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I Introduction

Asset prices contain information about the stochastic discounting of possible future states,
i.e., about the pricing kernel, or stochastic discount factor (SDF). Based on this simple obser-
vation, and an information-theoretic approach, we propose a novel non-parametric method
for the estimation of the pricing kernel, and we evaluate its out-of-sample empirical perfor-
mance in pricing assets and guiding portfolio investment decisions.

The proliferation of risk factors identified in the literature on empirical asset pricing has
brought forth concerns over data mining and spurious inference (see, e.g., Lewellen, Nagel,
and Shanken (2010), Harvey and Liu (2015), McLean and Pontiff (2016), Bryzgalova (2015)),
and highlights the risk of collective over-paramterization of the pricing kernel. Therefore,
a non-parametric approach to the recovery of the pricing kernel is a potentially valuable
alternative to the ad-hoc construction of risk factors, and provides a model-free test of the
efficient market hypothesis. Moreover, given its strong empirical performance, it provides a
benchmark model relative to which both competing theories, as well as investment managers,
can be evaluated.

Building upon Ghosh, Julliard, and Taylor (2016), we show how the pricing kernel can
be estimated in a non-parametric fashion using no arbitrage (Euler equation) restrictions.
In particular, given the time series data of returns on a cross-section of assets, we rely on
a model-free relative entropy minimization approach to estimate an SDF that prices the
given cross-section. The solution to this problem is a non-linear function of the asset returns
and the Lagrange multipliers associated with the assets’ cross-sectional pricing restrictions
(i.e. the shadow value of relaxing the Euler equation restrictions). This approach delivers a
non-parametric maximum likelihood estimate of the SDF and can, therefore, be interpreted
as the most likely one-factor pricing model for the cross-section used for its construction.

We project the SDF out-of-sample for the purposes of cross-sectional pricing and opti-
mal asset allocation. In particular, using the in-sample estimated Lagrange multipliers, we
construct the out-of-sample SDF in a rolling fashion, and use it as the single factor to price
the cross-section of test assets. Our approach does not require taking a stance on either
the number or the identity of the underlying risk factors or on the functional form of the
pricing kernel. Instead, the approach allows us to conveniently summarize all the relevant
information contained in, possibly multiple, priced risk factors in the form of a single time
series for the SDF. We refer to the out-of-sample SDF as the ‘Information SDF’ (I-SDF).

We estimate the I-SDF for diverse sets of equity portfolios — including portfolios sorted on
the basis of size, book-to-market-equity, momentum, industry, and long-term reversals — and
analyse its ability to explain the cross-section of returns. Compared to leading multifactor
models, such as the Fama—French 3-factor model (FF3) or the Carhart 4-factor model (which



adds the momentum factor to the FF3), the [-SDF delivers smaller pricing errors on all the
different sets of test assets despite being only a one-factor model. Moreover, it explains
a larger fraction of the cross-sectional variation of the returns. These results hold for a
variety of measures of cross-sectional fit as well as the standard OLS R2. Most importantly,
we show that the I-SDF (unlike the other factor models considered) seems to correctly
identify — out-of-sample — the tangency portfolio, i.e. the maximum Sharpe ratio portfolio.
Furthermore, we find that the I-SDF extracts novel pricing information not captured by the
FF3 or Carhart 4-factor models: it leads to an ‘information anomaly,” generating large and
statistically significant intercepts (6.9%—17.2% per annum) relative to the FF3 and Carhart
factor models, and these factors cannot explain more than one-fourth of its time series
variation.

The I-SDF, being a nonlinear function of the asset returns used in its construction, is not
a traded factor. Therefore, in order to exploit its ability to identify the tangency portfolio,
we construct a tradable portfolio that mimics the estimated kernel, by projecting the I-SDF
onto the set of test assets in sample, and using the projection coefficients (normalized to sum
to one as portfolio weights) to construct, out-of-sample, what we refer to as the ‘Information
Portfolio” (I-P).

We show that the I-P consistently outperforms a number of standard benchmarks out-
of-sample in terms of Sharpe ratios and certainty-equivalent (CEQ) returns. For example,
when the 25 size and book-to-market-equity sorted portfolios are used as test assets, the
[-P produces an annualized Sharpe Ratio of about 1.0. That is, the I-P delivers a Sharpe
ratio that is more than three times that of the Market portfolio, more than twice what is
achievable with the naive 1/N diversification strategy! or with a “value” strategy, about 3.5
times what is delivered by a “momentum” strategy, and about one-third more than what
can be achieved from combining value and momentum strategies.? And even after hedging
with respect to the FF3 and momentum factors, the I-P produces large annualized hedged
Sharpe ratios (up to 0.73) and an annualized a of about 8.6%-23.8%. Moreover, the data
never reject the null hypothesis of the I-P delivering out-of-sample the maximum Sharpe ratio
achievable using the cross-section of assets used to construct it. Furthermore, using the CEQ
metric of DeMiguel, Garlappi, and Uppal (2009), we find that the I-P delivers annualized

certainty-equivalent returns of about 14.0%-29.8%, while the other strategies considered

!'DeMiguel, Garlappi, and Uppal (2009) show that the out-of-sample performance of commonly used
mean—variance portfolio selection methods are typically worse than that of the 1/N rule in terms of Sharpe
ratio and CEQ returns.

2 Asness, Moskowitz, and Pedersen (2013) document consistent value and momentum return premia across
diverse markets and asset classes. Moreover, they show that, thanks to the substantial Sharpe ratios of these
strategies and their strong negative correlation, an extremely high Sharpe ratio can be achieved by combining
the two.



deliver CEQ returns in the 2.4%7.4% range, i.e. one order of magnitude smaller than the
[-P. Interestingly, the I-P delivers such a strong investment performance with only yearly
rebalancing (hence low trading costs), and a substantially smaller tail risk (as measured by
skewness and kurtosis) than all the other strategies considered.

Our paper is close in spirit to, and builds upon, the long tradition of using asset prices
to estimate the risk neutral probability measure (see, e.g. Jackwerth and Rubinstein (1996)
and Ait-Sahalia and Lo (1998)) and use this information to extract an implied pricing kernel
(see, e.g. Ait-Sahalia and Lo (2000), Hansen (2014), Rosenberg and Engle (2002), and Ross
(2015)). The main advantages of our approach relative to this literature are that a) we do
not need to use option data and b) we can construct an out-of-sample pricing kernel and
maximum Sharpe ratio portfolio. Moreover, while the analysis in this paper focuses on equity
portfolios, our method is very general and could be applied to other asset classes including
bonds, derivatives, and currencies.

The use of an entropy metric is also closely related to Stutzer (1995, 1996) and Kitamura
and Stutzer (2002), who first suggested using this information-theoretic alternative to the
standard GMM approach to conduct inference for asset pricing models. Julliard and Ghosh
(2012) relies on this entropy based inference approach to assess the empirical plausibility of
the rare events hypothesis in explaining the equity premium puzzle. Moreover, our work is
related to Ghosh, Julliard, and Taylor (2016), who use a relative entropy minimization to
derive entropy bounds for the stochastic discount factor of consumption-based asset pricing
models (see also Backus, Chernov, and Zin (2014)).

Our paper also contributes to the extensive cross-sectional asset pricing literature that
seeks to identify priced risk factors to explain the cross section of returns of different classes
of financial assets. Harvey, Liu, and Zhu (2015) documents 316 risk factors discovered by
academics. Lewellen, Nagel, and Shanken (2010) offer a critical assessment of asset pricing
tests and conclude that although many of the proposed factors seem to perform well in terms
of producing high cross-sectional R? and small pricing errors, this result is largely driven by
the strong factor structure of the size and book-to-market-equity sorted portfolio returns
(which are often used as the only test assets), which makes it quite likely for an arbitrar-
ily chosen two or three factors, which have little correlation with the returns, to produce
these results. Moreover, Bryzgalova (2015) shows that the apparent good performance of
several factor models proposed in the literature might be the spurious outcome of a weak
identification problem. We show that our information factors are robust to these concerns
and that our approach provides a reliable benchmark against which empirical models can be
evaluated.

Lastly, our paper contributes to the portfolio selection literature. While Markowitz (1952)



derived the optimal portfolio rule in a static mean—variance setting, the implementation
of that approach requires the estimation of the inputs, namely the expected returns and
the variance—covariance matrix of the risky assets to be included in the portfolio. While
extensive research effort has been dedicated to proposing approaches to reduce the estimation
error in the inputs, DeMiguel, Garlappi, and Uppal (2009) show that the out-of-sample
performance of the sample based mean—variance model, as well as its various extensions
specifically designed to reduce the estimation error, is typically worse than that of the 1/N
rule in terms of the Sharpe ratio and CEQ returns. We show that our approach robustly
identifies the maximum Sharpe ratio portfolio out of sample and delivers very high CEQ
returns.

The remainder of this paper is organized as follows. Section II describes our method of
extracting the pricing kernel from a vector of asset returns, as well as the different inference
methods used in the empirical analysis. The data used in the empirical analysis are described
in Section III. The empirical results are presented in Section IV. Section V concludes with

suggestions for future research.

II The Method

Our relative-entropy minimizing approach enables us to recover, for a given cross-section
of assets, what we refer to as the Information SDF. Section II.1 describes the information-
theoretic method used to construct the SDF. Section I1.2 discusses the econometric tests
used to assess the pricing performance of the Information SDF and compare its performance

to some leading empirical asset pricing models commonly used in the literature.

I1.1 Recovery of the Information SDF

The absence of arbitrage opportunities implies the existence of a strictly positive pricing
kernel (also known as the stochastic discount factor), M, such that the expectation of the
product of the kernel and a vector of excess returns, Rf € RY, is zero under the physical
probability measure, P:

0 = E¥ [M,R{] = / M,RSdP,

where 0 denotes a conformable vector of zeros. Under weak regularity conditions, the above

restrictions on the SDF can be rewritten as

O:/%Rfd]P’:/RfdQEEQ[Rﬂ, (1)



where z := E [z,;], and % = % is the Radon—Nikodym derivative of Q with respect to P.

This change of measure is legitimate if the measure Q is absolutely continuous with respect
to P.
Given the above, an estimate of the risk neutral probability measure can be obtained as

the minimizer of its relative entropy with respect to the physical measure, i.e. as®

arg min D (Q||P) = arg mm/ Zgl (%) dP  s.t. /R;3 dQ =0, (2)

where D (A||B) := [In“dA = [ 9 1n%dB denotes the relative entropy of A with respect

to B, i.e. the Kullback—Lelbler Information Criterion (KLIC) divergence between A and B
(White (1982)). Note that D (A||B) is always non-negative, and has a minimum at zero that
is attained when A is identical to B. This divergence measures the additional information
content of A relative to B and, as pointed out by Robinson (1991), is very sensitive to any
deviation of one probability measure from another. Therefore, the optimization in Equation
(2) is a relative entropy minimization under the asset pricing restrictions coming from the
Euler equation (1).

