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Abstract

Dynamic treatment regimes are treatment allocations tailored to heterogeneous in-

dividuals. The optimal dynamic treatment regime is a regime that maximizes coun-

terfactual welfare. This paper investigates the possibility of identification of optimal

dynamic regimes when data are generated from sequential (quasi-) experiments. We

propose a framework in which we can partially learn the optimal dynamic regime and or-

dering of welfares, relaxing sequential randomization assumptions commonly employed

in the literature. We establish the sharp partial ordering of counterfactual welfares

with respect to dynamic regimes by using a series of linear programs. A distinct fea-

ture of our approach is that, instead of solving a large number of large-scale linear

programs, we provide simple analytical conditions for the ordering. The identified set

of the optimal regime is then characterized as the set of maximal elements of the par-

tial order. We also propose topological sorts of the partial order as a policy menu.

We show how policymaking can be further guided by imposing assumptions such as

monotonicity/uniformity of different stringency, agent’s learning, Markovian structure,

and stationarity.
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1 Introduction

Dynamic (i.e., adaptive) treatment regimes are treatment assignments tailored to individual

heterogeneity to improve welfare. Typically, a dynamic treatment regime is defined as a

sequence of assignment rules that maps previous outcomes and treatments onto current

allocation decisions. Then the optimal dynamic treatment regime is defined as a regime that

maximizes a social planner’s objective function, such as counterfactual welfare. This paper

investigate the possibility of identification of optimal dynamic regimes, when panel data are

generated from sequential (quasi-) experiments, i.e., multi-stage experiments in the presence

of non-compliance, or more generally from observational studies. Examples of the former

are medical trials, public health and educational interventions in field experiments, or A/B

testing in digital platforms, and examples of the latter are squences of policy shocks or what

we call sequential regression discontinuity (RD) designs.

Optimal treatment regimes have been extensively studied in the biostatistics literature

(Murphy et al. (2001), Murphy (2003), and Robins (2004) among others). These studies

critically rely on an ideal multi-stage experimental environment that satisfies sequential ran-

domization. It assumes that the treatment is randomly assigned in each period conditional

on the history and that such an assignment is fully complied. Based on the data that satisfy

this assumption, they identify optimal regimes that maximize welfare, written as the average

counterfactual outcomes. Non-compliance, however, is prevalent in experiments, especially

in multi-stage settings, e.g., due to the cost of enforcement or subjects’ learning, and there-

fore should be allowed for. More generally, treatment endogeneity is a marked feature in

observational studies, and this may be one reason why the vast biostatistics literature has

not yet gain traction in economic analyses.

This paper proposes a framework in which we can partially learn the optimal dynamic

regime and ordering of welfares. We define welfare as a linear functional of the joint dis-

tribution of counterfactual outcomes of all periods, and the optimal dynamic regime as its

maximizer. An example of the welfare is the average counterfactual terminal outcome consid-

ered in the literature. Using a panel of outcomes, endogenous treatments, and instruments,

we establish the sharp partial ordering of welfares, and characterize the identified set of op-

timal regimes as a discrete subset of all possible regimes as well as the bounds on welfares.

We focus on binary outcomes and treatments for policy sets to be feasible by reducing the

cardinality of possible regimes. A sequence of binary instruments is assumed to be generated

by sequential randomized trials or sequential RD.

The analysis is conducted in two steps. In the first step, we establish the partial ordering

of counterfactual welfares with respect to possible regimes, representing it as a directed
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acyclic graph (DAG). For this purpose, we characterize bounds on the difference of welfares

for possible regime pairs via a sequence of linear programs. These bounds on welfare gaps

are informative about whether welfares are comparable or not, and when they are, how to

order them. The DAG obtained in this way is shown to be sharp (in the sense that will

become clear). A novel feature of this analysis is that we do not numerically solve the linear

programming problems. Solving them is computationally costly because each linear program

is large-scale and there are as many linear programs to solve as the number of possible

welfare pairs, which is also large due to adaptivity. Instead, as one of the main contributions

of this paper, we provide simple analytical conditions for incomparability of welfare pairs and

conditions that determine the signs of welfare gaps. Note that each welfare gap measures

the dynamic treatment effect. The DAG concisely summarizes the identified signs of the

treatment effects, and thus it is a parameter of independent interest in this paper.

In the second step, given the DAG representation, we show that the identified set can

be characterized as the set of maximal elements of the partial order, i.e., regimes that are

not inferior. We show that the set can be easily computed from the adjacency matrix of the

DAG. Given the DAG, we also calculate topological sorts, which are linear orderings that do

not violate the underlying partial order and thus can be viewed as a policy menu. We then

solve linear programming only to calculate bounds on a small number of sorted welfares as

well as regrets.

Often, the researcher is willing to impose additional assumptions to gain identification

power. We propose identifying assumptions, such as monotonicity/uniformity assumptions

that generalize the monotonicity assumption in Imbens and Angrist (1994), an assumption

on agent’s learning, Markovian structure, and stationarity. These assumptions tighten the

identified set by reducing the dimension of the simplex in the linear programming, and thus

producing a denser DAG.

To our best knowledge, this paper is first in the literature that considers the identifiabil-

ity of optimal dynamic regimes under treatment endogeneity. As mentioned, Robins (1997),

Murphy et al. (2001), and Murphy (2003) identify optimal dynamic regimes but under the

sequential randomization assumption. Recently, Han (Forthcoming) and Wang and Tchet-

gen Tchetgen (2018) relax sequential randomization (and thus allow non-compliance) and

consider identification of average treatment effects, but only as functions of non-adaptive

regimes which greatly simplify the analysis. Relatedly, Heckman and Navarro (2007) and

Heckman et al. (2016) utilize exclusion restrictions to recover dynamic treatment effects,

but they rely on infinite support assumptions and consider irreversible treatments. Athey

and Imbens (2018), Abraham and Sun (2019), Callaway and Sant’Anna (2019) extend the

difference-in-differences approach to dynamic settings and consider the effects of treatment
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timing (i.e., irreversible treatments) on the treated.

The linear programming approach to partial identification of counterfactuals has early

examples as Balke and Pearl (1997) and Manski (2007), and more recently appears in Tor-

govitsky (2019), Kamat (2017), Deb et al. (2017), Mogstad et al. (2018), Kitamura and Stoye

(2019), Machado et al. (Forthcoming), and Gunsilius (2019). A distinct feature of this paper

is that, even though our problem produces the large number of large-scale programs, we

do not numerically solve them but derive analytical conditions that determine the signs of

the optima, which are sufficient to construct the partial order and the identified set. These

conditions have simple sample counterparts, and thus estimation and inference of the DAG

and the identified set are shown to be relatively straightforward, without relying on objects

that are solutions to linear programs. The notion of sharp partial ordering introduced in

this paper and its analytical derivation have broader applicability beyond the context of this

paper. They can be used in settings where linear programming is involved and the goal is to

compare welfares across multiple treatments or, more generally, to establish a counterfactual

ordering across different scenarios and find the best one.

In the next section, we introduce the dynamic regimes and related counterfactual out-

comes, which define the welfare and the optimal regime. Section 3 provides a motivating

example. Section 4 conducts the main identification analysis by constructing the DAG and

characterizing the identified set. Sections 5–7 introduce topological sorts, additional identify-

ing assumptions, and discuss cardinality reduction for the set of regimes. Section 8 illustrates

our analysis with numerical exercises and Section 9 discusses estimation and inference. Most

proofs are collected in the Appendix.

In terms of notation, let W t ≡ (W1, ..,Wt) denote a row vector that collects r.v.’s Wt

across time up to t, and let wt be its realization. Most of the time, we write W ≡ W T

for convenience. We abbreviate “with probability one” as “w.p.1” and “with respect to” as

“w.r.t.” The symbol “⊥” denotes statistical independence.

2 Dynamic Regimes and Counterfactual Welfares

2.1 Dynamic Regimes

Let t be the index for a period or stage. For each t = 1, ..., T with fixed T , define an

adaptive treatment rule δt : {0, 1}t−1 × {0, 1}t−1 → {0, 1} that maps the lags of realized

binary outcomes and binary treatments yt−1 ≡ (y1, ..., yt−1) and dt−1 ≡ (d1, ..., dt−1) onto a
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Regime # δ1 δ2(1, δ1) δ2(0, δ1)

1 0 0 0
2 1 0 0
3 0 1 0
4 1 1 0
5 0 0 1
6 1 0 1
7 0 1 1
8 1 1 1

Table 1: Dynamic Regimes δ(·) with T = 2

non-stochastic treatment allocation dt ∈ {0, 1}:

δt(y
t−1,dt−1) = dt. (1)

This adaptive rule also appears in, e.g., Murphy (2003). A special case of (1) is a non-adaptive

rule where δt(·) is just a constant function (Han (Forthcoming), Wang and Tchetgen Tchetgen

(2018)). Whether the rule is adaptive or non-adaptive, we only consider non-stochastic rules.1

The rule can also be a function of other observables, which we do not consider here for

succinctness. Then, a dynamic regime up to period t is defined as a vector of all treatment

rules:

δt(·) ≡ (δ1, δ2(·), ..., δt(·)) ∈ Dt,

where Dt is the class of all possible regimes. Let δ(·) ≡ δT (·) ∈ D ≡ DT . With T = 2, Table

1 lists all possible dynamic regimes δ(·) ≡ (δ1, δ2(·)) as contingency plans.

