.57 If a maximizer ex-

ists,58 then the resulting information structure captures robustness in the following sense: the

optimal information structure performs well no matter how Nature chooses and coordinates

the receivers’ conceivable actions.

Given the structure of the problem, a natural approach would be to try to use a version of

the revelation principle. However, the standard revelation principle argument á la Myerson

(1982) does not apply here: this approach requires tie-breaking in favor of the designer.

Instead, adversarial selection, by definition, selects actions that are incentive-compatible for

the agents and bad for the principal. The following example illustrates that such an approach

is bound to fail and shows that the problem is even more subtle than the tie-breaking issue.

59

Example 11. Let Θ = {0, 1} and consider an economic environment, where player 2 has

two actions (x and y) and is indifferent between them. Thus, R2(µ2) = {x, y} = A2 for any

µ2 ∈ ∆(Θ). Player 1 has three actions a, b, c and payoffs are given by Table 10.

First, b is conceivable for any belief: b is a best-reply if Player 1 is certain that player

2 chooses x. Similarly, c is also always conceivable. For beliefs close to certainty of either

57See the discussion after Definition 1.
58In general, a maximizer might not exist. The adversarial approach includes tie-breaking against the

designer’s favor. This can lead to a failure of upper semicontinuity of the objective function.
59I am indebted to Marciano Siniscalchi for providing this simple, yet elucidative, example. Inostroza and

Pavan (2018, Example 1) illustrate a similar issue when the designer has full commitment.
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Table 10: Payoffs for Player 1.

Player 2’s action

θ = 1 θ = 0

x y x y

Player 1’s action
a 2 0 0 2
b 3 0 1 0
c 0 1 0 3

state, a is dominated by a mixture of b and c (e.g. in state θ = 1 almost all the weight of the

mixture will be on b). However, beliefs around 1/2 about θ makes a conceivable. For example,

suppose the belief about θ is exactly 1/2, then consider the following rational-extended belief:

µ̃(1, x) = µ̃(0, y) = 1/2. For this belief, a is a best-reply. It can be verified that for any belief

µ ∈ ∆(Θ) such that µ ∈ [1/4, 3/4] a is conceivable.

Now, consider a designer who only cares about Player 1’s action. In particular, assume

the preferences are given by a ≺ b ≺ c. Figure 7 shows the robust predictions for Player 1 in

belief space and the implied worst-case selection for the designer. For any prior π ∈ ∆(Θ)

µ1 10 3/41/4

{b, c}

b

{b, c}

b

A1

a

Figure 7: Robust Predictions for Player 1 and implied designer’s worst-case choice.

the designer can get her (constrained) best outcome (b) by fully revealing the state. This

optimal payoff cannot be attained with recommendation in general. For example, consider a

prior belief of π = 1/2. A recommendation would send b with certainty. However, this signal

does not provide information beyond the prior and therefore the worst-case prediction will

be a rather than b as recommended.

The crucial failure is that a revelation principle with some sort of recommendations

usually works by pooling signals together. This gives rise to a posterior that is a convex

combination of the posteriors derived from each of the pooled signals. However, it is not

true that a best-reply to the convex combination is also a best-reply to one of the original
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posteriors. For example, here, a is a best-reply to a convex combination of beliefs that are

certain about a state. For each of these extreme beliefs, a is dominated by either b or c. �
Example 11 illustrates that there is no obvious simplification in signal space available

that does not use some specific structure of the underlying economic environment. Since

the individual robust prediction Ri depends only on the belief induced by the signal (see

Proposition 1), the objective from Equation 13 can be rewritten as follows:60

V (I) =
∑

θ∈Θ,s∈S

π(θ)ψ(s|θ) min
(ai∈Ri(µsi ))i∈N

v(a1, a2)

=
∑
µ1,µ2

τ(µ1, µ2) min
(ai∈Ri(µi))i∈N

v(a1, a2),

where τ corresponds to the distribution over beliefs induced by I. Now the objective is stated

purely in terms of beliefs and the actual information structure no longer plays a role. Thus,

the main representation theorem for adversarial bilateral information design can finally be

stated by defining ν(µ1, µ2) := min(ai∈Ri(µi))i∈I
v(a1, a2) and using the characterization result

from Section 3.

Theorem 2 (Representation Theorem). Fix a design environment D. The designer’s prob-

lem can be represented as

sup
I∈I

V (I) = sup
τ∈∆(∆(Θ)2)

∑
µ1,µ2

τ(µ1, µ2)ν(µ1, µ2)

s.t.
∑
µ1,µ2

τ(µ1, µ2)µ1 = π,

∑
µ1,µ2

τ(µ1, µ2)µ2 = π,

and T - T - T .

Proof. Follows from the preceding discussion and Theorem 1. �

The theorem shows that the designer solves the problem as if she chooses marginal belief

distributions for each receiver subject to the familiar Bayes plausibility conditions. Moreover,

the beliefs across the two receivers cannot be too dependent so that the joint distribution

60Recall the notation from Equation 3 and Equation 4.
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satisfies the belief-dependence bounds. The constraint on the dependence can be simplified

if the designer utility ν (as a function on belief space) has special properties.

For two-dimensional real-vectors it is well known61 that the stochastic order - (recall

Definition 5) has a dual characterization in terms of utility functions. In particular,

F - G ⇐⇒ EF [w(x, y)] ≤ EG[w(x, y)],

for all Bernoulli utility functions w : R2 → R that are supermodular. Meyer and Strulovici

(2015) extend this result to distribution over a finite, n-dimensional lattice. Since the order

on beliefs was assumed to be a total order, Meyer and Strulovici’s results apply to the setting

of this paper. Thus, if ν in Theorem 2 is supermodular, then the problem can be simplified

by solving

sup
τ1,τ2∈∆(∆(Θ))

∑
µ1,µ2

τ(µ1, µ2)ν(µ1, µ2)

s.t.
∑
µ1

τ1(µ1)µ1 = π,

∑
µ2

τ2(µ2)µ2 = π,

and T = T ,

and verifying whether the resulting T is a valid CDF. Corollary 3 provides sufficient condi-

tions for this to be the case. Symmetrically, if ν is submodular the last constraint would be

replaced by T = T . In either case, the problem is simplified because the choice set contains

only marginal distributions.

Kamenica and Gentzkow (2011) show that the value of the information-design problem

with one receiver is equal to the concavification of the underlying utility function of the

designer. This turns out to be a convenient way of solving the design problems for specific

environments. Sometimes, the concavification approach is useful even for the case with two

receivers, as considered in this paper. Here, applying the concavification62 to the designer

61In probability theory, this is known at least since Cambanis et al. (1976) and Tchen (1980).
62See, for example, Rockafellar (1970, Corollary 17.1.5)
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utility ν gives

cav ν(π1, π2) = sup
τ∈∆(∆(Θ)2)

∑
µ1,µ2

τ(µ1, µ2)ν(µ1, µ2)

s.t.
∑
µ1,µ2

τ(µ1, µ2)µ1 = π1,∑
µ1,µ2

τ(µ1, µ2)µ2 = π2.

Thus, the concavification is just a relaxed version of the actual designer’s problem. It suggests

solving the concavification approach and then checking whether the resulting distribution ac-

tually satisfies the belief bounds. This might be useful for applications: as demonstrated later

in Subsection 4.2, this approach simplifies the search for the optimal information structure

in the CRO example, given that the CRO has supermodular preferences. This observation

is formally recorded as a corollary to Theorem 2.

Corollary 4. Fix a design environment D. The concavification of ν is an upper bound for

the value of the designer, i.e.

cav ν(π, π) ≥ sup
I∈I

V (I).

As explored above, Theorem 2 allows further simplifications of the maximization problem

if the designer’s utility function defined on the belief space takes particular forms. However,

this utility function ν is an object derived from the primitive objects stated in a design

environment D. Next, I discuss a broad class of environments which provides easy verifi-

able sufficient conditions on primitives to ensure that the derived object ν satisfies sub- or

supermodularity whenever the primitive function v satisfies these properties. In addition, a

subclass of these environments allows me to provide an upper bound on the cardinality of

the signal space (see Example 11).

Definition 7. An economic environment E = 〈Θ, (Ai, ui)i∈N〉 is monotone if

1. the states of nature Θ are endowed with an total order,

2. for each player i ∈ N , the set of actions Ai is endowed with an total order, and
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3. for each player i ∈ N , the utility function has increasing differences in (ai, θ), i.e. for

all (ai, θ), (a
′
i, θ
′) ∈ Ai ×Θ and all a−i ∈ A−i,

a′i ≥ ai and θ′ ≥ θ =⇒ ui(a
′
i, a−i, θ

′) + ui(ai, a−i, θ) ≥ ui(a
′
i, a−i, θ) + ui(ai, a−i, θ

′).

A design environment D = 〈E , π, v〉 is monotone if

1. the economic environment E is monotone, and

2. the designer’s utility function v : A → R is increasing63 with respect to the product

order induced by the orders on the set of actions Ai, i.e. for all (a1, a2) ∈ A,

a′i ≥ ai, for all i = 1, 2 =⇒ v(a′1, a
′
2) ≥ v(a1, a2).

Supermodular games usually have an underlying economic environment that is mono-

tone. However, the class of monotone environments is more general since it does not specify

increasing differences in (ai, a−i), which is assumed to transform an economic environment

to supermodular game. Thus, the class of environments here is quite general, but specific

enough to translate the preference for complementarities from action space to belief space as

formally stated in the next proposition. This proposition, therefore, provides a simple way

to check the primitives to ensure that the Bernoulli utility in the objective of the problem

in Theorem 2 is either sub- or supermodular.