Ghosh, Julliard, and Taylor (2016) show that the above approach for the recovery of the
pricing measure has desirable properties. First, the estimation in Equation (2) delivers a non-
parametric maximum likelihood estimate of the risk neutral measure and the pricing kernel.
Second, due to the presence of the logarithm in the objective functions in Equation (2), the
use of relative entropy naturally enforces the non-negativity of the pricing kernel. Third, the
approach satisfies Occam’s razor, or the law of parsimony, since it adds the minimum amount
of information needed for the pricing kernel to price assets. Fourth, it is straightforward to
add conditioning information: given a vector of conditioning variables Z;_;, one simply has
to multiply (element by element) the argument of the integral constraint in Equation (2) by
the conditioning variables in Z; ;. Fifth, there is no ex ante restriction on the number of
assets that can be used in constructing M.* Sixth, as implied by Brown and Smith (1990),
the use of entropy is desirable if one believes that tail events are an important component
of the risk measure (minimum entropy estimators endogenously reweigh the observations to

appropriately account for tail events that happened to occur in the data with a frequency

3Minimizing the relative entropy to recover the risk neutral probability measure was first suggested
by Stutzer (1995). Ghosh, Julliard, and Taylor (2016) extended the method to recover the unobserved
component of the SDF for a broad class of consumption-based asset pricing models as well as to construct
entropy bounds on the SDF and its components that are tighter and more flexible than the seminal Hansen—
Jagannathan bounds.

4The approach does not require a decomposition of M into short- and long-run components (cf. Alvarez
and Jermann (2005)), and it does not rely on the existence of a continuum of options price data (cf. Ross
(2015)).



lower than their true probability).®
In this paper we focus on the out-of-sample asset pricing and investment performance of
an SDF constructed using the above relative entropy minimization. In particular, note that
My _ dQ

since = =

i = @ the optimization in Equation (2) can be rewritten as

argmin E* [M,In M, s.t. EF [M,R¢] =0, (3)

M
where, to simplify the exposition (but without loss of generality), we have used the innocuous
normalization M = 1.5 Given a sample of size T and a history of excess returns {R¢}/_,,
the above expression can be made operational by replacing the expectation with a sample

analogue, as is customary for moment based estimators,” obtaining

T T
1 1 .
argmin E M;In M, s.t. T ;:1 M;R; = 0. (4)

{Mf}thl t=1

The above formulation is handy in that a solution is easily obtainable via Fenchel’s duality

(see, e.g. Csiszar (1975)):

M, = M, (§T,Rf> - 0w (5)

where § € RY is the vector of Lagrange multipliers that solve the unconstrained convex

problem
-~ 1 r 'Re
O = argemin T;ee Ri (6)

and this last expression is the dual formulation of the entropy minimization problem in
Equation (4). The above duality result implies that the number of free parameters available
in estimating {M,},_, is equal to the dimension of (the Lagrange multiplier) 6: that is, it is
simply equal to the number of assets considered in the Euler equation.®

We use the above method to recover the time series of the SDF in a rolling out-of-sample

®Based on this insight, Julliard and Ghosh (2012) used a relative entropy estimation approach to analyse
the empirical plausibility of the rare events hypothesis to explain a host of asset pricing puzzles.

6This normalization is innocuous since the estimate of M, is identified up to a strictly positive scale
constant. This positive scale constant can be recovered from the Euler equation for the risk free rate.

"This amounts to assuming ergodicity for both the pricing kernel and asset returns.

8Note that since relative entropy is not symmetric, i.e., D (Q||P) # D (P||Q), we can reverse the roles of
the probability measures P and Q in Equation (2) to obtain an alternative definition of relative entropy and,
therefore, a second approach to estimating the pricing kernel. This approach is described in Appendix A.1.



fashion. In particular, for a given cross section of asset returns, we divide the time series
of returns into rolling subsamples of length T and final date 7}, i = 1,2, 3, ..., and constant
s :=T;1 —T;. In subsample 7, we estimate the vector of Lagrange multipliers gTi by solving
the minimization in Equation (6). Using the estimates of the Lagrange multipliers, é\Ti,
the out-of-sample Information SDF (I-SDF) M (éTi, Rf) is obtained for the subsequent s
periods (i.e. for ¢ such that T; + 1 <t < Tj,1) using Equation (5). This process is repeated
for each subsample to obtain the time series of the estimated kernel over the out-of-sample
evaluation period.

This procedure is analogous in spirit to the canonical approach of forming portfolios (e.g.
the SMB portfolio) based on past asset return characteristics (e.g. by sorting on size in the

past calendar year). The key difference is that M (@\Ti, Rf) is a non-linear function of the
portfolio @\’Tin and the weights 6 are chosen to deliver an MLE of the SDF in each (past)

subsample.

The relative entropy minimizing pricing kernel, while being a function of asset returns,
is not directly a traded asset or portfolio of assets. As a consequence, we create a mimicking
portfolio, maximally correlated with the kernel, in a rolling out-of-sample fashion. We refer
to this portfolio as the Information Portfolio (I-P). The I-P is constructed as follows. In
subsample ¢, the estimates of the Lagrange multipliers, §Ti, are used to construct the in-
sample SDF Z\//Ti,t =M (gTi, Rf), t=T,—T+1,T,—T+2, ..., T;,. Then ]\//E,t is projected onto
the space of excess returns to obtain the vector of portfolio weights wr, € RY (normalized

to sum to unity). That is, the mimicking portfolio weights wyr, are given by

~

by, 1 — 2
wy, = — [?iTi,b'TZ} = argmin = Z (Mi,t —ag, — bTin> ) (7)

= .
‘bTi t {GTZ- b, } t=T;,—T+1

where ¢ denotes a conformable column vector of ones. Using the portfolio weights vector,
the out-of-sample I-P is obtained as R/¥ = w/, Ry for the subsequent s periods, i.e. for
t=T,+1,T,+2, .., T, 1. This process is repeated for each subsample to obtain the time
series of the information portfolio over the out-of-sample evaluation period. Note that in the
scenario that the pricing kernel extracted using the relative entropy minimization approach
prices assets perfectly in-sample, its projection, namely the I-P, identifies the mean—variance
tangency portfolio of the test assets.

In the empirical analysis, we set s = 12 months (4 quarters) for monthly (quarterly) data.
This corresponds to an annual rebalancing of the portfolio. The size of the rolling window,

T, is set to 30 years.



I1.2 Asset Pricing Tests

For a given cross-section of test assets, we construct the out-of-sample I-SDF and I-P using
the procedure described in Section II.1. We evaluate the empirical performance of the I-SDF
and I-P at monthly and quarterly frequencies. We compare the performance of these factors
to that of the one-factor CAPM, the three factor Fama—French model, and the Carhart four
factor model.

We use the two-step method of Fama and MacBeth (1973) to assess the ability of each
factor model to price the cross-section of test assets. In the first step, the factor loadings
for the test assets are estimated from a time series regression of the excess returns on the
factors:

R} =a+ BF, +¢,.

In the second step, the factor risk premia are obtained from a cross-sectional regression of
the average excess asset returns, u € RY, on the factor loadings estimated from the first
stage:

p=zt+By+a=C\+a, C:=[B], N :=[z1],

where ¢ denotes a conformable vector of ones, v denotes a vector of regression slopes (that
should be non-zero if the factors are priced), z is a scalar constant (that should be zero if the
zero-beta rate matches the risk-free rate), and o € RY is the vector of pricing errors (that
should be zero if the factors price assets accurately).

Following the suggestions of Lewellen, Nagel, and Shanken (2010), we present several
alternative measures of performance for the above cross-sectional regressions. First, we
present the standard OLS cross-sectional adjusted R* (hereafter denoted by EQO Ls). This
measure suffers from the shortcoming that if the returns have a strong factor structure (such
as, e.g., the size and book-to-market-equity sorted portfolio returns), then an arbitrarily
chosen set of two or three factors, that have little correlation with the returns, are quite
likely to produce large values of this statistic. This is obviously less of an issue for our I-SDF
and I[-P since these are one-factor models, but it is likely to affect the performance of the
other factor models that we consider for comparison.

Second, we present the GLS adjusted R? (hereafter denoted by Eé g) that is obtained
from the cross-sectional regression of V=12 on V-2 [, B], where V := Var (R¢). The Ray g
for a model, unlike Tié Ls» 1s completely determined by the model-implied factor’s proximity
to the minimum variance frontier and, in general, presents a more stringent hurdle for models.

Third, we present the cross-sectional T? statistic of Shanken (1985), given by T? :=
a'Sa, where S is the pseudoinverse of the estimated X, := (1 - 7’2}17) yZTy, y =1 —

C(C'C) ™'’ and ¥ := Var(s;). The T? statistic has an asymptotic x? distribution with



N — K — 1 degrees of freedom, where K denotes the number of factors, and noncentrality
T
(1+7’E;1“/)
factors. We compute the p-value of this statistic under the null hypothesis that the model

parameter o/~ a = o/ (y2y)* o , where ¥ denotes the covariance matrix of the
explains the vector of expected returns perfectly, i.e., the vector of pricing errors o = 0.

Fourth, we present the quadratic ¢ := o/ (yXy)" @ which measures how far the factor
is from the mean-—variance frontier.” In particular, it is equal to the difference between the
squared Sharpe ratio of the tangency portfolio of the test assets and the maximum squared
Sharpe ratio attainable from the model-implied factors (or their mimicking portfolios in the
case of non-traded factors).

Lastly, we present the simulated 90% confidence intervals for the statistics. The simu-
lated confidence intervals are obtained using the approach suggested by Stock (1991) (see
also Lewellen, Nagel, and Shanken (2010) for a detailed discussion). Consider first the con-
struction of the confidence intervals for the EQO rg- The simulations have two steps. First,
we fix a true (population) cross-sectional R? that we want the model to have and alter the
(N x 1) vector of expected returns, p, to be p = hCX + ¢, where C' = |1, B], B denotes the
vector of factor loadings in the historical sample, and € ~ N (0,02). The constants h and o2
are chosen to produce the right cross-sectional R? and maintain the historical cross-sectional
dispersion of the average returns. Second, we jointly simulate an artificial time series of
the factor and the returns of the same length as the historical data by sampling, with re-
placement, from the historical time series. We then use the two-pass regression method to
estimate the sample cross-sectional R? of the simulated sample. We repeat the second step
1,000 times to construct a sampling distribution of the R? statistic conditional on the given
population R2. This procedure is repeated for all values of the population R? between 0 and
1. The 90% confidence interval for the true R? represents all values of the population R? for
which the estimated R? in the historical sample falls within the 5th and 95th percentiles of
the sample distribution.

