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Abstract

The Attraction Effect refers to an inferior option a’s ability to increase the attrac-
tiveness of another alternative b after a is added to a choice set, such that a is exclu-
sively dominated by b in the choice set. We consider three decision-making heuristics
of which procedures incorporate the AE at different degrees. In the “Reference-
independent Deterministic Choice” (“RIDC”)’s procedure, the decision maker simply
selects the alternative with the largest lower contour set (LCS). In the “Exogenous
Reference-dependent Random Choice” (“Exogenous-RDRC”)’s procedure, the deci-
sion maker draws a reference alternative, x, among dominated alternatives randomly
and only considers alternatives that Pareto-dominate x, i.e., dominate x in all at-
tributes. Then the decision maker randomly selects with equal probabilities one of
the Pareto alternatives that Pareto-dominate x as her choice outcome. In the “Endoge-
nous Reference-dependent Random Choice” (“Endogenous-RDRC”)’s procedure, the
decision maker selects any dominated alternative a as the reference alternative with
a probability proportional to the number of Pareto alternatives in the upper contour
set (UCS) of a, and then randomly selects with equal probabilities one of the Pareto
alternatives that Pareto-dominate a as her choice. These heuristics’ outcomes differ
from each other in terms of the extent that they incorporate the Attraction Effect: RIDC
incorporates it most strongly and the Exogenous-RDRC incorporates it the least. In
addition, we provide axiomatic characterizations of the outcome sets of these heuris-
tics to help uncover their most salient properties. We are also able to link the outcome
sets of RIDC and Endogenous-RDRC to the Nash product as more alternatives are
selected uniformly from a convex and compact set.
Keywords: The attraction effect, lower and upper contour sets, multiple attributes,
incomplete preferences, reference alternative, random choice, the Nash product.
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1 Introduction

The Attraction Effect (AE) refers to an inferior option a’s ability to increase the attractiveness
of another alternative b after a is added to a choice set, such that a is exclusively domi-
nated by b in the choice set. Since its introduction to the literature in the early 1980s by
Huber, Payne and Puto (1982), the AE or the ‘Asymmetric Dominance Effect’ has become
immensely popular in marketing and psychology literatures - as well as in other fields
- that consider environments with a relatively small number of alternatives which have
at least two attributes. (See, among others, Ariely and Wallsten, 1995, Doyle, O’Connor,
Reynolds and Bottomley, 1999, Herne, 1997, Huber and Puto, 1983, Mourali, Bockenholt
and Laroche, 2007, O’Curry and Pitts, 1995, Schwarzkopf, 2003, Schwartz and Chapman,
1999, among others.) Lately the AE has become prominent in economics as well (see the
Relevant Literature section).

To illustrate the AE in detail, suppose a decision maker were equally likely to choose
between two PCs, i.e., two personal computers, A and B of which main attributes - such
as ‘price’ and ‘processor speed’ - are easily comparable, where A has a better price and
worse speed than B. Now, consider a third option C such that it is clearly inferior to B
(thus, C being more expensive and slower than B) but not inferior to A (thus, C being more
expensive than A while having faster speed than A), i.e., C is Pareto-dominated by B but
not by A. Then, while the inferior item C is not likely to chosen by the decision maker, it is
significantly more likely that the decision maker will choose item B than A in the presence
of C. Thus, dominating C makes B more attractive or prominent than it is in the absence of
C and consequently more preferable than A as well (we will refer to this setup as Example
1). Suppose that one adds two more options, D and D′, such that D is inferior to A only and
D′ is inferior to B only (by that token one could continue adding more such alternatives
such that overall half of these alternatives are exclusively Pareto-dominated by A and the
remaining half exclusively Pareto-dominated by B); likewise, suppose one adds several
other options to the choice set consisting of A,B and C, such that these new alternatives
are jointly dominated by both A and B. Presumably these symmetric additions would still
leave B as the option more preferable than A, although perhaps not as much as it was the
case with the choice set consisting of only A,B and C. In this paper, we will refer to options
such as B, whose attractiveness gets a boost from the presence of the lergest number of
other options that are inferior to it (i.e., to options with the largest ‘lower contour set’
(LCS) in a choice set) as AE alternatives.1

1In the same vein, Higgins’ (1997) ‘regulatory focus theory’ (with Mourali et al.’s, 2007, empirical
findings) provides insights. In the regulatory focus theory, the ‘promotion focus’ is concerned with capturing
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Figure 1: Example 1.

Despite its empirical prominence, the AE is considered an ‘anomaly’ by the well-
studied and stylized standard paradigm of rational choice.2 In other words, a prominent
far-reaching phenomenon such as the AE cannot possibly be incorporated by the standard
paradigm’s rational choice procedure, since the AE violates this paradigm’s key rationality
criterion, namely WARP.3 This paradigm, however, is known to make enormous demands
on the decision maker’s cognitive capacity to process information. Even the simplest
decisions - expressed in the standard form of a decision tree - would easily overwhelm a
typical individual’s cognitive capabilities.

Not surprisingly, as has been pointed out long ago, in real life “relatively few decisions
are made using analytical processes such as generating a variety of options and contrasting
their strengths and weaknesses” (Klein, 1989, p. 47). As found by Payne, Bettman and
Johnson (1993), when presented with decisions in the form of decision trees, matrices of
alternatives and attributes, people - with their limited cognitive capacity to cope with
trade-offs - instead adopt heuristics, i.e., lexicographic and other cognitive shortcuts or

opportunities and achieving gains. That is, the promotion focus, eager to ‘capturing opportunities and
achieving gains’, would view the presence of a dominant alternative as an opportunity to be captured and
thus be sensitive to the dominance heuristic of the AE.

2Within its tractable structure, the standard paradigm of rational choice considers a decision maker with
a well-defined deterministic and complete ranking of all feasible alternatives, regardless of the particular
choice problem the decision maker faces.

Nevertheless, strong and persistent experimental and field evidence (including evidence on the AE)
increasingly kept pointing to various choice behavior that are inconsistent with the premises of this standard
paradigm, leading to an increasing scrutiny of this paradigm in time (see Camerer, 1995, and Rabin, 1998,
for surveys - we too will briefly elaborate on some such behavior shortly).

3In this standard rational choice paradigm, the decision maker always ends up choosing the option that
she ranks the highest among any collection of feasible alternatives whenever that option is available, as the
‘Weak Axiom of Revealed Preference’(WARP) implies.

Note that the AE violates WARP: in Example 1 both A and B are selected from the feasible set {A,B}, but
B is selected alone from the feasible set {A,B,C}.
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simple but efficient choice rules.4 Heuristics can simplify complex decision problems very
efficiently by obviating the need for trade-offs.5 People resort to heuristics to avoid the
responsibility for making trade-offs as many trade-offs are very cumbersome, involving
multi-attribute, interdimensional comparisons - ‘balancing proverbial apples and oranges’
- that people do not have the cognitive and emotional equipment to perform easily (Tetlock,
2000).6 There is also strong neuroimaging (i.e., fMRI) evidence provided by Hedgcock
and Rao (2009) regarding the presence of ‘trade-off aversion’ generating negative emotion:
“trade-offs represent difficult choices, ... they are a threat to the goal of selecting an option
..., and therefore trade-offs generate negative emotion. ... In other words, consumers
prefer making comparisons between options that do not represent trade-offs” (p. 3); the
threat of negative emotions in the presence of trade-off aversion in turn leads to heuristics
that avoids trade-offs: “[t]he desire to avoid a choice task that generates negative emotion
... yield[s] cognitive processes that emphasize heuristics” (p. 28). In addition, there is
strong evidence that trade-offs between multi-attribute choices deplete cognitive resources
much more than trade-offs not involving multi-attribute choices (see Wang, Novemsky,
Dhar and Baumeister, 2010).

The goal of this paper is to identify and examine an alternative framework, which
makes much lesser demands on a typical decision maker’s cognitive capacity (e.g., via
trade-off aversion) that is also conducive to heuristics incorporating the AE - i.e., that
can select the AE alternatives - at different degrees. Almost as importantly, another goal
of this paper is to provide axiomatic characterizations to help uncover this framework’s
practical and heuristic choice procedures’ most salient properties.

To that end, within such a framework we propose and analyze three heuristics of

4Tversky’s (1969) ‘lexicographic semiorder’ constitutes one of the early heuristics that became very
prominent. In that heuristic, a preference is generated by the sequential application of numerical criteria by
deeming an alternative x better than another alternative y if Attribute 1 that distinguishes between x and
y ranks x cardinally higher than y by an amount exceeding a fixed threshold; if the decision maker does not
rank x higher than y in terms of Attribute 1 by an amount exceeding a fixed threshold, then their cardinal
ranking by Attribute 2 would have to be considered. Likewise, if the issue could not be settled by Attribute
2 either, then Attribute 3 would be taken into consideration, and so on. Later, Manzini and Mariotti (2012)
generalized Tversky’s (1969) ‘lexicographic semiorder’ idea to a full-fledged model of boundedly rational
choice.

5A popular such heuristic is the 1/N rule. In deciding how to allocate financial resources among N
options, some individuals rely on the 1/N heuristic that allocates financial resources equally across all
alternatives (Benartzi and Thaler, 2001). DeMiguel, Garlappi and Uppal (2009) compared the 1/N heuristic
to 14 optimizing models, including Markowitz’s mean-variance portfolio (a Nobel Prize–winning model),
in seven investment problems. The 1/N heuristic came out first on certainty equivalent returns.

6As the moral philosopher Raz (1986, p. 22) put it, there are other deterrents of contemplating trade-offs at
times: “It is impoverishing to compare the value of a marriage with an increase in salary. It diminishes one’s
potentiality as a human being to put a value on one’s friendship in terms of improved living conditions.”
Even to think about such trade-offs may compromise one’s standing as a moral being.
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which procedures incorporate the AE alternatives such as B at different degrees: (1)
the procedure of the “Reference-independent Deterministic Choice” heuristic (“RIDC”
hereafter), which will always uniquely select the AE alternative(s) as the outcome by
default; (2) the procedure of the “Endogenous Reference-dependent Random Choice”
heuristic (“Endogenous-RDRC” hereafter), which will not necessarily select the AE alter-
native(s) uniquely but with the highest probability nevertheless; (3) the procedure of the
“Exogenous Reference-dependent Random Choice” heuristic (“Exogenous-RDRC” here-
after) which will always choose the AE alternative(s) with very high probabilities but
not necessarily with the highest probabilities, i.e., as will be seen, Exogenous-RDRC may
favor alternatives with slightly smaller LCSs but with a larger set of exclusively Pareto-
dominated alternatives and a smaller set of jointly Pareto-dominated alternatives than the
AE alternative(s).7

It will be very clear that our heuritics’ procedures, despite their different outcome
sets (and as will be seen, despite their very different axioms in these axiomatizations),
tend to have some common elements as well. Overall, they are simplistic, rule-of-thumb
procedures entailing various short-cuts. They involve rather effortless/costless or random
selections among Pareto (i.e., undominated) alternatives. The Endogenous-RDRC’s and
Exogenous-RDRC’s procedures - i.e., the ones that choose the AE alternatives with high
probabilities and other Pareto alternatives with low probabilities - will involve (i) a refer-
ence alternative x, which is encountered randomly from among dominated alternatives
(exogenously in Exogenous-RDRC and endogenously in Endogenous-RDRC), and (ii) a
random selection among Pareto alternatives dominating x, while RIDC - i.e., the proce-
dure that never selects any alternatives apart from the AE alternatives - will not even need
a reference alternative and will require randomness only to break ties between multiple
AE alternatives, if any, to choose one of them. We will then provide axiomatic charac-
terizations of the outcome sets of these procedures. To our knowledge our paper is not
just the first one that provides cooperative foundations to heuristics incorporating the AE
but also the first one that provides cooperative foundations to stochastic outcomes (i.e.,
those of the Exogenous-RDRC and Endogenous-RDRC) where the decision maker is not
assumed to have stochastic preferences or make random choice errors. Finally, we will
also establish a strong inherent link between the RIDC’s outcome and the Nash product
of a convex and compact domain as well as a weaker such link between the Endogenous-
RDRC’s outcome and the Nash product; it turns out that there is no such link between the
Exogenous-RDRC’s outcome and the Nash product.8

7In Example 1 above, all three heuristics’ procedures will always select B uniquely. However, we will
provide an example in Section 1.1 where these heuristics’ outcomes will differ from each other.

8The Nash product, which is a very prominent concept in game theory, maximizes the LCS and thus the
geometric average of a choice over a convex and compact set (see Nash, 1950, 1953).
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1.1 Towards an Alternative Framework

As the AE violates WARP and thus cannot possibly be incorporated by the standard
paradigm of rational choice - which, as alluded to before, easily overwhelms a typical
individual’s cognitive capabilities -, clearly a new framework is needed to embed choice
heuristics that can incorporate a widespread phenomenon such as the AE. In our quest for
such an alternative framework, we will start searching for some ingredients among the
various choice behavior that violate the tenets of the standard paradigm’s rational choice
behavior.

Limited Completeness of Preferences in a Multi-attribute Context: One of the main tenets
of the standard paradigm is the assumption that individuals have complete preferences (or
well-defined rankings) over all feasible options, regardless of the trade-offs they encounter
comparing them. The complete-preferences assumption has been deemed unrealistic since
the seminal contributions of Aumann (1962) and Bewley (1986). As everyday decision
making often involves choosing among options that differ in multiple-attribute dimen-
sions and could pose major trade-offs between diffferent attributes, clearly this assumption
would be even harder to justify in such a multi-attribute context, which naturally gives rise
to phenomena such as the AE. First of all, decision makers may consider some attributes
“noncompensatory,” i.e., one attribute not being able to compensate for a deficiency in
another - or one characteristic not to be traded off against each other. Even with compen-
satory attributes, there is no universally agreed-upon or intrinsic way to obtain valid and
accurate evaluations of attribute weights for a sophisticated decision maker.9 Forming
complete preferences among available options with multiple attributes - with potentially
formidable trade-offs between these attributes - would be a more daunting task for a typ-
ical consumer, especially when she also has limited experience with the options available
to her (more so if individuals were further required to cope with trade-offs by weighing
probabilities, time delays, and outcomes experienced by other persons in a consistent
fashion). Nevertheless, there would be much less harm in assuming that the decision
maker could rank a set of alternatives according to any particular single attribute, e.g., at
least she would be able to recognize which PC has a better processing speed and which
PC has a worse such speed, etc.

