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Abstract

This paper determines how different network structures influence the diffusion of innovations.

We develop a model of diffusion where: 1. an individual’s decision to adopt a new technology

is influenced by his contacts; and 2. contacts can discuss, coordinate, and make adoption

decisions together. A measure of connectedness, ‘cohesion’, determines diffusion. A cohesive

community is defined as a group in which all members have a high proportion of their contacts

within the group. We show a key trade-off: on one hand, a cohesive community can hinder

diffusion by blocking the spread of a technology into the group; on the other hand, cohesive

communities can be particularly effective at acting collectively to adopt an innovation. We find

that for technologies with low externalities (that require few people to adopt before others are

willing to adopt), social structures with loose ties, where people are not part of cohesive groups,

enable greater diffusion. However, as externalities increase (technologies require more people

to adopt before others are willing to adopt), social structures with increasingly cohesive groups

enable greater diffusion. Given that societal structure is known to differ systematically along

this dimension, our findings point to specialization in technological progress exhibiting these

patterns.

∗Bryony Reich, Faculty of Economics, University College London. Email: b.reich@ucl.ac.uk.
I would like to thank Alberto Alesina, Antonio Cabrales, Sanjeev Goyal, and Jorgen Weibull for their invaluable
guidance and support. I benefited greatly from conversations with and comments of Marco Bassetto, Lars Nesheim
and Imran Rasul. I am grateful to Jonathan Newton for numerous interactions at all stages of this project. For
helpful comments I would also like to thank Lucie Gadenne, Terri Kneeland, and Sueyhun Kwon, as well as seminar
participants at Alicante, Cambridge, INET Contagion Conference, Oxford, PET Luxembourg, and UCL. I gratefully
acknowledge financial support from the UK Economic and Social Research Council (grant number ES/K001396/1).

1

https://sites.google.com/site/bryonyreich/documents-1/ReichJMP.pdf?attredirects=0&d=1


1 Introduction

The spread of innovations is a ‘social process’. For many new technologies, an individual’s decision

to adopt the technology depends on whether or not his contacts have adopted. For example, an

individual’s benefit from adopting a new communication technology depends on whether his contacts

have also adopted that technology, and the benefit to his contacts of adopting in turn depends on who

of their contacts have adopted, and so on.1 A society’s structure (the network of contacts that make

up the society) is therefore important in determining whether or not an innovation spreads. Indeed,

a large body of work examines the role of network structure in diffusion.2 This work finds that dif-

fusion of innovations occurs effectively through an inter-connected society, with insular communities

considered anathema to diffusion. There is, however, a second social process that has been omitted

in this literature. Humans communicate, coordinate and make decisions collectively. That is, family

members, friends and neighbors do not just influence each other’s adoption, they also discuss new

technologies and jointly decide to adopt or not.

This paper develops a model that incorporates both social processes to understand why certain

network structures diffuse innovations more effectively than others. We show that diffusion is deter-

mined by a measure of community, known as ‘cohesion’. A cohesive community is a group in which

all members have a high proportion of their contacts within the group. In the canonical diffusion

setting, where individuals cannot make joint decisions, cohesion has a detrimental effect on diffu-

sion. Preventing joint decision-making is not innocuous, since it changes key insights and results.

Permitting agents to make joint decisions, our model generates a novel trade-off: on one hand, a

cohesive community can hinder diffusion by blocking the spread of the innovation into the group; on

the other hand, cohesive communities can be particularly effective at acting collectively to adopt the

innovation.