Proposition 2. Consider a monotone design environment D. Suppose the designer’s utility

v : A → R is supermodular then the derived utility ν : ∆(Θ) × ∆(Θ) → R on belief space

(endowed with the first-order stochastic dominance order) is supermodular, where

ν(µ1, µ2) := min
(ai∈Ri(µi))i∈N

v(a1, a2).

Similarly, if v is submodular, then ν is submodular as well.

In the general problem, Example 11 illustrates that using recommendations similar to

the usual revelation principle does not work. For monotone design environments with a

63Only monotonicity of v is needed for all of the following analysis. The definition uses increasingness to
simplify the notation.
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restriction on information structures, action recommendations provide a rich enough sig-

nal space. Action recommendations turn out to be useful even when working in belief

space as will be illustrated in Subsection 4.2.64 For this, say that an information structure

I is direct if for every i ∈ N , Si ⊆ Ai and for every signal a = (a1, a2), it holds that

min(a′i∈Ri(si|Ii,π))
i∈N

v(a′1, a
′
2) = v(a). Then, the following proposition is akin to a standard

revelation principle.

Proposition 3 (Revelation Principle). Suppose the design environment D is monotone.

Restrict the choice of information structures to information structures that give rise to pos-

teriors that are totally ordered by first-order stochastic dominance for each player.65 Then,

there exists an information structure I with value V (I) if and only if there exists a direct

information structure Î such that v(I) = v(Î).

This result is interpreted slighlty differenlty the usual interpretation of the revelation

principle as in Myerson (1982) or Kamenica and Gentzkow (2011). Here, the designer sends

action recommendations to the receivers like in the usual version, but the receivers do not

have to be obedient and follow the recommendation. Instead, whatever action the receiver

chooses, for the designer the action will be at least as good as if the receiver had followed

the recommendation.

4.2 The Problem of a CRO solved

Now, the problem of the CRO introduced Subsection 1.2 can be solved. Recall that the

economic environment E can be summarized by the two game tables in Subsection 1.2.

This economic environment is actually a monotone one. Furthermore, the prior of both

pharmaceutical companies was specified as π = 1/3, thus it remains to specify the preferences

for the designer (i.e. the CRO) to get a design environment. For now, assume that preferences

are such that the CRO prefers further research over dropping the project for both companies,

i.e.

v(R, ·) > v(D, ·) and v(·, R) > v(·, D),

64Whether this revelation principle argument is useful for working directly in signal space is an open
question.

65For example, if the state space is binary, then this assumption is without loss of generality.
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which makes the design environment monotone as well. Using Figure 1, it is easy to obtain

the CRO utility function defined on belief space, as shown in Figure 8.

µN

µP0 1

1

v(D,D)

v(D,R)

v(R,D)

v(R,R)

Figure 8: ν, CRO utility function defined on belief space.

Given this derived utility function ν, the optimal information and the corresponding

value can be obtained by applying Theorem 2. The problem is analyzed separately for two

possible cases of sub- and supermodular preferences of the CRO. For the remainder, I also

assume that the preferences are symmetric.66

Supermodular case: Suppose that the utility of the CRO is supermodular, i.e. v(R,R) +

v(D,D) ≥ v(R,D) + v(D,R), then by Proposition 2 the induced belief utility function

ν will be supermodular as well. In this case, the design problem can be easily solved

by considering the relaxed version obtained by removing the belief-dependence bounds

from the problem as stated in Theorem 2. Thus, the problem becomes equivalent to

the concavification approach of Kamenica and Gentzkow (2011). Figure 9 plots the

utility function ν in the left panel. The right panel superimposes the concavification

cav ν. The optimal value corresponds to cav ν(π, π) as indicated with an asterisk in

the figure. Due to the supermodularity the CRO wants to make receivers’ choices

as positive dependent as possible, and the resulting belief distribution67 (shown in

Table 11) reflects this. It remains to verify that the belief-dependence bounds are

66This is not without loss of generality!
67Since tie-breaking does not favor the designer, ν is not upper semicontinous and an optimal information

structure does not exist. To simplify this illustration, the reported information structure ignores this issue.
An ε-optimal information structure would ensure that the induced belief is strictly greater than 2/3.



41

satisfied by the solution resulting from the concavification approach. For this, recall

that for symmetric marginal belief distributions the upper belief-dependence bound

(which is attained due to supermodularity) is just the upper Fréchet-Hoeffding bound.

Thus, the distribution in Table 11 is indeed a valid belief distribution. An information

structure inducing this belief distribution is also shown in Table 11.
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Figure 9: CRO utility and concavification superimposed (right panel).

Table 11: Optimal information for the CRO with supermodular preferences.

Novarty

Signals
Belief

θ = 1 θ = 0

b g b g 0 2/3

Signals for Pfizr
b 0 0 3/4 0

Belief of Pfizr
0 1/2 0

g 0 1 0 1/4 2/3 0 1/2

Submodular case: In the remaining case, the CRO is assumed to have submodular pref-

erences. That is, v(R,R) + v(D,D) ≤ v(R,D) + v(D,R), which implies that ν is

submodular similar to before. Here, the concavification approach is not useful since

it would yield a belief distribution (see Table 12) which cannot be induced by any

information structure. This can be verified by checking that this distribution violates
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the lower belief-dependence bound. Thus, a different approach is needed for this case.

By Proposition 3, it is sufficient to consider marginal belief distributions with binary

Table 12: Result from concavification approach for submodular preferences.

Belief of Novarty

0 2/3

Belief of Pfizr
0 0 1/2

2/3 1/2 0

support only: one supported belief leads to actions D in the worst-case and the other

leads to action R in the worst-case. Therefore, for each receiver we need to consider

beliefs (µDi , µ
R
i ) ∈ [0, 2/3)× [2/3, 1] only.68 Moreover, it is easy to see that distributions

leading to both actions with positive probability are better than just sticking to the

prior (on each dimension). Thus, (µDi , µ
R
i ) ∈ [0, 1/2)× [2/3, 1] by Bayes plausibility. Us-

ing Theorem 2 the solution is readily available computationally. However, it is possible

to derive it directly, too. First, the lower belief-dependence bound69 has to be binding

due to submodularity. Furthermore, it has to be strictly tighter at some point than

the usual Fréchet-Hoeffding lower bound, otherwise Table 12 would be the solution.

Given the binary signals per receiver and the possible values for these, the only point

where the bound is binding is at (µD1 , µ
D
2 ). For the other cases the Fréchet-Hoeffding

bound is the same as the belief-dependence bound. Thus, letting τi denote the marginal

distributions,

τ(µD1 , µ
D
2 ) = τi(µ

D
1 )
(
1− µD1

)
+ τ2(µD2 )

(
1− µD2

)
− (1− π) ,

has to hold for any possible joint distribution. This allows me to simplify the program

as stated in Theorem 2 by making the problem separable between the two agents.70

68As before, we change the tie-breaking assumption here, which simplifies the notation, but does not
change the essence of the argument.

69For the binary state case first-order stochastic dominance is a total order. By Lemma 3, only T 1 has to
be considered for the lower bound.

70Derivations are shown in Subsection B.4.
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The reformulated program becomes

sup
τ1,τ2∈∆(∆(Θ))

∑
µ1

τ1(µ1)f(µ1) +
∑
µ2

τ2(µ2)f(µ2)

s.t.
∑
µ1

τ1(µ1)µ1 = π,

∑
µ2

τ2(µ2)µ2 = π,

where f(µ) := 1 [µ < 2/3] (2v + µ− 1)+1 [µ ≥ 2/3] (1− µ) using a normalization on the

payoffs for the CRO.71 The solution to this program determines the optimal marginal

distributions, which are then combined to a joint distribution via the lower belief-

dependence bound. Due to the established separability, the reformulation can be

solved with the concavification technique from Kamenica and Gentzkow (2011) yield-

ing µD,∗i = 0 and µR,∗i = 2/3. By Bayes plausibility this gives the same marginal

distribution as in Table 12, but these marginals must be put together with the lower

belief-dependence bounds. This yields the optimal information structure as foreshad-

owed in the introduction and stated in Table 2.

5 Discussion

In this section, I discuss some extensions of the model and highlight some conceptual aspects.

5.1 Designer with State-Dependent Preferences

Throughout the paper, the designer’s preferences did not depend on the state of nature

directly. This assumption can be interpreted as modeling the case of pure persuasion, in

which the designer does not have any intrinsic motivation about information provision. This

is not always a sensible assumption. Sometimes situation are better described by allowing

the designer’s preferences to also depend on the state, i.e. v : A1 × A2 × Θ → R. In such

a case, the characterization of Section 3 is not useful, because it is also necessary to keep

track of the designer’s belief about the state of nature, because the designer always sees the

realizations of both signals. However, the first step of the proof of Theorem 1 is helpful in this

71In particular, v(D,D) = −1, v(R,R) = 0, and v(R,D) = v(D,R) =: v ∈ [−1/2, 0]. This is without loss
of generality.
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case. Indeed, the characterization of the first step gives rise to the following representation

for a state-dependent designer:

Corollary 5 (State-Dependent Representation). Fix a design environment D with v : A ×
Θ→ R. The designer’s problem can be represented as

sup
I∈I

V (I) = sup
τ∈∆(∆(Θ)3)

∑
µ0,µ1,µ2

τ(µ0, µ1, µ2)ν(µ0, µ1, µ2)

s.t.
∑

µ0,µ1,µ2

τ(µ0, µ1, µ2)µi = π, for at least one i ∈ N ∪ {0}∑
µ0,µ−i

τ(µ0, µi, µ−i)µ0∑
µ0,µ−i

τ(µ0, µi, µ−i)
= µi for all i ∈ N and all µi ∈ supp τ,

where

ν(µ0, µ1, µ2) :=
∑
θ

µ0(θ) min
(ai∈Ri(µi))i∈I

v(a1, a2, θ).