As Piccione and Spiegler (2012, p. 97) put it, although “standard models of market
competition assume that consumers rank all the alternatives they are aware of, ... in
reality, consumers are often unable to compare alternatives.” In all of our procedures, as
alluded to by Aumann (1962, p. 446), the decision maker will be “willing and able to arrive
at preference decisions only for certain pairs of [alternatives],” i.e., only for alternatives

9Several approaches have been proposed in the marketing literature to handle the problem of aggregating
a large numbers of attributes, each with its own specific drawbacks (see for instance Green and Srinivasan,
1990, Louviere, 1984, Oppewal, 1994).
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that can be Pareto ranked, “while for others [she will] be unwilling or unable to arrive
at a decision.” It will turn out that such a limited completeness property (motivated by
trade-off aversion), where the decision maker could rank a set of alternatives according to
any particular single attribute, and the ‘Pareto-dominance relationship’ in the choice set
are sufficient to give rise to RIDC, while Exogeneous-RDRC and Endogenous-RDRC will
require the next two features as well.

Reference-dependence via Limited Attention (i.e., Reference-dependent Consideration Sets): In
addition, there is prevalent evidence since Kahneman and Tversky (1979) which suggests
that choices are also often reference dependent: the ‘presence of certain types of options’
affects the choice behavior of many consumers. In most such cases a specific alternative,
which can easily be identified, can serve the role of the reference point or reference alter-
native, e.g., the status quo choice, the endowment, the default option, and so on. Further,
reference dependence may emerge even in choice situations where no alternative can
serve the role of a status quo choice or a default option: the reference alternative could
be an option that the decision maker somehow knows well without owning it, e.g., her
spouse or kids or a very close friend may own one, or even one recently seen can serve as a
reference alternative. The presence of a reference alternative in the feasible set of alterna-
tives, S, in turn can help a decision maker restrict her attention to only a small fraction of
items that are available to her instead of considering all options before making a decision
(limited attention), in order to prevent her cognitive capacity from being overloaded.10

In marketing and economics literatures, such a restricted set is called a “consideration
set,” i.e., the set of alternatives to which the decision maker pays attention in her choice
process.11

Note that a consideration set can be very easily constructed with the help of a refer-
ence alternative x by restricting the set of alternatives only to x and the ones that Pareto-
dominate x, i.e., to x’s upper contour set (UCS) in S, which will be denoted by U(x,S). As
such, the decision maker would be able to construct a ‘reference-dependent consideration
set’ (S, x) which is x ∪ U(x,S).12 In the context of reference dependence and our proce-

10E.g., as a typical supermarket’s cereal isle carries about 400+ items, it would be very unrealistic for a
typical individual to contemplate all of this overwhelming number of alternatives avalilable to her.

11This concept dates back to Wright and Barbour (1977). For a theoretical model on how one can deduce
both the decision maker’s preferences and the alternatives to which she pays attention (and inattention)
from the observed behavior, see Masatlioglu, Nakajima and Ozbay (2012).

12The fact that the decision maker prefers to use a (concrete) alternative as the reference alternative to
make comparisons and form a consideration set is well known to the marketing literature. Klein and
Oglethorpe (1987): “A novice buyer of a particular product should initially have little knowledge about the
distribution of attribute levels in the market and some uncertainty about preferences for those levels. ... A
concrete alternative should be an easier reference point to use: for instance a well known brand or the one
that is first encountered. ... For example, a novice PC buyer may acquire information about the IBM PC
first because it’s the best known exemplar of the product category. Information about attributes of other
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dures, while RIDC will not need a particular reference alternative, Exogeneous-RDRC
and Endogenous-RDRC will always need a reference-dependent consideration set, (S, x),
where the decision maker encounters her reference alternative randomly from dominated
or Pareto alternatives in the feasible set S according to some probability function.13

Random Choice: Finally, as individuals routinely violate the key WARP property in
experimental and field settings in a manner inconsistent with any fully deterministic model
of rational choice, we will elaborate on the robust empirical finding of stochastic or random
choice: ‘when subjects are asked to choose from the same set of options many times, they
often make different choices’. For instance, to investigate the origin of stochastic choice
Agranov and Ortoleva (2016) have recently conducted an experiment.14 They report that
subjects mostly exhibit ‘deliberate’ random choice by selecting different lotteries in the
repetition of the same question, whether they are explicitly informed about the repetition
(71%) or not (90%); further, 29% of subjects choose to pay a cost to flip a coin. Not surprisingly,
however, in Agranov and Ortoleva (2016) random choice is present almost exclusively
in the presence of ‘hard’ questions (i.e., in the presence of difficult risk/return trade-offs),
in which none of the available options is ‘clearly’ better than the other.15 Indeed, when
asked in the questionnaire following the experiment why they indeed chose different
answers when the same question was asked multiple times, participants’ typical answer
was that they did so “because they did not know which option was best, and thus did not
want to commit to a specific choice.”16 As will be elaborated later, random choice by the

personal computers is then compared to the levels possessed by an IBM PC.”
13For instance, a recent influential model of market competition of Piccione and Spiegler (2012, p. 99) too

assumes that a reference alternative is assigned to the consumer randomly, which the authors interpret “as
a default option arising from previous consumption decisions.”

14Apart from the presence of such recent empirical evidence on random choice, influential theoretical
models of random choice too have been proposed in economics and psychology (see, among others, Cerreia-
Vioglio, Dillenberger, Ortoleva and RiellaCerreia-Vioglio, 2015, Fudenberg, Iijima and Strzalecki, 2015, Gul,
Natenzon and Pesendorfer, 2015, Machina, 1985, Marley, 1997, Swait and Marley, 2013).

15Dwenger, Kubler and Weizsacker (2013) too find that subjects prefer avoid making hard decisions
but instead choose to delegate their choice to an external device both in the laboratory and in field data,
indicating an explicit preference for randomization. They discuss the extent that their experimental data is
consistent with a theory of ‘responsibility aversion’, a version of the regret theory by Loomes and Sugden
(1982).

Such random choice could presumably be also due to the “diversification bias” (Simonson, 1989) as well.
However, Agranov and Ortoleva show that “the tendency to diversify takes place virtually only for ‘hard’
questions” (p. 7).

16This is reminiscent of the principle of insufficient reason of Bernoulli (1713). Laplace wrote that uni-
formity should be assumed “[when] we have no reason to believe any particular case should happen in
preference to any other” (see Dembski and Marks II, 2009). This principle asserts that where we do not have
sufficient reason to regard one possible case as more probable than another, we may treat them as equally
probable.

Binmore, Stewart and Voorhoeve (2012, pp. 215-6) examined the predictive power of alternative principles
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decision maker will be a significant feature of our Exogenous-RDRC and Endogenous-
RDRC heuristics’ procedures (while RIDC will involve the decision maker’s random
choice at the minimal possible extent).17

1.2 Informal Elaboration of Our Heuristics’ Procedures and
Axiomatic Characterizations

Exogenous-RDRC: In Exogenous-RDRC, the decision maker encounters her reference al-
ternative x randomly from ‘dominated’ alternatives in S according to some probability
function and then arrives at her reference-dependent consideration set (S, x) which only
includes x and x’s UCS, U(x,S) (i.e., x ∪ U(x,S)) as described before.18 If there are no
dominated alternatives in S, then one of the alternatives is selected randomly as the out-
come. If there are dominated alternatives in S, then the decision maker further refines her
consideration set (S, x) by discarding all alternatives that are themselves dominated by
any other alternative in U(x,S). Subsequently the decision maker uses a random selection
stage only considering the Pareto alternatives in U(x,S). In particular, she selects (i) y as
the choice outcome if it is the only Pareto alternative in U(x,S), and (ii) one of the Pareto
alternatives in U(x,S) as the choice outcome randomly with equal probabilities if there are
multiple such alternatives.19

Endogenous-RDRC: In Endogenous-RDRC, the decision maker selects any dominated
alternative a as the reference alternative with a probability proportional to the number
of Pareto alternatives in U(a,S), in which case one of those Pareto alternatives is selected
randomly as the choice outcome. Once the decision maker has a reference alternative in
Endogenous-RDRC, then the rest of that heuristic’s procedure proceeds as in Exogenous-
RDRC described above.

of choice under uncertainty, including the objective maximin and Hurwicz criteria, the sure-thing principle,
and the principle of insufficient reason. They state that "[c]ontrary to our expectations, the principle of
insufficient reason performed substantially better than rival theories in our experiment.”

17Indeed, in a recent important model of market competition they have developed, Chiaveanu and Zhou
(2013, p. 2451) too went on to assume that if consumers cannot make their minds up among products, “they
choose one product randomly” - observe that this is also in line with the findings of Agranov and Ortoleva
(2016), regarding individuals’ behavior when facing hard choices.

18In an earlier version of this paper, we have also considered a case where the reference alternative could
be seleceted from undominated alternatives as well. As the latter case has not added anything significant
to the anlysis but only made the notation the mathematical structure more complicated, we have decided
to proceed without that case.

19In the latter case, the decision maker can presumably consult with friends, family and acquaintances as
well who may know something about those undominated options, but they too may have different opinions
due to their own particular tastes or inadequate/disparate experience, which at the end may not differ much
from a random choice among Pareto alternatives.
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RIDC: RIDC, on the other hand, blatantly highlights the link between the AE and LCSs
of alternatives. It features a decision maker who selects the alternative(s) with the largest
LCS as the choice outcome(s). If there is only one such alternative with the largest LCS, it
will be her choice outcome for sure. If there are multiple such alternatives, then she will
select one of them as the choice outcome randomly with equal probabilities.

As mentioned before, RIDC always uniquely chooses the AE alternative(s) by de-
fault; Endogenous-RDRC does not necessarily choose the AE alternative(s) uniquely but
chooses them with the highest probability; and Exogenous-RDRC always chooses the
AE alternative(s) with high probabilities but not necessarily with the highest probabil-
ities, as it distinguishes between exclusively Pareto-dominated alternatives vs. jointly
Pareto-dominated alternatives in LCSs.

The Extent That Our Heuristics’ Procedures Incorporate the AE - An Example: To illustrate
the differences between these three procedures, suppose that the decision maker considers
three Pareto-dominant alternatives X,Y, and Z and three Pareto-dominated alternatives,
e, j, j′, such that j and j′ are jointly Pareto-dominated by X and Y, while e is exclusively
Pareto-dominated by Z. Suppose that these alternatives’ attribute rankings can be ex-
pressed as X14,Y23, j35, j′46,Z51, e62, where a smaller number for each attribute indicates a
better (preferred) attribute ranking for the decision maker (we will refer to this setup as
Example 2). That is, X is the best option for the decision maker in terms of Attribute 1 while
Z is her best option in terms of Attribute 2. Note that X and Y have the same LCS consist-
ing of both j, j′, while Z has the LCS consisting of only e′. Thus, RIDC will select each of X
and Y as the outcome with probability 1

2 . For Endogenous-RDRC’s outcome probabilities,
we first need to calculate UCS sizes of e, j, j′. Observe that they are 1, 2, 2 respectively. So,
e will become the reference alternative with probability 1

5 , j with probability 2
5 , and j′ with

2
5 ; thus, j and j′ will have twice as large probability to become a reference alternative than
e will, since the UCS of each of j and j′ has twice as many Pareto alternatives as the UCS
of e does. Therefore, each of X and Y will be selected as the outcome with probability 2

5 ,
and Z will become the outcome with probability 1

5 . In Exogenous-RDRC, each of e, j, j′

will become the reference alternative with probability 1
3 , and therefore each of X,Y,Z will

be selected as the outcome with probability 1
3 . This is because, while X and Y have twice

as large LCS as that of Z, the lone alternative in Z’s LCS is exclusively dominated by Z,
whereas each alternative in the LCS of each of X and Y is jointly dominated by each X
and Y. In other words, when e becomes the reference alternative, Z will be selected as
the outcome for sure, since Z is the only Pareto alternative in U(e,S), while when either j
or j′ becomes the reference alternative, either of X and Y will be selected as the outcome
with probability 1

2 each only, since U( j,S) and U( j′,S) both include X and Y as Pareto
alternatives.

Intuition on Our Heuristics’ Incorporation of the AE at Different Levels: Thus, in all of
our heuristics’ procedures, the dominated alternatives can never be selected as outcomes,
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Figure 2: Example 2.

but they will be the “king makers” in that they will have great influence over the choice
probabilities of Pareto alternatives that Pareto-dominate them. In RIDC, for each Pareto
alternative y, each dominated alternative x will matter as much as any other dominated
alternative that is dominated by y. In Endogenous-RDRC, each dominated alternative x
will matter as much as the number of the Pareto alternatives in x’s UCS, although - unlike
Exogenous-RDRC - it does not matter whether the dominated alternatives are jointly
dominated or exclusively dominated by some Pareto alternatives. For Exogenous-RDRC,
on the other hand, the exclusively-dominated alternatives are the “true” king makers, while
jointly-dominated alternatives are less so, especially if they are dominated jointly by a larger
number of Pareto alternatives. In particular, the impact of a dominated alternative x on the
choice probability of a Pareto alternative will be at its minimum when x is dominated by
all Pareto alternatives. Further, in Exogenous-RDRC, the probability of each dominated
alternative to become the reference alternative is the same (and thus exogenous) while
in Endogenous-RDRC the probability of each dominated alternative x to become the
reference alternative depends on the number of Pareto alternatives in x’s UCS (and thus
is endogenous).