Our framework thus predicts a pattern of specialization in technology adoption across different

types of society. A particular network structure is not always ‘best’. Instead, we show that for

technologies with low externalities (that require few people to adopt before others are willing to

adopt), social structures with loose ties, where people are not part of cohesive groups, enable greater

diffusion. However, as externalities increase (as the number of people required to adopt to make

the technology useful increases), social structures with increasingly cohesive groups enable greater

diffusion.3

1Quotation from Acemoglu, Ozdaglar, and Yildiz (2011). For an overview see Rogers (2003) and Valente (1995).
Goolsbee and Klenow (2002) and Björkegren (2015) show respectively that individuals are more likely to adopt a
computer or mobile phone when their contacts adopt. A farmer’s decision to adopt a new crop depends on whether
neighboring farmers adopt (Bandiera and Rasul (2006)). A villager can be influenced to adopt malaria nets or safe
sanitation when those living close by do so (Dupas (2014), Guiteras, Levinsohn, and Mobarak (2015)). Even the
adoption of birth control or the form of contract used can be influenced by what others do (Munshi and Myaux (2006),
Young and Burke (2001)).

2See Easley and Kleinberg (2010), Goyal (2011) and Jackson and Yariv (2011) and Jackson, Rogers, and Zenou
(2015) for a selection of reviews of this literature.

3Societal structures are known to differ systematically along exactly this dimension, between more or less
‘community-based’ networks. For example Japan, Mexico and China are argued to consist of cohesive communi-
ties, while in the US and UK people have more disperse contacts. See Gorodnichenko and Roland (2011) and Fogli
and Veldkamp (2013) for a review of work on this dimension of differences in network structure across different societies.
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We study a model of diffusion in which an individual considers adopting an innovation, be it

a new technology or behavior, and where there are complementarities in adoption. An underlying

network captures the feature that an individual may care more about the adoption decision of some

people than of others. For example, when considering a communication technology, an individual

cares about the adoption decision of those with whom he communicates and this is represented by a

link to those individuals (with links of possibly different weights depending on the importance of that

communication). An individual adopts the innovation when a high enough proportion of those he is

linked to also adopt. As well as making the decision to adopt or not independently, friends, family

members or neighbors sometimes discuss new technologies and decide whether they would benefit by

collectively adopting the innovation. A pair or group adopts collectively if each individual in that

pair or group does better by adopting the innovation, given everyone else in the pair or group adopts.

This framework nests the canonical model in which individuals make adoption decisions in isolation.

Two examples demonstrate the relevance of the model:

• Communication technologies: WhatsApp is a cross-platform mobile messaging application

that allows users to exchange instant messages, photos and current location with contacts and

groups of contacts free of charge. It was sold to Facebook in 2014 for $21.8 billion, with 600

million users as of August 2014.4 The adoption of WhatsApp illustrates the two key features of

the model. First, the usefulness of such a messaging application depends completely on family,

friends and other contacts using the same application. Second, individuals do not always act

in isolation. There are many accounts of joint adoption of messaging applications: one user

describes a coordinated change among his contacts from WhatsApp to another messaging appli-

cation, Telegram: “there were a series of messages...that everyone should ‘check out Telegram’.

The debates on whether we should use it quickly shifted to becoming about how we should

use it.”5 Indeed, it seems sensible for families or groups of friends to agree to adopt the same

application.

One puzzling feature of WhatsApp is that, despite being developed in the United States, it

has been adopted much more widely elsewhere.6 In fact, the US lags behind other countries in

adopting mobile instant messaging generally, with 23% of smartphone users in the US and 30%

in the UK using instant messaging in 2013, compared to 83% in Spain, 76% in Singapore and

78% in Mexico.7 Our framework develops results to understand why messaging applications

might diffuse widely in some societies, but not in others.