5.2 Extension to Multiple Receivers

In this paper, I have focused only on two players only. This simplifies the notation sig-

nificantly, but not every result extends to more than two receivers. The solution concept

introduced in Section 2 readily extends to any finite number of players if the definitions

of belief-free rationalizability (Equation 1) and rational-extended beliefs (Definition 2) are

adapted to allow for general correlated beliefs about the opponents’ actions. The character-

ization in Section 3 does not extend to multiple players without adaption. Of course, the

functional form of the belief bounds is specific to two receivers, but a similar approach as in

the proof of Theorem 1 can be adapted. I sketch this in accordance with the proof steps of

Theorem 1.

Step 1 [Characterization of state-dependent distributions over beliefs]: This step generalizes

directly to multiple receivers.72

Step 2 [From τ to marginals of λ]: This generalizes as well, but now one has |N | + 1

marginals: the marginal τ on ∆(∆(Θ)N), and |N | bivariate marginals λi,θ on ∆(∆(Θ)×
Θ).

72This implies that the representation for a state-dependent designer as in the previous subsection extends
as well.
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Step 3 [Higher-order Fréchet-Hoeffding bounds]: This step is crucial for a generalization.

Here an extension of Joe (1997, Theorem 3.11) is needed to obtain bounds for |N |+ 1

dimensional distribution for marginals like the ones in Step 2, i.e. a version of

Γ
(
τ, (λi,θ)i∈N

)
≤ Γ

(
τ, (λi,θ)i∈N

)
,

where Γ and Γ would be functionals mapping to CDFs of |N | + 1 dimensional distri-

butions.

Step 4 [From information structures to bounds]: Given Step 3, the remainder stays the

same.

Deriving these bounds and studying their properties is left for future research.

5.3 The Economic Enviornment is Common Knowledge, so is Rationality

Throughout this paper, I operated from the assumption that the economic environment is

common knowledge among the players. In the examples this did not matter too much, but

it this knowledge is crucial for the solution concept, which also requires common knowledge

of rationality. A slight adaption of Battigalli et al. (2011, Section 3.1–3.2, see also Section

4.2) shows that the individual robust prediction corresponds to the behavioral implications

of common belief of the economic environment and rationality, as well as knowledge of the

marginal information structure. For certain economic environments, this has important

consequences for the design of information structures. To see this, consider the following

economic environment:

0
−1

0 0

1
−1

2 0

0
−1

0 0

−2 −1 −1 0

Novarty
R D

Novarty
R D

Pfizr
R

D

θ = 1 θ = 2

The payoffs for Pfizr are the same as in the CRO example, however Novarty now has an

(ex-post) dominated action: R is always worse than D. For the same prior as before (π = 5/9)

the robust prediction without any information would be {R} for Pfizr (and, of course, D

for Novarty). Thus, without providing any information the designer gets the best possible
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outcome. Suppose now, that the designer does not assume common knowledge of rationality

among the receivers but still assumes rationality and knowledge of the marginal information

structure for each receiver. The corresponding (even more) robust predication can be ob-

tained by dropping part (2) in the definition of rCPS (Definition 2). In this example, this

version of robust prediction (interpreted as a function of first-order beliefs) for Pfizr yields

the same as in the running example in the main text of this article. Therefore, if the designer

is concerned about robustness under these less restrictive assumptions, she will engage in

Bayesian Persuasion á la Kamenica and Gentzkow (2011) with Pfizr. This means that the

designer will optimally reveal the state of the drug being ineffective sometimes, which implies

that Pfizr will drop the project occasionally. This is in contrast to the behavior under the

assumption of common knowledge of rationality, where Pfizr will conduct further research

with certainty. What is the right optimal information structure for the designer? This de-

pends on the assumptions the designer wants to make. In this paper, the designer imposes

common knowledge of rationality.

5.4 Robust Information Design

The key aspect of robust mechanism design as initiated by Bergemann and Morris (2005),

and the Wilson (1987)-doctrine more generally, is relaxing the implicit common knowledge

assumption to obtain more realistic models. Given the discussion in the previous subsec-

tion, the model presented here can be interpreted likewise, but in the realm of information

design. In robust mechanism design, the implicit assumptions are relaxed by considering a

sufficiently rich Harsanyi-type space. In contrast, in information design the Harsanyi-type

space is the actual designed information structure. Mathevet et al. (forthcoming) provide

a method to study this design problem. My model can be interpreted as relaxing the com-

mon knowledge assumption about the designed information structure. But to remain in

the realm of information design, the players still know their designed marginal information

structure. The solution concept proposed in this paper captures these assumptions exactly as

explained in the previous section. In addition, the adversarial selection assumption reflects

the robustness aspect.
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5.5 Correlation Neglect

Recently, interest in correlation neglect, both empirically73 and theoretically,74 has deepened.

The belief-dependence bounds derived in this paper can be interpreted in a similar vein: con-

sider a single recevier, who gets information from different sources about a multidimensional

state. If this recevier does not undestand how the different sources are correlated, then the

belief-dependence bounds characterize all possible joint distributions over posteriors. For

example, the receiver might be averse to the uncertainty about the correlation structure of

the different sources. The belief-dependence bounds allow to translate this aversion to the

space of posterior beliefs. A similar idea, but without using these bounds, was employed

recently by Levy and Razin (2018) and applied to auctions in Laohakunakorn et al. (2019).

Exploring this avenue seems promising for future research.

6 Conclusions

One of the primary tasks of modern economies is the provision of information. In this paper,

I provide a method to study the question of how to optimally provide information when

agreements are made bilaterally between the sender and the receiver. In the case of multiple

receivers, which is quite common in the pharmaceutical industry, for example, receivers

might engage in a strategic game to compete in their market. These strategic considerations

should be taken into account by the information provider. Since the previous literature

assumed that the information provider can fully commit to a grand information structure

that becomes common knowledge among the receivers, I cannot directly apply these existing

methods. The full commitment assumption is in direct contrast to the bilateral-contracting

assumption.

This paper has several contributions, which provide a general, yet tractable, method to

study bilateral information design. First, I propose a new solution concept that captures

all actions that can be rationally chosen for a player with a given information about the

fundamental of the economy. Second, I contribute to information design by characterizing

the set of possible distributions over beliefs that can arise from any information structure.

In doing so, I develop novel extremal distributions that capture how dependent these beliefs

can be. Finally, I combine each of these insights to develop a representation theorem that

73See, for example, Enke and Zimmermann (2017).
74Recent papers include Levy and Razin (2015) or Ellis and Piccione (2017) among others.
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provides a simple method to study bilateral information design, assuming the designer is

concerned about robustness to strategic uncertainty arising from the bilateral arrangement.

I illustrate the main theorem by solving for the optimal information structure in a stylized

problem faced by contract research organizations.
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A A Foundation for the Individual Robust Predictions

In this section, I provide a foundation for the individual robust predictions in a similar spirit
as the literature on informational robustness and Bayes Correlated Equilibrium. First, I
need a result relating BFR to robustness across all information structures and across all
Bayes-Nash equilibria (Proposition 4). This part is closet to the literature on informational
robustness in the sense it takes the perspective of an outside observer. Second, I will give
a foundation for the individual robust-predictions by adding back the marginal information
structure of Player 1 (Theorem 3). Thus, this can be seen as a robustness from the player’s
perspective because he knows his marginal information structure. Since these foundations
rely on non-common priors, I also need to take care of zero probability events. This is in
contrast to the analysis in the main text and requires different definitions. Whenever zero
probability events can be ruled out, all the following definitions reduce to the definitions of
Section 2.

A.1 Robustness for an Outside Observer

Starting with an economic environment, a Bayesian game is obtained by adding priors for
each player πi ∈ ∆(Θ) and specifying a (grand) information structure with possible hetero-
geneous signal functions.

Definition 8. Fix an economic environment E. A (grand) generalized information structure
(for E) is I = 〈(Si,Ψi)i∈N〉, where for each player i ∈ N ,

1. Si is a finite set of signals, and

2. Ψi : Θ→ ∆(S1 × S2) is a conditional signal distribution.

A Bayesian game G = 〈E , I, (πi)i∈N〉 is given by (i) an economic environment E, (ii) a
generalized information structure I, and (iii) a prior πi ∈ ∆(Θ) for each player i ∈ N .

A generlized information structure together with the two priors gives rises to a standard
type space á la Harsanyi (1968) but without a common prior. Without common priors and
signal distributions the definition of equilibrium needs to account for zero probability events.
For complete information games, Brandenburger and Dekel (1987) introduced a posteriori
equilibrium to rule out the play of dominated actions after a zero probability events. The
definition of equilibrium in this paper will be an extension to incorporate uncertainty about
the states of nature. But first, we need to introduce a tool to define beliefs even in case of
zero probability events.

Definition 9. Fix an economic environment E, a player i, a prior πi ∈ ∆(Θ) and a gen-
eralized information structure I. A conditional probability system (CPS) for (πi, I) is a
mapping µi : Si → ∆ (Θ× S−i) such that for every (θ, si, s−i) ∈ Θ× S1 × S2,

µi(θ, s−i|si)

∑
θ′,s′−i

πi(θ
′)Ψi(si, s

′
−i|θ′)

 = πi(θ)Ψi(si, s−i|θ).
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That is, a CPS defines beliefs about the state of nature and the opponent’s signal realiza-
tion for every signal relation of the given player. In addition, the beliefs have to be updated
via Bayes’ rule whenever possible. To formally state the appropriate version of equilibrium,
it only remains to define strategies. A (behavioral) strategy for player i in a Bayesian Game
G is a mapping βi : Si → ∆(Ai).