2.2 Counterfactual Welfares and Optimal Regimes

To define welfare w.r.t. this dynamic regime, we first introduce a counterfactual outcome as

a function of the dynamic regime. Because of the adaptivity intrinsic in dynamic regimes,

expressing counterfactual outcomes is more involved than that with non-adaptive regimes

dt, i.e., Yt(d
t) with dt ≡ (d1, ..., dt). Let Y t(dt) ≡ (Y1(d1), Y2(d

2), ..., Yt(d
t)). We express a

1A stochastic rule allocates the probability of treatment and is considered in, e.g., Murphy et al. (2001),
Murphy (2003), and Manski (2004). Our analysis can be extended to this case, although we do not pursue
in this paper.
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counterfactual outcome with adaptive regime δt(·) as follows:

Yt(δ
t(·)) ≡ Yt(d

t) (2)

where the bridge variables dt ≡ (d1, ..., dt) satisfies

d1 = δ1,

d2 = δ2(Y1(d1), d1),

d3 = δ3(Y
2(d2),d2), (3)

...

dt = δt(Y
t−1(dt−1),dt−1).

In this recursive expression, for each t, the adaptive regime δt(·) take a value dt which is

fed into the next period’s rule as an argument itself and as an argument of counterfactual

outcome vector. Suppose T = 2. Then, the two counterfactual outcomes are defined as

Y1(δ1) = Y1(d1) and Y2(δ
2(·)) = Y2(δ1, δ2(Y1(δ1), δ1)).

Let qδ(y) ≡ Pr[Y (δ(·)) = y] be the joint distribution of counterfactual outcome vector

Y (δ(·)) ≡ (Y1(δ1), Y2(δ
2(·)), ..., YT (δ(·))). We define a counterfactual welfare as a functional

of qδ(y):

Wδ ≡ f(qδ).

Examples of the functional include the average counterfactual terminal outcome E[YT (δ(·))] =

Pr[YT (δ(·)) = 1], our leading case, the weighted average of counterfactuals
∑T

t=1 ωtE[Yt(δ
t(·))],

and these benefits less the cost of treatments
∑T

t=1 ptδt(·) where pt is a known cost at t. Then,

the optimal dynamic regime is a regime that maximizes the welfare:2

δ∗(·) = arg max
δ(·)∈D

Wδ (4)

In some cases, the solution δ∗(·) can be justified by backward induction in a finite-horizon

dynamic programming; see Appendix A.1.

The identification analysis of the optimal regime is closely related to identification of

welfare at each regime and welfare gaps, which also contain information for policy. Some in-

teresting special cases are the followings: (i) the optimal welfare, Wδ∗ , which in turn yields (ii)

2We assume that the optimal dynamic regime is unique by simply ruling out knife-edge cases where two
regimes deliver the same welfare.
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the regret from following individual decisions, Wδ∗−WD, where WD is simply f(Pr[Y (D) =

·]) = f(Pr[Y = ·]), and (iii) the gain from adaptivity, Wδ∗ −Wd∗ , where Wd∗ = maxdWd is

the optimum of the welfare with a non-adaptive rule, Wd = f(Pr[Y (d) = ·]). If the cost of

treatments is not considered, the gain in (iii) is non-negative since the set of all d is a subset

of D.

3 Motivating Example: Returns to School Types

We provide a stylized example in an observational setting to motivate the policy relevance of

the optimal dynamic regime and the type of data that is useful to recover it.3 Consider labor

market returns to the types of high schools and colleges. Let Di1 = 1 if student i enrolls in

an academic high school and Di1 = 0 if a vocational high school; let Yi1 = 1 if i achieves

above-median GPA in high school and Yi1 = 0 if below-median. Also, let Di2 = 1 if i enrolls

in a four-year college and Di2 = 0 if a two-year college. Finally, let Yi2 = 1 if i is employed

at age 25 and Yi2 = 0 if not. Given the data, suppose we are interested in recovering regimes

that maximize the employment rate as welfare.

Compared to the optimal non-adaptive regime, the optimal regime with adaptivity pro-

vides rich policy implications. Consider the optimal non-adaptive regime first. This will be

the schedule d = (d1, d2) ∈ {0, 1}2 of school allocations that maximizes the employment rate

Wd = E[Y2(d)]. In contrast, the optimal dynamic regime is the schedule δ(·) = (δ1, δ2(·)) ∈ D
of school allocation rules that maximizes the employment rate Wδ = E[Y2(δ)]. The schedule

of allocation rules would first assign either an academic or vocational high school (δ1 ∈ {0, 1})
and then assign either a four-year or two-year college (δ2(y1, δ1) ∈ {0, 1}) depending on

the high school type δ1 and performance y1. Suppose δ∗(·) that is identified is such that

δ2(1, 1) = 1 and δ2(0, 0) = 0. That is, it turns out to be optimal to assign a four-year college

to a student who enrolled in an academic high school and achieved high GPA, and to assign a

two-year college to a student who enrolled in a vocational high school and achieved low GPA.

In reality, a policy maker rarely literally assigns schools to students. Such δ∗(·), however,

may have a policy implication that the average job market performance will be improved by

a merit-based tuition subsidy for four-year college. Note that this type of policy questions

cannot be answered from the optimal non-adaptive regime.

Since D1 and D2 are endogenous, the data {Di1, Yi1, Di2, Yi2} above is not useful by

themselves to identify Wδ’s and δ∗(·). We propose a sequential version of the fuzzy RD

3Examples in multi-stage experimental studies are the Fast Track Prevention Program (Conduct Problems
Prevention Research Group (1992)) and the Elderly Program randomized trial for the Systolic Hypertension
(The Systolic Hypertension in the Elderly Program (SHEP) Cooperative Research Group (1988)).
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design as one possible source of exogenous variation. The sequence of high school and college

entrance exams would generate running variables, i.e., test scores, that define eligibility for

admission. Let Zi1 = 1 if student i landed slightly above the cutoff of the academic high

school entrance exam and Zi1 = 0 if slightly below; let Zi2 = 1 if i landed slightly above

cutoff for the four-year college entrance exam, Zi2 = 0 if slightly below. Then (Zi1, Zi2) can

serve as the sequence of binary instruments that satisfy Assumption SX.4

4 Partial Ordering and Partial Identification

4.1 Observables

We introduce observables based on which we wish to identify the optimal regime and coun-

terfactual welfares. For each period/stage t = 1, ..., T with fixed T , assume that we ob-

serve the binary randomized treatment assignment Zt, the binary endogenous treatment

decision Dt, and the binary outcome Yt =
∑
dt∈{0,1}t Yt(d

t). For example, Yt is a symp-

tom indicator of a patient, Dt is a medical treatment received, and Zt is generated by a

multi-period medical trial. Binary variables are helpful to reduce the cardinality of possible

regimes and to define linear programs.5 Let Dt(z
t) be the counterfactual treatment given

zt ≡ (z1, ..., zt) ∈ {0, 1}t. Then, Dt =
∑
zt∈Zt Dt(z

t). Let Y (d) ≡ (Y1(d1), Y2(d
2), ..., YT (d))

and D(z) ≡ (D1(z1), D2(z
2), ..., DT (z)).

Assumption SX. Zt ⊥ (Y (d),D(z))|Zt−1.

Assumption SX assumes the strict exogeneity and exclusion restriction. This assumption

is satisfied in typical sequential randomized experiment designs as well as in sequential fuzzy

RD designs;6 see Section 3 for the example of the latter. Let (Y ,D,Z) be the vector of

observables (Yt, Dt, Zt) for the entire T periods and let p be its distribution. We assume that

{(Y i,Di,Zi) : i = 1, ..., N} is a small T large N panel. We mostly suppress the individual

unit i throughout the paper. For empirical applications, it is important to note that the data

structure can be more general than a panel and the kinds of Yt, Dt and Zt are allowed to

be different across time; Section 3 contains such an example. For the population where the

data is drawn, we are interested in learning the optimal adaptive allocation sequence.

4Alternatively, the discretized version of the distance to (or the tuition cost of) these schools can serve as
Z1 and Z2.

5Extending the analysis to multi-valued discrete variables is possible, but we keep the setting simple.
6There may be other covariates available for the researcher but we suppress them for succinctness. All

the stated assumptions and the analyses of this paper can be followed conditional on covariates.
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W2

W1 W4

W3

(a) δ∗(·) is partially identified

W1

W2 W3

W4

(b) δ∗(·) is point identified

Figure 1: Partially Ordered Sets as Directed Acyclic Graphs

4.2 Partial Ordering as Directed Acyclic Graphs

Given the distribution p of the data (Y ,D,Z) and under Assumption SX, we show how the

optimal dynamic regime and welfares can be partially recovered. The identified set D∗ of δ∗(·)
will be formally defined as a subset of the discrete set D. As the first step in characterizing

this set, we establish a partial ordering of Wδ w.r.t. δ(·) ∈ D using p. A partial ordering

can be represented by a directed acyclic graph (DAG), G(V,E), where V is the set of all

welfares and E is the set of directed links governed by “≥.” The DAG summarizes the

identified signs of the dynamic treatment effects, as will become clear later. Moreover, the

DAG representation is fruitful to introduce the notion of sharpness of a partial ordering and

later to translate it into the identified set of δ∗(·).
To facilitate this analysis, we enumerate all |D| = 22T−1 possible regimes. For index k

(1 ≤ k ≤ |D|), let δk(·) denote the k-th regime in D. With T = 2, Table 1 indexes all possible

dynamic regimes δ(·) ≡ (δ1, δ2(·)). Let Wk ≡ Wδk be the corresponding welfare. Then, most

of the time, we conveniently define the set of vertices V of a DAG as the set of welfare (or

regime) indices {k : 1 ≤ k ≤ |D|} instead of welfares themselves {Wk : 1 ≤ k ≤ |D|}.
Figure 1 illustrates examples of the partially ordered set of welfares as DAGs where each

edge “Wk → Wk′” indicates the relation “Wk ≥ Wk′ .”