• Health technologies: The adoption of health technologies and safe health practices is a major

4‘Facebook’s bill for WhatsApp climbs to $21.8bn’, www.ft.com
5Mark Turrell, “Bye Whatsapp, Hello Telegram (And Later...Bye TG, Hello WhatsNext)”,

http://www.huffingtonpost.com/mark-turrell/
6In 2014, Spain had estimated 97% of smart phone users using WhatsApp each month compared to

10% in the US. Other messaging applications, for example Facebook Messenger, also have low usage
in the US. http://www.mobidia.com/press-release/messaging-and-voip-apps-are-popular-among-mobile-users-but-the-
global-market-is-very-fragmented and ‘Social Media & Messaging Engagement: Chat, Social, Videoconferencing, Rich
Media, and VoIP Apps’ http://www.mobidia.com/

7‘What’s Up with the US? (Not WhatsAppYet)’ http://www.emarketer.com
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global policy concern. One example is sanitation. One billion people worldwide practice open

defecation rather than safe sanitation. In 2013, the Indian government pledged to eliminate

open defecation - a practice followed by half the population.8 While very different from com-

munication technologies, health technologies can exhibit the same adoption behaviors. First,

the benefit to a household of adopting improved sanitation can be increasing as neighboring

households also adopt safe sanitation.9 Second, collective adoption also plays a big role in the

adoption of sanitation: many programmes to increase adoption are specifically designed to get

neighbors and communities to overcome any collective action problem by providing workshops

for discussion and the encouragement of joint adoption of sanitation.10 Despite such efforts,

getting people to adopt safe sanitation appears not only difficult, but produces varied results.

The Total Sanitation Campaign introduced in India in 1999 markedly increased sanitation in

some areas while in other areas it had little effect.11 Our findings suggest some answers to

why adoption of safe sanitation succeeds in some communities but not others, and whether it

is worthwhile for such programmes to devote resources to promoting collective adoption.

Innovations in this model are parameterized by a ‘threshold of adoption’. An innovation has

a low threshold of adoption when individuals are willing to adopt the innovation even when a low

proportion of their contacts do so. An innovation has a high threshold of adoption when individuals

are not willing to adopt the innovation unless a high proportion of their contacts do so. Messaging

applications like WhatsApp are argued to have a high threshold of adoption. In contrast, while the

utility of a home computer depends on an individual’s contacts also having one (see Goolsbee and

Klenow (2002)), it has independent value even when friends do not use one, and so has a lower

threshold.12

We show a measure of connectedness referred to as ‘cohesion’ determines diffusion. The ‘cohesion’

of a group is the extent to which individuals in the group have their connections within that group

rather than to those outside.13 In the canonical diffusion setting without joint adoption, cohesion

has a detrimental effect on diffusion. A key feature of our model is the emergence of a novel trade

off: cohesion can hinder but can also help diffusion. Consider an individual who is aware of a new

improved messaging application, but does not want to switch to this new application unless at least

8Guiteras, Levinsohn, and Mobarak (2015).
9There are two arguments: the first is spillovers, if neighboring households continue to practice open defecation

then flies will continue to carry germs from neighboring household’s waste; second, social norms might play a role so
that as fewer people in a neighborhood defecate in the open it becomes more costly to do so.

10The “Community led total sanitation” program in Bangladesh is designed to get communities to adopt collec-
tively by “investing in community mobilisation...shifting the focus from toilet construction for individual households
to the creation of open defecation-free villages. By raising awareness that as long as even a minority continues
to defecate in the open everyone is at risk of disease, CLTS triggers the communitys desire for collective change”
http://www.communityledtotalsanitation.org/country/bangladesh

11Mission 2017: Global Water Security http://12.000.scripts.mit.edu/mission2017/implementation/
12Goolsbee and Klenow (2002) show individuals are more likely to adopt a home computer when their contacts

adopt and that this is tied to the use of email.
13Cohesion is a measure of how insular a community is. A large body of work in psychology, sociology and recently in

economics (see Gorodnichenko and Roland (2011) for a review), divides societies into those that are more individualist
or collectivist. These terms are defined analogously to cohesion, whereby highly collectivist societies are those where
people are typically part of highly cohesive groups. Whereas in highly individualist societies people have loser ties and
are not part of such cohesive groups.
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half of his friends also switch. The individual is part of a cohesive group, where most of his friends

are also mostly friends with each other. Clearly, the individual will not switch to the new application

until others in the group switch. But, since everyone in the group has most of their friends within

the group, no one in the group will switch until others in the group switch. Cohesion thus makes

it difficult for the new technology to penetrate the group. On the other hand, suppose this group

of friends discuss whether or not to all adopt the new application. Each individual in the group

has most of his friends within the group, therefore the group as a whole would do well by switching

together.