Definition 10. Fix an economic environment E, priors πi ∈ ∆(Θ) for each player i ∈ N ,
and an information structure I. A Bayes-Nash equilibrium (BNE) for (π1, π2, I) is a tuple
(βi, µi) for each player i ∈ I such that

1. βi is a strategy,

2. µi is a CPS for (πi, I), and

3. βi is optimal (given µi and β−i), i.e. for each si ∈ Si

ai ∈ supp βi(·|si) =⇒ ai ∈ arg max
a′i

∑
θ,s−i,a−i

µi(θ, s−i|si)β−i(a−i|s−i)ui(a′i, a−i, θ).

Let BNE(π1, π2, I) be the set of all BNEs for (π1, π2, I).75

Now, the first result states that belief-free rationalizability characterizes all actions that
can be played in any Bayes-Nash equilibrium for any information structure (and any prior
beliefs). Thus, without making any assumptions about the information structure an outside
observer can not make any prediction that is a refinement of belief-free rationalizability.
In this sense, belief-free rationalizability is robust to the specification of the (generalized)
information structure.76

Proposition 4. Fix an economic environment E. For every player i, ai ∈ BFRi iff there ex-
ists priors (π1, π2), an information structure I and a signal si ∈ Si such that ai ∈ supp βi(·|si)
for some βi ∈ BNEi(π1, π2, I).

A.2 Robustness from the Player’s Perspective77

Now, we add back the marginal information structure of Player 1 (see Definition 1). Here as
well, we need to take care of zero probability events and therefore rational-extended beliefs
are not appropriate anymore. A version of a conditional probability system is needed again.
Although, now it should only capture beliefs about the state of nature.

75The dependence on the economic environment is suppressed in this notation since it will be fixed through-
out. Furthermore, I will slightly abuse notation and write β = (β1, β2) ∈ BNE(π1, π2, I) if there exists CPS’
µ = (µ1, µ2) such that (β, µ) ∈ BNE(π1, π2, I). Similarly, we will write βi ∈ BNEi(π1, π2, I) if there exists
β−i and µ such that (β1, µ1, β2, µ2) ∈ BNE(π1, π2, I).

76Bergemann and Morris (2017, Section 4.5) informally mention a result along these lines. Battigalli and
Siniscalchi (2003, Proposition 4.2 and 4.3) prove a similar result in a slightly different setting.

77This subsection is described from the perspective of player 1. It applies verbatim to player 2 by switching
the player indices.
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Definition 11. Fix an economic environment E, a prior π1 ∈ ∆(Θ) and a marginal in-
formation structure I1. A marginal conditional probability system (mCPS) for (π1, I1) is a
mapping µ1 : S1 → ∆ (Θ) such that for every (θ, s1) ∈ Θ× S1,

µ1(θ|s1)

[∑
θ′

π1(θ′)ψ1(s1|θ′)

]
= π1(θ)ψ1(s1|θ).

Similar to rational-extended beliefs, mCPS need to be extended as well.

Definition 12. Fix an economic environment E, a prior π1 ∈ ∆(Θ) and a marginal infor-
mation structure I1. A rational-extended conditional probability system (rCPS) for (π1, I1)
is a mapping µ1 : S1 → ∆ (Θ× A2) such that

1. µ̃1 = (µ1(·|s1))s1∈S1
is a mCPS for (π1, I1), where µ̃1(·|s1) = margΘ µ1(·|s1) for all

s1 ∈ S1, and

2. for all s1 ∈ S1, suppµ1(·|s1) ⊆ Θ×BFR2.

Finally, these rCPS’ allow to define the individual robust prediction even with zero prob-
ability events.

Definition 13. Fix an economic environment E, a prior π1 ∈ ∆(Θ), and a marginal infor-
mation structure I1. A pure strategy b : S1 → A1 is conceivable for (π1, I1) if there exists a
rCPS µ1 for (π1, I1) such that b is optimal given µ1, i.e. for each s1 ∈ S1,

b(s1) ∈ arg max
a′1

∑
θ,a2

µ1(θ, a2|s1)u1(a′1, a2, θ).

The individual robust prediction is the set of all conceivable strategies and is denoted by
R1(I1, π1).

The goal of this section is to provide a foundation of the individual robust predictions.
That is, it should capture they idea of informational robustness across all information struc-
tures of the opponent (fixing the marginal information structure of the player). This leads
to the idea of an extended information structure.

Definition 14. Fix an economic environment E and a marginal information structure I1 =
〈S1, ψ1〉. An extended information structure (for I1) is I = 〈(Ŝi,Ψi)i∈N〉 such that

1. I is a generalized information structure,

2. S1 ⊆ Ŝ1, and

3. margS1
Ψ1(·|θ) = ψ1(·|θ), for all θ ∈ Θ.

Let I(I1) be the set of extending information structures for I1.
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Condition (1) ensures that an extended information structure is indeed a generalized
information structure, whereas conditions (2) and (3) make sure that the extended infor-
mation structure incorporates the marginal information structure of Player 1. A natural
interpretation of this definition is that Player 1 conjectures a grand information structure
for given economic environment so that she can analyze the resulting Bayesian game. How-
ever, since she knows exactly what information she gets about the state of nature, she uses
this knowledge to rule out information structures which do not align with her marginal infor-
mation structure. Indeed, the individual robust prediction correspond to all strategies that
are conceivable across all such conjectures. This means that for each conceivable strategy
there is an extending information structure (and a conjectured prior for the opponent)78 and
a corresponding Bayes-Nash equilibrium where this strategy is played.

Theorem 3. Fix an economic environment E, prior π1 ∈ ∆(Θ), and a marginal information
structure I1. b ∈ R1(I1, π1) iff there exists an extending information structure I ∈ I(I1), a
prior π2 ∈ ∆(Θ), and a corresponding BNE βi such that b(si) ∈ supp βi(·|si) for all si ∈ Si.

Theorem 3 constitutes the main result of this section, because it provides an informational
robustness foundation for the individual robust predictions.

B Proofs and Detailed Calculations

B.1 Proofs for Section 2

Proposition 1. Fix a set of states of nature Θ. Consider an economic environment E
(with states of nature given by Θ), two priors π1, π

′
1 ∈ ∆(Θ) and two marginal information

structures I1 = 〈S1, ψ1〉 and I ′1 = 〈S ′1, ψ′1〉. For all (s1, s
′
1) ∈ S1 × S ′1, if µs1 = µs′1, then

R1(s1|I1, π1) = R1(s′1|I ′1, π′1).
Conversely, consider two priors π1, π

′
1 ∈ ∆(Θ) and two marginal information structures

I1 = 〈S1, ψ1〉 and I ′1 = 〈S ′1, ψ′1〉. If there exists (s1, s
′
1) ∈ S1 × S ′1 and θ ∈ Θ such that

µs1(θ) 6= µs′1(θ) then there exists a (finite) economic environment (holding Θ fixed) such that
R1(s1|I1, π1) ∩R1(s′1|I ′1, π′1) = ∅.

Proof. The statement is trivial if |Θ| = 1, so suppose |Θ| > 1.
The first part follows directly from the definition, since BFRi depends only on the

economic environment and the rational-extended beliefs exactly capture only the beliefs
about the states of nature, which are the same by assumption.

For the second part, fix θ′ ∈ Θ such that

µ :=
ψ1(s1|θ′)π1(θ′)∑
θ ψ1(s1|θ)π1(θ)

6= ψ′1(s′1|θ′)π′1(θ′)∑
θ ψ
′
1(s′1|θ)π′1(θ)

=: µ′.

Consider the following economic environment: Ai = {µ, µ′} and payoffs are given by

ui(ai, a−i, θ) = (ai − 1[θ = θ′])2.

78Recall that the economic environment does not specify priors.
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By construction only the belief about the state matters for best-replies, so the difference
between the induced belief on Θ and an rational-extended belief does not matter. Now,
note that µ (as action) is the unique best-reply to µ (as belief). Then, by construction
R1(s1|I1, π1) = {µ} and R1(s′1|I ′1, π′1) = {µ′} and the conclusion follows. �

B.2 Proofs for Section 3

Given the Bayesian updating if the two receivers (see Equation 3), define the induced state-
including joint distribution over beliefs by

λ(µ1, µ2, θ) =
∑
i∈N

∑
si:µsi=µi

π(θ)Ψ(s1, s2|θ). (14)

Similar to before, I will say that a distribution over beliefs and states λ is induced by some
information structure, if there exists an information structure such that λ can be derived
from the information structure by applying Equation 3 and Equation 14.

Lemma 1. A joint distribution over posterior beliefs and the state λ ∈ ∆(∆(Θ)×∆(Θ)×Θ)
is induced by some information structure I ∈ I if and only if

1.
∑

µ1,µ2
λ(µ1, µ2, ·) = π,

2. and for every i ∈ I, and every µi ∈ ∆(Θ),

∑
µ−i

λ(µi, µ−i, ·) = µi

∑
µ−i,θ

λ(µi, µ−i, θ)

 .
Proof. Fix an information structure I ∈ I and let λ ∈ ∆(∆(Θ)×∆(Θ)×Θ) be the induced
distribution. Then (1) is satisfied, because

∑
µ1,µ2

λ(µ1, µ2, θ) =
∑
µ1,µ2

∑
i∈N

∑
si:µsi=µi

π(θ)Ψ(s1, s2|θ)


= π(θ)

∑
s1,s2

Ψ(s1, s2|θ) = π(θ).
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For (2), consider µ1 ∈ ∆(Θ). Then,

∑
µ2

λ(µ1, µ2, θ) =
∑
µ2

∑
i∈N

∑
si:µsi=µi

π(θ)Ψ(s1, s2|θ)


=

∑
s1:µs1=µ1

∑
s2

π(θ)Ψ(s1, s2|θ)

=
∑

s1:µs1=µ1

[
µs1(θ)

∑
s2,θ′

π(θ′)Ψ(s1, s2|θ′)

]

= µ1(θ)
∑

s1:µs1=µ1

[∑
s2,θ′

π(θ′)Ψ(s1, s2|θ′)

]
= µ1(θ)

∑
µ2,θ′

λ(µ1, µ2, θ
′).