In general, the point identification of δ∗(·) will be achieved by establishing a total ordering

of Wk, which is not possible with instruments of limited support. Instead, we only recover

a partial ordering. We want the partial ordering to be sharp in the sense that it cannot be

improved upon given the data and maintained assumptions.

Definition 4.1. Given the data distribution p, a partial ordering G(V,Ep) is sharp under

maintained assumptions if there exists no partial ordering G(V,E ′p) such that E ′p ) Ep without

imposing additional assumptions.

Establishing the sharp partial ordering amounts to determining whether we can identify

the sign of a counterfactual welfare gap Wk −Wk′ (i.e., the dynamic treatment effects) for
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k, k′ ∈ V , and if we can, what the sign is.

4.3 Data-Generating Framework

We introduce a simple data-generating framework and formally define the identified set. First,

we introduce latent state variables that generate (Y ,D). A latent state of the world will

determine specific maps (yt−1,dt) 7→ yt and (yt−1,dt−1, zt) 7→ dt for t = 1, ..., T under the

exclusion restriction in Assumption SX. We introduce the latent state variable S̃t whose real-

ization represents such a state. We define S̃t as follows. For given (yt−1,dt, zt), let Yt(y
t−1,dt)

and Dt(y
t−1,dt−1, zt) respectively be the extended counterfactual outcomes and treatments,

and let {Yt(yt−1,dt)} and {Dt(y
t−1,dt−1, zt)} and their sequences w.r.t. (yt−1,dt, zt). Then

S̃t ≡ ({Yt(yt−1,dt)}, {Dt(y
t−1,dt−1, zt)}) ∈ {0, 1}22t−1 × {0, 1}23t−2

concatenates the two se-

quences. For example, S̃1 = (Y1(0), Y1(1), D1(0), D1(1)) ∈ {0, 1}2×{0, 1}2, whose realization

specifies particular maps d1 7→ y1 and z1 7→ d1. It is convenient to transform S̃ ≡ (S̃1, ..., S̃T )

into a scalar (discrete) latent variable in N as S ≡ β(S̃) ∈ S, where β(·) is a one-to-one map

that transforms a binary sequence into a decimal value. Define

qs ≡ Pr[S = s],

and define the vector q of qs which represents the distribution of S or the true data-generating

process. The vector q resides in a standard simplex Q ≡ {q :
∑

s qs = 1 and qs ≥ 0 ∀s}
of dimension dq − 1 where dq ≡ dim(q). A useful fact is that the joint distribution of

counterfactuals can be written as a linear functional of q:

Pr[Y (d) = y,D(z) = d] = Pr[S ∈ S : Y (yT−1,d) = y,D(yT−1,dT−1, z) = d]

= Pr[S ∈ S : Yt(y
t−1,dt) = yt, Dt(y

t−1,dt−1, zt) = dt ∀t]

=
∑

s∈Sy,d|z

qs, (5)

where Sy,d|z is constructed by using the definition of S; its expression can be found in

Appendix A.2.

Based on (5), the counterfactual welfare can be written as a linear combination of qs’s.

That is, there exists 1× dq vector Ak of 1’s and 0’s such that

Wk = Akq. (6)

Recall Wk ≡ f(qδk) where qδ(y) ≡ Pr[Y (δ(·)) = y]. The key observation to the result (6)
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is that Pr[Y (δ(·)) = y] can be written as a linear functional of the joint distributions of

counterfactual outcomes with non-adaptive regime, i.e., Pr[Y (d) = y]’s, which is in turn a

linear functional of q. To illustrate with T = 2 and welfare W = E[Y2(δ(·))], we have

Pr[Y2(δ(·)) = 1] =
∑

y1∈{0,1}

Pr[Y2(δ1, δ2(y1, δ1)) = 1|Y1(δ1) = y1] Pr[Y1(δ1) = y1]

by the law of iterated expectation. Then, for instance, Regime 8 in Table 1 yields

Pr[Y2(δ8(·)) = 1] = P [Y (1, 1) = (1, 1)] + P [Y (1, 1) = (0, 1)], (7)

where each Pr[Y (d1, d2) = (y1, y2)] is the counterfactual distribution with non-adaptive

regime, which in turn is a linear functional of (5).

The data impose restrictions on q ∈ Q. Define

py,d|z ≡ p(y,d|z) ≡ Pr[Y = y,D = d|Z = z],

and p as the vector of py,d|z’s except redundant elements. Let dp ≡ dim(p). Since Pr[Y =

y,D = d|Z = z] = Pr[Y (d) = y,D(z) = d] by Assumption SX, we can readily show by (5)

that there exists dp × dq matrix B such that

Bq = p, (8)

where each row of B is a vector of 1’s and 0’s. We assume rank(B) = dp without loss

of generality, since redundant constraints do not play a role in restricting Q. We focus

on the non-trivial case of dp < dq. If dp ≥ dq, which rarely is the case, we can solve for

q = (B>B)−1B>p, and can trivially point identify Wk = Akq and thus δ∗(·). The formal

derivation of Ak as well as B can be found in Appendix A.2. It is important to note that the

linearity in (6) and (8) is not a restriction but given by the discrete nature of our setting.

The expression (6) and (8) are useful to define the identified set of δ∗(·). Let δ∗(·; q) ≡
arg maxδk(·)∈DWk = Akq be the optimal regime, explicitly written as a function of the data-

generating process q.

Definition 4.2. Under Assumption SX, the identified set of δ∗(·) given the data distribution

p is defined as

D∗p ≡ {δ∗(·; q) : Bq = p and q ∈ Q}, (9)

which is assumed to be empty when Bq 6= p.
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4.4 Characterizing Partial Ordering and Identified Set

We establish the partial ordering of Wk’s, i.e., generate the DAG as a |D| × |D| adjacency

matrix, by determining whether, given p, Wk ≥ Wk′ , Wk < Wk′ , or Wk and Wk′ are not

comparable, denoted as Wk ∼ Wk′ , for k, k′ ∈ V . As described in the next theorem, this

procedure can be accomplished by determining the signs of the bounds on the welfare gap

Wk −Wk′ for k, k′ ∈ V and k > k′.7 Then the identified set can be characterized based on

the resulting partial order.

The nature of our data generation induces the linear system (6) and (8). This enables us

to characterize the bounds on Wk−Wk′ = (Ak−Ak′)q as optima of linear programming. Let

Uk,k′ and Lk,k′ be the upper and lower bounds. Also ∆k,k′ ≡ Ak − Ak′ for simplicity. Then,

we have, for k, k′ ∈ V and k > k′,

Uk,k′ = maxq∈Q∆k,k′q,

Lk,k′ = minq∈Q∆k,k′q,
s.t. Bq = p. (10)

Assumption B. {q : Bq = p} ∩ Q 6= ∅.

Assumption B imposes that the model is correctly specified. Under misspecification, the

identified set is empty by definition. The next theorem constructs the sharp DAG and the

identified set using Uk,k′ and Lk,k′ for k, k′ ∈ V and k > k′, or equivalently, Lk,k′ for k, k′ ∈ V
and k 6= k′.

Theorem 4.1. Suppose Assumptions SX and B hold. Then, (i) G(V,Ep) with Ep ≡ {(k, k′) :

Lk,k′ ≥ 0 for k, k′ ∈ V and k 6= k′} is sharp;8 (ii) D∗p defined in (9) satisfies

D∗p = {δk′(·) : @k such that Lk,k′ > 0 for k, k′ ∈ V and k 6= k′}. (11)

Theorem 4.1(i) immediately holds by Definition 4.1, since Lk,k′ (and Uk,k′) is sharp in (10).

The latter is because {q : Bq = p and q ∈ Q} is convex and thus {∆k,k′q : Bq = p and q ∈ Q}
is convex, which implies that any point between [Lk,k′ , Uk,k′ ] is attainable. According to (i),

the sharp DAG is constructed as follows: when Lk,k′ ≥ 0, then Wk ≥ Wk′ and a directed

edge is formed between (k, k′); when Lk,k′ < 0 < Uk,k′ , then Wk ∼ Wk′ and no edge is formed

between (k, k′). The DAG can be represented as a |D| × |D| adjacency matrix Σ such that

its element Σk,k′ = 1 if Wk ≥ Wk′ and Σk,k′ = 0 otherwise.

7Note that directly comparing sharps bounds on welfares themselves will not deliver sharp partial ordering.
8Notice that (Lk,k′ , Uk,k′) for all k, k′ ∈ V and k > k′ contain the same amount of information as Lk,k′

for all k, k′ ∈ V and k 6= k′, since Uk,k′ = −Lk′,k.
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In Theorem 4.1(ii), D∗p is characterized as the collection of δk(·) where k is in the set of

maximal elements of the partially ordered set G(V,Ep), i.e., the set of regimes that are not

inferior. In Figure 1(a), it is easy to see that the set of maximals is D∗p = {δ1(·), δ4(·)}.
Using the adjacency matrix Σ, the set of maximal elements (11) can be obtained by

D∗p = {δk′(·) : Σk,k′ = 0 for all k ∈ V and k 6= k′ ∈ V }. (12)

The identified set D∗p characterizes the information content of the model. Given the

minimal structure we impose in the model, the size of D∗p may be large in some cases. We,

however, argue that an uninformative D∗p still has implications for policy: (i) it recommends

the planner to eliminate sub-optimal regimes from her options; (ii) in turn, it warns the

planner of her lack of information (e.g., even if she has access to the experimental data);

when D∗p = D as one extreme, “no recommendation” can be given as a non-trivial policy

suggestion. As shown in our numerical exercise, the size of D∗p is related to the strength of Zt

(i.e., the size of the complier group at t) and the strength of the dynamic treatment effects.