Which effect dominates? Do more ‘community based’ societies, made up of highly cohesive

groups, do better or worse at diffusing an innovation? The key result of the paper answers this

question. We show that a given network structure can be effective at diffusing one type of innovation

but ineffective when it comes to another. More precisely, for technologies with a low threshold of

adoption, we show that an innovation diffuses further in societies with less cohesive groups, where

individuals have more disperse contacts. For technologies with high thresholds of adoption the reverse

is true, an innovation diffuses further in societies with more cohesive groups with fewer connections

between groups. The intuition is as follows. For low thresholds of adoption, once one or two of an

individual’s contacts adopt the innovation, he will do so too, then so will his contacts, and so on.

The innovation spreads largely without the need for joint decision making, and so cohesive groups

hinder this spread. For higher thresholds of adoption, joint decision making becomes increasingly

important in getting the innovation to diffuse (think of the extreme case where an individual needs

nearly all of his contacts to adopt before he is willing to adopt). As joint decision making becomes

more important, cohesive groups become increasingly advantageous to diffusion. This suggests that

messaging applications should diffuse further in societies with more cohesive groups, as compared to

computers, which should diffuse further in societies with less cohesive groups.

The degree to which an innovation will diffuse in a given society depends systematically on

the extent to which a society is made up of cohesive groups. In fact, societies are known to vary

significantly along this dimension. A large body of work in psychology, sociology, and recently in

economics, divides societies into those that are more or less ‘community-based’, and refers to this

dimension as individualism versus collectivism (see Gorodnichenko and Roland (2011) and Fogli and

Veldkamp (2013) for a review, also Greif (1993), Greif and Tabellini (2010) Gorodnichenko and

Roland (forthcoming), Greif and Tabellini (2015)). This literature has extensively documented such

differences across societies and has even ranked countries along this dimension. The best known

ranking was originally compiled by Hofstede (2003) who defined the different societies analogously to

the definition of cohesion used in network theory: ‘Individualism on the one side versus its opposite,

collectivism, is the degree to which individuals are integrated into groups. On the individualist side

we find societies in which the ties between individuals are loose[...] On the collectivist side, we find

societies in which people from birth onwards are integrated into strong, cohesive in-groups’. Existing

theories of diffusion predict (using the terminology above) that societies ranked as more individualist

should be closer to the technology frontier than those ranked as more collectivist, for all types of

technology. Our results suggest that this is true for technologies with low thresholds of adoption.
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However, for technologies with higher thresholds of adoption more collectivist societies enable greater

diffusion compared to more individualist societies.

In Section 2 and 3 we present the model and main results. The first is a general result which

characterizes where an innovation will diffuse (who will adopt and who will not) in any given network.

The outcome is unique. This characterization produces two conditions that identify the trade-off

described above. This is an important first step, but the main question remains: which networks

are better at diffusing an innovation? To answer this question, we consider how far an innovation

spreads in a given network, and how this changes when we increase the weight of a link (in the

weighted network). This is analogous to adding a link in a binary network and asking whether the

addition of a link helps or hinders diffusion. We show that for any possible network the set of all

pairs of individuals (all potential links) can be completely partitioned into two types, where links of

one type have the opposite effect on diffusion to links of the other type. We refer to the two types

of link as ‘strong ties’ and ‘weak ties’. The way links are partitioned means that links categorized as

strong ties are those which connect between two individuals within a group which is already ‘highly

cohesive’.14 Weak ties are all remaining ties and so include those that connect between two different

groups, and so make those groups less cohesive. We show that increasing the weight of a strong tie

reduces total adoption in the network for innovations with a low threshold of adoption, however it

increases total adoption for innovations with a high threshold of adoption. Increasing the weight

of a weak tie increases the diffusion of innovations with a low threshold of adoption, but decreases

diffusion of innovations with a high threshold of adoption. Thus for innovations with low thresholds

of adoption this suggests structures with more weak ties and fewer strong ties (i.e. more disperse ties

and less cohesion) are better for diffusion. For innovations with high thresholds of adoption, societies

with more strong ties and fewer weak ties (more cohesion) are better for diffusion.