A confidence interval for ¢ is found using a method similar to that used to obtain the
confidence interval for the true (population) cross-sectional R?. Specifically, a given popu-
lation R? implies a specific value of q. We plot the sample distribution of the 77 statistic
as a function of q. The confidence interval for the true ¢ represents all values of the ¢ for
which the estimated 72 in the historical sample falls within the 5th and 95th percentiles of
the sample distribution.

For the T? statistic, we present its finite-sample p-value, obtained from the above simu-
lations, as the probability that the T2 statistics in the simulated samples exceed the value

of the statistic in the historical data for ¢ = 0.

9See Uppal and Zaffaroni (2015) for an alternative economic interpretation of this statistic.



III Data Description

We assess the empirical performance of the extracted pricing kernel (the I-SDF) and its
tradable counterpart (the I-P) at monthly and quarterly frequencies. The out-of-sample
evaluation covers the period 1963:07-2010:12. The start date 1963:07 is chosen to coincide
with that in Fama and French (1993), Lewellen, Nagel, and Shanken (2010), as well as
DeMiguel, Garlappi, and Uppal (2009). This facilitates a useful comparison of our results
with the existing literature.

To illustrate the strength of our method, we analyse several cross-sections of equity port-
folios.!Y In particular, we consider the 25 size and book-to-market-equity sorted portfolios,
the 10 momentum-sorted portfolios, the 10 and 30 industry-sorted portfolios, and the 25
portfolios formed on long term reversal and size. We extract the I-SDF and the I-P from,
and use them to price, each of these cross-sections, as well as several combinations of these
cross-sections.

Monthly returns data on the above portfolios are obtained from Kenneth French’s data
library. An estimate of the monthly risk free rate is subtracted from the portfolio returns to
produce the excess returns. Our proxy for the risk-free rate is the one-month Treasury Bill
rate, also obtained from Kenneth French’s data library. The quarterly returns on the equity
portfolios as well as the quarterly risk free rate are obtained by compounding the monthly
returns within each quarter. The excess returns on the portfolios are then computed by

subtracting the risk free rate.

IV Empirical Evidence

In what follows, we evaluate the out-of-sample ability of the I-SDF and I-P to (a) explain
the cross-section of returns and (b) deliver optimally diversified portfolios of the test assets.
In particular, Section IV.1 presents the cross-sectional regression results for different sets
of test assets, Section IV.2 presents the properties of the I-SDF and I-P, and Section IV.3

presents the performance of the I-P as an investment strategy.

IV.1 Cross-Sectional Pricing

Table 1 presents the cross-sectional pricing results when the test assets consist of the 25
size and book-to-market-equity sorted portfolios of Fama and French. Consider first Panel

A, which presents the results at a monthly frequency. Row 1 shows that when the I-SDF

10We focus on portfolios, rather than individual asset returns, since our estimation method requires a large
time series dimension relative to the cross-sectional one.

10



is used as the sole factor, its estimated price of risk has the correct sign and is strongly
statistically significant with an absolute value of the t-statistic in excess of 7. Harvey, Liu,
and Zhu (2015) argue that a t-statistic of around 2.0 is too low a hurdle to establish the
statistical significance of a given factor in the presence of extensive data mining. Using a
new framework that allows for multiple tests, they show that a t-statistic greater then 3.0
would be required for a factor to be deemed as being statistically significant. Row 1 shows
that the I-SDF has a t-statistic more than double the value needed to establish statistical
significance even after taking into account the possibility of data mining. Since the regression
uses the monthly excess returns as the dependent variable, the intercept can be interpreted
as the estimated monthly zero beta rate over and above the risk free rate. The estimated
annualized zero beta rate is 3.6%. Although this is statistically significant, part of it may
be attributable to the differences in lending and borrowing rates (1%—2%). Moreover, rows
3 and 4 show that the CAPM and the FF3 model produce substantially higher annualized
intercepts of 13.2%. The I-SDF produces an ﬁéLS of 67.0% and, more importantly, EZLS
is very similar to E2OLS? at 56.6%. Note that the GLS R? is high if and only if the factor
is close to the mean—variance frontier and, in general, provides a more stringent hurdle for
asset pricing models. The T2 statistic shows that the model is not rejected at conventional
significance levels. Lastly, the ¢ statistic, which equals the difference between the squared
Sharpe ratio of the tangency portfolio of the test assets and the squared Sharpe ratio of
the factor-mimicking portfolio, is 0.077 and its 90% confidence interval includes 0, i.e., the
[-SDF mimicking portfolio is statistically indistinguishable from the maximum Sharpe ratio
portfolio of the test assets.

Row 2 shows that the I-P, when used as the single factor in the cross-sectional regression,
produces results similar to those obtained with the I-SDF in row 1. Note that while a factor
and its mimicking portfolio produce the same intercept, R?, and pricing errors in a cross-
sectional regression in-sample, the same does not hold out-of-sample. The small differences
between rows 1 and 2 are because of the out-of-sample nature of the construction of the
[-SDF and I-P.

In row 3, we present the results for the unconditional CAPM. The market risk premium
has the wrong sign and is not statistically significantly different from zero. The intercept,
on the other hand, is strongly significant with an annualized value of 13.2%. The OLS and
GLS R are much smaller at 3.97% and 28.8%, respectively, compared to those obtained
with the I-SDF and I-P. The T? statistic is almost double those obtained with the I-SDF
and I-P, and has a p-value of zero: i.e. the model is strongly rejected. The ¢ statistic is
closely related to the EZLS and the T? statistics and, therefore, not surprisingly, provides

similar conclusions: the 90% confidence interval for the ¢ statistic implies a large unexplained
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Table 1: 25 Fama—French Portfolios

—2 —2
Row const. Asdf Arp ARm Asmup  Aumr  Ropg (%) Reapg (%) T2 q
Panel A: Monthly
(1) 0.003 —0.341 67.0 56.6 37.5 0.077
(5.73) (~7.06) [39.5,100] [52.4,100] (0.207)  [0.00,0.09]
(2) 0.003 0.023 68.6 59.6 37.1 0.072
(5.70) (7.32) [45.7,100] [41.3,100] (0.099)  [0.00,0.08]
(3) 0.011 —0.004 3.97 28.8 71.6 0.128
(3.40) (—1.41) [-4.35,61.4]  [6.43,59.9]  (0.000)  [0.04,0.34]
(4) 0.011 —0.006 0.002 0.004 71.3 40.9 51.5 0.096
(2.50) (—1.53) (3.86) (6.87) [21.1,90.9] [20.5,90.8]  (0.002)  [0.03,0.16]
(5) 0.003 —0.383 0.002 0.002  0.004 83.8 59.0 29.5 0.063
(0.865)  (—4.39) (0.568) (5.86) (8.42) [50.8,100] [47.6,100] (0.311)  [0.00,0.088]
(6) 0.004 0.025 0.0004 0.003 0.004 86.1 62.2 29.3 0.058
(1.20) (5.26) (0.132) (6.75) (8.48) [67.6,98.8] [38.2,100] (0.172)  [0.00,0.077]
Panel B: Quarterly
(1) 0.028 —5.46 26.8 30.8 41.3 0.332
(11.33)  (—3.13) [—1.22,100] [12.3,70.5]  (0.451)  [0.00,0.60]
(2) 0.002 0.135 83.7 51.6 28.8 0.227
(1.29) (11.17) [83.3,100] [46.9,100] (0.535)  [0.00,0.13]
(3) 0.024 —0.002 -3.92 8.50 80.9 0.431
(2.79) (—0.308) [-4.35,25.9]  [-0.57,43.5]  (0.000)  [0.08,0.97]
(4) 0.028 —0.015 0.007 0.013 74.7 17.7 59.3 0.351
(2.19) (—1.15) (4.95) (7.20) [30.3,93.1]  [-7.50,66.3]  (0.003)  [0.08,0.71]
(5) 0.002 —5.04 0.012 0.008 0.012 82.0 32.2 33.9 0.275
(0.180)  (—3.19) (0.884) (6.11) (6.83) [44.8,100] [13.3,100] (0.391)  [0.00,0.21]
(6) 0.005 0.108  0.010 0.008 0.012 83.4 46.5 31.1 0.217
(0.403) (3.71) (0.768) (6.60) (7.85) [46.0,100] [19.6,100] (0.309)  [0.00,0.28]

Cross-sectional regressions of average excess returns of the 25 Fama—French portfolios on the estimated factor
loadings for different asset pricing models. Panel A presents the monthly results and Panel B the quarterly
results. In each panel, the first row presents the results when the factor is the information SDF and the second
row, for the information portfolio. The information SDF and information portfolio are extracted from the
25 Fama—French portfolios using a relative entropy minimizing procedure, in a rolling out-of-sample fashion
starting at 1963:07. Rows 3 and 4 present the results for the CAPM and the Fama—French 3-factor model,
respectively. In row 5 the factors are the three FamaFrench factors plus the information SDF. In row 6 the
factors are the three FamaFrench factors plus the information portfolio. For each model, the table presents
the intercept and slopes, along with t-statistics in parentheses. It also presents the OLS adjusted R? and the
GLS adjusted R?, along with the 90% confidence intervals for the true underlying population adjusted R? (in
square brackets). The confidence intervals are constructed via simulations using the approach suggested by
Stock (1991) and used by Lewellen, Nagel, and Shanken (2010). The last two columns present, respectively,
Shanken’s (1985) cross-sectional T2 statistic along with its asymptotic p-value in parentheses, and the q

statistic that measures how far the factor-mimicking portfolios are from the mean—variance frontier.

Sharpe ratio between 0.2 and 0.58, i.e. the model fails to identify the maximum Sharpe ratio
portfolio.

Row 4 presents the results for the FF 3-factor model. The results show that the market
risk premium is not statistically significant but the risk premia associated with the factors
proxying for risks related to size and book-to-market-equity are both significantly positive.
However, the intercept is statistically and economically large, with an annualized value of
13.2%, the same as that obtained with the market risk factor alone in row 3. The EQO g 1s high

at 71.3%, consistent with existing empirical evidence that the 3 FF factors explain a large
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fraction of the time series and cross-sectional variation in the returns of the 25 FF portfolios.
However, moving to a GLS cross-sectional regression, R drops sharply to 40.9%, consistent
with the observation that a GLS regression offers a more stringent hurdle for models than
does the OLS. This is in stark contrast to the I-SDF and I-P, which deliver very similar i
using both the OLS and GLS procedures. The T? statistic is larger than those obtained
with the I-SDF (51.5 vs 37.5) and I-P (51.5 vs 37.1), and has a p-value of zero, implying a
statistical rejection of the model. The ¢ statistic is also larger than those obtained with the
I-SDF (0.096 vs 0.077) and I-P (0.096 vs 0.072). Moreover, the 90% confidence interval of
the ¢ statistic does not include 0, i.e. the maximum Sharpe ratio obtainable from the 3 FF
factors is statistically different from the Sharpe ratio of the tangency portfolio of the test
assets.