Axiomatic Characterizations of our Heuristics’ Outcome Sets: Apart from satisfying Weak
Pareto Optimality, each of the axiomatic characterizations of Exogenous-RDRC and
Endogenous-RDRC satisfies axioms that consider exclusive domination of an alternative
x by y - i.e., when y is the only Pareto alternative dominates x - versus joint domination of
x - i.e., when multiple Pareto alternatives such as y and z dominate x - where the relative
attribute rankings of y and z do not change between these two setups. In Exogenous-
RDRC’s characterization, these axioms jointly deem that y’s choice probability should
increase exactly as much as z’s choice probability decreases, while the choice probabilities
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of other Pareto alternatives should remain the same. In that of Endogenous-RDRC, these
axioms jointly deem that y’s choice probability need not increase exactly as much as z’s
choice probability decreases and the choice probabilities of other Pareto alternatives need
not remain the same. When one considers exclusive vs. joint domination in the context
of RIDC, however, - as RIDC does not distinguish between these types of domination -,
y’s choice probability need not even increase and z’s choice probability need not even
decrease, and the choice probabilities of other Pareto alternatives need not remain the
same. Therefore, the crucial axiom in the characterization of RIDC only focuses on the
circumstances that leave the choice outcome from one set, S, to a larger one, S′, unchanged
(in addition, RIDC’s axiomatic characterization also requires a strong Symmetry axiom;
although RIDC’s axiomatic characterizations does not require Weak Pareto Optimality
(WPO), it satisfies WPO nevertheless).

It is worth noting that the fact the outcomes of these three fairly different heuristics’
procedures incorporating the AE differ significantly and the axioms in their axiomatiza-
tions differ from each other almost entirely, in a sense, implies a strong degree of theoretical
robustness for the AE phenomenon.

The next section provides the Preliminaries. Sections 3 and 4 are on Exogenous-
RDRC, Endogenous-RDRC and RIDC, while Sections 5, 6, and 7 provide the axiomatic
characterizations of their outcome sets, respectively. Section 8 is on the Nash product
convergence of RIDC’s and Endogenous-RDRC’s outcome sets. Relevant Literature is in
Section 9. Section 10 concludes with some general remarks.

2 Preliminaries

Let (S, {�I}I∈Λ) or (S,�1, ...,�N) be a finite decision problem with multiple attributes, where (i)
S denotes the feasible set with a finite number of #S > 1 alternatives, with #(·) denoting
the cardinality of any set (·), (ii) Λ denotes the set of attributes of the alternatives in S with
#Λ = N, and (iii) �I denotes the decision maker’s preferences or rankings of alternatives in
S in terms of Attribute I where I = 1, 2, ...,N.

Although �I could be expressed as >I for some measurable attributes such as price,
storage, processor speed, it cannot be expressed as >I for unmeasurable attributes such
as colors, odors, shapes, etc. We assume that �I is complete and transitive. That is, (i)
the decision maker can rank all items in S according to each attribute I ∈ Λ such that it is
either y �I z or y ≺I z for all y, z ∈ S, and (ii) z �I y and y �I x then z �I x for all x, y, z ∈ S.
For tractability, we rule out the indifference case y ∼I z for any two items y, z ∈ S.

Although in our analysis initially we will focus on the case of #Λ = 2 attributes, later
we will also consider the case #Λ > 2. Thus, first let Λ = {I, J}. Let si j, si′ j′ ∈ S such that
i < i′ means that the decision maker prefers si j over si′ j′ in terms of Attribute I and j < j′
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means that the decision maker prefers si j over si′ j′ in terms of Attribute J. Thus, i = 1 if si j

is the decision maker’s most preferred alternative in terms of Attribute I and j = 1 if si j is
the decision maker’s most preferred alternative in terms of Attribute J; likewise, i = #S if
si j is the decision maker’s least preferred alternative in terms of Attribute I and j = #S if
si j is the decision maker’s least preferred alternative in terms of Attribute J.

For any two alternatives y, z ∈ S, we will use y � z to denote y �I z and y �J z.
As alluded to before, the decision maker’s preferences, �, over alternatives in S are not
complete (although, as mentioned above, her preferences over alternatives in terms of
each attribute is complete). We assume that she can only compare and rank any two
alternatives if and only if they are Pareto-rankable, that is, whenever y � z or y ≺ z.
Likewise, the decision maker’s preferences over alternatives in S are transitive if and only
if they are Pareto-rankable: if z � y and y � x then z � x.

Let U(x,S,�1,�2) and L(x,S,�1,�2) denote the upper and lower contour sets of x for the
decision maker such that U(x,S,�1,�2) = {y ∈ S : y � x} and L(x,S,�1,�2) = {y ∈ S : x � y}.
Let ∂(S,�1,�2) denote the Pareto Set of S, where ∂(S,�1,�2) = {y ∈ S|there is no y′ ∈
S such that y′ � y}. Let η(S,�1,�2) denote the Set of Dominated Alternatives in S where
η(S,�1,�2) = S\∂(S,�1,�2). We will often simply write L(x,S,�1,�2), U(x,S,�1,�2), ∂(S,�1

,�2) and η(S,�1,�2) as L(x,S), U(x,S), ∂S and ηS respectively, whenever no confusion will
arise from doing so (e.g., especially when (�1,�2) is fixed).

LetD2 be the set of all finite decision problems with two attributes (S,�1,�2). A choice
rule is a function q : S×D2 → [0, 1] with q(y,S,�1,�2) ≥ 0 ∀y ∈ S and

∑
y∈S q(y,S,�1,�2) = 1.

Thus, the value q(y,S,�1,�2) is the probability of choosing alternative y when the finite
random reference decision problem is (S,�1,�2). (We sometimes write q(y,S,�1,�2) as
q(y,S) when no confusion will arise from doing so.)

3 Exogenous-RDRC

Let x ∈ S denote a randomly selected reference alternative from S. In particular, we assume
only dominated alternatives can be selected as the reference alternative (hence, each
Pareto alternative is selected as the reference with probability zero). Thus, U(x,S) , ∅.
Further, each dominated alternative is selected as the reference alternative with the same
probability, i.e., with probability 1

#ηS .20

The decision maker’s choice procedure according to the Exogenous Reference-dependent
Random Choice (Exogenous-RDRC) will explicitly operate as follows:

(1) Suppose there are no dominated alternatives. Then each of the Pareto alternatives

20As mentioned before, in an earlier version we also considered a case where undominated alternatives
too could be selected as a reference alternative, which did not lead to any additional gain of insight but to
some further complication mathematically.
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is selected as the choice outcome randomly with equal probabilities.
Suppose there is at least one dominated alternative. Then:
(2) An alternative x in S is selected as the reference alternative. In particular, any Pareto

alternative will be selected as the choice outcome with the same probability 1
#ηS .

(3) Suppose there is a unique alternative y in U(x,S). Then the decision maker will
select y as the choice outcome. Suppose there are multiple alternatives in U(x,S), and
there is only one, y, in ∂U(x,S). Then she will certainly select y as the choice outcome.

Thus the decision maker will bypass any x′ such that y � x′ � x, and select y, since
there is no other alternative in ∂U(x,S) that could possibly attract the decision maker.
Thus, the decision maker will never move from x to another dominated x′ alternative in
U(x,S) since such a move would then require another switch to an alternative y in ∂U(x,S)
which would necessarily dominate the intermediate inferior alternative x′ (even if such a
second move is not costly for the decision maker, the initial move to x′ from x would at
least be redundant, nevertheless).

(4) Suppose, however, that there are multiple alternatives in ∂U(x,S). Then, the deci-
sion maker will select any of the alternatives in ∂U(x,S) as the choice outcome randomly
with equal probabilities, since the decision maker cannot possibly rank those alternatives
in ∂U(x,S).

Recall Example 2 in Section 1. Observe that in the Exogenous-RDRC’s procedure
while a dominated alternative x has no chance to be the choice, a Pareto alternative has to
have a non-empty LCS to become a choice outcome. Further, ceteris paribus, if a Pareto
alternative’s LCS gets largers it gets a higher chance to become a choice alternative. In
addition, ceteris paribus, if a Pareto alternative’s LCS composition changes such that it
has a larger number of exclusively-dominated alternatives vs. jointly dominated ones,
then it gets even a higher chance to become a choice alternative.

For any y ∈ ∂S, let Ji(y,S) ⊆ L(y,S) be the set of alternatives that are dominated by y
and are dominated by exactly i Pareto alternatives (including y).

Theorem 1 Let qex be the choice rule induced by Exogenous-RDRC. For any y ∈ ∂S, qex(y,S) =
1

#ηS

∑#∂S
i=1

#Ji(y,S)
i .21

Consider the following example, to which we will refer as the AA′ − CC′ example
in the remainder of the paper. It involves a symmetric set of alternatives of which at-
tribute rankings can be expressed as A15, a26,C34,C′43,A

′

51, a
′

62, where again a lower number
for each attribute indicates a better (preferred) attribute ranking for the decision maker.
Then observe that the choice outcome of Exogenous-RDRC is either A or A′ with equal
probabilities.

21Proofs of our results are in the Appendix unless stated otherwise.
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Figure 3: AA′ − CC′ Example.

4 Endogenous-RDRC and RIDC

We now study an endogenous variant of Exogenous-RDRC, the so-called Endogenous
Reference-dependent Random Choice (Endogenous-RDRC). Its procedure is as follows. An
alternative a is selected as the reference alternative according to the following rules: (i) as is
the case in Exogenous-RDRC, only dominated alternatives can be selected as the reference
alternative (thus, each Pareto alternative is selected as the reference with probability
zero),22 and (ii) for any a ∈ ηS, a is selected with a probability that is proportional to
#∂U(x,S), i.e., proportional to the cardinality of the Pareto set of the set of alternatives that
dominate a. The remainder of the Endogenous-RDRC’s procedure is the same as that of
the Exogenous-RDRC.

Let I(S,�1,�2) =
∑

y∈∂(S,�1,�2) #L(y,S,�1,�2); in short, I(S) =
∑

y∈∂S #L(y,S), when (�1,�2)
is fixed. Letting #∂(S,�1,�2) = m and #η(S,�1,�2) = n, we must have n ≤ I(S,�1,�2) ≤
mn. Roughly speaking, if we fix the number of Pareto alternatives and the number of
dominated alternatives m and n respectively, then note that, as I(S,�1,�2) increases, the
dominated alternatives become more jointly dominated by Pareto alternatives (an extreme
case is that all dominated alternatives are dominated by all Pareto alternatives, in which
we have I(S,�1,�2) = mn). We thus call I(S,�1,�2) the degree of joint dominance of (S,�1,�2).

We then obtain the following result.

Theorem 2 Let qen be the choice rule induced by Endogenous-RDRC. For any y ∈ ∂S, qen(y,S) =
#L(y,S)

I(S) .

22If there are no dominated alternatives, then each of the Pareto alternatives is selected as the choice
outcome randomly with equal probability.
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Theorem 2 shows that in Exogenous-RDRC, the Pareto alternative that has the largest
lower contour set will be chosen with the largest probability. As will be elaborated on
later, there is a strong link between Endogenous-RDRC’s outcome(s) and those of the
Nash product.

Finally, we study an essentially trivial heuristic, namely the so-called Reference-
independent Deterministic Choice (RIDC). Its procedure is as follows. No alternative is
designated as the decision maker’s reference alternative. The decision maker directly
selects the alternative y with the largest L(y,S) as the choice outcome if there is a unique
such alternative. If there are multiple alternatives y1, ..., yn ∈ S such that #L(yi,S) ≥ #L(z,S)
with i = 1, ...,n and any z ∈ S, then the decision maker will select any yi randomly with
equal probabilities as the choice outcome.

Theorem 3 Let qr be the choice rule induced by RIDC. Then, the alternatives that have positive
probability under qr must have the largest lower contour sets.

Proof of the above theorem is obvious and thus omitted. Note that in RIDC only the
alternatives with the largest LCSs are selected with positive probability. As such (and as
will be elaborated later), there is a very direct strong link between the RIDC’s outcome and
the Nash product (i.e., much stronger link than the one between the Endogenous-RDRC’s
outcome and the Nash product).

Exogenous-RDRC, Endogenous-RDRC and RIDC coincide on the AE alternatives in the
AA′−CC′ example above. However, it is easy to see that their outcomes need not coincide
given an arbitrary S. Consider the following example: s17s28s36s43s54s61s72s85 (see Figure 4).
Then observe that RIDC assigns q(s17) = q(s28) = q(s36) = q(s54) = q(s72) = q(s85) = 0 but
q(s43) = q(s61) = 0.5, Endogenous-RDRC assigns q(s28) = q(s36) = q(s54) = q(s72) = q(s85) = 0
but q(s17) = 0.2, q(s43) = q(s61) = 0.4, while Exogenous-RDRC assigns q(s28) = q(s36) =

q(s54) = q(s72) = q(s85) = 0 but q(s17) = 0.25, q(s43) = q(s61) = 0.375.

5 Axiomatic Characterization of the Exogenous-RDRC’s Outcome
Set: The 2−attributes Case

Consider the following standard property.
Weak Pareto Optimality (WPO): For any (S,�1,�2) ∈ D2, q(y,S,�1,�2) = 0 for ∀y ∈

η(S,�1,�2).
Thus, WPO states that any dominated alternative cannot possibly be a choice outcome.
We will next define exclusive domination. Let E(y,S,�1,�2) = {x ∈ S|x ∈ L(y,S,�1,�2)

where y ∈ ∂(S,�1,�2) and x < L(z,S,�1,�2) where z ∈ ∂(S,�1,�2) and z , y}. That is,
E(y,S,�1,�2) is the set of alternatives in S which are dominated only by the efficient
alternative y in S and not dominated by another efficient alternative in S.
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Next, we will define joint domination. Let J(y, z,S,�1,�2) = {x ∈ S|x ∈ L(y,S,�1,�2),
x ∈ L(z,S,�1,�2), and x < L(w,S,�1,�2) for any w , y, z and w ∈ ∂(S,�1,�2) }. That is,
J(y, z,S,�1,�2) is the set of alternatives in S which are dominated by both y and z but not
by any other Pareto alternative. More generally, we define J(y1, ..., yn,S,�1,�2) as the set of
alternatives in S which are dominated by y1, ..., yn but not by any other Pareto alternative.