The argument for player 2 is the same.
Conversely, suppose there exists λ with conditions (1) and (2), I will construct an infor-

mation structure which induces λ. For this let S1 = supp marg1 τ and S2 = supp marg2 τ
and define the conditional signal distribution as

Ψ(µ1, µ2|θ) =
λ(µ1, µ2, θ)

π(θ)
.

Note that condition (1) implies that Ψ gives rises to valid distributions.
Furthermore, for signals which happen with positive probability condition (2) gives

µµi(θ) =

∑
µ−i

λ(µi, µ−i, θ)∑
µ−i,θ̃

λ(µi, µ−i, θ)
= µi(θ).

Hence, ∑
i∈N

∑
si:µsi=µi

π(θ)Ψ(s1, s2|θ) = π(θ)Ψ(µ1, µ2|θ) = λ(µ1, µ2, θ)

so that the constructed information structure induces λ. �

Lemma 2. Suppose λ ∈ ∆(∆(Θ)×∆(Θ)×Θ) satisfies (1) and (2) from Lemma 1, then for
every i ∈ I, ∑

µi,µ−i,θ

λ(µi, µ−i, θ)µi = π.
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Proof. ∑
µi,µ−i,θ

λ(µi, µ−i, θ)µi =
∑
µi

µi
∑
µ−i,θ

λ(µi, µ−i, θ)
(2)
=
∑
µi

∑
µ−i

λ(µi, µ−i, ·)
(1)
= π.

�

For the following consider the following definitions. Given τ1, τ2 ∈ ∆(∆(Θ)) and a prior
π ∈ ∆(θ) define

Π(L) =
L∑
k=1

π(θk)

T1(µ1) =
∑
µ′1≤µ1

τ1(µ′1) and T2(µ2) =
∑
µ′2≤µ2

τ2(µ′2)

T (µ1, µ2) =
∑
µ′1≤µ1

∑
µ′2≤µ2

τ(µ′1, µ
′
2)

M1(µ1, L) =
∑
µ′1≤µ1

τ1(µ′1)
L∑
k=1

µ′1(θk)

M2(µ2, L) =
∑
µ′2≤µ2

τ2(µ′2)
L∑
k=1

µ′2(θk).

With these definitions, the elementary functions of the belief-dependence bounds can be
restated as

T 1(µ1, µ2;L) = M1(µ1, L) +M2(µ2, L)− Π(L)

T 2(µ1, µ2;L) = T1(µ1)−M1(µ1, L) + T2(µ2)−M2(µ2, L)− [1− Π(L)]

T 1(µ1, µ2;L) = M1(µ1, L) + T2(µ2)−M2(µ2, L)

T 2(µ1, µ2;L) = T1(µ2)−M1(µ2, L) +M2(µ1, L),

for every L = 0, . . . , K.79

Lemma 3. Fix two univariate belief-distributions τ1, τ2 ∈ ∆(Θ) and a full-support prior
π ∈ ∆(Θ). Suppose that (i) Eτi [µi] = π, and (ii) suppi τi is totally ordered by first-order
stochastic dominance, then for every L = 0, . . . , K

Ti(µi)−Mi(µi, L) ≤ Ti(µi) [1− Π(L)] . (15)

Furthermore, T 2(µ1, µ2;L) ≤ maxL T 1(µ1, µ2;L).

79Recall that a summation over an empty set is, by definition, zero.
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Proof. Using the total order and (i), for every L and every µi ∈ supp τi

Eτi [
∑
k≤L

µ′i(θk)|µ′i ≤ µi]P(µ′i ≤ µi) + Eτi [
∑
k≤L

µ′i(θk)|µ′i > µi]P(µ′i > µi) =
∑
k≤L

Eτi [µ′i(θk)] = Π(L),

and by first-order stochastic dominance we also know that

Eτi [
∑
k≤L

µ′i(θk)|µ′i ≤ µi] ≥
∑
k≤L

µi(θk) ≥ Eτi [
∑
k≤L

µ′i(θk)|µ′i > µi].

Thus, Π(L) ≤ Eτi [
∑

k≤L µ
′
i(θk)|µ′i ≤ µi] = Mi(µi,L)/Ti(µi), which implies the first inequality in

Equation 15.
For the second part, the inequality Equation 15 gives

T 2(µ1, µ2;L) = T1(µ1)−M1(µ1, L) + T2(µ1)−M2(µ1, L)− [1− Π(L)]

≤ T1(µ1) [1− Π(L)] + T2(µ2) [1− Π(L)]− [1− Π(L)]

≤ T1(µ1) + T2(µ2)− 1 ≤ max
L

T 1(µ1, µ2;L).

�

Theorem 1. Fix an economic environment E and a full-support prior π ∈ ∆(Θ). τ ∈
∆(∆(Θ)×∆(Θ)) is induced by an information structure if and only if80

1.
∑

µ1,µ2
τ(µ1, µ2)µ1 =

∑
µ1,µ2

τ(µ1, µ2)µ2 = π, and

2. T - T - T .

Proof. Suppose τ satisfies the properties with the goal of showing that an information struc-
ture induces τ . By Lemma 1 it suffices to construct λ ∈ ∆(∆(Θ)×∆(Θ)×Θ) with marginal
distribution on ∆(Θ) ×∆(Θ) given by τ and properties (1) and (2) as stated in Lemma 1.
For this, define

λ1(µ1, θ) = µ1(θ)
∑
µ2

τ(µ1, µ2),

λ2(µ2, θ) = µ2(θ)
∑
µ1

τ(µ1, µ2).

A trivarite distribution λ with (bivariate) marginals given by τ , η1, and η2 satisfies (1) and
(2) of Lemma 1. (1) follows from∑

µ1,µ2

λ(µ1, µ2, θ) =
∑
µ1

λ1(µ1, θ) =
∑
µ1,µ2

µ1(θ)τ(µ1, µ2) = π(θ),

80Here, a slight abuse of notation appears: the belief bounds are formally only defined for two marginal
beliefs. In the statement there is only the joint distribution τ . The belief bounds correspond to the bounds
defined by using the two marginals distributions derived from τ .
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where the last equality uses the marginal condition (1) in Theorem 1. Condition (2) follows
as well: ∑

µ2

λ(µ1, µ2, θ) = λ1(µ1, θ) = µ1(θ)
∑
µ2

τ(µ1, µ2) = µ1(θ)
∑
µ2,θ

λ(µ1, µ2, θ).

It remains to show that such a distribution λ exists. For this some more notation is intro-
duced first.

Now, by Joe (1997, Theorem 3.11), λ with the given bivariate marginals exists if for every
L = 0, . . . , K and every µ1, µ2 ∈ ∆(Θ),

max {0, T (µ1, µ2)− [T1(µ1)−M1(µ1, L)] , T (µ1, µ2)− [T2(µ2)−M2(µ2, L)] ,

M1(µ1, L) +M2(µ2, L)− Π(L)}
≤ (16)

min {T (µ1, µ2),M1(µ1, L),M2(µ2, L),

T (µ1, µ2) + [1− Π(L)]− [T1(µ1)−M1(µ1, L)]− [T2(µ2)−M2(µ2, L)]} .

First, we need T (µ1, µ2) + [1− Π(θ)] − [T (µ1)− TM(µ1, θ)] − [T (µ2)− TM(µ2, θ)] ≥ 0, or
equivalently, T (µ1, µ2) ≥ T (µ1)−TM(µ1, θ)+T (µ2)−TM(µ2, θ)− [1− Π(θ)] = T 2(µ1, µ2;L).
This holds since T % T and T (µ1, µ2) ≥ T 2(µ1, µ2;L).

Next, each of the remaining terms in the max is verified separately.

1.

T (µ1, µ2)− [T1(µ1)−M1(µ1, θ)] ≤
min {T (µ1, µ2),M1(µ1, L),M2(µ2, L),

T (µ1, µ2) + [1− Π(L)]− [T1(µ1)−M1(µ1, L)]− [T2(µ2)−M2(µ2, L)]}

which is equivalent to

0 ≤ T1(µ1)−M1(µ1, L)

T (µ1, µ2) ≤ T1(µ1)

T (µ1, µ2) ≤ T1(µ1)−M1(µ1, L) +M2(µ2, L)

T2(µ2)−M2(µ2, L) ≤ 1− Π(L).

The first holds because T1(µ1) −M1(µ1, L) =
∑

µ′1≤µ1
τ1(µ′1)

∑K
k=L+1 µ

′
1(θk) ≥ 0. The

second holds because T1(µ1) is the marginal of T (µ1, µ2). The RHS of the third in-
equality is equal to T 2(µ1, µ2;L). Since T % T and T 2(µ1, µ2;L) ≥ T (µ1, µ2) the third
inequality is satisfied as well. Due to the marginal condition (1) in Theorem 1, the last
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inequality holds as well:

T2(µ2)−M2(µ2, L) =
∑
µ′2≤µ2

τ2(µ′2)

[
1−

L∑
k=1

µ′2(θk)

]
≤
∑
µ′2

τ2(µ′2)

[
1−

L∑
k=1

µ′2(θk)

]

≤
∑
µ′2

τ2(µ′2)

[
1−

L∑
k=1

µ′2(θk)

]
= 1−

L∑
k=1

π(θk) = 1− Π(L).