Row 5 presents the results when the I-SDF is used in conjunction with the 3 FF factors
in the cross-sectional regression. Note that the risk premium for the I-SDF remains strongly
statistically significant even in the presence of the 3 FF factors and its magnitude is very
similar to that obtained when the I-SDF is used as the sole factor in row 1. Although EQO LS
is higher, at 83.8% compared to 67.0% in row 1, the Eé g for the two rows are very similar
(59.0% vs 56.6%). Similar results are obtained in row 6 when the I-P is used in conjunction
with the 3 FF factors.

Similar results are obtained at a quarterly frequency in Panel B. Both the I-SDF and
I-P deliver a strongly significant ), the T statistic implies that these pricing models are not
rejected, and the ¢ statistic implies that the these factors seem to identify the maximum
Sharpe ratio portfolio. Nevertheless, some of the EZO ¢ and Eé s are somewhat reduced,
but this reduction is not informative since the confidence intervals for this statistics include
values as high as 100%. The CAPM, on the other hand, produces a negative }_%201:5’ an
EéLS of 8.8%, and a T? statistic with a p-value of 0%. For the FF 3-factor, although §2OLS
is high at 74.7% (but smaller than that for the I-P), the GLS I drops sharply, to only
17.7% (whereas that for the I-P is 51.6%). Moreover, the T? test rejects the FF 3-factor
specification while the ¢ statistics suggests that this factor model fails to identify the capital
market line (while both the I-SDF and I-P succeed in this task). Lastly, combining the
information factors with the FF 3-factor leaves both the point estimates and the statistical
significance of those information factors unaffected.

Note that, as noted in Lewellen, Nagel, and Shanken (2010), it is relatively easy to
find factors that produce large Eé g for the 25 FF portfolios because of their strong factor

structure. What is more impressive is that a single factor,!! namely the I-SDF or the I-P,

HOf course, any multi-factor model can be rewritten as a single factor model (see e.g. Back (2010)),
nevertheless this requires the knowledge of projection coefficients that are available only ez post to the
econometrician. Hence, ex ante, the number of factors is a relevant metric for assessing the degrees of
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does even better than the FF3 factors. Moreover, similar conclusions are obtained if, rather
than relying on E2o g alone, more stringent hurdles are imposed on the model via the Eé LS
T2, and q statistics, and their confidence bands.

We next show that the superior performance of our model holds not only for the size and
book-to-market-equity sorted portfolios, but also for portfolios formed by sorting stocks on
the basis of other characteristics, such as prior returns, industry, etc. Tables 24 present the
cross-sectional regression results when the set of test assets consists of (a) the 10 momentum
sorted portfolios, (b) the 25 portfolios formed on the basis of size and long-term reversal,
and (c) the 10 industry portfolios and the smallest and largest deciles of portfolios formed
on the basis of size, B/M, and momentum. The results, in each case, are very similar to
those obtained with the 25 FF portfolios in Table 1.

Overall, Tables 2—4 show that: the I-SDF and I-P tend to produce smaller pricing errors
and larger cross-sectional R?s than the Fama-French 3-factor and the Carhart 4-factor mod-
els, despite being only a one-factor model (i.e. despite having substantially fewer degrees
of freedom for fitting the data than the other models); the risk premia associated with the
[-SDF and I-P are statistically significant, even after controlling for the FF and Carhart
factors; the T2 statistics of the I-SDF and I-P imply that these factors are never rejected at
standard confidence levels (while the other factor models considered are almost always re-
jected); the ¢ statistics imply that the I-SDF and I-P successfully identify the capital market
line, i.e. they are statistically undistinguishable from the maximum Sharpe ratio portfolio
(while the other factor models considered fail in this respect); in 29 cases out of 32 (or 37
out of 40 if Table 1 is included) the t-statistics of the information factors are larger than 3,
hence clearing the higher hurdle for statistical significance recommended by Harvey and Liu
(2015). Moreover, as an additional robustness check of the results in Tables 1 to 4, we have
also run cross-sectional estimates using the Pen-FM (Penalized Fama—MacBeth) estimator
of Bryzgalova (2015), that by design has the ability to detect spurious factors and shrinking
(in a ‘lasso’ fashion) their \’s to zero. Using this approach, we found virtually identical
results, for the information factors, to those discussed above.!?

In Tables 1-4, the cross-section of assets used to extract the I-SDF and I-P coincide with
the test assets that the model is then challenged to price. As described in Section II, if the
[-SDF prices perfectly the cross-section in-sample, then the I-P is identical, in sample, to
the mean—variance tangency portfolio of the test assets. However, this is not the case when
the set of assets used to estimate the kernel differs from the set of test assets. The relative

performance of the [-SDF and I-P in such a scenario is shown in Table 5. The cross-section

freedom that a model has for fitting the data.

12WWe are thankful to Svetlana Bryzgalova for providing us with the necessary computer code to implement
this test.

14



“IOTJUOIJ
9OTURLIBA—TIROUL 91} WOIJ oIk SOI[0J1I0d SUTNOTWIW-I0)0R] 91} Te] MOT SOINSBIW e[} d1Is1ie)s b o) pue ‘sesoyjuored ur onfea-d orjojdurdse st [imm Suore
OIISIFRYS [, [BUOIJIOS-SSOID (GRET) S, uoyueys ‘Afarjoodsor ‘puosord suwmioo omy jyse[ oy, “(0T0g) Ueyurys pue ‘[o8eN ‘uo[omor] Aq pesn pue (1661)
003§ Aq poysesans yorordde oY) SUISTL SUOIIRIIUILS BIA POJOILIISUOD OI S[RAIIJUL dOUSPYUOD o], *(sjoxoeaq oxenbs ur) .y pajsnlpe uonemdod Surdfzopun
ONI} OY) I0J S[RAIOIUL SOUOPYUOD %G OYY YIm Suofe ‘ 3y pojsnulpe G0 oyy pue ;7 pajsulpe GO oy syuesord os[e 3] “sosoyjuored Ul SOTISIFeIS-3 [ITm
guore ‘sodors pue jdeorojur oty syuesard o[qr) oY} ‘TOPOW oo I0 -orfojjrod uoryeunriojur oy snyd s1030v] JIRYIR)) INOJ o} 9IR SI0}JOR] o) 9 MOI U]
‘IS uoryeuriojur o) snjd s1030€J JIRYIR)) INOJ O} dI8 SI0JOR] oY) G MOI U] "A[PA100dsel ‘[opouwl 1030v]-f JIeyIe)) o) pue NJV.) oY} I0J SHNSol o)
yuesexd § pue ¢ Smoy -L0:€961 1® Surjre)s uoryse; spdures-jo-no surfjor e ur ‘arnpedord Furzrururur Adorjus sArIR[eI © Jursn soroj110d palIos-umnjustuour
QT o) WoIj pajoeIjxe are olfojjiod UolyeuLIojul pue J S Uoreuriojul oy J, ‘(g mol) orfojpiod uworyeurIojur oY) pue (T mol) J(S UOIIRULIOJUI o1} SI
1030€] Y} USYM S}Nsal oY) Jussold [oued Yoed Ul SMOI 0M} ISI 9], "SINSI A[1931enb oY) ( [oUeJ PuR S}MSAI A[uow 93} spudsald Yy [oueJ "S[epowt

Sumrid josse JULIAPIP I10J SSUIPRO] I010R] POJRUIIYSS AT} UO SOT[0J}I0d PIYIOS-TUNJUSUIONT ()] B} JO SUINIOI SS9IX0 OFLIOAR JO SUOISSIISAI [RUOIIIIS-SSOI))

[F1°0'00°0]  (928°0) [00T‘L 6] [00T‘e"¥8] (08°02) (¢0°0) (8z°¢) (¥e'1-) (69°¢) (ev'2)
¥10°0 ae'1 L'98 ¥7°'86 120°0 G000°0 ¢60°0  ¥c0'0—  ¥80°0 9¢0°0 (9)
[F61°0°'000]  (6¥8°0) [00T°L°2T] [00T°G"T¥] (85°22) (1e°'1) (zL€) (e11-) (01°5-) (88°'1)
G100 1¢°1 8'GY 7°86 €c00 T10°0 Ge00 S8T'0— ST T— 8¢0°0 (¢)
[96'0°00°0]  (88T1°0) [g2L'9'¢c—] [9'%6'8°CL—] (97°¢) (€9°0) (€0'1) (€8°0—) (80°1)
T€T°0 GG'6 9¢'T ¥'al ¢c00 T120°0 8600  0S0°0— 190°0 (¥)
[er't'g0'0]  (000'0)  [e1E'®9-]  [608‘c'TI—] (69°1-) (0¥°'2)
9¢c0 G666 67'9— ! ¥¢0'0— 8¢0°0 (¢)
[Lo'0‘00°0]  (68¢°0) [00T‘7°02] [00T°0"€] (06°6) (09°¢)
L70°0 9¢°L 9'8L 7°G6 L0T°0 9000 ()
[61°0°00°0]  (625°0) [00T‘z€9] [00T°8°91] (¢6°L—) (6£'9)
9600 ¢l'S ¢Sl €'L8 L0'T— 800°0 (1)
A[1yrent) g oueg
log'0‘00'0]  (%09°0)  [00T'6°0€—] [00T‘G"F1] (79°'%1) (091-) (08°0—) (09°0) (9e'%) (zv°0)
9000 19°¢C 1°¢8 L'L6 9000  ST00— G00°0— 7000 6600 €00°0 (9)
[81€°0°000]  (0%9°0)  [oo1‘e'8¢—]  [00T'0°C9—] (8v01) (06'T—) (€0'1—-) (82°0) (s0°e—) (65°0)
TT0°0 ST 969 6°66 9000 €¢0°'0— S000— ¢00°0 ¥8¢°0— G000 (¢)
[Fe0‘00°0]  (98¢0) [gz6'sge—]  [o0T'z8L—] (z0°9) (81°1—) (19°0—-) (¢L0-) (Lz'T)
770°0 18°S 6S9°C 6'8L L0000 ¢€0°0— TI0O0— €I00— ¢c00 2
[ev'0‘c0'0]  (0000) [Fa¥e8Ll—] [9'8LG'ET—] (gv'1-) (¥0°'2)
7.0°0 ST 0% 0'¢— 60T 600°0— 7100 (¢)
[810°0°00°0]  (999°0) [00T‘g7L] [00T°0°5¢] (99°€T) (08°2)
¢100 LE°9 9'¢8 7°66 760°0 ¢00°0 ()
[g0°0‘00°0] (¢ze0) [ooT‘0°9T] [ooT‘e 99] (91°6—) (66°6)
7¢0°0 LE°¢Cl 1'89 ¢ 06 LG 0— 700°0 (1)
A[qIuoIN 1y [PuRg
b NrH m\NUMN WQQM.N ~\<Q~\<< \NSEQ/\ mgm_,m Em?« m-< g@w,ﬂ ISUO0D MOY
= =