We mentioned above that dominated alternatives, although they cannot be the choice
of the decision maker themselves, are king-makers. The exclusively-dominated alternatives
are the “true” king-makers, while jointly dominated alternatives are less so, especially
if they are dominated jointly by many Pareto alternatives. Observe that the impact of
a dominated alternative x on the choice probability of a Pareto alternative y is at its
minimum when x is dominated by all Pareto alternatives.

Let ∆q(y,S,�′1,�
′

2|�1,�2) = q(y,S,�′1,�
′

2)− q(y,S,�1,�2) which denotes the difference in
the choice probabilities of y when the decision problem is (S,�′1,�

′

2) vs. when the decision
problem is (S,�1,�2).

For any y ∈ S and A ⊆ S let Ri(y|A,�1,�2) be the relative ranking of alternative y in the
set A according to Attribute i.

Suppose that for two decision problems (S,�1,�2), (S,�′1,�
′

2) ∈ D2, there is an a ∈ η(S,�1

,�2) and y1, ..., yn ∈ ∂(S,�1,�2) such that a ∈ J(y1, ..., yn,S,�1,�2), a ∈ J(y1, ..., yn−1,S,�′1,�
′

2),
and Ri(y|S\a,�1,�2) = Ri(y|S\a,�′1,�

′

2) for any y ∈ S\a and any i ∈ {1, 2}. We call the
above setup the JD setup (i.e., from More Joint Domination in (S,�1,�2) to a Less One in
(S,�′1,�

′

2)). We define the following three axioms, which concern the change of the choice
probability of undominated alternatives in the JD setup.

Winners’ Symmetric Gain (WSG): Consider the JD setup. Then ∆q(yi,S,�′1,�
′

2|�1,�2) =

∆q(y j,S,�′1,�
′

2|�1,�2) ≥ 0 for any yi, y j ∈ {y1, ..., yn−1}.
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Irrelevance of Uninvolved Alternatives (IUA): Consider the JD setup. Then ∆q(y,S,�′1
,�′2|�1,�2) = 0 for any y ∈ ∂(S,�1,�2) with y < {y1, ..., yn}.

Loser’s Loss (LL): Consider the JD setup. Then ∆q(y,S,�′1,�
′

2|�1,�2) = − 1
n#ηS for y = yn.

Note that WSG and LL (together with WPO) imply that ∆q(y,S,�′1,�
′

2|�1,�2) = 1
#ηS[n(n−1)]

for any y ∈ {y1, ..., yn−1}.
Next, for our next property, we need the following definition. (S,�1,�2) is symmetric

(or simply, S is symmetric) if for any s ∈ S, there exists a s′ ∈ S such that R1(s|S,�1,�2) =

R2(s′|S,�1,�2) and R2(s|S,�1,�2) = R1(s′|S,�1,�2).
Symmetry (SYM): Suppose (i) (S,�1,�2) ∈ D2 is symmetric and (ii) L(y,S,�1,�2) =

L(z,S,�1,�2) for any y, z ∈ ∂(S,�1,�2). Then q(y,S,�1,�2) = q(z,S,�1,�2) for ant y, z ∈
∂(S,�1,�2).

Thus, SYM requires that in a symmetric S where all dominated alternatives are dominated
by all Pareto alternatives, all undominated alternatives are chosen with equal probabilities
(e.g., it holds for sure if S = {x, x′, y, y′, y′′} and ∂S = {y, y′, y′′} (where y is ranked first
in attribute 1 and y′ is ranked first in attribute 2) and x, x′ are dominated by all y, y′, y′′).
Note, however, that when S is symmetric in different ways (e.g., x is dominated by only y
and x′ is dominated by only y′), SYM does not have such a requirement.

Together with WPO, SYM would imply that in a symmetric S where all dominated
alternatives are dominated by all Pareto alternatives, each Pareto alternative will be the
decision maker’s choice with probability 1

#∂S , while no dominated alternative can ever be
the decision maker’s choice.

The following lemma shows that if (S,�1,�2) is such that all dominated alternatives
are dominated by all Pareto alternatives (where S can be asymmetric), then the Pareto set
of S must be symmetric.

Lemma 1 Suppose (S,�1,�2) is such that L(y,S,�1,�2) = L(z,S,�1,�2) for any y, z ∈ ∂(S,�1

,�2), then ∂(S,�1,�2) is symmetric.

The next lemma shows that WPO, WSG, IUA, and LL together imply SYM.

Lemma 2 WPO, WSG, IUA, and LL imply SYM.

The following lemma shows that for any decision problem (S,�1,�2) where a ∈ S is
dominated by l Pareto alternatives with l < #∂(S,�1,�2), then we can always “transform”
the problem to a problem in which a is dominated by exactly one more Pareto alternative
and the relative rankings of all other alternatives remain unchanged.

Lemma 3 Suppose that a ∈ J(y1, ..., yl,S,�1,�2) for some {y1, ..., yl} ⊂ ∂(S,�1,�2) (strict rela-
tion), then there exists an attribute ranking (�′1,�

′

2) such that a ∈ J(y1, ..., yl, y∗,S,�1,�2) for some
y∗ ∈ ∂(S,�1,�2)\{y1, ...., yl} and Ri(y|S\a,�′1,�

′

2) = Ri(y|S\a,�1,�2) for any y ∈ S\a and any
i = 1, 2.
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The next axiom we will consider is an independence axiom, the Independence of Innocu-
ous Shuffle (IIS) axiom. It requires that the choice probabilities should remain the same
if the relative attribute rankings of dominated alternatives change but each dominated
alternative is still dominated by the same Pareto alternative(s).

Independence of Innocuous Shuffle (IIS): For any two (S,�1,�2), (S,�′1,�
′

2) ∈ D2, suppose
∂(S,�1,�2) = ∂(S,�′1,�

′

2), and L(y,S,�1,�2) = L(y,S,�′1,�
′

2) and Ri(y|∂(S,�1,�2),�1,�2) =

Ri(y|∂(S,�′1,�
′

2),�′1,�
′

2) for any y ∈ ∂(S,�1,�2) = ∂(S,�′1,�
′

2) and any i ∈ {1, 2}. Then
q(y,S,�1,�2) = q(y,S,�′1,�

′

2) for any y ∈ S.
The next lemma shows that WPO, WSG, IUA, and LL together imply IIS.

Lemma 4 If a choice rule satisfies WPO and WSG, IUA, and LL, then it satisfies IIS.

We then have the following result:

Theorem 4 The choice rule of the Exogenous-RDRC is the unique one that satisfies WPO, WSG,
IUA, and LL.

We extend the above axiomatization of Exogenous-RDRC’s outcome set to the N-
attributes case, where N > 2, in the Appendix.

We also establish the independence of the axioms used in the above theorem in the
Appendix.

6 Axiomatic Characterization of the Endogenous-RDRC’s Outcome
Set: The 2−attributes Case

Recall that, for any given (S,�1,�2), we have defined I(S,�1,�2) =
∑

y∈∂(S,�1,�2) #L(y,S,�1,�2)
as the degree of joint dominance of (S,�1,�2). Again, recall that, letting #∂(S,�1,�2) = m and
#η(S,�1,�2) = n, we must have n ≤ I(S,�1,�2) ≤ mn.

The following two axioms define how the choice probability of a Pareto alternative
changes in a JD setup. Recall that a JD setup refers to the situation where there are two
decision problems (S,�1,�2) and (S,�′1,�

′

2) and there is an a ∈ η(S,�1,�2) and y1, ..., yn ∈

∂(S,�1,�2) such that a ∈ J(y1, ..., yn,S,�1,�2), a ∈ J(y1, ..., yn−1,S,�′1,�
′

2), and Ri(y|S\a,�1,�2

) = Ri(y|S\a,�′1,�
′

2) for any y ∈ S\a and any i ∈ {1, 2}.
Non-losers’ Proportional Gain (NPG): Consider the JD setup. Then for any y ∈ ∂(S,�1,�2

)\yn, ∆q(y,S,�′1,�
′

2|�1,�2) > 0 if and only if #LCSy > 0. In addition,
∆q(y,S,�′1,�

′

2|�1,�2)
∆q(y′,S,�′1,�

′

2|�1,�2) =
#LCSy

#LCSy′

for any y, y′ ∈ ∂(S,�1,�2)\yn with #LCSy > 0 and #LCSy′ > 0.
Loser’s Loss (LL 2): Consider the JD setup. Then ∆q(yn,S,�′1,�

′

2|�1,�2) =

−
I(S,�1,�2)−#LCSyn

I(S,�1,�2)(I(S,�1,�2)−1) .
23

23In NPG and LL2, LCSy refers to the lower contour set of y under (S,�1,�2).
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Note that NPG and LL 2 (together with WPO) imply that ∆q(y,S,�′1,�
′

2|�1,�2) =
#LCSy

I(S,�1,�2)(I(S,�1,�2)−1) for any y , yn and y ∈ ∂(S,�1,�2).
We have the following result.

Theorem 5 The choice rule of the Endogenous-RDRC is the unique one that satisfies WPO, NPG
and LL 2.

The idea of the proof of Theorem 5 is similar to Theorem 4 and is omitted.
We extend the above axiomatization of the Endogenous-RDRC’s outcome set to the

N-attributes case, where N > 2, in the Appendix.
We also establish the independence of the axioms used in the above theorem in the

Appendix.

7 Axiomatic Characterization of the RIDC’s Outcome Set: The
2−attributes Case

This section provides an axiomatic characterization for the RIDC outcome set.
Strong Symmetry (S-SYM): For any (S,�1,�2) ∈ D2, suppose (i) (S,�1,�2) is symmetric

and (ii) L(y,S,�1,�2) = L(z,S,�1,�2) for any y, z ∈ ∂(S,�1,�2). Then, q(y,S,�1,�2) =
1

#∂(S,�1,�2) for ∀y ∈ ∂(S,�1,�2).
Thus, S-SYM requires that in a decision problem, if all dominated alternatives are

dominated by all Pareto alternatives, then all Pareto alternatives will be chosen with
positive probabilities. In addition, all these positive choice probabilities must be equal to

1
#∂S .

The second and last axiom is ‘Independence of Irrelevant Expansions’.
Independence of Irrelevant Expansions (IIE): For any two (S,�1,�2), (S,�′1,�

′

2) ∈ D2, sup-
pose S ⊆ S′ and ∂(S,�1,�2) ⊆ ∂(S′,�′1,�

′

2) where Ri(y|∂(S,�1,�2),�1,�2) = Ri(y|∂(S′,�′1,�
′

2
),�′1,�

′

2) for any y ∈ ∂(S,�1,�2) and any i ∈ {1, 2}. If for any y ∈ S such that q(y,S,�1,�2) > 0,
we have (i) #L(y,S′,�′1,�

′

2) > #L(z,S′,�′1,�
′

2) for any z ∈ ∂(S,�1,�2) with q(z,S,�1,�2) = 0
and any z ∈ ∂(S′,�′1,�

′

2)\∂(S,�1,�2), and (ii) #L(y,S′,�′1,�
′

2) = #L(z,S′,�′1,�
′

2) for any
z ∈ ∂(S,�1,�2) with q(z,S,�1,�2) > 0, then q(y,S′,�′1,�

′

2) = q(y,S,�1,�2) for any y ∈ S.
Suppose S in contained in S′ and each Pareto alternative y in S is Pareto in S′ as well;

also suppose that (i) the size of y’s LCS is larger than the size of z’s LCS in S′ whenever y
was a choice outcome (i.e., selected by the decision maker with positive probability) and
z was not a choice outcome in S, and (ii) the size of y’s LCS is equal to that of z’s LCS in
S′ whenever y was a choice outcome and z was also a choice outcome in S. Then the IIE
requires that the choice probabilities should remain the same in S′.

Note that in IIE, a “valid” expansion of a decision problem (S,�1,�2) to another decision
problem (S′,�′1,�

′

2) depends on the choice probabilities in the former decision problem.
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Figure 5 illustrates two decision problems. If the choice probabilities for the problem on
the left are such that q(x) = q(y) = q(z) = 1/3, then the problem on the right is a valid
expansion of the problem on the left (and by IIE, the problem on the right should have the
same choice probabilities for x, y, and z as the decision problem on the left). However, if
the choice probabilities for the problem on the left are such that q(x) = 1 and q(y) = q(z) = 0,
then we cannot apply IIE to get the choice probabilities for the problem on the right.
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Figure 5: Expansion of a decision problem

Theorem 6 The choice rule of the RIDC is the unique one rule that satisfies S-SYM and IIE.

Remark: Note that, although RIDC’s axiomatic characterization does not require Weak
Pareto optimality (WPO), RIDC satisfies it nevertheless.

We extend the above axiomatization of the Endogenous-RDRC’s outcome set to the
N-attributes case, where N > 2, in the Appendix.

We also establish the independence of the axioms used in the above theorem in the
Appendix.