2. “T (µ1, µ2) − [T2(µ2)−M2(µ2, L)] ≤ . . .” is symmetric to the previous part. Thus, it
holds as well.

3. The last case is

M1(µ1, L)+M2(µ2, L)− Π(L) ≤
min {T (µ1, µ2), TM(µ1, θ), TM(µ2, θ),

T (µ1, µ2) + [1− Π(L)]− [T1(µ1)−M1(µ1, L)]− [T2(µ2)−M2(µ2, L)]} ,

which equivalent to

T (µ1, µ2) ≥M1(µ1, L) +M2(µ2, L)− Π(L)

M2(µ2, L) ≤ Π(L)

M1(µ1, L) ≤ Π(L)

T (µ1, µ2) ≥ T1(µ1) + T2(µ2)− 1.

The first holds because T % T and T (µ1, µ2) ≥ T 1(µ1, µ2;L). The second and third
inequality follow from the marginal constraint (1) in Theorem 1 as

Mi(µi, θ) =
L∑
k=1

∑
µ′i≤µi

τi(µ
′
i)µ
′
i(θ
′) ≤

L∑
k=1

∑
µ′i

τi(µ
′
i)µ
′
i(θ
′) =

L∑
k=1

π(θ′).

Finally, the last inequality holds for any joint distribution with given marginals—it’s
the lower Fréchet-Hoeffding bound.

Thus, the three bivariate marginals are consistent and there exists λ with these bivariate
marginals. As argued above, λ satisfies properties (1) and (2) of Lemma 1. Thus, there is
an information structure inducing λ with marginal τ .

Conversely, suppose that τ is induced by an information structure, then by Lemma 1
there exists a distribution λ ∈ ∆(∆(Θ)×∆(Θ)×Θ) with properties (1) and (2) of Lemma 1.
Furthermore, τ has to be the marginal of λ on the first two dimensions. By Lemma 2 the
marginal conditions (1) of Theorem 1 are satisfied. Existence of λ and the previous analysis
imply the bounds T % T % T :
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• If T (µ1, µ2) > T 1(µ1, µ2;L) = M1(µ1, L) + T2(µ2)−M2(µ2, L), then

T (µ1, µ2)− [T2(µ1)−M2(µ1, L)] > M1(µ2, L).

• If T (µ1, µ2) > T 2(µ1, µ2;L) = T1(µ2)−M1(µ2, L) +M2(µ1, L), then

T (µ1, µ2)− [T1(µ1)−M1(µ1, L)] > M2(µ2, L).

In either case, Equation 16 is violated. Similarly, if T (µ1, µ2) < T 1(µ1, µ2;L) = M1(µ1, L) +
M2(µ2, L)−Π(L) or T (µ1, µ2) < T 2(µ1, µ2;L) = T1(µ1)−M1(µ1, L) + T2(µ2)−M2(µ2, L)−
[1− Π(L)] then Equation 16 is violated.

Thus, if the bounds are not satisfied at any point Equation 16 is violated. This means
that there is no trivariate distribution with the marginals given by τ , λ1, and λ2.81 However,
this is in contradiction with the existence of λ. �

In the following, I will use the same notation as introduced in the proof of Theorem 1.

Corollary 1 (Kamenica and Gentzkow, 2011). Fix an economic environment E and a full-
support prior π ∈ ∆(Θ). Consider τ ∈ ∆(∆(Θ) × ∆(Θ)) with marginals τ1 and τ2 and
suppose that82 τ2 = δπ. Then, τ is induced by an information structure if and only if∑

µ1
τ1(µ1)µ1 = π.

Proof. We check that the belief-dependence bounds are always satisfied.
For the lower bound, the assumptions imply T 1(µ1, δπ;L) = M1(µ1, L) and T 2(µ1, δπ;L) =

T1(µ1)−M1(µ1, L). The first is increasing in L and the second is decreasing in L. Thus, the
lower bound becomes T (µ1, δπ) = T1(µ1) ≥ max {T 1(µ1, δπ;K), T 2(µ1, δπ; 0)} = max {T1(µ1), T1(µ1)}.

For the upper bound, the assumption imply T 1(µ1, δπ;L) = M1(µ1, L) + [1− Π(L)] and
T 2(µ1, δπ;L) = T1(µ1)−M1(µ1, L) + Π(L). Thus, for the bound to be satisfied

T1(µ1) = T (µ1, δπ) ≤ min {M1(µ1, L) + 1− Π(L), T1(µ1)−M1(µ1, L) + Π(L)}

needs to hold for all L = 0, . . . , K.

Case 1 - T1(µ1) ≤M1(µ1, L) + 1− Π(L): This is equivalent to T1(µ1) −M1(µ1, L) ≤ 1 −
Π(L). The LHS is increasing in µ1 and for µ̂1 ≥ supp τ1 the inequality holds with
equality due to constraint on the marginal distribution.

Case 2 - T1(µ1) ≤ T1(µ1)−M1(µ1, L) + Π(L): This is equivalent to M1(µ1, L) ≤ Π(L),
which holds by the same argument as in Case 1.

�
81See above for definition of λi’s. Condition (2) of Lemma 1 (together with τ being a marginal of λ) makes

sure that both λi’s have to be marginals of λ too.
82For a given set X and any x ∈ X, δx ∈ ∆(X) denotes the Dirac measure concentrated at x.
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Lemma 4. Fix two univariate distributions τ1, τ2 ∈ ∆(∆(Θ)) and a prior π ∈ ∆(Θ) such
that Eτi [µi] = π. The following are valid joint CDFs, i.e. CDFs corresponding to a random
variable.

T 1(µ1, µ2) := max
0≤L≤K

T 1(µ1, µ2;L) (17)

T 2(µ1, µ2) := max
0≤L≤K

T 2(µ1, µ2;L). (18)

(19)

Furthermore, all these CDFs have marginal distributions given by τ1 and τ2.

Proof. Marginal match for the lower bounds because the marginals average out to the prior
so that

T 1(µ1, δθK ) = max
0≤L≤K

T 1(µ1, δθK ;L) = max
0≤L≤K

M1(µ1, L) = M1(µ1, K) = T1(µ1)

T 2(µ1, δθK ) = max
0≤L≤K

T 2(µ1, δθK ;L) = max
0≤L≤K

T1(µ1)−M1(µ1, L) = T1(µ1)−M1(µ1, 0) = T1(µ1).

For the lower bound, we have

T 1(µ1, δθK ) = min
0≤L≤K

M1(µ1, L) + [1− Π(L)] = M1(µ1, K) + [1− Π(K)] = T1(µ1),

where the second to last equality follows from the marginal martingale condition because
1−Π(L) ≥ T1(µ1)−M1(µ1, L) for all L so that M1(µ1, L) + 1−Π(L) ≥ T1(µ1). The second
lower bound also has the correct marginals, because

T 1(µ1, δθK ) = min
0≤L≤K

T1(µ1)−M1(µ1, L) + Π(L) = T1(µ1)−M1(µ1, 0) + Π(0) = T1(µ1),

where the second to last equality follows similar to above because Π(L) ≥ M1(µ1, L) for all
L.

It is well known which properties of a function characterize bivariate CDFs (see, e.g.,
Joe, 1997, Section 1.4.1). I will only check supermodularity, the other properties are trivial
or directly implied by the marginals τi.

T 1 - (17): For any L and any µ̂1 ≥ µ1, T 1(µ̂1, µ2;L) − T 1(µ1, µ2;L) is constant in µ2 and
increasing in L. Thus, T 1(·, ·; ·) is supermodular in (µ1, µ2) and (µ1, L). By symmetry,
it is supermodular in (µ2, L) too. By Topkis (1998, Theorem 2.7.6), T 1(µ1, µ2) is
supermodular in (µ1, µ2).

T 2 - (18): Similar to above, after a change of variables (i.e. switch the order of the states).

�

Corollary 2. Fix an economic environment E and a full-support prior π ∈ ∆(Θ). Consider
two univariate distributions τ1, τ2 ∈ ∆(∆(Θ)) such that τ1 = τ2 and suppose that Eτ1 [µ1] = π.
Then, the upper belief-dependence bound is the usual upper Fréchet-Hoeffding bound, i.e.
T = F .
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Proof. By Symmetry T1 = T2 and similar for Mi. Thus, I will drop the indices. Without
loss say µ1 ≤ µ2, then T (µ1) ≤ T (µ2). Fix any L and then T 1(µ1, µ2;L) = M(µ1) +T (µ2)−
M(µ2) ≥ M(µ1) + T (µ1) −M(µ1) = T (µ1). Similarly, T 2(µ1, µ2;L) = T (µ1) −M(µ1) +
M(µ2) ≥ T (µ1)−M(µ1) +M(µ1) = T (µ1). �

Corollary 3. Fix an economic environment E and a full-support prior π ∈ ∆(Θ). Consider
two univariate distributions τ1, τ2 ∈ ∆(∆(Θ)) and suppose that Eτi [µi] = π for i = 1, 2.

1. If both supp τi, i = 1, 2, are totally ordered by first-order stochastic dominance, then T
is a sharp bound.83

2. If τ1 = τ2, then T is sharp.

Proof. If FOSD is a total order, Lemma 3 implies that T (µ1, µ2) = T 1(µ1, µ2). By Lemma 4,
this is a valid distribution, so the bound is sharp. Sharpness for T follows from Corollary 2.