SOI[0J}10d WINJUSWOIA 0T :Z 9[qelL

15



“IOTIUOIJ 9OURLIRA—TROWL S} WOIJ oI sorjojrod
SUDPIWIW-10308] O} I8 MO SOINSBOUl JeYy d13s1ye)s b oy pue ‘sesoyjuored ut onea-d onojduidse sy qimm SUOR OIYSIFRIS . [, [BUOIJI0S-8S010 (G]GT)
s uaxueyg ‘Afoaryoadsor ‘quaseid summods omy 4se] oY, (0T0Z) UeyuRYS pue ‘[oSeN ‘usomor] Aq posn pue (1661) 0018 Aq poisedsns yoeordde o) Suisn
SUOIJR[NUILS BIA PIJONIISUOD OIB S[RAIDIUL 9IUSPYUOD I, "MO[o( sjo3elq arenbs ur ;37 pojsnlpe uonemdod SUIA[Iopun oniy oy} 10§ S[BAIDIUL SOUSPYUOD
%06 oY1 YIm Suoe
squasold o[qe} oy} ‘fepour yped 104 -orojjrod uoryeuriojur o) snjd SI0}0R] YOULIJRWR,] 901} 9} dIe SI0)0e] o[} 9 MOI U] " (IS UoryewtIojur o} snyd

3

4 possulpe g5 oYy pue 7 peysulpe GO oyy syuesord osfe 3] sesoyjuared ur sorsmes-7 Yim Suope ‘sodofs pue 3deorojur oty

SI0J0R] [PUSIJRUR] 901} O} oI SI0J0R] 9} G MOI U] ‘[9POW I0JDRJ-E YOUSI]-BWR] oY) I0J ‘F MOI pue ‘INJVD oYl I0J synsal oy} sjuosold ¢ moy
20:€96T e Suryre)s uorysej sjdures-Jo-1no 3urfjor & ut ‘einpeoold Surziuruin AdoIjus sA1je[dI ® SUISH SOI[0J)10d PIYIOS 9ZIS PUR [RSISADI ULID) SUO[ GF )
WOIJ PIYoRIIXd dIe 01[0310d UOTIRULIOJUI Y} pue (S UOIRULIOUT oY ], *(g M01) o1[0j110d UOTYRULIOFUT o1} PU® (T MOI) J(IS UOIYeULIOFUT 91} ST 10)0R] 91}
uayM S)NSaI 93 juesald [oued Yoo Ul SMOI 0M) )SIT 9], "synsal A[1931enb o) { [oueJ pue sjnsal A[yjuowt 9y} sjuesald y [oueJ ‘spepouwt Surorid josse

JUDISPIP 10] SSUTPRO] 1010 POJRUIISD A} UO SOI[0J1I0d PIYIOS 9ZIS PUL [BSIIADI ULIDY SUO] GF ) JO SUINIAI SSOIXS OSRIOAL JO STOISSIISOI [RUOI}IIS-SSOI))

[ego0‘000]  (1€5°0) loo1‘T€9] [00T‘8°9¢4] (L¥'1) (e1°9) (o8'1)  (8¢°9) (62€°0)
€GT1°0 19°¢C 0°¢q L'98 L00°0 T10°0  <¢I0°'0 0400 ¢00°0 (9)
[26z°0°'000]  (z62°0)  [00T‘SE'T—] [00T‘0"8¢] (¢6°2) (ze'v) (28°1) (ge'e—) (ee1°0)
612C0 8G'C¢ 8'CE ¢v8 ¢100 6000 FI0°0 GLC— ¢000 (g)
[6v'070'0]  (810°0)  [£¥8'19L—] [00T‘6°8T] (92%) (65°2) (€0'1) (19°0)
T0€°0 98'8% 96°'TT S'LL 0200 G000 6000 9000 (%)
[89°0600]  (200°0) [0°Te9z'c—]  [8'0LGe V] (18'1) (¥0°1)
cLE0 9%°89 €e'1 L'S €100 8000 (¢)
[L0'0‘000)  (z€L0) [o01¢L°87] [00T‘8"€T] (t2°9) (e1°€)
L9T°0 96°€¢ ¢'9¢g 8'9¢ GL00 8000 ()
77 0‘0000]  (gg€°0) g1 1C] [eoe‘cev—] (00g'0—) (08°'1T)
16¢°0 0874 ¢ LG 76'€— £6'0— £¢0°0 (1)
A[101rend) g [pued
[20°0°00°0] (¢22°0) [ooT g 8] [00T‘z 68] (6g°¢) (66°¢) (LL77) (0g°9) (98°0—)
€600 6991 799 Gv8 700°0 €000  900°0 ¢c00 ¢00'0— (9)
[s00°0‘000]  (298°0) [00T‘€"26] [00T‘Z"12] (¢e2) (LL%) (ov'2) (vz's—)  (162°0—)
6¢0°0 €6°¢T T'TL 098 €000 7000 G000 0L&0— T000— (¢)
[oT°0T0°0]  (610°0) [00T°99°T] [00T‘6°7€] (96°'%) (z9°1) (€6°0) (89°0)
LL0°0 LS00V 1°9¢ SvL L00°0 T00°0  ¢00°0 ¢00°0 (¥)
[8T°0‘c0'0]  (T00°0) [T°ee‘eT 0] v re'eev—] (84°0) (8€°1)
€010 71°8¢ T°0T 91— ¢00°0 G000 (€)
[to0‘00'0]  (0€8°0) [00T‘7°99] [00T°6°87] (86°2) (e1°2)
L80°0 GE'8T 0°'89 ¢l ¥¢0°0 ¢000 ()
[€0'0‘000]  (£09°0) [2'06°T"L7] [ooT'ce'7—] (812-) (90°2)
L¥0°0 L0°G¢C Q19 G¢l ¢c'0— 900°0 (1)
A[qIuoIN 1y [PuRg
b L (WSO (%) 570y TNAY @nsy iy diy P juor  aoy

9ZIS pUE [BSISADY] ULIS],-SUO UO pauLIOf SOI[0J1I0d GZ :€ 9[qel

16



-o1)s13R)s b o) pue ‘sesoyjuared ur onjes-d orpojdurAse s yimm 3uoe O1)s1ye)s z.L [BUOT1098-8S01D Amwmi s, uesueyq ‘AfoArjoadsar ‘yuoserd suwniod
omy gse[ oy T, "(0T0g) ueueyg pue ‘(eSeN ‘Uo[[omor] Aq pasn pue (T661) Y0018 £q poysesdsdns yoroidde o) SUISN SUOIYRINUILS RIA POJOTLIISUOD SIB S[RAISIUL
00UOPY U0 oY, *(sjospeaq oxenbs ur) ;37 pojsnlpe uorpemdod SUIA[IOpUN O1LIY 9} I0F S[RAIOIUL dOUIPYUOD %06 oY YA Suore ‘37 pajsnlpe 1o oy pue
& Possnlpe g0 oy syuesard osfe 9] ‘sesorpjuared Ul sO13sIRIS-) OUY YHM Suofe ‘sodofs pue jdedrojur oy sjuesolrd d[qe) oy ‘[epout yoes 10 -orjoyrrod
uoryeurIofur o) snid SI1090v] YousIJRUIR] 9917} S} oI SI0J0R] o) § MOI U] " (IS Uoryeuriojul o) snjd s1030R] YoUaIJewR] 9217} ) oIk SI010e] o)
G mox u] “A[eAryoadselr ‘[epowr 10j0ej- JIeyIR)) 9y} pur NJV) 9U) I0] s)nsel oY) jueseld  pue ¢ smoy L0:€967 e Surlrels uorysej o[dures-Jo-jno
gurpox e ut ‘empedord Surzrurura AdoIjue dSATyR[eI B SUISH ‘WNjuswow pue ‘A)mMbe-1o3Iet-0)-00q ‘9ZIs JO SIseq 9} UO PajIos sorojirod JO So[1sp
wo30q pue doy o) pue sorojprod A1psnpul ()T o) WOIJ PajoRI)Xo dIe O1[0j3I0d UOIPeULIOJUI 9} pue J(JS§ UOI)RULIOJUI oY, OI[0j310d UOI)RULIOJUT o1}
ST 1090%J 9} UM ‘Z MOI pue ‘J(S UOIIRULIOIUL oY) ST I0J0R] oY) UM s1[nsal a9y} sjuesard T mox ‘oued yoee ul ‘synsal A[rejrenb oy g [poued pue
symsar ATjuowt o) sjuesard Y [purd “S[epoul SunLid josse JUSISNIP I0] SSUIPRO] 1030R] PIIRUINISS 9} U0 WNJUuaWow pue ‘A)mnbe-1e31eu-04-300q ‘9ZIs

JO sIseq 9y} U0 pajios sorjojprod Jo se[ep woljoq pue doy oy} pue sorjojprod AIISNpul ()] oY) JO SUINIDI SSIIXS 9FeIoA® JO SUOISSAISaI [eUOI)IdS-SSOI))

[8gz0‘'000]  (102°0) [00T°L"L€] [00T°0°67] (e7'8) (o1°'1) (68°¢) (91°2) (z9'p) (92°0—-)
¢90°0 L3S 8'GL 968 7¢0°0 ¢000 8000 L1000 L0T°0 ¢00'0— (9)
lozg0‘000]  (81T°0)  [001‘G°0%—] [00T°G'1¥] (¥6°L) (z1°2) (¥6°2) (z8°0) (¥g5—) (o1'1)

6¢1°0 L'ST 1°0g 7’78 9200 G000  L00°0 9000 LE°C— 6000 (g)
[eze'1's10'0]  (920°0)  [6'78°6'61—] [00T‘0°52] (L6°L) (t0'2) (0s°2) (s7°0) (L¥'1)

SLT0 98°'L¢C €'LE 6'C8 L30°0 G000 9000 7000 ¢l100 (¥)
[eve'1'e60'0]  (000°0)  [6°99‘es'0]  [PTOVT L] (zg0-) (01°2)

8G¢0 LT°L9 L0 T'¢— G00°0— 1200 (¢)
[181°0°000]  (828°0) [00T‘1°89] [00T‘P"T€] (19°9) (18°2)

LL0°0 aR'0T 6°6L 0'vL 00T°0 600°0 (¢)
[Feg0‘000]  (99S°0) [00T‘0°87] [00T‘T°9¢] (z6°9—) (7721)
SY1°0 ST'LT 6°09 8'GL 88°¢— ¥10°0 (1)