This is reminiscent of the findings in Machado et al. (Forthcoming) for the average treatment

effect in a static model. Section 6 lists further identifying assumptions that help shrink D∗p.

4.5 Analytical Conditions

In practice, a naive approach to obtain the sharp DAG and the identified set based on

Theorem 4.1 is to directly compute Uk,k′ and Lk,k′ by solving linear program (10) for k, k′ ∈ V
and k > k′. This can be computationally very costly. Note that, to generate the DAG, we

need to make at most “|V | = |D| = 22T−1 choose 2” pair-wise comparisons of the welfares.9

With the naive approach, this amounts to solving “22T−1 choose 2” times two linear programs

(10), where (10) is a large-scale linear program. In this program, the dimension of q is dq =

|Q|+ 1 = |S| =
∏T

t=1 |St|, which can be immense; e.g., when T = 2, dq = 22× 22× 216× 28 =

268, 435, 456. Also, the number of constraints is dp + dq + 1 where dp = 23T − 2T . This

computational complexity can possibly be mitigated by imposing further assumptions on

the data-generating process as shown later. Even then, the naive approach poses nontrivial

challenges in developing inference methods for δ∗(·) and other parameters, because they

involve objects produced by solving linear programming.

Instead, we propose a simple analytical procedure to obtain the sharp DAG and the

9This procedure is closely related to what is called the bubble sort. There are more efficient algorithms, such
as the quick sort, although they need to be modified to incorporate the distinct feature of our problem: the
possible incomparability that stems from partial identification. Note that, for comparable pairs, transitivity
can be applied and thus the total number of comparisons can be smaller.
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q3
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1
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Q

ker(∆k,k′) ∩Q

{q : Bq = p} ∩ Q

(a) Original Problem with a Kernel, a
Hyperplane, and a Simplex

q2

q3

1

1

Q0

{q0 : ∆0
k,k′q0 = θk,k′} ∩ Q0

(b) Simpler Problem with a Hyper-
plane and a Cone (with q0 = (q2, q3)

>)

Figure 2: Illustration of Conditions for Lk,k′ < 0 < Uk,k′ (with q = (q1, q2, q3)
>)

identified set. Recall that Q ≡ {q :
∑

s qs = 1 and qs ≥ 0 ∀s} ⊂ Rdq is a standard simplex of

dimension dq − 1, and B is dp × dq matrix with dp < dq. We assume B = (B1
... O) for some

dp × dp full rank matrix B1 and dp × (dq − dp) zero matrix O, which is also without loss of

generality.10

Fix k and k′. We first investigate the possibility of detecting Wk ∼ Wk′ , the incompara-

bility of Wk and Wk′ . Note that Lk,k′ < 0 < Uk,k′ if and only if there exists q ∈ Q such that

∆k,k′q = 0 and Bq = p, or simply,

ker(∆k,k′) ∩ {q : Bq = p} ∩ Q 6= ∅, (13)

where ker(∆) denotes the kernel (i.e., the null space) of ∆. That is, we want to find conditions

under which the simplexQ, the hyperplanes {q : Bq = p}, and ker(∆k,k′) all intersect. Figure

2(a) depicts this intersection for the case of dq = 3.

Define partitions ∆k,k′ = (∆1
k,k′

... ∆0
k,k′) and q = (q>1 , q

>
0 )> according to partition B =

(B1
... O). Then p = Bq = B1q1 or

q1 = B−11 p (14)

10If (iii) does not hold, then we can find an elementary column operating matrix M of order dq × dq such

that B̃ ≡ BM = (B1

... O). Then, using M we can redefine all the relevant quantities and proceed analogously.
Let Ãk ≡ AkM , Ãk′ ≡ Ak′M , and q̃ ≡M−1q as M is invertible. Then, it satisfies that Bq = BMM−1q = B̃q̃
and (Ak − Ak′)q = (Ak − Ak′)MM−1q = (Ãk − Ãk′)q̃. Note that Q̃ ≡ {M−1q : q ∈ Q} ⊂ Rdq is also a
standard simplex and Q̃p ≡ {q̃ ∈ Q̃ : B̃q̃ = p}.
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because B1 has full rank. That is, we can solve for the subvector of the data-generating

process as a function of the data distribution. Plugging (14) in, ∆k,k′q = ∆1
k,k′q1+∆0

k,k′q0 = 0

can be rewritten as

∆1
k,k′B

−1
1 p+ ∆0

k,k′q0 = 0.

For simplicity, let θk,k′ ≡ −∆1
k,k′B

−1
1 p, which is a scalar. Define Q0 ≡ {q0 : q ∈ Q} = {q0 :∑

s∈S0 qs ≤ 1 and qs ≥ 0 ∀s ∈ S0} where S0 is the set of indices that correspond to the

subvector q0. Then, Lk,k′ < 0 < Uk,k′ if and only if there exists nonzero vector q0 ∈ Q0 such

that ∆0
k,k′q0 = θk,k′ , or

{q0 : ∆0
k,k′q0 = θk,k′} ∩ Q0\{0} 6= ∅. (15)

We want to find nonzero q0, since when q0 = 0, then ∆k,k′q = −θk,k′ for all q1 and thus

we trivially point identify Wk − Wk′ = −θk,k′ . Since Q0 is a finitely generated cone and

independent of the constraints, finding conditions under which (15) holds is mathematically

more tractable than directly analyzing (13); see Figure 2(b). It essentially reduces down to

checking whether the hyperplane ∆0
k,k′q0 = θk,k′ lies between the vertices of the cone. The

next theorem states these conditions of incomparability (i.e., Wk ∼ Wk′). For elements γs

(s ∈ S0) of vector ∆0
k,k′ , we define γ

k,k′
≡ min{γs}s∈S0 ∈ {−1, 0, 1} and γk,k′ ≡ max{γs}s∈S0 ∈

{−1, 0, 1}.

Theorem 4.2. Suppose Assumptions SX and B hold. For k, k′ ∈ V and k 6= k′, let θk,k′ ≡
−∆1

k,k′B
−1
1 p and γ

k,k′
∈ {−1, 0, 1} and γk,k′ ∈ {−1, 0, 1} be the minimum and maximum

elements of vector ∆0
k,k′. Then, Lk,k′ < 0 < Uk,k′ if and only if either one of the following

holds: (i) γ
k,k′

< θk,k′ < γk,k′, (ii) γ
k,k′
≥ θk,k′ ≥ 0, or (iii) γk,k′ ≤ θk,k′ ≤ 0.

Since θk,k′ (up to p) and ∆0
k,k′ are known to the researcher, we can directly detect the

incomparability from the data p without solving linear programmings. Furthermore, we can

show the following result, which can be used to conclude Wk ≥ Wk′ :
11

Corollary 4.1. Suppose Assumptions SX and B hold. For k, k′ ∈ V and k 6= k′, let θk,k′ ≡
−∆1

k,k′B
−1
1 p and γ

k,k′
∈ {−1, 0, 1} be the minimum element of vector ∆0

k,k′. Then, Lk,k′ ≥ 0

if and only if

θk,k′ < min{0, γ
k,k′
}. (16)

11Note Conditions (i)–(iii) are exclusive. These conditions, the condition (16) below, and θk,k′ >
max{0, γk,k′} are exhaustive. The last condition guarantees Uk,k′ ≤ 0, which is redundant information
for the DAG as k, k′ are exchangeable.
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Theorem 4.1(i) and Corollary 4.1 provide the basis for the systematic computation of

the DAG. They suggest an algorithm that generates the DAG as the adjacency matrix Σ

by automating the task of checking the condition in the corollary. Compared to directly

solving the set of large-scale linear programs, finding γ
k,k′

from a large-dimensional vector

∆0
k,k′ is an extremely simple computational task, especially since its value is known to be

one of {−1, 0, 1}. Note that Corollary 4.1 cannot be directly used to construct D∗p since we

should be able to determine the strictly inequality (Lk,k′ > 0), according to Theorem 4.1(i).

Instead, the generated Σ can be used to construct D∗p as shown in (12).

5 Topological Sorts and Bounds on Sorted Welfare

5.1 Topological Sorting

The DAG is a useful policy benchmark. For a complicated DAG, it may be easier to examine

a linear ordering based on it. A topological sort of a DAG is a linear ordering of its vertices

such that for every directed edge k → k′, k comes before k′ in that ordering. In other words,

it is a linear extension of the partial ordering where Wk cannot be larger than Wk′ as long

as k < k′. Let LG be the number of topological sorts of G(V,Ep) and, for 1 ≤ l ≤ LG, let

kl,1 is the initial vertex of the l-th topological sort. For example, given the DAG in Figure

1(a), (δ1, δ4, δ2, δ3) is an example of a topological sort (with kl,1 = 1), but (δ1, δ2, δ4, δ3)

is not. Topological sorts are routinely reported for a given DAG, and there are well-known

algorithms that efficiently find topological sorts, such as Kahn (1962)’s algorithm.