�

B.3 Proofs for Section 4

Proposition 2. Consider a monotone design environment D. Suppose the designer’s utility
v : A → R is supermodular then the derived utility ν : ∆(Θ) × ∆(Θ) → R on belief space
(endowed with the first-order stochastic dominance order) is supermodular, where

ν(µ1, µ2) := min
(ai∈Ri(µi))i∈N

v(a1, a2).

Similarly, if v is submodular, then ν is submodular as well.

Proof. I will only prove the case of supermodularity. Consider µi ∈ ∆(Θ) and η : Θ →
∆(A−i) such that supp ν(·|θ) ⊆ BFR−i for all θ ∈ Θ. Since supermodularity is preserved
under summation (i.e. expectation) , the best-reply is increasing (in the strong set-order)
in first-order beliefs µi (holding η fixed), see van Zandt and Vives (2007). Thus the ro-
bust prediction correspondence is increasing (in the strong-set order). Now, let bi(µi) =
min {ai ∈ Ri(µi)}, which is increasing in µi. Because v is increasing, ν(µ1, µ2) = v(b1(µ1), b2(µ2)).
If µ1 first-order stochastic dominates µ′1, then b1(µ1) ≥ b1(µ′1). Thus,

ν(µ1, µ2)− ν(µ′1, µ2) = v(b1(µ1), a2(µ2))− v(b1(µ′1), a2(µ2)),

is increasing in µ2 because b2(·) is and v is supermodular. �

Proposition 3 (Revelation Principle). Suppose the design environment D is monotone.
Restrict the choice of information structures to information structures that give rise to pos-
teriors that are totally ordered by first-order stochastic dominance for each player.84 Then,
there exists an information structure I with value V (I) if and only if there exists a direct
information structure Î such that v(I) = v(Î).

83A bound for a given set is called sharp if the bound itself is a member of this set.
84For example, if the state space is binary, then this assumption is without loss of generality.
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Proof. One direction is obvious. For the other fix an information structure I. Then, define85

S1
i = {si ∈ Si : a1

i ∈ Ri(si)} and for 1 < k ≤ Ji

Ski =
{
si ∈ Si : aki ∈ Ri(si) and ali 6∈ Ri(si) for all l < k

}
.

Now, let Ŝi =
{
aji ∈ Ai : Sji 6= ∅

}
⊆ Ai and set the signal distribution to

Ψ̂(aj11 , a
j2
2 |θ) =

∑
i

∑
si∈S

ji
i

Ψ(s1, s2|θ).

Now, for a given aji ∈ Ŝi, the induced first-order belief (call it µ) will be a convex combination
of beliefs (i.e µsi for si ∈ Sji ). Since these beliefs are totally ordered, one of these beliefs
is the lowest according to first-order stochastic dominance; call it µ. Thus, the convex
combination (i.e. µ) is also greater than µ. As shown in Proposition B.3, the robust-
prediction correspondence is increasing. Thus, Ri(µ) ≤ Ri(µ) in the strong set order.

By construction, we have ami 6∈ Ri(µ) for m < j implying that ami 6∈ Ri(µ). Furthermore,

we know that aji is conceivable for each µsi for si ∈ Sji . That is, for each such si ∈ Sji there
exists ηsi(·|·) : Θ→ ∆(A−i) such that aji ∈ BRi(µsi ◦ηsi). Consider86 µ̃ =

∑
si∈Ŝ

Ai
i
λsiµsi ◦ηsi ,

which has marginal µ by construction. And since aji is a best-reply to each belief separately,
it’s also a best-reply to the convex combination. Proving aji ∈ Ri(µ).

So we established

aji ∈ Ri(a
j
i ) and ami 6∈ Ri(a

j
i ), for all m < j.

Thus, by Definition 7 for any (a1, a2) ∈ Ŝ1 × Ŝ2

min
a′i∈Ri(ai)

v(a′1, a
′
2) = v(a1, a2).

Proving that the information structure is direct. That the values are the same follows trivially
from the construction. �

B.4 Detailed calculations for Subsection 4.2

To simplify notation let τDD := τ(µD1 , µ
D
2 ) and similar for the other three cases and let

τi := τi(µ
D
i ). With this notation,

τDD = τ1(1− µD1 ) + τ2(1− µD2 )− (1− π).

85The superscripts refer to the indexing set of the actions, i.e. Ai = {a1i , . . . , a
Ji
i }.

86Let λsi denote the coefficients of the convex combination.
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Since marginal distribution average out to the prior: (1− τi)(1− µRi ) + τi(1− µDi ) = 1− π.
Hence,

τDD = τ1(1− µD1 ) + τ2(1− µD2 )− (1− π)−
∑
i

(1− τi)(1− µRi ) + τi(1− µDi )

2

=
1

2

[
τ1(1− µD1 )− (1− τ1)(1− µR1 ) + τ2(1− µD2 )− (1− τ2)(1− µR2 )

]
.

Given the normalization on the utility of the designer, the objective becomes −τDD+v(τDR+
τRD). Furthermore, the following equalities hold:

τDR = τ1 − τDD =
1

2

[(
τ1µ

D
1 + 1− µR1 + τ1µ

R
1

)
−
(
τ2(1− µD2 )− (1− τ2)(1− µR2 )

)]
τRD = τ2 − τDD =

1

2

[(
τ2µ

D
2 + 1− µR2 + τ2µ

R
2

)
−
(
τ1(1− µD1 )− (1− τ1)(1− µR1 )

)]
.

Plugging into the objective (ignoring the 1/2 scaling):

v
[(
τ1µ

D
1 + 1− µR1 + τ1µ

R
1

)
−
(
τ1(1− µD1 )− (1− τ1)(1− µR1 )

)]
−
(
τ1(1− µD1 )− (1− τ1)(1− µR1 )

)
+v
[(
τ2µ

D
2 + 1− µR2 + τ2µ

R
2

)
−
(
τ2(1− µD2 )− (1− τ2)(1− µR2 )

)]
−
(
τ2(1− µD2 )− (1− τ2)(1− µR2 )

)
=
[
2vτ1 − τ1(1− µD1 ) + (1− τ1)(1− µR1 )

]
+
[
2vτ2 − τ2(1− µD2 ) + (1− τ2)(1− µR2 )

]
=τ1

(
2v − (1− µD1 )

)
+ (1− τ1)(1− µR1 ) + τ2

(
2v − (1− µD2 )

)
+ (1− τ2)(1− µR2 ),

so that the objective is separable. From the main text, we know that µDi < 2/3 and
µRi ≥ 2/3. Thus, we can rewrite the objective as stated in the main text87 with f(µ) :=
1 [µ < 2/3] (2v + µ− 1) + 1 [µ ≥ 2/3] (1− µ). Figure 10 plots this function and its concavifi-
cation. Since v ∈ [−1/2, 0] shifts f only vertically, it will not change the maximizer resulting
from the concavification.

B.5 Proofs for Appendix A

Since actions are finite it is immediate that the BFR procedure as stated in Equation 1
needs to stop at a finite number of iterations, which directly gives the usual, but convenient,
fixed-point definition of belief-free rationalizability:

BFRi =

{
ai ∈ Ai : ∃µi ∈ ∆(Θ× A−i) s.t.

(1) suppµi ⊆ Θ×BFR−i, (20)

(2) ai ∈ arg max
a′i∈Ai

∑
θ,a−i

µi(θ, a−i)ui(a
′
i, a−i, θ)

}
.

87To be precise, the values of f for µ ∈ [1/2, 2/3) can be set arbitrary as long as they are strictly below the
resulting concavification. This can be done because from the analysis in the main text it is known that µ in
this range cannot be optimal.
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Figure 10: f(µ) in dashed blue (with v = −0.05) and concavification thereof in red.

Proposition 4. Fix an economic environment E. For every player i, ai ∈ BFRi iff there ex-
ists priors (π1, π2), an information structure I and a signal si ∈ Si such that ai ∈ supp βi(·|si)
for some βi ∈ BNEi(π1, π2, I).

Proof. For given priors (π1, π2), information structure I, consider a signal si such that ai ∈
supp βi(·|si) for some (βi, µ̂i, β−i, µ̂−i) ∈ BNE(π1, π2, I). We show that ai ∈ BFRi by
induction, i.e. ai ∈ BFRn

i for every n. The statement is trivial for n = 0. So assume the
statement is true for n ≥ 0. Consider the following belief µi ∈ ∆(Θ× S−i ×A−i) defined by

µi(θ, s−i, a−i) = µ̂i(θ, s−i|si)β−i(a−i|s−i),

Note that ai is a best-reply to µi by the definition of BNE.
Let mi = margΘ×A−i

µi, then we have

mi(θ, a−i) > 0 =⇒ µi(θ, s−i, a−i) > 0 for some s−i such that β−i(a−i|s−i) > 0,

and by the induction hypothesis a−i ∈ BFRn
−i. Hence, suppµi ⊆ Θ×BFRn

−i. Since, ai is a
best-reply to µi, ai ∈ BFRn+1

i .
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Conversely, for every ai ∈ BFRi, there is a justifying belief µaii satisfying (1) and (2)
from BFR.88 Then define a prior by

πi(θ) =
∑

ai∈BFRi

∑
a−i

µaii (θ, a−i)

|BFRi|

and consider the following information structure: Si = BFRi and

Ψi(ai, a−i|θ) =
µaii (θ, a−i)

πi(θ)
|BFRi|−1,

if πi(θ) > 0 and arbitrary otherwise. Note that for every ai ∈ BFRi, we have∑
a−i,θ

πi(θ)Ψi(ai, a−i|θ) = |BFRi|−1 > 0,

so that the CPS is entirely determined by Bayesian updating.
Now, fix ai ∈ BFR and consider the obedient strategies, i.e. βi(ai|si) = 1[si = ai]. Then,

ai ∈ arg max
a′i∈Ai

∑
θ,a−i

µaii (θ, a−i)ui(a
′
i, a−i, θ)

∈ arg max
a′i∈Ai

∑
θ,a−i

Ψi(ai, a−i|θ)πi(θ)ui(a′i, a−i, θ)

∈ arg max
a′i∈Ai

∑
θ,a−i,s−i

πi(θ)Ψi(ai, s−i|θ)β−i(a−i|s−i)ui(a′i, a−i, θ),

so that the obedient strategy of i is indeed a best-reply to the obedient strategy of the other
player (given the information structure). That is, β (and the CPS derived from Bayesian
updating) constitute a BNE. �

Proof. Fix a marginal information structure Ii and prior π1.
For a given extending information structure I ∈ I(I1), a prior π2, and a corresponding

BNE (β, µ̂) consider any selection b(s1) ∈ supp βi(·|s1) for all s1 ∈ S1. For every s2 ∈ Ŝ2

and every a2 ∈ supp β2(·|s2), a2 ∈ BFR2 by Proposition 4. For each s1 ∈ S1 consider beliefs
µ1(·|s1) ∈ ∆(Θ× A2) defined by

µ1(θ, a2|s1) =
∑
ŝ2

µ̂1(θ, ŝ2|s1)β2(a2|ŝ2).