Al10rend) g pued

[e10°0‘'000]  (168°0) [00T°L°18] [00T‘g"9¢] (g9'01) (18°0) (¥7°¢) (sv'p) (01°8) (86'1-)
¢100 ¢L'q 878 L'76 8000  €000°0 €000 L00°0 G600 €00°0— (9)
[F10°0‘00°0]  (5S6°0) [001°9°18] [ooT‘0°%6] (g9'01) (zL8°0) (z6°2) (0e'v) (Log—) (er1-)
6000 €0°¢ 9'88 1°66 8000 #0000 €000 9000 6V'I— ¢000— (¢)
[z9z'0‘600°0]  (810°0)  [L'16C'6T1—] [ooT'%°11] (8L°8) (z6'1) (¢¥'2) (60°1) (g2'1)

¢S0°0 €CLC €0 878 6000 ¢000 ¢000 ¢000 €000 (¥)
[e19°‘8€0°] (000°0) [ogvasre—]  [T287T2—] (0270-) (z0°2)

zIT0 9,79  LTT— Ge— z00°0— L0000 (€
[600°0°00°0]  (2L8°0) [00T°0°28] [00T‘e L] (z9'8) (e¥°L)

6100 68'6 A7) 068 L¢0°0 €00°0 (¢)
[eT00‘'000]  (¥86°0) [001°2"98] [001°6°66] (L'91-) (67°2)

€100 6¢°G 0°88 6’76 Cl'T— 100°0 (1)

A[qIuoIN 1y [ouRg
b oL mqu mqom WOWy  TWHy  dISy wyy dIy b@/\ ISU0D  MOY
= z

\Cawﬂ_ﬁﬁu 0T ‘SIOSOrT ‘SISUUIAA ‘ON[eA ‘[Yimolx) ‘o8rer ‘[fewis :§ 9[qel,

17



Table 5: I-SDF and I-P Extracted from Small, Big, Growth, Value, Winner, Loser Portfolios
plus 10 Industry Portfolios

Row Assets const.  Asar Arp E2OLS (%) EéLS (%) T? q
Panel A: Monthly
(1) 25 ME & Mom .0014 —1.13 83.6 19.2 65.5 .161
(2.84)  (-11.10) [66.6,100]  [—1.22,50.6]  (0.028)  [.021,.209]
(2) 25 ME & Mom .0037 .031 82.2 24.2 76.1 .151
(9.79) (10.58)  [68.7,100] [5.64,59.2]  (0.000)  [.042,.221]
(3) 25 FF + 30 Ind 0013 —1.03 35.2 31.2 100.4 .235
(1.45)  (=5.51) [23.6,100] [16.8,100]  (0.238)  [.000,.282]
(4) 25 FF + 30 Ind .0020 .038 45.2 33.1 107.6 .226
(3.34) (6.75) [31.7,100] [29.4,100]  (0.058)  [.000,.267]
(5) 25 FF + 30 Ind 4+ 10 Mom  .0016 —.94 53.4 28.5 129.5 291
(3.06)  (-8.62) 45.1,100] [22.8,100]  (0.147)  [.000,.341]
(6) 25 FF + 30 Ind 4+ 10 Mom  .0030 .028 58.6 28.8 147.1 .288
(9.00) (9.57) [53.3,100] [12.7,77.1]  (0.002)  [.032,.300]
Panel B: Quarterly
(1) 25 ME & Mom .018 —5.29 85.2 28.5 37.7 .326
(19.70)  (—11.78) [78.1,100] [8.54,100]  (0.371)  [.000,.598]
(2) 25 ME & Mom .018 .108 75.0 18.4 51.7 373
(15.51) (8.54) (52.0,100] [3.11,45.3]  (0.069)  [.000,.318]
(3) 25 FF + 30 Ind .014 —4.11 24.2 27.6 106.3 776
(10.08)  (—4.27) (3.21,100] [7.36,92.4]  (0.508)  [.000,.680]
(4) 25 FF + 30 Ind .013 107 35.8 25.8 110.4 .795
(9.10) (5.58) [9.32,100] [10.0,86.9]  (0.526)  [.000,.613]
(5) 25 FF + 30 Ind + 10 Mom  .014 —4.51 45.9 24.8 138.0 1.07
(14.88)  (—7.44) [37.0,100] [6.40,100]  (0.512)  [.000,.875]
(6) 25 FF + 30Ind + 10 Mom  .014 .099 53.0 25.6 153.0 1.06
(14.97) (8.56) 48.2,100] [3.31,90.5]  (0.449)  [.000,.431]

Cross-sectional regressions of average excess returns listed in column 2 on the estimated factor loadings for
the information SDF (odd rows) and portfolio (even rows). The information SDF and information portfolio
are extracted from only a subset of the portfolios (the Small, Big, Growth, Value, Winners and Losers
portfolios plus the 10 industry portfolios) in a rolling out-of-sample fashion starting at 1963:07. Panel A
presents the monthly results and Panel B the quarterly results. For each model, the table presents the
intercept and slopes, along with t-statistics in parentheses. It also presents the OLS adjusted R? and the
GLS adjusted R?, along with the 90% confidence intervals for the true underlying population adjusted R? (in
square brackets). The confidence intervals are constructed via simulations using the approach suggested by
Stock (1991) and used by Lewellen, Nagel, and Shanken (2010). The last two columns present, respectively,
Shanken’s (1985) cross-sectional T2 statistic along with its asymptotic p-value in parentheses, and the ¢

statistic.

used to estimate the I-SDF and I-P is the same as that in Table 4, i.e. the 10 industry
portfolios and the smallest and largest deciles of portfolios formed on the basis of size, B/M,
and momentum. The set of test assets consist of a larger set formed by finer sortings of
stocks into portfolios on the basis of the same characteristics, namely, industry, size, B/M,
and momentum.

Consider first Panel A of Table 5, which presents the results at a monthly frequency. In
rows 1-2, the test assets consist of 25 portfolios formed on the basis of size and momentum.
The I-SDF delivers a substantially smaller intercept of 0.14% (row 1) compared to 0.37%
(row 2) obtained with the I-P. Although the former intercept is statistically significant, its

magnitude can, in principle, be fully explained by differences between lending and borrowing
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rates. The intercept obtained with the I-P, on the other hand, is economically large and is
too big to be explained by differences between lending and borrowing rates. Similar results
are obtained in rows 3-4, when the set of test assets consists of the 25 size and B/M sorted
portfolios and the 30 industry-sorted portfolios: the I-SDF delivers an intercept of 0.13%
that is not statistically different from zero, whereas the I-P produces a larger and highly
statistically significant intercept of 0.2%. Lastly, rows 5-6, where the test assets consist of
the combination of the 25 size and B/M sorted portfolios, the 30 industry-sorted portfolios,
and the 10 momentum-sorted portfolios, produce, once again, similar results: the I-SDF and
the I-P produce estimated intercepts of 0.16% and 0.3%, respectively. The results are less
stark at the quarterly frequency: the estimated intercepts are similar for the I-SDF and the
[-P, although the former produces smaller pricing errors, as indicated by the values of the
T? and q statistics, than the latter for all three sets of test assets.

The above results suggest that the I-SDF accurately identifies the underlying sources of
priced risk. When the cross-section of assets used to extract the I-SDF and, therefore, the
I-P is the same as the set of assets used in the cross-sectional tests, the I-SDF and I-P deliver
similar cross-sectional fits. However, when the two sets of assets differ, the I-SDF delivers a
better fit than the I-P, at least at a monthly frequency, and smaller pricing errors. This is
because the I-SDF provides an estimate of the underlying kernel or sources of systematic risk
while its projection, the I-P, isolates the component of the kernel most relevant for pricing
that particular set of assets. This difference in performance suggests that the non-linearity
of the I-SDF in asset returns (see Equation 5) is actually informative, and that part of this

information is lost when working with the linear I-P.

IV.2 Properties of the Information SDF

We now show that the I-SDF and the I-P contain novel pricing information not captured
by standard multifactor asset pricing models, such as the FF 3-factor and the Carhart 4-
factor models. Table 6 presents the time series regressions of the I-SDF and I-P, constructed
from each set of test assets in Tables 1-4 (and indicated in the second column), on the
FF3 factors. Whenever the assets used to construct the information SDF and portfolio
include momentum-sorted portfolios, we also include the momentum factor as a regressor in
addition to the FF3 factors. If the factors fully explain the variation in the I-SDF and I-P,
the intercepts from the time series regressions should be indistinguishable from zero and the
R? of the regressions should be high.

Panel A presents the results at a monthly frequency. In rows 1-2, the 25 size and book-
to-market-equity sorted portfolios are used to extract the kernel and its mimicking portfolio.
Row 1 shows that the 3 FF factors explain only 17.6% of the variation in the I-SDF. Moreover,
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the estimated intercept is strongly statistically significant, with an annualized value of 14.0%.
Note that since the I-SDF is not a tradeable factor, the intercept is not interpretable as an
alpha. Row 2 shows that the FF factors can explain a larger fraction of the variation in the I-P
than does the I-SDF (26.9% versus 17.6%). However, even in this case, about three-quarters
of the variation is left unexplained by the FF factors. Moreover, the estimated intercept,
which in this case has the interpretation of a standard «, is statistically and economically
large, at 15.7% per annum. These results, together with the observation that the I-SDF and
I-P perform substantially better at pricing the cross-section of the 25 size and B/M sorted
portfolios (Table 1), suggest that the FF factors do not fully capture the sources of priced
risk even for the size and book-to-market portfolios.

Similar results are obtained for the 10 momentum sorted portfolios (rows 3-4), the 25
portfolios formed on the basis of size and long term reversal (rows 5-6), and the smallest
and largest deciles of portfolios formed on the basis of size, B/M, and momentum and the 10
industry-sorted portfolios (rows 7-8). The ﬁ?) s from the I-SDF regressions vary from 7.3%
(for the size and long-term reversal sorted portfolios) to 27.1% (for the 10 momentum-sorted
portfolios), showing that a substantial proportion of the variability in the I-SDFs cannot be
explained by the movements in the FF3 and momentum factors. The corresponding ﬁé LS
from the I-P regressions are higher, varying from 20.7%-46.6%, but still a substantial fraction
of the variability is left unexplained by the standard multifactor models. The estimated
annualized intercepts are all statistically significant and economically large, varying from
8.3%—16.4% for the I-SDF and from 13.9%-16.0% for the I-P.