Section 4 extends the model to incorporate heterogeneous preferences over technology and minimal

restrictions on which groups can and which groups cannot make joint decisions. Section 5 examines

how far we can extend the results when we do not know who is able to make a joint decision with

whom. In Section 5 we also test the model using simulations. We generate a series of societies moving

from less cohesive to more cohesive societies. We examine the extent to which an innovation diffuses

in the different societies when who can make joint decisions is selected randomly. We show that

for different technologies with increasing thresholds of adoption, the optimal network for diffusion

changes from one made up of more disperse connections to networks made up of increasingly cohesive

groups. In Section 6 we review the importance of this dimension of social structure across different

populations. If this is an important feature of different societies then our findings have consequences

not only for patterns of technological progress and specialization, but also for policy and marketing

strategies of firms (which we also consider in this section). Alongside this, we discuss the empirical

literature on diffusion and use this to micro-found the ‘threshold of adoption’.

14We make this statement precise in the paper.
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1.1 Related Literature

The diffusion of innovations, being central to growth, is studied by an extensive literature. We

consider the role of network structure in diffusion, a large literature in itself. Easley and Kleinberg

(2010), Goyal (2011), Jackson and Yariv (2011), and Jackson, Rogers, and Zenou (2015) provide

excellent reviews.15 This paper makes two key novel contributions. This is the first paper to consider

how different network structures facilitate diffusion in the presence of joint decision-making, and

to demonstrate that allowing for joint decision-making substantially changes our understanding of

which societies are effective at diffusing innovations.

In early work, Morris (2000) presents a deterministic model of diffusion on a network and provides

general results for any network structure.16 Morris’ main finding is an elegant result showing that

cohesive groups block diffusion. Easley and Kleinberg (2010) describe this as a ‘general principle’ of

such diffusion on networks, and show the result is robust to changes in the framework. Acemoglu,

Ozdaglar, and Yildiz (2011) extend the model and develop new findings, again highlighting a negative

effect of cohesion on diffusion.17 Thus, without the possibility of joint decision-making, existing work

finds that cohesive groups will be less effective at diffusing innovations.18 Our paper takes the

canonical diffusion framework of Morris (2000), and incorporates collective decision-making between

contacts.19 We show that, when joint decision-making occurs, very different societal structures will

facilitate diffusion.

This paper also contributes to a literature which considers how social structure influences coop-

eration of various sorts. However, no work in this literature has looked at the interaction between

different social structures and cooperation in diffusing innovations. Karlan, Mobius, Rosenblat, and

Szeidl (2009) show how different network structures support the exchange of favors and valuable

assets. Jackson, Rodriguez-Barraquer, and Tan (2012) consider which networks can sustain favor ex-

change and, importantly, are robust to concerns such as ripple effects that break down cooperation.

Kets, Iyengar, Sethi, and Bowles (2011) suppose that cooperation depends on the network structure

(such that some connected individuals can form coalitions), and consider how social structure influ-

15Rather than the diffusion of innovations (our focus), one branch of the literature studies the diffusion of information.
See Goyal (2011) for a review of this literature. See Bala and Goyal (1998) for early work and Banerjee, Chandrasekhar,
Duflo, and Jackson (2013), Banerjee, Chandrasekhar, Duflo, and Jackson (2014) for recent work on information
diffusion.