8 Nash Product Convergence of the Outcome Sets of RIDC and
Endogenous-RDRC

Consider a comprehensive, convex and compact set S ∈ R2
+. Let s1 = max{s1|(s1, s2) ∈ S} and

s2 = max{s2|(s1, s2) ∈ S}. For any given “cell” parameter n, we can partition [0, s1] × [0, s2]
to n× n cells such that the length of each cell is s1/n and the height of each cell is s2/n. We
normalize S such that s1 = s2 to make this setup even more tractable. Let Cn be the set of
the n2 cells. Let Sn be a (finite) set of alternatives that are uniformly distributed in S (with
parameter n), in the sense that for each cell c ∈ Cn with c ∩ S , ∅, there is one and only
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one alternative in Sn which belongs to c. The ranking of alternatives in Sn in each attribute
can be easily obtained (for example, if s = (s1, s2) ∈ Sn, s′ = (s′1, s

′

2) ∈ Sn and s1 < s′1, then s′

has higher ranking than s in attribute 1). We can use the grid method in Anbarci (1993)
to ensure that no two alternatives have the same ranking in any attribute. As n goes to
infinity, the feasible set Sn approaches S.

Let sNS
∈ S be the point that has the maximum Nash product (i.e., sNS =

argmax(s1,s2)∈Ss1s2). It is easy to see that the RIDC’s outcome of Sn and the most proba-
ble outcome of Endogenous-RDRC of Sn will converge to sNS as n goes to infinity.

For any s ∈ S, let U(s) = {t|t ≥ s and t ∈ S} be the UCS of s, and L(s) = {t|t ≤ s and t ∈ S}
be the LCS of s. Let ∂(U(s)) be the Pareto frontier of U(s), and l(∂(U(s))) be the length of
∂(U(s)). It is obvious that, the most probable outcome of Exogenous-RDRC procedure

will converge to any s∗ = argmaxs∈∂S

∫
x∈L(s)

1
l(∂(U(x)))

dx. Note, however, that each s∗ may

be different from sNS if the Pareto frontier of S is not linear. For example, if S = {(s1, s2) ∈
R2

+|s2
1 + s2

2 ≤ 1}, then it can be verified that s∗ = {(0.76, 0.65), (0.65, 0.76)}.

9 Relevant Literature

In this section we will focus on work that has not been mentioned in the Introduction.
Although is no specific work in the literature that focuses on different heuristics’ pro-
cedures (and their axiomatic characterizations) that can incorporate the prominent AE
phenomenon at different degrees, there are papers that are close to our work in various
aspects.

de Clippel and Eliaz (2012) proposed to view the resolution of the decision maker’s
choice problem as a cooperative solution to an intrapersonal bargaining problem among
two “selves” of an individual, each self representing a different rationale (or a different
attribute in our setup) for choice. To that end, they provided an axiomatic characterization
of a solution concept, namely that of the ‘fallback solution’, which is very relevant for our
work.24 In some setups, the fallback solution can account for the AE as well as another
important phenomenon, namely the Compromise Effect (CE), which arises when a decision
maker tends to choose an intermediate option in her choice set.25 When both the AE

24The fallback position’s outcome set coincides with the subgame-perfect Nash equilibrium outcomes
of the ‘Voting by Alternating Offers and Vetoes’ (VAOV) procedure of Anbarci (1993) and ‘Honoring Past
Concessions’ (HPC) procedure of Anbarci (2006).

In both the VAOV and HPC procedures, two players take turns making offers until an alternative is
accepted, and if no offer is accepted, the last remaining alternative is the outcome. In addition, in VAOV
an offer rejected by a player is taken out of consideration, while in HPC all offers are on the table until one
is accepted; at any stage, a Player i can either (1) accept the last offer of Player j or (2) accept any of the
previous offers made by Player j.

25The CE dates back to Simonson (1989). Also see Chernev (2004), Dhar, Menon and Maach (2004), Doyle,
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and CE are present with distinct alternatives as in the next figure, however, the fallback
solution clearly favors the CE.26

In a companion paper (Anbarci and Rong, 2016) we provide a heuristic (and its ax-
iomatic characterization) which favors the CE; in that sense, Anbarci and Rong (2016)
is the closest work to ours. Anbarci and Rong (2016) first considers the case with two
attributes, A1 and A2, such that the decision maker does not have a preference between
them. In their heuristic’s first procedure, the decision maker first eliminates the worst
alternative in terms of A1 as well as the worst alternative in terms of A2. Then, among the
remaining alternatives, she repeats the same kind of elimination, until at least one and at
most two Pareto alternatives remain. If only one Pareto alternative remains, it will be her
unambiguous choice outcome. In case two such alternatives remain, then she will pick
one of them randomly as the choice outcome (their heuristic’s second procedure considers
the case where the DM does have a preference between the attributes).

Kamenica (2008) studies an application of the CE in which there is a market with ratio-
nal consumers who are either informed or uninformed. Uninformed consumers exhibit
a behavior that conforms with the CE (and choice overload). When many consumers are
uninformed, the firm may try to manipulate consumers’ beliefs by introducing premium
loss leaders (expensive goods of overly high quality that increase the demand for other
goods). Consequently, in this model, the CE emerges as equilibrium behavior in a specific
market environment.

Going back to the literature on the AE, the framework of Ok et al. (2015) too can
incorporate the AE. Their analysis, however, is of revealed preference that starts with a
decision maker’s observed choice behavior and intends to retrieve not only her underlying
preferences but also her reference point (if any). In their model, for every feasible set,
their model specifies whether there is a reference point, or not, and, if there is one,
which one it is. When there is no reference point, then the agent acts fully rationally by
choosing the elements that maximize her utility in that set. If, on the other hand, there is a
reference point, then the agent instead only considers the available options that dominate
the reference point; amongst those alternatives too, the decision maker is fully rational,

O’Connor, Reynolds and Bottomley (1999), Kivetz, Netzer and Srinivasan (2004), Mourali, Bockenholt and
Laroche (2007), Sheng, Parker and Nakamoto (2005), Simonson and Tversky (1992), among others.

To illustrate the CE, suppose a decision maker were equally likely to choose between A and B, where A
has a better price and worse speed than B. When a new PC, C, is added, such that C has a better price and
worse speed than B but has a worse price and better speed than A, then most subjects tend to choose C.

26To illustrate the intuition behind the distinction between the AE and CE alternatives, consider the
AA′ − CC′ example. Then C and C′ arise as the pure CE alternatives (while A and A′ arise as the AE
alternatives with the largest LCSs). A pure compromise alternative is a median undominated alternative with
an empty LCS. In a nutshell, informally, the fallback solution’s outcome set involves the alternative(s) with
the closest rankings among the undominated alternatives. In the AA′ − CC′ example, the fallback solution
therefore selects the pure CE alternatives C and C instead of the AE alternatives A and A′.
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choosing the alternatives maximizing her utility.
Related to Ok, Ortoleva and Riella (2015), its companion applied work, Ok, Ortoleva

and Riella (2014), provides an application in the context of monopolistic vertical product
differentiation. That paper considers the standard screening problem of a monopolist
who chooses price-quality bundles to offer to consumers whose quality valuations are
their private information. The model, however, also allows a fraction of the customers to
be reference dependent. They find that, the AE would be exploited by the monopolist in
equilibrium to overcome the incentive-compatibility constraints under some parametric
restrictions.

Natenzon (2015) has recently introduced a random choice model in which a relatively
uninformed decision maker gradually learns her utility of available alternatives. More
specifically, based on noisy signals, the decision maker updates a symmetric prior using
Bayes’ rule which allows her to choose the alternative with highest posterior expected
utility. Natenzon then shows how this process can incorporate the AE. As a key departure
from random utility models, however, Natenzon’s decision maker sometimes picks an
alternative that does not have the highest signal realization.

Some recent random choice models also consider random consideration-set rules
(Manzini and Mariotti, 2014) and random preferences over attributes (Gul et al., 2014).
Manzini and Mariotti (2014) axiomatized a model where a boundedly-rational decision
maker maximizes a preference relation but also makes random choice errors due to im-
perfect attention. In Gul et al. (2014)’s model of random choice of the Luce form, object
attributes are obtained endogenously from the observed choices of a decision maker with
stochastic preferences over attributes. Their model seeks to address the similarity effect,
where ‘options that share attributes compete more for the decision maker’s attention than
those that do not share attributes’ (Tversky, 1972). These standard random choice mod-
els cannot account for the AE, however, mainly due to their adherence to the regularity
(monotonicity) property which requires that the choice probabilities of any of the existing
alternatives cannot increase whenever a new alternative is added to them.

10 Concluding Remarks

The differences in the outcomes of our three heuristics’ procedures incorporating the
AE and the vast variety of non-overlapping axioms in their axiomatizations, in a sense,
imply a strong degree of theoretical robustness for the AE phenomenon. In addition,
as noted before, to our knowledge, our paper is the first one that provides cooperative
foundations to heuristics incorporating the AE as well as the first one that provides
cooperative foundations to stochastic outcomes where the decision maker is not assumed
to have stochastic preferences (a la Gul et al., 2014) or make random choice errors (a la
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Manzini and Mariotti, 2014).
Next, we would like to allude to the common features between the AE and CE phe-

nomena as well as their main differences. Most importantly, there are clear links between
‘trade-off aversion’, which was mentioned in the Introduction, and both of the AE and CE
phenomena. It is not difficult to see that our heuristics’ procedures exhibit trade-off aver-
sion. Also note that, recalling the CE’s brief discussion in the previous section, trade-off

avoidance is a driver of the CE as well (as both de Clippel and Eliaz’s fallback solution
and Anbarci and Rong’s, 2016, solution are linked to heuristics of which procedures in-
volve an elimination contest between attributes, totally bypassing any trade-offs among
multi-attribute options).

As mentioned in the Introduction, our heuristics’ procedures studied in this paper
simply involve rather effortless/costless or random selections among Pareto alternatives
typically relying on a reference alternative, while procedures of heuristics that incorporate
the CE involve elimination contests between alternatives according to their rankings in
terms of different attributes/rationales without exhibiting any reliance on any reference
alternatives or any random selections among alternatives.

Adopting a limited (i.e., depletable) resource approach to decision-making, it has been
recently noted in the psychology and marketing literatures that even mundane binary
one-attribute choices can be somehow cognitively depleting (Vohs et al., 2008). Further,
Wang et al. (2010) have also established that the larger the trade-offs, the greater is this
depletion effect. As such, findings on trade-off aversion (mentioned in the Introduction
and above) also relate to Shugan (1980) who was first to come up with a formal theory of a
‘cost of thinking’.27 The essence of Shugan’s theory is follows: ‘a conjunctive comparison
is less costly than a compensatory comparison’. In other words, (i) comparing any two
alternatives which Pareto dominate each other would be a much simpler task for the
decision maker than (ii) comparing any two alternatives that do not Pareto-dominate
each other, i.e., comparing two alternatives that pose trade-offs. Thus, as the difference
between the cost of (ii) and that of (i) increases for a decision maker, the AE and CE should
tend to become more prominent outcomes for her.

27Shugan rightfully maintained that “[p]reference only partially influences choice by determining ben-
efits. However, the determination has costs - rife information, numerous alternatives, time pressure, the
consumer’s limited information processing capabilities, and the general effort exerted to solve the problem.
Generally, the net utility of finding the best product from one set of products may be different from the net
utility of finding it as best from another set of products. That is, there may be a cost associated with the act
of making a decision” (1980, p. 100).
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11 Appendix

11.1 Proofs of the Results in theMain Text

Proof of Theorem 1:
Note that Ji(y,S) ⊆ L(y,S) is the set of alternatives that are dominated by exactly i

Pareto alternatives (including y). We thus have∪#∂S
i=1 Ji(y,S) = L(y,S) and Ji(y,S) and J j(y,S)

must be disjoint for any i , j and i, j ∈ {1, ..., #∂S} (Ji(y,S) may be an empty set for some
i ∈ {1, ..., #∂S}). Conditional on the event that a given alternative in Ji(y,S) is chosen as
the reference alternative, the probability that the decision maker will eventually choose
y as the outcome is 1

i . Also, note that each dominated alternative will be chosen with
probability 1

#ηS . So, the total probability that y is the outcome is 1
#ηS

∑#∂S
i=1 #Ji(y,S)1

i .

Proof of Theorem 2:
Proof: Let p(x) be the probability that a dominated alternative x is selected as the

reference alternative. Since p(x) is proportional to #∂U(x,S), we have p(x) = c#∂U(x,S) for
all x ∈ ηS for some constant c. So, for any y ∈ ∂S, we have qen(y) =

∑
x∈L(y,S) p(x) 1

#∂U(x,S) =∑
x∈L(y,S) c#∂U(x,S) 1

#∂U(x,S) = c#L(y,S) (i.e., the choice probability of y is proportional to the
cardinality of y’s LCS). Since

∑
y∈∂S qen(y) = 1, we have c = 1∑

y∈∂S #L(y,S) = 1
I(S) . This implies

that qen(y) =
#L(y,S)

I(S) .

Proof of Lemma 1:
Suppose there are n alternatives in ∂(S,�1,�2). Since (S,�1,�2) is such that all dom-

inated alternatives in S are dominated by all Pareto alternatives in S, we must have
R1(s|S,�1,�2) > n and R2(s|S,�1,�2) > n for any s ∈ η(S,�1,�2), and R1(s|S,�1,�2) ≤ n and
R2(s|S,�1,�2) ≤ n for any s ∈ ∂(S,�1,�2). Let s∗ be the alternative that has the highest
ranking in terms of the first attribute. We will show that s∗ must be ranked n-th highest
in the second attribute. If not, suppose R2(s∗|S,�1,�2) < n. Let s′ be the alternative in S
such that the ranking of the alternative in terms of the second attribute is n. We must
have s′ ∈ ∂(S,�1,�2) (because for any s ∈ η(S,�1,�2), we have R1(s|S,�1,�2) > n and
R2(s|S,�1,�2) > n). However, since s′ ranks lower than s∗ in both attributes, s′ must be
a dominated alternative. This is a contradiction with the fact that s′ ∈ ∂(S,�1,�2). So, it
must be true that R2(s∗|S,�1,�2) = n.