The last column for each I-P regression presents the so-called Information Ratio, defined
as the estimated alpha divided by the standard deviation of the residual from each regression.
The Information Ratio, therefore, measures the Sharpe ratio of a hedged strategy that has
an alpha equal to the estimated alpha and that has no systematic risk with respect to the
FF3 or momentum factors (i.e., its beta with respect to each of these factors is zero). The
results reveal that the Information Ratios are economically large, varying from 0.42-0.73
per annum. That is, a portfolio strategy that is long the I-P but perfectly hedged with
respect to the market, size, book-to-market and momentum risk factors would deliver an
annual return of 13.9%-16.0% and an annual Sharpe ratio of 0.42-0.73. Moreover, note that
such a portfolio strategy would require rebalancing only once per year. This is remarkable if
compared to the annualized excess return (less than 5%) and Sharpe ratio (about 0.31) on
the U.S. stock market during the same period. This suggests that, as discussed extensively
in the next section, the information SDF and portfolio are not only useful for pricing assets,
but also as an asset allocation approach. As a robustness check (not reported), we also added

as regressors the profitability and investment factors of Fama and French (2015), obtaining
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very similar results, in terms of intercepts and measures of fit, to the one reported in the
table.!3

The results obtained at the quarterly frequency in Panel B are largely similar. In fact,
the FF3 or 4 factors explain an even smaller fraction of the variability of the I-SDF at a
quarterly frequency compared to that at a monthly frequency. For two out of the four sets
of test assets, Eé s 18 less than 1%, and the estimated intercepts are statistically significant
in all four cases. For the I-P regressions, TB?) g is lower at the quarterly frequency in three
out of the four sets of test assets. The estimated a’s are all statistically significant (with the
exception of the momentum-sorted portfolios) and economically large, varying from 9.6%
to 22.0% (annualized) and the Information Ratios are also economically large, varying from
0.29 to 0.62 (annualized).

IV.3 An Asset-Allocation Perspective

The previous results show that both the I-SDF and I-P offer a good one-factor benchmark
model for pricing broad cross-sections of equity portfolios. Moreover, our cross-sectional
asset pricing tests suggest that (as one should expect from a good pricing model) I-SDF
and [-P identify correctly the capital market line, i.e. the maximum Sharpe ratio portfolio.
As a consequence, since the information portfolio is easily tradable, we next investigate the
implications of the I-P for strategic asset allocation.

Assuming that the investors’ utility functions depend only on the mean and variance of a
portfolio’s return, Markowitz (1952) derived the optimal rule for allocating wealth across a set
of risky assets. However, the practical implementation of that approach requires estimating
the expected returns and the variance—covariance matrix of the assets. For instance, with
N = 25 risky assets, estimating these moments via their sample analogues requires the

estimation of N + w

= 350 parameters. Not surprisingly, these optimal portfolios
often have extreme weights on constituent assets that fluctuate substantially over time, and
perform poorly out-of-sample. Given the widespread use of the mean—variance approach
to asset allocation among both academics and practitioners, substantial research effort has
been devoted to trying to reduce the estimation error and improving the performance of the
model. DeMiguel, Garlappi, and Uppal (2009) evaluate the out-of-sample performance of
the sample based mean—variance approach, as well as a broad set of its extensions designed
to reduce the effect of estimation error, using several different sets of test assets. Using
several performance evaluation measures, they conclude that optimally diversified portfolios

constructed using these approaches typically underperform a naive diversification strategy

3Intercepts and Eé s are virtually identical when the dependent variable is the I-SDF, while for the I-P
the as are somehow reduced and the RQO s is minimally increased.
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consisting of an equally-weighted (1/N) portfolio of the test assets.

We evaluate the out-of-sample performance of the I-P using the same performance mea-
sures as in DeMiguel, Garlappi, and Uppal (2009), namely (i) the Sharpe ratio and (ii) the
certainty-equivalent (CEQ) return for the expected utility of a mean—variance investor. The
Sharpe ratio is defined as LS/’RI_ p = [ir.p/0r.p, where [i;.p and G_p are the sample mean and
sample standard deviation, respectively, of the out-of-sample excess returns on the I-P. The
CEQ return is defined as the risk free rate that would make an investor with mean—variance
preferences and coefficient of risk aversion v = 1 indifferent between the risky I-P and the
risk free rate: @LP =Jirp— %

For each cross-section of assets used to construct the information portfolio, we compute
the Sharpe Ratio, the CEQ return, and the first four moments of the I-P. The results

are presented in Table 7. Panels A and B use monthly and quarterly frequencies. As a

~2
O-I—P

benchmark to facilitate comparison, we also compute the corresponding statistics for the 1/N
portfolio of the test assets. In addition to the equally-weighted portfolio, we also compare
the performance of the I-P to other standard benchmarks, including: the market portfolio
(row 2), the value and size portfolios (HML and SMB in rows 3 and 4 respectively) of Fama
and French (1993) that are meant to exploit the value and size premia; the momentum
portfolio (row 6) of Carhart (1997); and the combined value and momentum portfolio that
is meant to exploit the negative correlation between value and momentum strategies (see
Asness, Moskowitz, and Pedersen (2013)).

Consider first row 1 of Panel A, where the I-P is constructed from the 25 size and book-
to-market sorted portfolios. Its 2.1% monthly (23.3% annual) return is about three times
that of the 1/N portfolio (presented in parenthesis below), about 5 times that of the market
and HML (rows 2 and 3) portfolios, 7 times that of the SMB portfolio (row 4), about three
times that of the momentum portfolio (row 6), and about three and a half times that of
the value and mometum strategies combined (row 9). These very high returns are obtained
with a volatility that is only about two-thirds larger than that of the market and momentum
portfolios.

Moreover, the I-P monthly Sharpe ratio is 0.288 (about 1.0 annualized), while the Sharpe
ratio of the corresponding 1/N benchmark (presented in parentheses below) is only 0.128
monthly (or 0.44 annualized), i.e. less than one-half that of the I-P. The I-P’s Sharpe ratio
not only outperforms the 1/N benchmark, but also the market portfolio, by a factor of more
than three, the HML portfolio (row 3) by a factor of more than two, the SMB portfolio
by a factor of 3.5, the momentum factor by a factor of 1.75, and the combined Value and
Momentum portfolio (that has an annualized SR of about 0.8) by a factor of 1.25. Note

also that this last comparison might seem unfair to the information portfolio since, in row
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Table 7: Summary Statistics of Information Portfolio & Returns

Row Assets Mean Volatility Sharpe Ratio Skewness Kurtosis CEQ
Panel A: Monthly

(1) R'P 0.021 0.073 0.288 0.384 5.541 0.018

(FF25) (0.007) (0.051) (0.128) (—0.575) (5.589) (0.006)

(2) Market - Risk Free 0.004 0.045 0.091 —0.567 5.028 0.003

(3) HML 0.004 0.029 0.139 —0.034 5.440 0.004

(4) SMB 0.003 0.032 0.083 0.527 8.452 0.002

(5) RIP 0.030 0.127 0.235 —0.352 8.022 0.022

(10 Momentum) (0.004) (0.048) (0.085) (—0.326) (4.793) (0.003)

(6) Momentum Portfolio 0.007 0.044 0.164 —1.419 13.65 0.006

(7) RIP 0.013 0.064 0.206 —0.212 5111  0.011

(25 Long-Term Reversal & Size)  (0.007) (0.051) (0.137) (—0.444) (5.865) (0.006)

(8) RIP 0.027  0.088 0.306 —0.679 6.180  0.023

(S, B, G, V, W, L, 10 Industry)  (0.005) (0.046) (0.106) (—0.490) (4.953) (0.004)

(9) HML & Momentum 0.006 0.024 0.231 —0.961 10.59 0.006
Panel B: Quarterly

(1) RIP 0.080 0.194 0.413 0.410 3.955 0.061

(FF25) (0.021) (0.103) (0.207) (—0.183) (3.576) (0.016)

(2) Market - Risk Free 0.013 0.087 0.150 —0.435 3.635 0.009

(3) HML 0.012 0.060 0.204 0.109 4.754 0.010

(4) SMB 0.009 0.059 0.146 0.299 2.602 0.002

(5) RIP 0.085 0.239 0.354 —0.090 5.295 0.056

(10 Momentum) (0.013) (0.093) (0.143) (-0.231) (3.805) (0.009)

(6) Momentum Factor 0.020 0.081 0.254 —1.411 10.13 0.017

(7) RIP 0.042 0.134 0.313 —0.168 3.833 0.033

(25 Long-Term Reversal & Size)  (0.023) (0.104) (0.220) (—0.057) (3.865) (0.018)

(8) RIP 0.083 0.173 0.480 0.181 3.463  0.068

(S, B, G, V, W, L, 10 Industry)  (0.016) (0.090) (0.175) (—0.315) (3.794) (0.012)

(9) HML & Momentum 0.019 0.042 0.443 —0.070 5.350 0.018

Mean, volatility, Sharpe ratio, skewness, kurtosis, and CEQ statistic for the portfolios listed in column 2: the
information portfolio, R/¥, constructed from various cross-sections of assets (listed in parentheses) with the
corresponding statistics for an equally-weighted portfolio of the underlying assets presented in parentheses
below; the market minus the risk free rate portfolio; the value portfolio (HML); the size portfolio (SMB);
the momentum portfolio; and the value and momentum portfolio. Panels A and B present the results at

monthly and quarterly frequencies.

1, it is constructed without using the momentum sorted portfolios, and hence the high SR
achievable by exploiting jointly the value and momentum anomalies. Indeed, when we allow
the I-P to exploit these features of the data (in row 8), its SR becomes one-third higher than
what is achievable by combining the value and moment strategies (in row 9).

Note that the very high returns and Sharpe ratio of the I-P in row 1 do not seem to be
a compensation for negative skewness and tail risk: the I-P’s skewness is positive (about
0.384), while that of the market, HML and momentum portfolios (both individually and
combined) are all negative (and very large for momentum based strategies), and its kurtosis
is similar to that of the market and HML portfolios, and much smaller than those of the
momentum, HML plus momentum, and SMB strategies.

Similar conclusions are obtained using the CEQ return as the measure of performance.

A mean-variance investor with v = 1 would need an annualized risk free rate of 22.0% (or
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about 1.8% monthly) in order to not invest in the I-P, whereas a risk free rate of only 7.2%
(or about 0.6% monthly) is required for such an agent to not invest in the 1/N portfolio.
Similarly, annual (monthly) risk free rates of only 3.6% (0.3%), 4.8% (0.4%), 7.2% (0.6%),
and 7.1% (0.6%), respectively, are required in order to be indifferent between the risk free
rate and the market, the HML, the momentum, and the HML plus momentum portfolios.