16Morris (2000) is the first paper to provide results for any network structure. Previous work using a similar
framework includes Blume (1993), Blume (1995), Young (1996), Anderlini and Ianni (1996), Goyal (1996) and Ellison
(2000).

17Work by Jackson and Yariv (2007), López-Pintado (2008), Galeotti and Goyal (2009), Galeotti, Goyal, Jackson,
Vega-Redondo, and Yariv (2010), Jackson and López-Pintado (2013) amongst others, focuses on the role of neighbor
degree (how many contacts do individuals have) in diffusion. This work has a similar underlying framework, but takes
an approach that is tractable for understanding the role of neighbor degree, and less so for understanding general
features of network structure that we consider here. See Jackson and Yariv (2011) for a review and discussion.

18In a framework with perturbed dynamics, Young (2011) considers the waiting time before an innovation is widely
adopted. Waiting time is not linked to the extent of diffusion, which is our interest. Young (2011) shows that cohesive
groups can reduce the waiting time by enabling an innovation to gain a foothold in a population. Young (2011) does
not allow joint decision-making. The reason for the reduction in waiting times is very different: when multiple agents
within a cohesive group make a mistake and adopt an innovation before it is in their interest to do so, they are less
likely to want to switch back.

19Our framework nests the model in Morris (2000), which corresponds to the case in our framework when no agents
can make joint adoption decisions.
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ences inequality. Newton and Angus (2015) do not compare the role of different network structures

but, similarly to Kets, Iyengar, Sethi, and Bowles (2011), they suppose that cooperation depends on

the network structure and look at the effect of coalitional behavior on the waiting time to converge

to a norm in a coordination game.

2 A Model of Diffusion with Joint Decision Making

In our model, a new technology is invented. Agents, who are all using some old technology, choose

whether or not to adopt the new one. We consider technologies with complementarities, so the

usefulness of the new technology depends on who else is using it. For example, the usefulness of a

communication technology is dependent on an individual’s friends, family and other contacts using

it. Agents choose to adopt the new technology only when a high enough proportion of their social

contacts also adopt it. Agents can choose to adopt or not independently. They may also take joint

decisions with others to adopt the new technology together. Once some agents adopt the technology,

their contacts may adopt, then their contacts may adopt, and so on. We examine how far the

technology diffuses in the population.

We first illustrate the diffusion process with an example with no formal notation, and then present

the formal model.

A Simple Example of Diffusion
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Figure 1: An example of diffusion without joint decision-making

Figure 1a illustrates a network of 9 individuals. Initially all use some current technology. A new

technology is invented and individuals may adopt the new technology. A link exists between two

individuals in the network if the adoption decision of one individual influences the adoption decision

of the other. To give a further example (in addition to those in the introduction), consider the

much studied topic of learning in agriculture. Suppose individuals are farmers who initially all grow
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the same crop. Growing crops can involve continual learning to improve processes and outcomes.

Farmers share information on inputs, for example whether and how to use fertilizer, or how much

of a crop to plant and how best to plant it. Farmers learn from neighboring farmers or those with

similar soil conditions (Foster and Rosenzweig (1995), Munshi (2004), Bandiera and Rasul (2006),

Conley and Udry (2010)). Therefore, for crops where learning is involved, farmers want to adopt a

similar crop to their neighbors in order to benefit from their experience (Bandiera and Rasul (2006)).

Suppose a new crop is introduced and a farmer will adopt the new crop only if strictly more than

2/3 of those he is linked to adopt the new crop.
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Figure 2: An example of diffusion with joint decision-making

Figure 1 illustrates diffusion when agents make decisions in isolation. Figure 2 illustrates the dif-

fusion process with joint decision-making. We start by seeding the network in Figure 1b: individuals