The following theorem alternatively characterizes D∗p using topological sorts.12

Theorem 5.1. Suppose Assumptions SX and B hold. The identified set D∗p defined in (9)

satisfies

D∗p = {δkl,1(·) : 1 ≤ l ≤ LG},

where kl,1 is the initial vertex of the l-th topological sort of G(V,Ep).

Suppose the DAG we recover from the data is not too sparse. By definition, a topological

sort provides a ranking of regimes that is not inconsistent to the welfare ordering. Therefore,

for given topological sort l, not just δkl,1(·) ∈ D∗p but the full sequence(
δkl,1(·), δkl,2(·), ...,dkl,|D|(·)

)
(17)

12Theorem A.1 in the Appendix provides an alternative way of obtaining D∗p based on directed paths of
G(V,Ep).
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can be informative. A planner can be equipped with any of such sequences for 1 ≤ l ≤ LG

as a policy menu.

5.2 Bounds on Sorted Welfares

A topological sort provides ordinal information about counterfactual welfares. To gain more

comprehensive knowledge about these welfare, a topological sort can be accompanied by

cardinal information: bounds on the sorted welfares. One might especially be interested in

the bounds on “top-tier” welfares that are associated with the identified set or the first few

elements in the topological sort. Bounds on gains from adaptivity and regrets can also be

computed. These bounds can be calculated by solving linear programming. For instance, for

k ∈ V , the sharp lower and upper bounds on the welfare Wk can be calculated via

Uk = maxq∈QAkq,

Lk = minq∈QAkq,
s.t. Bq = p. (18)

This computational approach to calculating bounds is inevitable in our context. Unlike

in the static case of calculating bound on, e.g., the average treatment effect, calculating

bounds on Wk and proving their sharpness are analytically infeasible, especially when T ≥ 3.

Fortunately, since the partial order and thus the topological sort are obtained analytically,

we can focus on just a few welfares for which using linear programming is less of a burden

than using it for all possible welfare gaps.

6 Additional Assumptions

Often, researchers are willing to impose more assumptions based on priors about agent’s

behaviors or the data-generating process. Examples are monotonicity/uniformity, agent’s

learning, Markovian structure, and stationarity. These assumptions are easy to incorporate

within the linear programmings (10) and (18). These assumptions tighten the identified set

D∗p or the bounds on welfares by reducing the dimension of the simplexQ, and thus producing

a denser DAG.13

To incorporate these assumptions, we slightly revise the framework introduced in Section

4.3. Suppose h is dq×1 vector of ones and zeros, where zeros are imposed by given identifying

assumptions. Introduce dq×dq diagonal matrix H = diag(h). Then, we can define a standard

13Similarly, when these assumptions are incorporated in (10), we obtain tighter bounds on welfares.
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simplex for q̄ ≡ Hq as

Q̄ ≡ {q̄ :
∑
s

q̄s = 1 and q̄s ≥ 0 ∀s}. (19)

Note that the dimension of this simplex is smaller than the dimension dq of Q if h contains

zeros. Then we can modify (6) and (8) as

Bq̄ = p,

Wk = Akq̄,

respectively. Let δ∗(·; q̄) ≡ arg maxδk(·)∈DWk = Akq̄. Then, the identified set with identifying

assumptions coded in h is defined as

D̄∗p ≡ {δ∗(·; q̄) : Bq̄ = p and q̄ ∈ Q}, (20)

which is assumed to be empty when Bq̄ 6= p. Importantly, the latter occurs when any of the

identifying assumptions are misspecified. Note that H is idempotent. Define ∆̄ ≡ ∆H and

B̄ ≡ BH. Then ∆q̄ = ∆̄q̄ and Bq̄ = B̄q̄. Therefore, to generate the DAG and characterize

the identified set, Theorem 4.1, Corollary 4.1, and Theorem 5.1 or A.1 can be modified by

replacing q, B and ∆ with q̄, B̄ and ∆̄, respectively.

We now list possible identifying assumptions. The first assumption is a sequential version

of the monotonicity/uniformity assumption in Imbens and Angrist (1994).

Assumption M1. For each t, either Dt(Z
t−1, 1) ≥ Dt(Z

t−1, 0) w.p.1 or Dt(Z
t−1, 1) ≤

Dt(Z
t−1, 0) w.p.1. conditional on (Y t−1,Dt−1,Zt−1).

Assumption M1 imposes that there is no defying (complying) behavior in the decision

Dt conditional on (Y t−1,Dt−1,Zt−1). Without conditional on (Y t−1,Dt−1,Zt−1), however,

there can be a general non-monotonic pattern in the way that Zt influences Dt. Recall

S̃t ≡ ({Yt(yt−1,dt)}, {Dt(y
t−1,dt−1, zt)}) ∈ {0, 1}22t−1 × {0, 1}23t−2

. For example, the no-

defier assumption can be incorporated in (19) with h whose elements satisfy hs = 0 for

s ∈ {S = β(S̃) : Dt(y
t−1,dt−1, zt−1, 1) = 0 and Dt(y

t−1,dt−1, zt−1, 0) = 1 ∀t} and hs = 1

otherwise. By extending the idea of Vytlacil (2002), we can show that M1 is equivalent of

imposing a threshold-crossing model for Dt under Assumption SX:

Dt = 1{πt(Y t−1,Dt−1,Zt) ≥ νt}, (21)

where πt(·) is an unknown, measurable, and non-trivial function of Zt.

18



Lemma 6.1. Suppose Assumption SX holds and Pr[Dt = 1|Y t−1,Dt−1,Zt] is a nontrivial

function of Zt. Assumption M1 is equivalent to (21) being satisfied conditional on (Y t−1,Dt−1,Zt−1)

for each t.

The dynamic selection model (21) should not be confused with the dynamic regime (1).

Compared to the dynamic regime dt = δt(y
t−1,dt−1), which is a hypothetical quantity, the

equation (21) models each individual’s observed treatment decision, in that it is not only

a function of (Y t−1,Dt−1) but also νt, the individual’s unobserved characteristics. We as-

sume that the social planner has no access to ν. The functional dependence of Dt on the

past outcomes and treatments (Y t−1,Dt−1) and a sequence of random assignments (Zt−1)

reflects the agent’s learning. Indeed, a specific version of such learning can be imposed as an

additional identifying assumption:

Assumption L. For each t and given zt, Dt(y
t−1,dt−1, zt) ≥ Dt(ỹ

t−1, d̃
t−1
, zt) w.p.1 for

(yt−1,dt−1) and (ỹt−1, d̃
t−1

) such that
∥∥yt−1 − dt−1∥∥ <

∥∥∥ỹt−1 − d̃t−1
∥∥∥ (long memory) or

yt−1 − dt−1 < ỹt−1 − d̃t−1 (short memory).

According to Assumption L, agents have the ability to revise his next period’s decision

based on his memory. To illustrate, consider the second period’s decision, D2(y1, d1). Under

Assumption L, an agent who would switch his treatment decision at t = 2 had he experienced

bad health (y1 = 0) after receiving the treatment (d1 = 1), i.e., D2(0, 1) = 0, would remain

to take the treatment had he experienced good health, i.e., D2(1, 1) = 1. More importantly,

if an agent has not switched even after bad health, i.e., D2(0, 1) = 1, it should only because

of his unobserved preference, not because he cannot learn from the past, i.e., D2(1, 1) = 0

cannot happen.14

Sometimes, we want to further impose monotonicity/uniformity of Yt in Dt on top of

Assumption M1:

Assumption M2. Assumption M1 holds, and for each t, either Yt(D
t−1, 1) ≥ Yt(D

t−1, 0)

w.p.1 or Yt(D
t−1, 1) ≤ Yt(D

t−1, 0) w.p.1 conditional on (Y t−1,Dt−1,Zt−1).

As before, without conditional on (Y t−1,Dt−1,Zt−1), there can be a general non-monotonic

pattern in the way that Dt influences Y t. It is important to note that Assumption M2 (and

M1) does not assume the direction of monotonicity. It rather assumes the uniformity in the

way that individuals’ outcomes at t are affected by the contemporary treatment. This is in

contrast to the monotone treatment response condition in e.g., Manski (1997), which assumes

14As suggested in this example, it is implicit in Assumption L that Yt and Dt are of the same (or at least
similar) types over time, which is not generally required for the analysis of this paper.
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the direction. By a similar argument as before, Assumption M2 is equivalent of a dynamic

version of a nonparametric triangular model under Assumption SX:

Yt = 1{µt(Y
t−1,Dt) ≥ εt}, (22)

Dt = 1{πt(Y t−1,Dt−1,Zt) ≥ νt}, (23)

where µt(·) and πt(·) are unknown, measurable and non-trivial functions of Yt and Dt, re-

spectively.

Lemma 6.2. Suppose Assumption SX holds, Pr[Dt = 1|Y t−1,Dt−1,Zt] is a nontrivial func-

tion of Zt, and Pr[Yt = 1|Y t−1,Dt] is a nontrivial function of Dt. Assumption M2 is equiv-

alent to (22)–(23) being satisfied conditional on (Y t−1,Dt−1,Zt−1) for each t.