Then µ1(θ, a2|s1) > 0 implies that there exists s2 ∈ Ŝ2 such that β2(a2|s2) > 0, which implies
that a2 ∈ BFR2. Hence, suppµ1(·|s1) ⊆ Θ × BFR2 for every s1 ∈ S1. Furthermore, let

88Here, the equivalent fixed-point definition of BFR stated in Equation 20 is used.
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µ̃1(·|s1) =
∑

a2
µ1(·, a2|s1) for every s1 ∈ S1, then

µ̃1(θ|s1)

[∑
θ′

π1(θ′)ψ1(s1|θ′)

]
=
∑
a2,ŝ2

µ̂1(θ, ŝ2|s1)β2(a2|ŝ2)

[∑
θ′

π1(θ′)ψ1(s1|θ′)

]

=
∑
ŝ2

µ̂1(θ, ŝ2|s1)

[∑
θ′

π1(θ′)ψ1(s1|θ′)

]

=
∑
ŝ2

µ̂1(θ, ŝ2|s1)

∑
θ′,ŝ′2

π1(θ′)Ψ1(s1, ŝ
′
2|θ′)


=
∑
ŝ2

π1(θ)Ψ1(s1, ŝ2|θ) = π1(θ)ψ1(s1|θ),

where the third and last equality use property 3 of an extending information structure
(Definition 14). The fourth equality follows from µ̂1 being a CPS for (π1, I) (see Definition 9).
Thus, µ1 is a rCPS and by construction b(si) is a best-reply to µ1(·|s1) for each s1 ∈ S1.
This proves that b is conceivable.

Conversely, consider b ∈ R1(I1, π1). By definition of R1 there exists a rCPS µ1 such that
b is optimal given µ1. Define BFR−1 = BFR1 \ ∪s1∈S1{b(s1)} and set Ŝ1 = S1 ∪BFR−1 and
Ŝ2 = BFR2.

For player 1, define a conditional signal distribution as follows.

Ψ1(s1, ŝ2|θ) =
µ1(ŝ2, θ|s1)

π1(θ)

∑
θ̃

π1(θ̃)ψ1(s1|θ̃), for all s1 ∈ S1, and

Ψ1(a1, ŝ2|θ) = 0 for all a1 ∈ BFR−1 ,

if πi(θ) > 0 and arbitrary otherwise. Since the marginal of µ1 on θ is a mCPS, we have that
margS1

Ψ1 = ψ1.

Since Ŝ2 ⊆ BFR2, there is a belief µa22 satisfying (1) and (2) from BFR89 for each a2 ∈ Ŝ2.
Then define a prior by

π2(θ) =
∑
a2∈Ŝ2

∑
a1
µa22 (θ, a1)

|Ŝ2|

and consider the following conditional signal distribution for player 2.

Ψ2(s1, a2|θ) =
1

|Ŝ2|
1

|b−1(b(s1))|
µa22 (b(s1), θ)

π2(θ)
, for all s1 ∈ S1, and

Ψ2(a1, a2|θ) =
1

|Ŝ2|
µa22 (a1, θ)

π2(θ)
, for all a1 ∈ BFR−1 ,

89Again, the equivalent fixed-point definition of BFR stated in Equation 20 is used.
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if π2(θ) > 0 and arbitrary otherwise.
Since

∑
ŝ1,θ

Ψ2(ŝ1, s2|θ)π2(θ) = |Ŝ2|−1 > 0 for all s2 ∈ Ŝ2, the CPS for player 2 is
determined by Bayesian updating. For player 1, consider the CPS that is defined by Bayesian
updating if

∑
θ̃,ŝ2

π1(θ̃)Ψ1(s1, ŝ2|θ̃) =
∑

θ̃ π1(θ̃)ψ1(s1|θ̃) > 0 and in the other case for s1 ∈ S1

define

µ̂1(θ, ŝ2|s1) =
∑
a2

µ1(θ, a2|s1)1[a2 = ŝ2].

For a1 ∈ BFR−1 there exists a justifying BFR belief µa11 ∈ ∆(Θ × A2), so take as a CPS
belief90

µ̂1(θ, ŝ2|s1) =
∑
a2

µa11 (θ, a2)1[a2 = ŝ2].

Now, consider the obedient strategies β1(b(s1)|s1) = 1 if s1 ∈ S1, β1(a1|a1) = 1 if a1 ∈
BFR−1 , and β2(a2|a2) = 1 for every a2 ∈ Ŝ2. It remains to verify that these strategies are
optimal given the CPS (and the strategy of the opponent).

Player 1 For every s1 ∈ S1 with
∑

θ̃,ŝ2
π1(θ̃)Ψ1(s1, ŝ2|θ̃) > 0 we have

b(s1) ∈ arg max
a′1∈A1

∑
θ,a2

µ1(θ, a2|s1)u1(a′1, a2, θ)

∈ arg max
a′i∈Ai

∑
θ,a2

Ψ1(s1, a2|θ)π1(θ)u1(a′1, a2, θ)

∈ arg max
a′i∈Ai

∑
θ,a2,ŝ2

π1(θ)Ψ1(s1, ŝ2|θ)β2(a2|ŝ2)u1(a′1, a2, θ),

where the second line uses the definition of the signal distribution and the belief in the
last line is (equivalent to) the updated belief together with belief in the strategy of the
other player.

For every si ∈ Si with
∑

θ̃,ŝ2
π1(θ̃)Ψ1(s1, ŝ2|θ̃) = 0,

b(s1) ∈ arg max
a′1∈A1

∑
θ,a2

µ1(θ, a2|s1)u1(a′1, a2, θ)

∈ arg max
a′i∈Ai

∑
θ,a2,ŝ2

µ1(θ, a2|s1)1[a2 = ŝ2]u1(a′1, ŝ2, θ)

∈ arg max
a′i∈Ai

∑
θ,ŝ2,a2

µ̂1(θ, ŝ2|s1)β2(a2|ŝ2)u1(a′1, a2, θ).

Like in the last case, for every a1 ∈ BFR−1 a1 is a best-reply to µ̂1 and β2.

90By construction, these a1 have zero probability under the signal distributions of player 1.
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Player 2 For every a2 ∈ Ŝ2 we have

a2 ∈ arg max
a′2∈A2

∑
θ,a1

µa22 (θ, a1)u2(a1, a
′
2, θ)

∈ arg max
a′2∈A2

∑
θ

 ∑
a1∈{b(s1)}s1

µa22 (θ, a1)u2(a1, a
′
2, θ) +

∑
a1∈BFR−1

µa22 (θ, a1)ui(a1, a
′
2, θ)


∈ arg max

a′2∈A2

∑
θ

∑
s1∈S1

µa22 (θ, b(s1))

|b−1(b(s1))|
u2(b(s1), a′2, θ) +

∑
a1∈BFR−1

µa22 (θ, a1)u2(a1, a
′
2, θ)


∈ arg max

a′2∈A2

∑
θ

∑
ŝ1∈Ŝ1,a1

π2(θ)ψ2(ŝ1, a2|θ)β1(a1|ŝ1)u2(a1, a
′
2, θ).

So that β (together with the constructed CPS) is indeed a BNE. �



69

References

Aliprantis, C. and K. Border (2006): Infinite Dimensional Analysis: A Hitchhiker’s
Guide, Springer.

Alonso, R. and O. Câmara (2016): “Bayesian Persuasion with Heterogeneous Priors,”
Journal of Economic Theory, 165, 672–706.

Artemov, G., T. Kunimoto, and R. Serrano (2013): “Robust Virtual Implementa-
tion: Toward a Reinterpretation of the Wilson Doctrine,” Journal of Economic Theory,
148, 424 – 447.

Aumann, R. J. (1987): “Correlated Equilibrium as an Expression of Bayesian Rationality,”
Econometrica, 55, 1–18.

Battigalli, P. (2003): “Rationalizability in infinite, dynamic games with incomplete in-
formation,” Research in Economics, 57, 1–38.

Battigalli, P., A. Di Tillio, E. Grillo, and A. Penta (2011): “Interactive Epis-
temology and Solution Concepts for Games with Asymmetric Information,” The B.E.
Journal of Theoretical Economics, 11.

Battigalli, P. and M. Siniscalchi (2003): “Rationalization and Incomplete Informa-
tion,” Advances in Theoretical Economics, 3.

——— (2007): “Interactive Epistemology in Games with Payoff Uncertainty,” Research in
Economics, 61, 165–184.
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