Similarly, we can show that the alternative that ranks second in terms of the first
attribute must rank n− 1-th in terms of the second attribute. In general, we can show that
the alternative that ranks i-th in terms of the first attribute must rank n − i + 1-th in terms
of the second attribute for any i ∈ {1, ...,n}. This implies that the set of Pareto alternatives,
∂(S,�1,�2), must be symmetric.
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Proof of Lemma 2:
Suppose (S,�1,�2) ∈ D2 is symmetric and L(y,S,�1,�2) = L(z,S,�1,�2) for any y, z ∈

∂(S,�1,�2). We will show that q(y,S,�1,�2) = q(z,S,�1,�2) for any y, z ∈ ∂(S,�1,�2).
For simplicity, we assume that L(y,S,�1,�2) contains only one alternative (the proof

for the general case where L(y,S,�1,�2) contains more than one alternative is similar). Let
#∂(S,�1,�2) = m. To illustrate the idea of the proof, we next consider the case where m = 2
and m = 3 (the proof for the more general case where m > 3 is similar and is omitted).
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Assume that m = 2. Refer to Figure 6. The change from (S,�1,�2) to (S,�′1,�
′

2) forms
a JD setup (in particular, a, which was initially dominated by both X and Y, becomes
dominated by Y only). Using LL, we have ∆q(X,S,�′1,�

′

2|�1,�2) = − 1
n#ηS = −1

2 . Using WPO,
we have ∆q(Y,S,�′1,�

′

2|�1,�2) = −∆q(X,S,�′1,�
′

2|�1,�2) = 1
2 . The above two equations then

imply that q(X,S,�1,�2) ≥
1
2

and q(Y,S,�1,�2) ≤
1
2

(otherwise, we have q(X,S,�′1,�
′

2) < 0
and q(Y,S,�′1,�

′

2) > 1). Now, we consider the JD setup illustrated in Figure 7, then using LL
and WPO, we have ∆q(X,S,�′1,�

′

2|�1,�2) = 1
2 and ∆q(Y,S,�′1,�

′

2|�1,�2) = − 1
2 . This implies

that q(X,S,�1,�2) ≤
1
2

and q(Y,S,�1,�2) ≥
1
2

. We thus have q(X,S,�1,�2) = q(Y,S,�1,�2) =

1
2

.
Assume that m = 3. Refer to Figure 8. The change from (S,�1,�2) to (S,�′1,�

′

2)
forms a JD setup (in particular, a—which is initially dominated by X, Y and Z—becomes
dominated by Y and Z only). Using LL, we have ∆q(X,S,�′1,�

′

2|�1,�2) = − 1
n#ηS = − 1

3 . Using
WPO and WSG, we have ∆q(Y,S,�′1,�

′

2|�1,�2) = ∆q(Z,S,�′1,�
′

2|�1,�2) = 1
6 . In addition,

note that q(Y,S,�′1,�
′

2) = q(Z,S,�′1,�
′

2) =
1
2

(the proof is similar to the case of m = 2)28—

28In particular, consider the JD setup where a is initially jointly dominated by Y and Z, but then becomes
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which also implies that q(X,S,�′1,�
′

2) = 0. We thus have q(X,S,�1,�2) = q(Y,S,�1,�2) =

q(Z,S,�1,�2) = 1
3 .
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Proof of Lemma 3:
Suppose that a ∈ J(y1, ..., yl,S,�1,�2) for some {y1, ..., yl} ⊂ ∂(S,�1,�2). We re-label

{y1, ..., yl} such that R1(y1|S,�1,�2) < R1(y2|S,�1,�2) < ... < R1(yl|S,�1,�2). Note that for

exclusively dominated by Z, then using WPO, LL, and IUA, we can show that q(Y,S,�′1,�
′

2) ≥
1
2

and

q(Z,S,�′1,�
′

2) ≤
1
2

. Consider the JD setup where where a is initially jointly dominated by Y and Z, but then

becomes exclusively dominated by Y, then using WPO, LL, and IUA, we can show that q(Z,S,�′1,�
′

2) ≥
1
2

and q(Y,S,�′1,�
′

2) ≤
1
2

. Thus, we have q(Z,S,�′1,�
′

2) =
1
2

and q(Y,S,�′1,�
′

2) =
1
2

.
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any two Pareto alternatives, y and y′, we have R1(y|S,�1,�2) > R1(y′|S,�1,�2) if and only
if R2(y|S,�1,�2) < R2(y′|S,�1,�2). Thus, we must have R2(y1|S,�1,�2) > R2(y2|S,�1,�2) >
... > R2(yl|S,�1,�2) since {y1, ..., yl} are all Pareto alternatives. Since a is dominated by
y1, ..., yl, we must have R1(a|S,�1,�2) > R1(yl|S,�1,�2) and R2(a|S,�1,�2) > R2(y1|S,�1,�2).

Let Ŝ = {y1, ..., yl} and Ŝc = ∂(S,�1,�2)\Ŝ. Since {y1, ..., yl} ⊂ ∂(S,�1,�2), Ŝc must be a non-
empty set. For any alternative y ∈ Ŝc, we must have either R1(y|S,�1,�2) < R1(y1|S,�1,�2)
or R1(y|S,�1,�2) > R1(yl|S,�1,�2) (suppose not, then there exists some y ∈ Ŝc such that
R1(y1|S,�1,�2) < R1(y|S,�1,�2) < R1(yl|S,�1,�2), which implies that R2(y1|S,�1,�2) >
R1(y|S,�1,�2) > R1(yl|S,�1,�2); this will be a contradiction with the fact that a is not
dominated by y - noting that we have R1(a|S,�1,�2) > R1(yl|S,�1,�2) and R2(a|S,�1,�2) >
R2(y1|S,�1,�2)). So, either the set Ŝc

1 = {y ∈ Ŝc
|R1(y|S,�1,�2) > R1(yl|S,�1,�2)} or the set

Ŝc
2 = {y ∈ Ŝc

|R1(y|S,�1,�2) < R1(y1|S,�1,�2)} is non-empty. Suppose the first set is non-
empty (the proof for the case where the second set is non-empty is similar). Let y∗ ∈ Ŝc

1
be the alternative such that the ranking of y∗ is the highest among all alternatives in Ŝc

1
(i.e., R1(y|S,�1,�2) is the lowest for y = y∗ among all alternatives in Ŝc

1). Define a new
attribute ranking (�′1,�

′

2) such that Ri(y|S\a,�′1,�
′

2) = Ri(y|S\a,�1,�2) for any y ∈ S\a and
any i ∈ {1, 2}, and R1(a|S,�′1,�

′

2) = R1(y∗|S,�′1,�
′

2) + 1 and R2(a|S,�′1,�
′

2) = R2(y∗|S,�′1,�
′

2).
Then a will be dominated by y1, ..., yl and y∗, and not dominated by any other Pareto
alternatives.

Proof of Lemma 4:
We provide a sketch of proof.29 Suppose a choice rule q satisfies WPO, WSG, IUA,

and LL. We will show that q satisfies IIS. It is sufficient to show that for any two decision
problems (S,�1,�2) and (S,�′1,�

′

2) where ∂(S,�1,�2) = ∂(S,�′1,�
′

2) and Ri(y|∂(S,�1,�2),�1

,�2) = Ri(y|∂(S,�′1,�
′

2),�′1,�
′

2) for any y ∈ ∂(S,�1,�2) = ∂(S,�′1,�
′

2) and any i ∈ {1, 2},
and J(y1, ..., yl,S,�1,�2) = J(y1, ..., yl,S,�′1,�

′

2) for any {y1, ..., yl} ⊆ ∂(S,�1,�2) = ∂(S,�′1,�
′

2),
then q(y,S,�1,�2) = q(y,S,�′1,�

′

2) for any y ∈ S. It is sufficient to show the following: for
any two decision problems (S,�1,�2) and (S,�′1,�

′

2) where ∂(S,�1,�2) = ∂(S,�′1,�
′

2) and
Ri(y|∂(S,�1,�2),�1,�2) = Ri(y|∂(S,�′1,�

′

2),�′1,�
′

2) for any y ∈ ∂(S,�1,�2) = ∂(S,�′1,�
′

2) and
any i ∈ {1, 2}, and J(y1, ..., yl,S,�1,�2) = J(y1, ..., yl,S,�′1,�

′

2) for some {y1, ..., yl} ⊆ ∂(S,�1,�2

) = ∂(S,�′1,�
′

2) and Ri(y|S\J(y1, ..., yl,S,�1,�2),�1,�2) = Ri(y|S\J(y1, ..., yl,S,�1,�2),�′1,�
′

2)
for any y < J(y1, ..., yl,S,�1,�2), then q(y,S,�1,�2) = q(y,S,�′1,�

′

2) for any y ∈ S.30

The idea of the proof is as follows. We first consider the case where {y1, ..., yl} ⊂

29The full proof can be obtained from the authors.
30This is because for any two decision problems (S,�1,�2) and (S,�′1,�

′

2) where J(y1, ..., yl,S,�1,�2) =

J(y1, ..., yl,S,�′1,�
′

2) for any {y1, ..., yl} ⊆ ∂(S,�1,�2) = ∂(S,�′1,�
′

2), we can always find a sequence of decision
problems where the first problem is (S,�1,�2) and the last problem is (S,�′1,�

′

2) and any two consecutive
problems in the sequence only differ in that J(y1, ..., yl,S,�1,�2) = J(y1, ..., yl,S,�′1,�

′

2) for some {y1, ..., yl}

in the Pareto set (and all other alternatives of S have the same relative rankings in the two consecutive
problems).
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∂(S,�1,�2). Pick any y ∈ J(y1, ..., yl,S,�1,�2) = J(y1, ..., yl,S,�′1,�
′

2), then according to the
proof of Lemma 3, we can transform the problem (S,�1,�2) to a problem such that y
is dominated by y1, ..., yl and some additional Pareto alternative y∗. Similarly, we can
transform the problem (S,�′1,�

′

2) to a problem such that y is dominated by y1, ..., yl and
y∗. In addition, we can choose the transformations such that for each of the above two
transformed problems, y is ranked highest in both attributes among all alternatives that
are dominated by y1, ..., yl, y∗. We then pick another alternative in J(y1, ..., yl,S,�1,�2) (if
there is any), say y′ (where y′ , y), and make further transformations on the above
two transformed problems such that in each problem, y′ is dominated by y1, ..., yn, y∗

and y′ is ranked the second highest in both attributes among all alternatives that are
dominated by y1, ..., yl, y∗. We may continue the above procedure until for both (S,�1,�2)
and (S,�′1,�

′

2), all alternatives that are originally dominated by y1, ..., yl are transformed
such that they are all dominated by y1, ..., yl, y∗. We use (S, �̂1, �̂2) and (S, �̂′1, �̂

′

2) to denote
the two transformed problems respectively. Noting that the rankings of all alternatives
of S are the same in the two transformed problems (S, �̂1, �̂2) and (S, �̂′1, �̂

′

2), the choice
probabilities in the two problems must be the same. According to WSG, IUA, and LL,
the change of the choice probabilities of the above two transformations (i.e., the change of
choice probabilities when the decision problem changes from (S,�1,�2) to (S, �̂1, �̂2) and
the change of the choice probabilities when the decision problem changes from (S,�′1,�

′

2)
to (S, �̂′1, �̂

′

2)) must be the same. This implies that the choice probabilities for the two
problems (S,�1,�2) and (S,�′1,�

′

2) are the same.
Now, we consider the case where {y1, ..., yl} = ∂(S,�1,�2). We can transform both

(S,�1,�2) and (S,�′1,�
′

2) to problems such that y is dominated by exactly one less Pareto
alternatives.31 The remaining proof is similar to the case where {y1, ..., yl} ⊂ ∂(S,�1,�2)
and is omitted.

Proof of Theorem 4:
Our proof consists of two parts.
Part 1: Let q∗ be a choice rule that satisfies the four axioms. Let qr be the choice rule

induced by the Exogenous-RDRC procedure. We will show that the choice rule q∗ must
be the same as the choice rule qr. We first introduce some notation. For any m ∈ N
and n ∈ N ∪ {0}, let Dm,n = {(S,�1,�2)|#∂(S,�1,�2) = m, #η(S,�1,�2) = n}, i.e., Dm,n is
the collection of all finite decision problems where the number of Pareto alternatives is
m and the number of dominated alternatives is n. For any given (S,�1,�2), we define
I(S,�1,�2) =

∑
y∈∂(S,�1,�2) #L(y,S,�1,�2). We call I(S,�1,�2) the degree of joint dominance of

(S,�1,�2). Note that for any (S,�1,�2) ∈ Dm,n, we must have n ≤ I(S,�1,�2) ≤ mn. For any
n ≤ k ≤ mn, let Dk

m,n = {(S,�1,�2)|(S,�1,�2) ∈ Dm,n and I(S,�1,�2) = k} be the set of finite

31The only case where this is not possible is that ∂(S,�1,�2) only contains one undominated alternative.
In this case, WPO implies that the only undominated alternative must be chosen with probability one.
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decision problems where the number of Pareto alternatives is m, the number of dominated
alternatives is n, and the degree of joint dominance is k. Note thatDm,n = ∪mn

k=nD
k
m,n.

We fix an (arbitrary) m ∈ N and an (arbitrary) n ∈ N ∪ {0}. We next show that for any
(S,�1,�2) ∈ Dm,n, we have q∗(y,S,�1,�2) = qr(y,S,�1,�2) for any y ∈ S. The proof is by
induction.