As clearly seen in (22), Assumption M2 imposes non-trivial restrictions on treatment

heterogeneity. To illustrate this point, consider an alternative specification for Yt:

Yt = 1{µt(Y
t−1,Dt) ≥ εt(Dt)}, (24)

where εt(Dt) = Dtεt(1) + (1 − Dt)εt(0), which allows different unobservables for different

treatment state dt. This specification is more general than (22) as it effectively incorpo-

rates vector unobservables. We can slightly relax Assumption M2 by imposing (24) and

assuming a sequential version of rank similarity (Chernozhukov and Hansen (2005)) that

ε(1,d−t)
d
= ε(0,d−t), conditional on (νt,Z) for each t, where ε(d) ≡ (ε1(d1), ..., εT (dT )).

This assumption can be found in Han (Forthcoming).15 Note that (22) postulates that

εt(dt) = εt for all dt ∈ {0, 1} and t.

The last assumption imposes a Markov-type structure in the Yt and Dt processes.

Assumption K. Yt|(Y t−1,Dt)
d
= Yt|(Yt−1, Dt) and Dt|(Y t−1,Dt−1,Zt)

d
= Dt|(Yt−1, Dt−1, Zt)

for each t.

In terms of the triangular model (22)–(23), Assumption K implies

Yt = 1{µt(Yt−1, Dt) ≥ εt},

Dt = 1{πt(Yt−1, Dt−1, Zt) ≥ νt},

which yields a familiar structure of dynamic discrete choice models in the literature. When

there are more than two periods, an assumption that imposes stationarity can be helpful for

15See Remark 5.3 of Han (Forthcoming) for more discussions on sequential rank similarity.
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identification. Such an assumption can be found in Torgovitsky (2019), which is not stated

here for succinctness.

7 Cardinality Reduction

The typical time horizons we consider in this paper are short, say, T ≤ 5. For example, a

multi-stage experiment called the Fast Track Prevention Program (Conduct Problems Pre-

vention Research Group (1992)) considers T = 4. When T is not small, the cardinality of D
(|D| = 22T−1) may be too large and we may want to reduce it for computational, institutional,

and practical purposes.

One way to reduce the cardinality is to reduce the dimension of the adaptivity. Define

a simpler adaptive treatment rule d̃t : {0, 1} × {0, 1} → {0, 1} that maps only the lagged

outcome and treatment onto a treatment allocation dt ∈ {0, 1}:

d̃t(yt−1, dt−1) = dt

in the class D̃. In this case, we have
∣∣∣D̃∣∣∣ = 22T−1. An even simpler rule, d̃t(yt−1) = dt,

appears in Murphy et al. (2001).

Another possibility is to consider a strict subset D̃ of D, motivated by institutional con-

straints. For example, it may be the case that adaptive allocation is available every second

period or only later in the horizon due to cost consideration. For example, suppose that the

social planner decides to introduce the adaptive rule at t = T while maintaining non-adaptive

rules for t ≤ T−1. Then, we reduce the cardinality to
∣∣∣D̃∣∣∣ = 2×2×· · ·×2×(2T−1 ·2) = 22T−1.

8 Numerical Studies

We conduct numerical exercises to illustrate (i) the main theoretical result developed in Sec-

tion 4, (ii) the role of assumptions introduced in Section 6, and (iii) the overall computational

scale of the problem. For T = 2, we consider the following data-generating process:

Di1 = 1{π1Zi1 + αi + vi1 ≥ 0}, (25)

Yi1 = 1{µ1Di1 + αi + ei1 ≥ 0}, (26)

Di2 = 1{π21Yi1 + π22Di1 + π23Zi2 + αi + vi2 ≥ 0}, (27)

Yi2 = 1{µ21Yi1 + µ22Di2 + αi + ei2 ≥ 0}, (28)
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where (v1, e1, v2, e2, α) are mutually independent and jointly normally distributed, the endo-

geneity of Di1 and Di2 as well as the serial correlation is captured by the individual effect

αi, and (Z1, Z2) are Bernoulli, independent of (v1, e1, v2, e2, α). Notice that the process is in-

tended to satisfy Assumptions SX, M2 and K. We consider a data-generating process where

all the coefficients in (25)–(28) take positive values. In this exercise, we consider the welfare

Wk = E[Y2(δk(·))].
As shown in Table 1, there are eight possible regimes, i.e., |D| = 8. Since the current

exercise is of a small scale, instead of using the analytical algorithm proposed in Corollary

4.1 to generate the DAG, we directly calculate the lower and upper bounds (Lk,k′ , Uk,k′) on

welfare gap Wk −Wk′ for all pair k, k′ ∈ {1, ..., 8} (k < k′). This is also to illustrate the

role of assumptions in improving the bounds. We conduct the bubble sort, which makes(
8

2

)
= 28 pair-wise comparisons. That is, there are 28 × 2 linear programs to run. As a

researcher, we impose Assumption K. Then, for each linear program, the dimension of q is

|Q| + 1 = |S| = |S1| × |S2| = 22 × 22 × 28 × 24 = 65, 536. The number of main constraints

is dim(p) = 23×2 = 16. There are 1 + 65, 536 additional constraints that define the simplex,

i.e.,
∑

s qs = 1 and qs ≥ 0 for all s ∈ S. Each linear program takes less than a second to

calculate Lk,k′ or Uk,k′ in a computer with 2.2 GHz single-core processor and 16 GB memory

and with a modern solver such as CPLEX, MOSEK and GUROBI.

Figure 3 reports the bounds (Lk,k′ , Uk,k′) on Wk − Wk′ for all (k, k′) ∈ {1, ..., 8} under

Assumption M1 (in black) and Assumption M2 (in red). In the figure, we can determine the

sign of the welfare gap for those bounds that do not include zero. The difference in black

and red bounds illustrates the role of Assumption M2 relative to M1. That is, there are more

bounds that avoid the zero vertical line, which is consistent with the theory. The bounds

generate associated DAGs (produced as 8× 8 adjacency matrices). We proceed with M2 for

succinctness.

Figure 4 depicts the sharp DAG generated from (Lk,k′ , Uk,k′)’s under M2, based on The-

orem 4.1(a). By (12), the identified set of δ∗(·) is

D∗p = {δ7(·), δ8(·)}.

Finally, the following is one of the topological sorts produced from the DAG:

(δ8(·), δ4(·), δ7(·), δ3(·), δ5(·), δ1(·), δ6(·), δ2(·)).

The bounds on the welfares in the order of this topological sort are shown in Figure 5.

We also conducted a parallel analysis but with a slightly different data-generating process,
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Figure 3: Sharp Bounds on Welfare Gaps under M1 (black) and M2 (red)
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Figure 4: Sharp Directed Acyclic Graph under M2

Figure 5: Sharp Bounds on Sorted Welfares under M2 (bold: for welfares with δ(·) ∈ D∗p)
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where all the coefficients in (25)–(28) are positive except µ22 < 0. In this case, we obtain

D∗p = {δ2(·)} as a singleton, i.e., we point identify δ∗(·) = δ2(·).

9 Estimation and Inference

The estimation of the identified set D∗p straightforward given the condition (16) of Corollary

4.1: θk,k′ < min{0, γ
k,k′
}. The only unknown object in the condition is p, the joint distribution

of (Y ,A,Z), which can be estimated by p̂, a vector of p̂y,d|z =
∑N

i=1 1{Y i = y,Di = d,Zi =

z}/
∑N

i=1 1{Zi = z}. Then, with θ̂k,k′ ≡ −∆1
k,k′B

−1
1 p̂, the estimated DAG is G(V, Êp), where

Êp = {(k, k′) : θ̂k,k′ < min{0, γ
k,k′
} for k, k′ ∈ V and k 6= k′}.

Let Σ̂ be the resulting estimated adjacency matrix. Then, based on (12), D∗p can be estimated

as

D̂∗p = {δk′(·) : Σ̂k,k′ = 0 for all k ∈ V and k 6= k′ ∈ V }.

Although we do not fully investigate in the current paper, we briefly discuss inference. To

conduct inference on the optimal regime δ∗(·), we can construct a confidence set (CS) for D∗p
by the following procedure. We consider a sequence of hypothesis tests, where we eliminate

regimes that are (statistically) significantly inferior to others. This is a statistical analog of

the elimination procedure encoded in (12). This inference procedure extends the approach

of Hansen et al. (2011) on the model confidence set, but in this novel context. For each test

given Ṽ ⊂ V , we construct a null hypothesis that Wk ∼ Wk′ for all k, k′ ∈ Ṽ . According

to (15), this hypothesis restricts the range of θk,k′ so that the hyperplane θk,k′ = ∆0
k,k′q0

lies within the cone Q2. Based on the conditions (i)–(iii) in Theorem 4.2, this results in a

one-sided test for

H0,Ṽ :
∣∣θk,k′ − l1(∆0

k,k′)
∣∣− l2(∆0

k,k′) ≤ 0 for all k, k′ ∈ Ṽ ,

where l1 and l2 satisfy (i) l1(∆
0
k,k′) = (γk,k′+γ

k,k′
)/2 and l2(∆

0
k,k′) = (γk,k′−γk,k′)/2 if γ

k,k′
<

0 < γk,k′ ; (ii) l1(∆
0
k,k′) = γ

k,k′
/2 and l2(∆

0
k,k′) = γ

k,k′
/2 if γ

k,k′
≥ 0; (iii) l1(∆

0
k,k′) = γk,k′/2

and l2(∆
0
k,k′) = −γk,k′/2 if γk,k′ ≤ 0, corresponding to the conditions (i)–(iii) in Theorem 4.2.