To show that the performance of the I-P in row 1 is not driven by just a subset of the
data, panel A of Figure 1 plots the path of $1 invested in the I-P over the entire out-of-
sample evaluation period. Note that because we use excess returns in the construction of the
I-P, this corresponds to a long—short strategy that is short $1 in the risk free rate and uses
the proceeds to invest in the optimal portfolio of risky assets. For comparison, and since
the plotted I-P is constructed using the FF25 portfolios (hence it might exploit the size and
value premia), we also plot the path of $1 invested in the HML and SMB portfolios, as well
as the excess return on the market and the equally weighted portfolios. Note also that the
graph is in log scale, so that the slopes of the various lines are directly comparable across the
various strategies at each point in time. As is evident from the figure, the I-P outperforms,
by a wide margin, each of the benchmarks. Moreover, the I-P outperformance is robust
across sub-periods: the average slope of the I-P line is higher in virtually all the 10-year
sub-periods. For robustness, Panel B of Figure 1 presents the same cumulated returns as
Panel A but with the benchmark portfolios leveraged in order to have the same volatility
as the Information Portfolio. The figure shows that only for a very brief period at the end
of the 60s did the leveraged SMB and 1/N outperform the I-P, and that only in the late
70s did the leveraged HML have a similar performance as the I-P. In all other periods, I-P
clearly outperforms the various benchmarks. Moreover, the [-P tends to have less severe
contractions in returns than the other portfolios during, and following, market-wide crashes
(vertical dot-dashed lines in the figure).!4

The I-P in row 1 of Table 7 and Figure 1 is an optimally weighted portfolio of the 25
size and book-to-market sorted portfolios. Therefore, the question arises as to whether our
approach relies on extreme weights on the constituent portfolios that also fluctuate wildly
over time. Figure 2a plots the time series of weights on each of the 25 portfolios in the I-P.
The figure makes clear that the vast majority of the weights lie in the [—2, 2] interval and,
therefore, are not extreme. Moreover, these weights evolve smoothly, implying that the I-P
has low turnover and, therefore, low trading costs (note also that the rebalancing is done
once a year, in June).

In order to provide more intuition regarding the composition of the I-P in row 1 of

14We follow Mishkin and White (2002) and identify a stock market crash as a period in which either the
Dow Jones Industrial, the S&P500, or the NASDAQ index drops by at least 20 percent in a time window of
either one day, five days, one month, three months, or one year.
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Figure 1: Panel A: cumulated log returns of a zero wealth $1 invested in: information portfolio (red solid
line); market portfolio in excess of the risk free rate (green dotted line); SMB portfolio (dark blue dash-dot
line); HML portfolio (pale blue long-dash line); 1/N portfolio (yellow dashed line). Panel B: same series as
Panel A but with portfolios leveraged to the same volatility as the information portfolio. The information
portfolio is non-parametrically extracted at a monthly frequency from the 25 Fama—French portfolios using a
relative entropy minimization procedure in a rolling out-of-sample fashion starting at 1963:07. Shaded areas
indicate NBER recession dates while the vertical dot-dashed lines indicate market crashes identified using
the Mishkin and White (2002) approach.
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Figure 2: Portfolio weights of the information portfolio extracted monthly from the 25 Fama-French
portfolios. Panel (a): time series of weights assigned to each of the 25 size and book-to-market-equity sorted

portfolios. Panel (b): time series of weights assigned to the ‘Small’, ‘Big’, ‘Growth’, and ‘Value’ portfolios.

Table 7, Figure 2b plots the aggregate weights on portfolios of small, big, growth, and value
stocks in the I-P. For instance, writing (1,5) for the portfolio with stocks in the smallest size
quintile and the largest book-to-market-equity quintile, the line labeled ‘Small’ in the figure
plots the sum of the weights on portfolios (1,1), (1,2), (1,3), (1,4), and (1,5) at each date.
The ‘Big,” ‘Growth,” and ‘Value’ curves are similarly defined. The Growth and Value curves
reveal that the I-P typically takes a long position in value stocks and a short position in
growth stocks, much like the HML factor of Fama—French. However, unlike the latter, the
weights on the long and short ends are not constant in the I-P. Although the weights almost
always lie between —2 and +2, they do vary over time. The Small and Big curves offer a less
clean interpretation as a long—short strategy and resemble less the SMB factor. Overall, the
weights on the small, large, growth, and value stocks in the I-P are quite different from those
implied by the SMB and HML factors. Moreover, our results suggest that this alternative
weighting scheme leads to substantially better performance, both in terms of out-of-sample
pricing as well as constructing optimally diversified portfolios.

But the I-P outperforms the various benchmark portfolios not only when it is constructed
using the FF25 portfolios, but also when different cross-sections are used. In particular, row
5 of Table 7 presents the results when the I-P is constructed from the 10 momentum sorted
portfolios. In this case, the returns on the I-P are even higher: about 3% per month.

Moreover, once again, the I-P has a Sharpe ratio almost triple that of the 1/N portfolio
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Figure 3: Panel A: cumulated log returns of a zero wealth $1 invested in: information portfolio (red solid
line); market portfolio in excess of the risk free rate (green dotted line); 1/N portfolio (yellow dashed line);
momentum portfolio (purple long-dash-dot line); value and momentum portfolio (dark blue dash-dot line).
Panel B: same series as Panel A but with portfolios leveraged to the same volatility as the information
portfolio. The information portfolio is extracted monthly from the Small, Big, Value, Growth, Winners,
Losers and 10 Industry portfolios, using a rolling out-of-sample fashion starting at 1963:07. Shaded areas
indicate NBER recession dates. Vertical dot-dashed lines indicate market crashes identified using the Mishkin
and White (2002) approach.
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and a CEQ return more than 7 times higher, and similarly outperforms the market, HML,
momentum, and HML plus momentum strategies, with neither a large negative skewness
risk nor extremely thick tails in the returns distribution. Similar results are obtained when
the I-P is constructed from the 25 long-term reversal and size sorted portfolios (row 7).

Moreover, the I-P portfolio shows an even stronger performance (in terms of SR and
CEQ) when it is constructed using the the Small, Big, Growth, Value, Winners, and Losers
portfolios as well as the 10 industry sorted portfolios (row 8). To show once again that this
result is not driven by a particular sub-sample, and in order to offer a time series comparison
of this portfolio with the momentum, and the joint value and momentum strategies, Figure
3 plots the path of $1 invested in the I-P (from row 8 of Table 7) over the entire out-
of-sample evaluation period. Comparing unleveraged strategies (in Panel A), it is clear
that the I-P outperforms the momentum, and value plus momentum, strategies in each
10-year sub-period. Comparing leveraged strategies, the momentum based strategies have
a performance comparable to the I-P one in the first ten years or so of the data, but are
strongly outperformed by the I-P from the mid 70s onward. Moreover, the I-P tends to
have less severe contractions in its returns than the other portfolios during, and following,
market-wide crashes (vertical dot-dashed lines in the figure), consistently with the smaller
negative skewness and tail risk for this portfolio found in Table 7.

Furthermore, Panel B of Table 7 shows that results similar to those discussed above
are obtained when the information portfolio is estimated using quarterly data. This is an
important robustness check, since the method proposed in this papers relies on a large time
series dimension (7) relative to the cross-sectional one (N). Hence, the stability of the results
when the information factor is estimated quarterly is reassuring about the performance of

the approach with smaller time series of returns data.

Overall, our results show that the I-P typically outperforms the naive 1/N portfolio as
well as other standard benchmarks out-of-sample, in terms of the Sharpe ratio and CEQ
return. Moreover, these results seem quite robust with respect to the set of risky assets used
for its construction, the data frequency, and the subsample considered. This is consistent
with the findings in Section IV.1 that the I-SDF correctly identifies the tangency portfolio
and that the [-P is statistically indistinguishable from the ex post maximum Sharpe ratio
portfolio of the test assets out-of-sample. Therefore, the I-P offers an attractive procedure
for optimal asset allocation across risky assets. Moreover, note that the above results have
been obtained using i) a very simple approximation of the I-SDF with the I-P and i) without
searching for either an optimal rolling window or an optimal rebalancing frequency. As a
consequence, the strong performance of the I-P for investment purposes outlined in this

section should probably be interpreted as a lower bound on the potential performance of a
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tradable version of the I-SDF.

V Conclusion and Extensions

Given a set of test assets, we show how an information-theoretic approach can be used
to estimate non-parametrically the pricing kernel that prices the given cross-section. We
show that this ‘information SDF’ prices out-of-sample asset returns as well as, or better
than, commonly employed multi-factor models (FF3 and Carhart 4-factor models) and that,
unlike these factor models, it seems to correctly pin down the tangency portfolio out-of-
sample, as a correct SDF should. Moreover, the I-SDF extracts novel pricing information
not captured by the Fama—French and momentum factors (which explain only a small share
of its time variation). These results hold independently of the set of test assets used.
Furthermore, a (low turnover) tradable portfolio that mimics this kernel, which we have
referred to as the ‘information portfolio’, has several interesting out-of-sample properties.
First, it delivers smaller pricing errors than the canonical multi-factor models, despite being
only a one-factor model. Second, it has a very high Sharpe ratio (about 1 in annualized
terms), consistently outperforming the 1/N benchmark out-of-sample as well as the value
and momentum strategies (whether combined or separate). Third, it leads to an ‘information
anomaly’, generating high alphas of around 8.6%-23.8% per annum relative to the FF3 and
momentum factors. Lastly, these results hold for a wide cross-section of assets consisting of
size, book-to-market-equity, momentum, industry, and long term reversal sorted portfolios.
The analysis in this paper focuses on the construction of the pricing kernel and the
mimicking information portfolio for a given set of assets. While this is undoubtedly an
important step, the broader economic question is whether there exists a pricing kernel that
can successfully price all the assets. While the absence of arbitrage opportunities implies
the existence of an SDF, the SDF is unique only under the additional condition of market
completeness. Our information-theoretic method can help shed light on how the pricing
kernels constructed from different asset classes differ from one another, thereby offering
guidance regarding the reasons (if any) for market incompleteness and segmentation.
Lastly, the present paper focuses on common stocks. However, our method is very general
and could be applied to other asset classes, including bonds, derivatives, currencies, mutual

funds and even alternative investment vehicles.
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A Appendix

A.1 An Alternative Minimum Entropy Pricing Kernel

The definition of relative entropy, or KLIC, implies that this discrepancy metric is not
symmetric, that is, generally D (A||B) # D (B||A) unless A and B are identical (in which case
their divergence would be zero). This implies that for measuring the information divergence

between QQ and P, we can also interchange the roles of Q and P in Equation (2) to recover
Q as
argmin D (P||Q) = arg min/ln —dP s.t. /Re dQ = 0. (8)
Q Q

Since % = the optimization in Equation (8) can be rewritten as

d]P’

argmin EF [In ;] s.t. EF [M,R¢] = 0.
My
where, to simplify the exposition, we have used the innocuous normalization M = 1. Re-

placing the expectation with a sample analogue yields

T
1
argmin — Z In M; s.t. Z MR = 0. 9)
{Mt}t 1 t=1 t:l

Thanks to Fenchel’s duality theorem (see, e.g. Csiszar (1975)) this entropy minimization is
solved by
1
M, = M, <9T,R ) S S (10)
T(1+0.Ry)

where 07 € RN is the solution to

T
arggmin - %Zlog(l +0'RY),
and this last expression is the dual formulation of the entropy minimization problem in
Equation (9). Note also that this dual problem is analogous to estimating the so-called
growth-optimal portfolio (i.e. the portfolio with the maximum log return).
Since the correlation of the SDF estimates obtained with either Equations (5) or (10)
is extremely high (more than 95%), and the pricing performances of the two are almost

indistinguishable, to simplify the exposition we present only the results based on the former.
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