(i) We will show that for any (S,�1,�2) ∈ Dmn
m,n, we have q∗(y,S,�1,�2) = qr(y,S,�1,�2)

for any y ∈ S. Note that for any (S,�1,�2) ∈ Dmn
m,n, we have I(S,�1,�2) = mn, i.e., all n

dominated alternatives are jointly dominated by all of the m Pareto alternatives. We have
the following two subcases:

(a) (S,�1,�2) is symmetric. In this case, since q∗ satisfies WPO and SYM (which is
implied by WPO, WSG, IUA and LL according to Lemma 2), we must have q∗(y,S,�1,�2

) = 1/m for any y ∈ ∂(S,�1,�2) and q∗(y,�1,�2) = 0 for any y ∈ η(S,�1,�2). So, we have
q∗(y,S,�1,�2) = qr(y,S,�1,�2) for any y ∈ S.

(b) If (S,�1,�2) is not symmetric, then we can transform it to a symmetric problem (see
Figure 9 for an illustration, in which S = {s1, s2, s3, s4, s5, s6

}; note that the Pareto set of S is
symmetric according to Lemma 1). Then, using Lemma 4 and SYM (which is implied by
WPO, WSG, IUA and LL), we must have q∗(y,S,�1,�2) = 1/m for any y ∈ ∂(S,�1,�2). So,
we have q∗(y,S,�1,�2) = qr(y,S,�1,�2) for any y ∈ S.
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(ii) Suppose we have shown that for any (S,�1,�2) ∈ Dk
m,n where n < k ≤ mn, we have

q∗(y,S,�1,�2) = qr(y,S,�1,�2) for any y ∈ S, we next show that for any (S,�1,�2) ∈ Dk−1
m,n,

we have q∗(y,S,�1,�2) = qr(y,S,�1,�2) for any y ∈ S.
Pick any (S,�1,�2) ∈ Dk−1

m,n. Since k − 1 < nm, there must exist a dominated alternative
such that the alternative is not dominated by all Pareto alternatives. Let a∗ ∈ η(S,�1,�2)
be such an alternative. Let Ŝ = {y1, ..., yl} ⊂ ∂(S,�1,�2) be the collection of all Pareto
alternatives that dominate a∗. That is a∗ ∈ J(y1, ..., yl,S,�1,�2). Let Ŝc = ∂(S,�1,�2)\Ŝ, which
is a non-empty set. Using Lemma 3, there must exist an attribute ranking profile (�′1,�

′

2)
and some alternative y∗ ∈ Ŝc such that (i) a∗ ∈ J(y1, ..., yl, y∗,S,�′1,�

′

2), and (ii) Ri(y|S\a∗,�1
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,�2) = Ri(y|S\a∗,�′1,�
′

2) for any y ∈ S\a∗ and any i ∈ {1, 2} (see Figure 10 for an illustration,
where S = {s1, s2, s3, s4, s5, s6

}, y∗ = s1, a∗ = s5 and Ŝ = {s2, s3
}). According to WSG, IUA and

LL, we have ∆q∗(yi,S,�′1,�
′

2|�1,�2) = − 1
l(l+1)#ηS for i = 1, ..., l, ∆q∗(y∗,S,�′1,�

′

2|�1,�2) = 1
(l+1)#ηS ,

and ∆q∗(y,S,�′1,�
′

2|�1,�2) = 0 for any y ∈ ∂(S,�1,�2) with y < {y1, ..., yl, y∗}. Also, it is easy
to verify that ∆qr(yi,S,�′1,�

′

2|�1,�2) = − 1
l(l+1)#ηS for i = 1, ..., l, ∆qr(y∗,S,�′1,�

′

2|�1,�2) =
1

(l+1)#ηS , and ∆qr(y,S,�′1,�
′

2|�1,�2) = 0 for any y ∈ ∂(S,�1,�2) with y < {y1, ..., yl, y∗}. That is,
∆q∗(y,S,�′1,�

′

2|�1,�2) = ∆qr(y,S,�′1,�
′

2|�1,�2) for any y ∈ S.32 In addition, it is obvious that
I(S,�′1,�

′

2) = k, so q∗(y,S,�′1,�
′

2) = qr(y,S,�′1,�
′

2) for any y ∈ S by the induction assumption.
So, we must have q∗(y,S,�1,�2) = qr(y,S,�1,�2) for any y ∈ S.
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So, we have shown that for any given m ∈ N and any given n ∈ N ∪ {0}, we
have q∗(y,S,�1,�2) = qr(y,S,�1,�2) for any (S,�1,�2) ∈ Dm,n and any y ∈ S. Since
∪{m∈N,n∈N∪{0}}Dm,n = D2, we thus have shown that q∗(y,S,�1,�2) = qr(y,S,�1,�2) for any
(S,�1,�2) ∈ D2.

Part 2: We next show that Exogenous-RDRC satisfies WPO, WSG, IUA, and LL.
Exogenous-RDRC satisfies WPO because by construction, Exogenous-RDRC will only
assign positive probabilities to Pareto alternatives.

We next show that Exogenous-RDRC satisfies WSG, IUA and LL. Suppose that there
is an a ∈ η(S,�1,�2) and y1, ..., yn ∈ ∂(S,�1,�2) such that a ∈ J(y1, ..., yn,S,�1,�2), a ∈
J(y1, ..., yn−1,S,�′1,�

′

2), and Ri(y|S\a,�1,�2) = Ri(y|S\a,�′1,�
′

2) for any y ∈ S\a and any
i ∈ {1, 2}. Since the relative rankings of all alternatives (except a) remain the same under
(�1,�2) and (�′1,�

′

2), we have (i) L(y,S,�1,�2) = L(y,S,�′1,�
′

2) for any y ∈ {y1, ..., yn−1}, (ii)

32It is easy to see that ∆q∗(y,S,�′1,�
′

2|�1,�2) = ∆qr(y,S,�′1,�
′

2|�1,�2) for any y ∈ ∂(S,�1,�2). We have
∆q∗(y,S,�′1,�

′

2|�1,�2) = ∆qr(y,S,�′1,�
′

2|�1,�2) for any y ∈ η(S,�1,�2), because (i) q∗ satisfies WPO and
thus assigns zero probability to any dominated alternative and (ii) qr also assigns zero probability to any
dominated alternative.
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L(y,S,�1,�2) = L(y,S,�′1,�
′

2)∪{a} for y = yn, (iii) for any y ∈ {y1, ..., yn} and any x ∈ L(y,S,�1

,�2) with x , a, we have #∂(U(x,�1,�2),�1,�2) = #∂(U(x,�′1,�
′

2),�′1,�
′

2), and (iv) for x = a,
we have #∂(U(x,�1,�2),�1,�2) = n and #∂(U(x,�′1,�

′

2),�′1,�
′

2) = n − 1. This implies that
∆q(y,S,�′1,�

′

2|�1,�2) = 1
n(n−1)#ηS for any y ∈ {y1, ..., yn−1}, ∆q(y,S,�′1,�

′

2|�1,�2) = − 1
n#ηS for

y = yn, and ∆q(y,S,�′1,�
′

2|�1,�2) = 0 for any y < {y1, ..., yn}. So, Exogenous-RDRC satisfies
WSG, IUA and LL.

The proof in Part 1 together with the proof in Part 2 imply that Exogenous-RDRC is
the unique choice rule that satisfies WPO, WSG, IUA, and LL.

Proof of Theorem 6:
The sufficient part is obvious. We next show the necessity part. Suppose q∗ is a choice

rule that satisfies S-SYM and IIE, we will show that q∗(y,S,�1,�2) = qL(y,S,�1,�2) for any
(S,�1,�2) ∈ D2 and any y ∈ S.

Pick any (S,�1,�2) ∈ D2. Let N(S,�1,�2) = {y ∈ ∂(S,�1,�2)|#L(y,S,�1,�2) ≥ #L(y′,S,�1

,�2) for any y′ ∈ S} be the set of alternatives that have the largest number of alternatives
in their lower contour sets. Pick any y∗ ∈ N(S,�1,�2). We will define a symmetric
decision problem which contains N(S,�1,�2) and all alternatives that are dominated by
y∗. Note that we have #L(y∗,S,�1,�2) = #L(y,S,�1,�2) for any y ∈ N(S,�1,�2). Let
S′ = L(y∗,S,�1,�2) ∪ N(S,�1,�2). Let (�′1,�

′

2) be such that (i) ∂(S′,�′1,�
′

2) = N(S,�1,�2),
(ii) Ri(y|∂(S′,�′1,�

′

2),�′1,�
′

2) = Ri(y|N(S,�1,�2),�1,�2) for y ∈ ∂(S′,�′1,�
′

2) = N(S,�1,�2)
and i = 1, 2, (iii) x ∈ L(y,S,�′1,�

′

2) for any x ∈ L(y∗,S,�1,�2) and any y ∈ ∂(S′,�′1,�
′

2),
and (iv) L(y∗,S,�1,�2) is symmetric under (�′1,�

′

2). That is, (�′1,�
′

2) “transforms” the set
L(y∗,S,�1,�2) to a symmetric set of alternatives which are dominated by all alternatives
in N(S,�1,�2). Using Lemma 1, ∂(S′,�′1,�

′

2) is symmetric. This together with the fact
that L(y∗,S,�1,�2) is symmetric under (�′1,�

′

2) imply that S′ is symmetric under (�′1,�
′

2).
According to S-SYM, we must have that q∗(y,S′,�′1,�

′

2) = 1
#∂(S′,�′1,�

′

2) = 1
#N(S,�1,�2) for any

y ∈ ∂(S′,�′1,�
′

2).
Now, we compare (S,�1,�2) and (S′,�′1,�

′

2). We have S′ ⊆ S and ∂(S′,�′1,�
′

2) ⊆
∂(S,�1,�2). In addition, for any y ∈ ∂(S′,�′1,�

′

2) = N(S,�1,�2),33 we have #L(y,S,�1

,�2) > #L(y′,S,�1,�2) for any y′ ∈ ∂(S,�1,�2)\∂(S′,�′1,�
′

2) = ∂(S,�1,�2)\N(S,�1,�2) and
#L(y,S,�1,�2) = #L(y′,S,�1,�2) for any y′ ∈ ∂(S′,�′1,�

′

2) = N(S,�1,�2). So, by IIE, we have
q∗(y,S,�1,�2) = q∗(y,S′,�′1,�

′

2) = 1
#N(S,�1,�2) for any y ∈ ∂(S′,�′1,�

′

2) = N(S,�1,�2). This
implies that q∗(y,S,�1,�2) = qL(y,S,�1,�2) for any y ∈ S.

33Note that q∗(y,S′,�′1,�
′

2) > 0 if and only if y ∈ ∂(S′,�′1,�
′

2) = N(S,�1,�2).
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11.2 The N−attributes Cases

11.2.1 Axiomatic Characterization of the Exogenous-RDRC’s Outcome Set: The N−attributes
Case

We now consider the case where each alternative in the feasible set S has #Λ > 2 attributes;
let #Λ = N. Recall that (S,�1, ...,�N) denotes a finite random reference dependent decision
problem. LetDN denote the set of all finite random reference dependent decision problems
where the number of attributes is N > 2. The notation q(y,S,�1, ...,�N), U(x,S,�1, ...,�N),
L(x,S,�1, ...,�N), ∂(x,S,�1, ...,�N), η(x,S,�1, ...,�N), J(y1, ..., yn,S,�1,�2), Ri(y|A,�1, ...,�N)
and the Exogenous-RDRC’s procedure can be defined in a way similar to their counterparts
in the 2-attribute case.

The next four axioms are simply the N > 2 versions of the ones in the N = 2 case.
Weak Pareto Optimality (WPO): For any (S,�1, ...,�N) ∈ DN, q(y,S,�1, ...,�N) = 0 for

∀y ∈ η(S,�1, ...,�N).
Winners’ Symmetric Gain (WSG): Suppose (S,�1, ...,�N) and (S,�′1, ...,�

′

N) form a JD
setup. Then ∆q(yi,S,�′1, ...,�

′

N|�1, ...,�N) = ∆q(y j,S,�′1, ...,�
′

N|�1, ...,�N) ≥ 0 for any yi, y j ∈

{y1, ..., yn−1}.
Irrelevance of Uninvolved Alternatives (IUA): Suppose (S,�1, ...,�N) and (S,�′1, ...,�

′

N)
form a JD setup. Then ∆q(y,S,�′1, ...,�

′

N|�1, ...,�N) = 0 for any y ∈ ∂(S,�1, ...,�N) with
y < {y1, ..., yn}.

Loser’s Loss (LL): Suppose (S,�1, ...,�N) and (S,�′1, ...,�
′

N) form a JD setup. Then
∆q(y,S,�′1, ...,�

′

N|�1, ...,�N) = − 1
n#ηS for y = yn.

Theorem 7 Suppose there are N > 2 attributes. The choice rule of the Exogenous-RDRC is the
unique one that satisfies WPO, WSG, IUA, and LL.

Proof of Theorem 7:
The proof of Theorem 7 is similar to that of Theorem 4, except the proof of Lemma 3.

In the following, we will present the lemma and prove it for the N-attribute case. The
remaining proof of Theorem 7 is omitted.

Lemma 5 Suppose that a ∈ J(y1, ..., yl,S,�1, ...,�N) for some {y1, ..., yl} ⊂ ∂(S,�1, ...,�N) (strict
relation), then there exists an attribute ranking (�′1, ...,�

′

N) such that a ∈ J(y1, ..., yl, y∗,S,�1

, ...,�N) for some y∗ ∈ ∂(S,�1, ...,�N)\{y1, ...., yl} and Ri(y|S\a,�′1, ...,�
′

N) = Ri(y|S\a,�1, ...,�N)
for any y ∈ S\a and any i = 1, ...,N.