1, 2 and 3 automatically adopt the innovation. These farmers might be given the seeds and some

land, or paid to try out the new crop. Seeding is not a central part of the model, but it simplifies

this example. For the remainder of the population, an individual will adopt the innovation if strictly

more than 2/3 of those he is linked to adopt. For example, individual 9 has 1/3 of those he is linked

to adopting the innovation and will not adopt. Individual 4 has 3/5 of those he is linked to adopting

the innovation and will also not adopt. Individual 5 however has 3/4 of those he is linked to adopting

the innovation and will adopt (Figure 1c). This then changes individual 4’s decision since he now has

4/5 of those he is linked to adopting the innovation and will also adopt (Figure 1d). The innovation

will spread no further. Individuals 6, 7, 8, and 9 all have at least 2/3 of their links to one another

and will not adopt. The remaining group of farmers 6, 7, 8, and 9 continue to grow the old crop
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since they predominantly learn from each other and are less connected to the other group of farmers

who have adopted the new crop.

Suppose however, that farmers 6, 8, and 9, since they discuss and learn from each other about

growing crops, get together and discuss the new crop and whether or not to adopt it. If all three

adopt together, then each of them has strictly more than 2/3 of those he is linked to growing the

new crop. Thus they will adopt. This is how we think about joint decision-making.

In Figure 2 we run the diffusion model allowing for joint decision-making. Assume any two

individuals who are linked can make a joint decision, and any group of individuals where each

individual in the group has a link to all others can make a joint decision. That is, any farmers who

learn from each other also have the opportunity to discuss adoption and coordinate on adopting the

new crop. They decide to adopt jointly if, given each individual in the group adopts the new crop,

each individual in the group then has strictly more than 2/3 of those he is linked to adopting the

new crop. Figure 2a illustrates some of these groups (circled) which can make a joint decision. Seed

individuals 1, 2, and 3 as before (Figure 2b). We know that individuals 4 and 5 will then also adopt

the innovation (Figure 2c). Allowing agents to make a joint decision does not change this. Now,

individuals 6, 8 and 9, circled in Figure 2d, can make a joint decision. They all adopt the innovation

if, given each of them adopts, each has more than 2/3 of those he is linked to adopting. This is

satisfied and 6, 8 and 9 will adopt (Figure 2e). Individual 7 then adopts (Figure 2f).

2.1 A Formal Model

A population consists of a finite set of individuals N = {1, 2, . . . , n}. Time is indexed by t ∈ N+. At

time t = 0, all individuals use an old technology. A new technology is invented. At each time t > 0,

each individual i takes action ati ∈ {0, 1}, he either keeps the old technology (action 0) or adopts the

innovation (action 1). The vector at = (at1, ..., a
t
N) describes who adopts the old or new technology

at time t.

A network consists of the population N and set of links L. A link is an unordered pair of distinct

individuals (i, j) ∈ L who influence each other’s adoption. We consider varying degrees of influence,

to allow for one contact to be more important than another.20

Definition 1 The influence of individual j on individual i is given by the value wij ∈ [0, 1], where

wij > 0 if (i, j) ∈ L, wij = 0 if (i, j) /∈ L and wij = wji.

For example, in the case of a new communication technology, wij will be higher for two family

members who communicate frequently, than for two friends who speak only every few months, and

will be zero for two individuals who never communicate. In a slight abuse of notation, we refer to

the weighted network by L.

Individual i’s per period utility from keeping the old technology, ati = 0, is normalized to zero,

u(at) = 0. Individual i’s per period utility from adopting the innovation, ati = 1, is u(at) = v(Qi(a
t))

20Symmetric influence is not necessary for the results but simplifies the exposition. We follow the notation in
Ambrus, Mobius, and Szeidl (2014) for a weighted network.
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which is continuous and strictly increasing in the (weighted) proportion of those i is linked to who

also take action 1 at time t

Qi(a
t) =

∑
j∈N wija

t
j∑

j∈N wij
.

As more of i’s contacts adopt the innovation, his utility from adopting the innovation increases.

Individuals do not always make adoption decisions in isolation. Family or friends may discuss a

new communication technology and together agree to adopt it if it improves their ability to commu-

nicate. Two individuals, i and j, if they have a strong enough relationship, can make a joint decision.