Then, the procedure of constructing the CS, denoted as D̂CS, is as follows: Step 0. Initially

set Ṽ = V . Step 1. Test H0,Ṽ at level α with a test function φṼ ∈ {0, 1}. Step 2. If H0,Ṽ

is not rejected, define D̂CS = {δk(·) : k ∈ Ṽ }; otherwise eliminate a vertex kṼ from Ṽ and

repeat from Step 1. In Step 1, TṼ ≡ maxk,k′∈Ṽ tk,k′ can be used as the test statistic for H0,Ṽ
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where tk,k′ is a standard t-statistic, i.e., the ratio between
∣∣∣θ̂k,k′ − l1(∆0

k,k′)
∣∣∣ − l2(∆0

k,k′) and

its standard error. The distribution of TṼ can be estimated using bootstrap. In Step 2, a

candidate for kṼ is kṼ ≡ arg maxk∈Ṽ maxk′∈Ṽ tk,k′ . Following Hansen et al. (2011), we can

show that the resulting CS has desirable properties. Let HA,Ṽ be the alternative hypothesis.

Assumption CS. For any Ṽ , (i) lim supn→∞ Pr[φṼ = 1|H0,Ṽ ] ≤ α, (ii) limn→∞ Pr[φṼ =

1|HA,Ṽ ] = 1, and (iii) limn→∞ Pr[δkṼ (·) ∈ D∗p|HA,Ṽ ] = 0.

Proposition 9.1. Under Assumption CS, it satisfies that lim infn→∞ Pr[D∗p ⊂ D̂CS] ≥ 1−α
and limn→∞ Pr[δ(·) ∈ D̂CS] = 0 for all δ(·) /∈ D∗p.

The procedure of the CS construction does not suffer from the problem of multiple test-

ings. This is because the procedure stops as soon as the first hypothesis is not rejected, and

asymptotically, maximal elements will not be questioned before all sub-optimal regimes are

eliminated; see Hansen et al. (2011) for related discussions. The resulting CS can also be

used to conduct a specification test for a less palatable assumption such as Assumption M2.

We can reject the assumption, when the CS under that assumption is empty.

Inference on the welfare bounds can be conducted by using recent results as in Deb et al.

(2017), who develop uniformly valid inference for bounds obtained via linear programming.

Inference on optimized welfare Wδ∗ or maxδ(·)∈D̂CS
Wδ can also be an interesting problem.

Andrews et al. (2019) considers inference on optimized welfare (evaluated at the estimated

policy) in the context of Kitagawa and Tetenov (2018), but with point identified welfare

under the unconfoundedness assumption for the treatment. Extending the framework to

a setting with partially identified welfare and dynamic regimes will be another interesting

future work.

A Appendix

A.1 Finite-Horizon Dynamic Programming

Suppose Wδ = E[YT (δ(·))]. Then, it satisfies that

E[YT (δ(·))] = E
[
E
[
· · ·E

[
E[YT (d)|Y T−1(dT−1)]

∣∣Y T−2(dT−2)
]
· · ·
∣∣Y1(d1)]] , (29)
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where the bridge variables d = (d1, ..., dT ) satisfies

d1 = δ1,

d2 = δ2(Y1(d1), d1),

d3 = δ3(Y
2(d2),d2),

...

dT = δT (Y T−1(dT−1),dT−1).

Given (29), the solution δ∗(·) can be justified by backward induction in a finite-horizon

dynamic programming for Wδ ≡ E[YT (δ(·))]. First, the T -th element in δ∗(·) corresponds to

the optimal rule in the final period:

δ∗T (yT−1,dT−1) = arg max
dT

E[YT (d)|Y T−1(dT−1) = yT−1].

Define a value function at period T as VT (yT−1,dT−1) ≡ maxdT E[YT (d)|Y T−1(dT−1) =

yT−1]. Similarly, for each t = 1, ..., T − 1, let

δ∗t (yt−1,dt−1) = arg max
dt

E[Vt+1(Y
t(dt),dt)|Y t−1(dt−1) = yt−1]

and Vt(y
t−1,dt−1) ≡ maxdt E[Vt+1(Y

t(dt),dt)|Y t−1(dt−1) = yt−1], which then iteratively

defines all the elements in δ∗(·).16 By definition, δ∗(·) is adaptive to past outcomes and

treatments. To illustrate, when T = 2, we have

δ∗2(y1, d1) = arg max
d2

E[Y2(d)|Y1(d1) = y1], (30)

and, by defining V2(y1, d1) ≡ maxd2 E[Y2(d)|Y1(d1) = y1],

δ∗1 = arg max
d1

E[V2(Y1(d1), d1)]. (31)

Therefore, δ∗(·) is equal to the collection of these solutions: δ∗(·) = (δ∗1, δ
∗
2(·)). A similar

argument can be made with a general Wδ.

16Although we consider a stylized objective function here for simplicity, we may be able to have more
realistic objective functions (e.g., the welfare function in Kitagawa and Tetenov (2018); Manski (2004) or the
net welfare in Han (Forthcoming)).
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A.2 Matrices in Section 4.3

We show how to construct matrices Ak and B in (6) and (8) for the linear programming

(10). The construction of Ak and B uses the fact that any linear functional of Pr[Y (d) =

y,D(z) = d] can be characterized as a linear combination of qs. Although the notation of

this section can be somewhat heavy, if one is committed to the use of linear programming

instead of an analytic solution, most of the derivation can be systematically reproduced in a

standard software such as MATLAB and Python.

Consider B first. By Assumption SX and the definition of St and Rt, we have

py,d|z = Pr[Y (d) = y,D(z) = d]

= Pr[Y (yT−1,d) = y,D(yT−1,dT−1, z) = d]

= Pr[S : Yt(y
t−1,dt) = yt, Dt(y

t−1,dt−1, zt) = dt ∀t]

=
∑

s∈Sy,d|z

qs (32)

where Sy,d|z ≡ {S = β(S̃) : Yt(y
t−1,dt) = yt, Dt(y

t−1,dt−1, zt) = dt ∀t} and S̃t ≡ ({Yt(yt−1,dt)}, {Dt(y
t−1,dt−1, zt)}).

Then, for a dq × 1 vector By,d|z,

py,d|z =
∑

s∈Iy,d|z

qs = By,d|zq

and the dq × dp matrix B stacks By,d|z so that p = Bq.

For Ak, recall Wδk is a linear functional of qδk(y) ≡ Pr[Y (δk(·)) = y]. We first find a

relationship between Pr[Y (δ(·)) = y] and Pr[Y (d) = y]. For fixed ỹ, by definition (2), we

can rewrite

Pr[Y (δ(·)) = ỹ] = E
[
E
[
· · ·E

[
Pr[Y (d) = y|Y T−1(dT−1)]

∣∣Y T−2(dT−2)
]
· · ·
∣∣Y1(d1)]] ,

(33)

where the bridge variables d = (d1, ..., dT ) satisfies

d1 = δ1,

d2 = δ2(Y1(d1), d1),

d3 = δ3(Y
2(d2),d2),

...

dT = δT (Y T−1(dT−1),dT−1).
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By repetitively applying the law of iterated expectation, we can show that the r.h.s. of (33)

can be expressed as∑
y1

· · ·
∑
yT−2

∑
yT−1

Pr[Y (d) = ỹ|Y T−1(dT−1) = yT−1]

× Pr[Y T−1(dT−1) = yT−1|Y T−2(dT−2) = yT−2]× · · · × Pr[Y1(d1) = y1]

=
∑
y1

· · ·
∑
yT−2

∑
yT−1

Pr[Y (d) = ỹ|Y T−1(dT−1) = yT−1]

× Pr[YT−1(d
T−1) = yT−1|Y T−2(dT−2) = yT−2]× · · · × Pr[Y1(d1) = y1],

(34)

where the last summation is simply a linear functional of Pr[Y (d) = y], since d = (d1, ..., dT )

satisfies

d1 = δ1,

d2 = δ2(y1, d1),

d3 = δ3(y
2,d2),

...

dT = δT (yT−1,dT−1).

Notice that the bridge variables are no longer random due to appropriate conditioning in

(34). To illustrate, when T = 2, the welfare defined as the average counterfactual terminal

outcome satisfies

E[YT (δ(·))] =
∑
y1

Pr[Y2(δ1, δ2(y1, δ1)) = 1|Y1(δ1) = y1] Pr[Y1(δ1) = y1]

=
∑
y1

Pr[Y2(δ1, δ2(y1, δ1)) = 1, Y1(δ1) = y1]. (35)

For a chosen δ(·), the value d at which Y2(d) and Y1(d1) are defined is given in Table 1 as

shown in the main text.

Now, define a linear functional hk(·) that (i) marginalizes Pr[Y (d) = y,D(z) = d] into

Pr[Y (d) = y] and then (ii) maps Pr[Y (d) = y] into Pr[Y (δk(·)) = y] according to (33) and
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(34). But recall that Pr[Y (d) = y,D(z) = d] =
∑

s∈Sy,d|z
qs by (32). Consequently, we have

Wk = f(qδk) = f(Pr[Y (δk(·)) = ·])

= f ◦ hk(Pr[Y (·) = ·,D(z) = ·]),

= f ◦ hk

 ∑
s∈S·,·|z

qs

 ≡ Akq.

To continue the illustration (7) in the main text, note that

Pr[Y (1, 1) = (1, 1)] = Pr[S : Y1(1) = 1, Y2(1, 1) = 1] =
∑
s∈S11

qs,

where S11 ≡ {S = β(S̃1, S̃2) : Y1(1) = 1, Y2(1, 1) = 1}. Similarly, we have

Pr[Y (1, 1) = (0, 1)] = Pr[S : Y1(1) = 0, Y2(1, 1) = 1] =
∑
s∈S01

qs,

where S01 ≡ {S = β(S̃1, S̃2) : Y1(1) = 0, Y2(1, 1) = 1}.