Suppose that a ∈ J(y1, ..., yl,S,�1, ...,�N) for some {y1, ..., yl} ⊂ ∂(S,�1, ...,�N). Let
Ŝ = {y1, ..., yl} and Ŝc = ∂(S,�1, ...,�N)\Ŝ. For any {y1, y2, ..., yk} ⊆ ∂(S,�1, ...,�N), let
Ri(y1, ..., yk|S,�1, ...,�N) = max{R1(y1|S,�1, ...,�N),R1(y2|S,�1, ...,�N), ...,R1(yk|S,�1, ...,�N)}
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be the lowest ranking of y1, ..., yk in attribute i (recalling that a larger ranking number means
a lower, less-preferred ranking). Pick any alternative in Ŝc and denote it by y∗. We can de-
fine a new attribute ranking (�′1, ...,�

′

N) such that Ri(y|S\a,�′1, ...,�
′

N) = Ri(y|S\a,�1, ...,�N)
for any y ∈ S\a and any i ∈ {1, ...,N}, and Ri(a|S,�′1, ...,�

′

N) = Ri(y1, ..., yl, y∗|S,�′1, ...,�
′

N) + 1
for any i ∈ {1, ...,N}. That is, (�′1, ...,�

′

N) is obtained by “moving” a such that for
each attribute, the attribute ranking of a is just below the lowest attribute ranking of
{y1, y2, ..., yl, y∗} where the relative rankings of all alternative other than a are unchanged.
Note that a is a dominated alternative under both (�1, ...,�N) and (�′1, ...,�

′

N), so the above
transformation will not change the set of Pareto alternatives. In addition, it is obvious
that a ∈ L(y|S,�′1, ...,�

′

N) for any y ∈ {y1, y2, ..., yl, y∗}. If a is not dominated by any y ∈ Ŝc
\y∗,

then we have a ∈ J(y1, ..., yl, y∗,S,�1, ...,�N) and the lemma is proved. If not, we proceed
with the following process.

Suppose a is dominated by some y∗∗ ∈ Ŝc
\y∗. Since y∗∗ dominates a, we must have that

Ri(y∗∗|S,�′1, ...,�
′

N) < Ri(y1, ..., yl, y∗|S,�′1, ...,�
′

N) for any i ∈ {1, ...,N}. However, we cannot
have Ri(y∗∗|S,�′1, ...,�

′

N) < Ri(y1, ..., yl|S,�′1, ...,�
′

N) for all i ∈ {1, ...,N} because otherwise
y∗∗ will dominate a under (S,�1, ...,�N), which will be a contradiction with the fact that
a ∈ J(y1, ..., yl,S,�1, ...,�N). The above two facts then imply that Ri(y1, ..., yl|S,�′1, ...,�

′

N) <
Ri(y∗∗|S,�′1, ...,�

′

N) < Ri(y∗|S,�′1, ...,�
′

N) for some i ∈ {1, ...,N}. Then, we can define a new
attributes’ ranking, say (�′′1 , ...,�

′′

N), such that Ri(y|S\a,�′′1 , ...,�
′′

N) = Ri(y|S\a,�′1, ...,�
′

N) for
any y ∈ S\a and any i ∈ {1, 2}, and Ri(a|S,�′′1 , ...,�

′′

N) = Ri(y1, ..., yl, y∗∗|S,�′1, ...,�
′

N) + 1 for
any i ∈ {1, 2}. Obviously, under (�′′1 , ...,�

′′

N), a must be dominated by y1, ..., yl and y∗∗ and
possibly by others. However, since Ri(y∗∗|S,�′1, ...,�

′

N) < Ri(y1, ..., yl, y∗|S,�′1, ...,�
′

N) for any
i ∈ {1, 2}, we must have Ri(a|S,�′′1 , ...,�

′′

N) ≤ Ri(a|S,�′1, ...,�
′

N) for any i ∈ {1, 2}. This implies
that fewer alternatives will dominate a under (�′′1 , ...,�

′′

N) than under (�′1, ...,�
′

N). That is,
U(a|S,�′′1 , ...,�

′′

N) ⊆ U(a|S,�′1, ...,�
′

N). In addition, this relation must be strict because y∗

dominates a under (�′1, ...,�
′

N) but not under (�′′1 , ...,�
′′

N) (because Ri(y1, ..., yl|S,�′1, ...,�
′

N) <
Ri(y∗∗|S,�′1, ...,�

′

N) < Ri(y∗|S,�′1, ...,�
′

N) for some i ∈ {1, 2}, as we have shown above). If a
is not dominated by any y ∈ Ŝc

\y∗∗, then we have a ∈ J(y1, ..., yl, y∗∗,S,�1, ...,�N) and the
lemma is proved. If not, we can repeat the above process. Note that each repetition of the
above process will strictly shrink the size of the set of alternatives that dominates a, while
keeping y1, ..., yl and at least one other Pareto alternative in the set. So, eventually, the
repetition of the above process will reach a stage where the size of the set of alternatives that
dominates a is exactly n + 1. That is, we have shown that there exists an attribute ranking
and a Pareto alternative in Ŝc such that under the attribute ranking, a is dominated by this
alternative and {y1, ..., yl} but not dominated by any other alternatives (and the relative
rankings of alternatives other than a are the same as in the case where the attributes’
ranking profile is (�1, ...,�N)).
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11.2.2 Axiomatic Characterization of the Endogenous-RDRC’s Outcome Set: The N−attributes
Case

The axioms that characterize the Endogenous-RDRC for the 2-attribute case can be easily
generalized to the N−attributes case. In particular, we define the following axioms.

Weak Pareto Optimality (WPO): For any (S,�1, ...,�N) ∈ DN, q(y,S,�1, ...,�N) = 0 for
∀y ∈ η(S,�1, ...,�N).

Non-losers’ Proportional Gain (NPG): Suppose (S,�1, ...,�N) and (S,�′1, ...,�
′

N) form a JD
setup. Then for any y ∈ ∂(S,�1, ...,�N)\yn, ∆q(y,S,�′1, ...,�

′

N|�1, ...,�N) > 0 if and only if

#LCSy > 0. In addition,
∆q(y,S,�′1,...,�

′

N |�1,...,�N)
∆q(y′,S,�′1,...,�

′

N |�1,...,�N) =
#LCSy

#LCSy′
for any y, y′ ∈ ∂(S,�1, ...,�N)\yn with

#LCSy > 0 and #LCSy′ > 0.
Loser’s Loss (LL 2): Suppose (S,�1, ...,�N) and (S,�′1, ...,�

′

N) form a JD setup. Then
∆q(yn,S,�′1, ...,�

′

N|�1, ...,�N) = −
I(S,�1,...,�N)−#LCSyn

I(S,�1,...,�N)(I(S,�1,...,�N)−1) .

Theorem 8 The choice rule of the Endogenous-RDRC is the unique one that satisfies WPO, NPG
and LL 2.

11.2.3 Axiomatic Characterization of the RIDC’s Outcome Set: The N−attributes Case

Suppose each alternative in the feasible set S has N > 2 attributes. In order to generalize
the RIDC’s axiomatization to the N > 2 attribute case, we need even a stronger version of
the S-SYM axiom, which is defined as follows.

Strong Pareto Symmetry (SP-SYM): For any (S,�1, ...,�N) ∈ DN, suppose L(y,S,�1, ...,�N

) = L(z,S,�1, ...,�N) for any y, z ∈ ∂(S,�1, ...,�N). Then, q(y,S,�1, ...,�N) = 1
#∂(S,�1,...,�N) for

∀y ∈ ∂(S,�1, ...,�N).
The IIE axiom in the 2-attribute case can be easily extended to the case of N > 2

attributes.
Independence of Irrelevant Expansions (IIE): For any two (S,�1, ...,�N), (S′,�′1, ...,�

′

N) ∈
DN, suppose S ⊆ S′ and ∂(S,�1, ...,�N) ⊆ ∂(S′,�′1, ...,�

′

N) where Ri(y|∂(S,�1, ...,�N),�1

, ...,�N) = Ri(y|∂(S′,�′1, ...,�
′

N),�′1, ...,�
′

N) for any y ∈ ∂(S,�1, ...,�N) and any i ∈ {1, ...,N}. If
for any y ∈ S such that q(y,S,�1, ...,�N) > 0, we have (i) #L(y,S′,�′1, ...,�

′

N) > #L(z,S′,�′1
, ...,�′N) for any z ∈ ∂(S,�1, ...,�N) with q(z,S,�1, ...,�N) = 0 and any z ∈ ∂(S′,�′1, ...,�

′

N
)\∂(S,�1, ...,�N), and (ii) #L(y,S′,�′1, ...,�

′

N) = #L(z,S′,�′1, ...,�
′

N) for any z ∈ ∂(S,�1, ...,�N)
with q(z,S,�1, ...,�N) > 0, then q(y,S′,�′1, ...,�

′

N) = q(y,S,�1, ...,�N) for any y ∈ S.
We have the following result (its proof can be obtained by mimicking that of Theorem

6 and is thus omitted).

Theorem 9 Suppose there are N > 2 attributes. The choice rule of RDRC is the unique one that
satisfies SP-SYM and IIE.
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11.3 Independence of Axioms

11.3.1 Independence of the Axioms of the Exogenous-RDRC’s Outcome Set

This section discusses the independence of axioms in the Exogenous-RDRC solution. We
focus on the case of N = 2. The analysis in this section can be easily extended to the
general case of N > 2.

We first consider a choice rule that satisfies WSG, IUA and WPO but violates LL. Let q
be a choice rule such that q(y) = 1

#∂(S,�1,�2) for any y ∈ ∂(S,�1,�2) and any (S,�1,�2) ∈ D2.
It can be verified that q satisfies WSG, IUA and WPO but violates LL.

We now consider a choice rule that satisfies WSG, IUA and LL, but violates WPO. We
define the following choice rule:

(i) if (S,�1,�2) has one undominated alternative and one dominated alternative, then
the choice probability of both the undominated alternative and the dominated alternative
are 1/2.

(ii) in all other cases, the choice rule is the same as the choice rule of the Exogenous-
RDRC.

It can be easily verified that the above choice rule satisfies WSG, IUA and LL, but
violates WPO.
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Figure 11

We next define a choice rule that satisfies IUA, LL, WPO, but violates WSG. In partic-
ular, consider the following choice rule:

(i) if (S,�1,�2) is as illustrated in Figure 11 (i.e., there are four undominated alternatives
and one dominated alternative which is dominated by all undominated alternatives), then
the choice probabilities are those prescribed in Figure 11.

(ii) in all other cases, the choice rule is the same as the choice rule of the Exogenous-
RDRC.
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It can be easily verified that the above choice rule satisfies IUA, LL and WPO, but
violates WSG.

Finally, we define a choice rule which satisfies WSG, LL, WPO, but violates IUA. In
particular, consider the following choice rule:

(i) if (S,�1,�2) is as illustrated in Figure 12 (i.e., there are three Pareto alternatives and
two dominated alternative, where one dominated alternative is exclusively dominated by
the Pareto alternative that has the highest ranking in attribute 1 and the other dominated
alternative is exclusively dominated by the Pareto alternative that has the highest ranking
in attribute 2), then the choice probabilities are those prescribed in Figure 12.

(ii) in all other cases, the choice rule is the same as the choice rule of the Exogenous-
RDRC.

It can be verified that the above choice rule satisfies WSG, LL and WPO, but violates
IUA.
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11.3.2 Independence of the Axioms of the Endogenous-RDRC’s Outcome Set

For simplicity, we focus on the case of N = 2. We will define three choice rules, where the
first two are similar to those constructed in the previous subsection.

First, consider the following choice rule:
(i) if (S,�1,�2) has one undominated alternative and one dominated alternative, then

the choice probability of both the undominated alternative and the dominated alternative
are 1/2.

(ii) in all other cases, the choice rule is the same as the choice rule of the Endogenous-
RDRC.

It can be verified that the above choice rule satisfies NPG and LL 2, but violates WPO.
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Second, consider the following choice rule:
(i) if (S,�1,�2) is as illustrated in Figure 12, then the choice probabilities are those

prescribed in Figure 12.
(ii) in all other cases, the choice rule is the same as the choice rule of the Endogenous-

RDRC.
It can be verified that the above choice rule satisfies LL 2 and WPO, but violates NPG.
Finally, consider the following choice rule:
(i) if (S,�1,�2) is as illustrated in Figure 13, then the choice probabilities are those

prescribed in Figure 13.
(ii) in all other cases, the choice rule is the same as the choice rule of the Endogenous-

RDRC.
It can be verified that the above choice rule satisfies NPG and WPO, but violates LL 2.
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11.3.3 Independence of the Axioms of the RIDC Outcome’s Set

This section discusses the independence of axioms that characterizes the RIDC’s outcome
set. For simplicity, we focus on the case where the number of attributes is 2.

First, consider the following choice rule. For any decision problem (S,�1,�2), let
{y1, ..., yn} ⊆ S be the set of alternatives such that for any yi ∈ {y1, ..., yn}, we have #L(yi,S) ≥
#L(z,S) for any z ∈ S. If {y1, ..., yn} contains only one alternative, then that alternative is
chosen with the outcome with probability one. If {y1, ..., yn} contains multiple alternatives,
then the alternative in {y1, ..., yn} with highest ranking in Attribute 1 is chosen as the
outcome with probability one.

It can be shown that the above choice rule satisfies IIE, but does not satisfy S-SYM.
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Next, consider a new choice rule. For any decision problem (S,�1,�2), let {w1, ...,wn} ⊆

∂(S,�1,�2) be the set of alternatives such that for any wi ∈ {w1, ...,wn}, we have #L(wi,S) ≤
#L(z,S) for any z ∈ ∂(S,�1,�2). If {w1, ...,wn} contains only one alternative, then that
alternative is chosen as the outcome with probability one. If {w1, ...,wn} contains multiple
alternatives, then each alternative in {w1, ...,wn} will be chosen as the outcome with equal
probabilities, and any alternative outside {w1, ...,wn}will be chosen with probability zero.

It can be verified that the above choice rule satisfies S-SYM, but violates IIE. Also, note
that another choice rule that satisfies S-SYM but violates IIE is the choice rule induced by
Exogenous-RDRC.
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