A.3 Proof of Theorem 4.2

Since Q0 is a finitely generated cone, finding conditions under which (15) holds is equivalent

to finding conditions under which ∆0
k,k′q0 = θk,k′ intersects one of the edges of the cone:

{q0 : qs + qs′ = 1 for s, s′ ∈ S0 and other elements are zero} or {q0 : qs ∈ [0, 1] for s ∈
S0 and other elements are zero}. First, consider condition (i) in the theorem. Choose q0

such that qs = t, qs′ = 1− t, and other elements are equal to zero. Then,

θk,k′ = ∆0
k,k′q0 = γst+ γs′(1− t) = (γs − γs′)t+ γs′

if and only if

t =
θk,k′ − γs′
γs − γs′

.

But then t ∈ [0, 1] by (i), and thus such q0 ∈ Q0. Therefore, (15) holds.

Next, consider condition (ii) in the theorem. Choose q0 such that qs is possibly nonzero

for given s ∈ S0, while all other elements are zero. Then,

θk,k′ = ∆0
k,k′q0 = γsqs
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if and only if qs = θk,k′/γs (assuming γs 6= 0), which is in [0, 1] by (ii), and thus such q0 ∈ Q0.

In this case, when γs = 0, then we trivially have q0 ∈ Q0. Therefore, (15) holds. The proof

with condition (iii) is symmetric, so omitted. �

A.4 Proof of Corollary 4.1

Note that γs > θk,k′ for all s ∈ S0, then
∑

s∈S0 γsqs ≥ θk,k′
∑

s∈S0 qs since qs ≥ 0 for all s ∈ S0.
But θk,k′

∑
s∈S0 qs ≥ θk,k′ since

∑
s∈S0 qs ≤ 1 and θk,k′ < 0. Combining these results, we have

∆k,k′q = ∆0
k,k′q0 − θk,k′ ≥ 0 for any q ∈ Q, or equivalently, Lk,k′ ≥ 0. Conversely, when (i) is

violated, the case falls into either one of the three conditions in Theorem 4.2 or a condition

that γs < θk,k′ for all s ∈ S0 and θk,k′ > 0. The former case implies incomparability which

contradicts Lk,k′ > 0. The latter case implies either Lk,k′ < 0 (by a symmetric argument but

with qs > 0 for all s ∈ S0) which is contradiction, or Lk,k′ = −θk,k′ with qs = 0 for all s ∈ S0
and thus Lk,k′ < 0, which is again contradiction. This proves necessity and sufficiency of the

condition. �

A.5 Alternative Characterization of the Identified Set

Given the DAG, the identified set of δ∗(·) can also be obtained as the collection of initial

vertices of all the directed paths of the DAG. For a DAG G(V,E), a directed path is a

subgraph G(Vj, Ej) (1 ≤ j ≤ J ≤ 2|D|) where Vj ⊂ V is a totally ordered set with initial

vertex k̃j,1.
17 In stating our main theorem, we make it explicit that the DAG calculated by

the linear programming is a function of the data distribution p.

Theorem A.1. Suppose Assumptions SX and B hold. Then, D∗p defined in (9) satisfies

D∗p = {δk̃j,1(·) ∈ D : 1 ≤ j ≤ J}, (36)

where k̃j,1 is the initial vertex of the directed path G(Vp,j, Ep,j) of G(V,Ep).

A.6 Proof of Theorem A.1

Let D̃∗ ≡ {δk̃j,1(·) ∈ D : 1 ≤ j ≤ J}. First, note that since k̃j,1 is the initial vertex of directed

path j, it should be that Wk̃j,1
≥ Wk̃j,m

for any k̃j,m in that path by definition. We begin by

supposing D∗p ⊃ D̃∗. Then, there exist δ∗(·; q) = arg maxδk(·)∈D Akq for some q that satisfies

Bq = p and q ∈ Q, but which is not the initial vertex of any directed path. Such δ∗(·; q)
17For example, in Figure 1(a), there are two directed paths (J = 2) with V1 = {1, 2, 3} (k̃1,1 = 1) and

V2 = {2, 3, 4} (k̃2,1 = 4).
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cannot be other (non-initial) vertices of any paths as it is contradiction by the definition of

δ∗(·; q). But the union of all directed paths is equal to the original DAG, therefore there

cannot exist such δ∗(·; q).
Now suppose D∗p ⊂ D̃∗. Then, there exists δk̃j,1(·) 6= δ∗(·; q) = arg maxδk(·)∈D Akq for

some q that satisfies Bq = p and q ∈ Q. This implies that Wk̃j,1
< Wk̃ for some k̃. But k̃

should be a vertex of the same directed path (because Wk̃j,1
and Wk̃ are ordered), but then

it is contradiction as k̃j,1 is the initial vertex. Therefore, D∗p = D̃∗. �

A.7 Proof of Theorem 5.1

Given Theorem A.1, proving D̃∗ = {δkl,1(·) : 1 ≤ l ≤ LG} will suffice. Recall D̃∗ ≡ {δk̃j,1(·) ∈
D : 1 ≤ j ≤ J} where k̃j,1 is the initial vertex of the directed path G(Vp,j, Ep,j). When all

topological sorts are singletons, the proof is trivial so we rule out this possibility. Suppose

D̃∗ ⊃ {δkl,1(·) : 1 ≤ l ≤ LG}. Then, for some l, there should exist δkl,m(·) for some m 6= 1 that

is contained in D̃∗ but not in {δkl,1(·) : 1 ≤ l ≤ LG}, i.e., that satisfies either (i) Wkl,1 > Wkl,m

or (ii) Wkl,1 and Wkl,m are incomparable and thus either Wkl′,1
> Wkl,m for some l′ 6= l or

Wkl,m is a singleton in another topological sort. Consider case (i). If δkl,1(·) ∈ Dj for some j,

then it should be that δkl,m(·) ∈ Dj as δkl,1(·) and δkl,m(·) are comparable in terms of welfare,

but then δkl,m(·) ∈ D̃∗ contradicts the fact that δkl,1(·) the initial vertex of the topological

sort. Consider case (ii). The singleton case is trivially rejected since if the topological sort

a singleton, then δkl,m(·) should have been already in {δkl,1(·) : 1 ≤ l ≤ LG}. In the other

case, since the two welfares are not comparable, it should be that δkl,m(·) ∈ Dj′ for j′ 6= j.

But δkl,m(·) cannot be the one that delivers the largest welfare since Wkl′,1
> Wkl,m where

δkl′,1(·). Therefore δkl,m(·) ∈ D̃∗ is contradiction. Therefore there is no element in D̃∗ that is

not in {δkl,1(·) : 1 ≤ l ≤ LG}.
Now suppose D̃∗ ⊂ {δkl,1(·) : 1 ≤ l ≤ LG}. Then for l such that δkl,1(·) /∈ D̃∗, either

Wkl,1 is a singleton or Wkl,1 is an element in a non-singleton topological sort. But if it is a

singleton, then it is trivially totally ordered and is the maximum welfare, and thus δkl,1(·) /∈
D̃∗ is contradiction. In the other case, if Wkl,1 is a maximum welfare, then δkl,1(·) /∈ D̃∗

is contradiction. If it is not a maximum welfare, then it should be a maximum in another

topological sort, which is contradiction in either case of being contained in {δkl,1(·) : 1 ≤ l ≤
LG} or not. This concludes the proof that D̃∗ = {δkl,1(·) : 1 ≤ l ≤ LG}. �

A.8 Proof of Lemma 6.1

Conditional on (Y t−1,At−1,Zt−1) = (yt−1,at−1, zt−1), it is easy to show that (21) implies

Assumption M1. Suppose πt(y
t−1,at−1, zt−1, 1) > πt(y

t−1,at−1, zt−1, 1) as πt(·) is a nontrivial
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function of Zt. Then, we have

1{πt(yt−1,at−1, zt−1, 1) ≥ Vt} ≥ 1{πt(yt−1,at−1, zt−1, 0) ≥ Vt}

w.p.1, or equivalently, At(z
t−1, 1) ≥ At(z

t−1, 0) w.p.1. Suppose πt(y
t−1,at−1, zt−1, 1) <

πt(y
t−1,at−1, zt−1, 1). Then, by a parallel argument, At(z

t−1, 1) ≤ At(z
t−1, 0) w.p.1.

Now, we show that Assumption M1 implies (21) conditional on (Y t−1,At−1,Zt−1). For

each t, Assumption SX implies Yt(a
t), At(z

t) ⊥ Zt|(Y t−1(at−1),At−1(zt−1),Zt−1), which in

turn implies the following conditional independence:

Yt(a
t), At(z

t) ⊥ Zt|(Y t−1,At−1,Zt−1). (37)

Conditional on (Y t−1,At−1,Zt−1), (21) and (37) correspond to Assumption S-1 in Vytlacil

(2002). Assumption R(i) and (37) correspond to Assumption L-1, and Assumption M1

corresponds to Assumption L-2 in Vytlacil (2002). Therefore, the desired result follows by

Theorem 1 of Vytlacil (2002). �

A.9 Proof of Lemma 6.2

We are remained to prove that, conditional on (Y t−1,At−1,Zt−1), (22) is equivalent to the

second part of Assumption M2. But this proof is analogous to the proof of Lemma 6.1 by

replacing the roles of At and Zt with those of Yt and At, respectively. Therefore, we have the

desired result. �
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