That is, if wij ≥ α, where α ∈ (0, 1] then we say i and j can make a joint decision. Any group of

individuals, where wij ≥ α for all individuals i and j in the group, can make a joint decision. Denote

by Ω the set which includes (as its elements) all individuals, as well as all groups of individuals that

can make a joint decision.

At each point in time, individuals play a best response. At time zero, all individuals adopt the old

technology, a0
i = 0 for all i ∈ N . At each time t > 0, an individual, or group that can make a joint

decision, is chosen uniformly at random from Ω to update their action by best response dynamics.21

The individual or group will switch to action 1 if all members do strictly better by taking action 1

given all other members take action 1, and given the actions of the rest of the population in period

t− 1. Formally:

For i ∈ T, ati =

1 if ui(aT = 1, at−1
N\T ) > ui(a

t−1) for all i ∈ T

at−1
i otherwise

For i /∈ T, ati = at−1
i

This determines at and defines a Markov process.

A key parameter here is the value Q that satisfies v(Q) = 0. When the proportion of an individ-

ual’s contacts who adopt the new technology is above Q, then his per period utility from the new

technology is higher than his utility from the old technology. Thus an individual’s best response is

to adopt the new technology if the proportion of those he is linked to who have adopted the new

technology is above Q. The best response of a group of agents that can make a joint decision is to

all switch to the new technology if, given everyone in the group adopts the new technology, each

individual in the group has strictly more than Q of those he is linked to adopting. An innovation is

completely summarized by its threshold Q.

Our interest is in the set of final adopters. We are interested in the penetration rate of the

technology: how many individuals adopt in an absorbing state of the Markov process, when no

further agents will adopt.22

Definition 2 For population N , network L and innovation characterized by threshold Q, ‘total adop-

tion’ is the number of individuals who adopt the innovation in an absorbing state.

21Alternatively let some element T ∈ Ω be chosen from a distribution Ξ(.) which has full support on Ω.
22We show in Proposition 1 that the absorbing state is unique.

11



Discussion of the Modeling Assumptions

The network. In the decision to adopt a new technology, an individual may not care as much about

the decisions of the population as a whole as about the decisions of family, friends, neighbors or

colleagues. For example, in the case of a new communication technology, an agent cares whether

his contacts, with whom he communicates, have adopt the technology or not. He may also care

more if a close contact, with whom he communicates frequently, adopts the technology compared

to a more distant contact. In the case of adopting safe sanitation, a household may care whether

neighboring villagers have also adopted safe sanitation, and may care more whether neighbors who

live close by and whose sanitation behavior is more important have adopted, than those who live

in the same village but further away. The weighted network captures these scenarios and allows for

a high degree of generality. For example, it can capture a situation where an individual cares both

about the proportion of the population as a whole that have adopted and whether specific friends,

family or colleagues have adopted.

Threshold of adoption. The threshold of adoption, Q, characterizes an innovation. A low value

of Q implies individuals are willing to adopt the innovation even when few others do so. A high

value of Q implies individuals are only willing to adopt the innovation if many others do so. A large

empirical literature studies innovations with the property that an individual’s decision to adopt the

innovation depends on his contacts adopting. In Section 6 we discuss the different channels this works

through and how this determines the magnitude of the threshold of adoption, Q. Drawing on this,

we micro-found the parameter Q and show how it is determined by other parameters. In Section 4

we extend the model to incorporate heterogeneous preferences over technology and so heterogeneous

thresholds of adoption.

Joint decision making. Friends may together decide to adopt WhatsApp and set up a group to

arrange meet ups. Neighbors may be part of a sanitation program that encourages discussion and

collective action, and together decide to adopt sanitation. The set-up presented restricts those who

can make a joint decision to groups of well-connected individuals. While this may be a reasonable

assumption, other stories are also plausible. For example, two individuals who do not know each

other but have a friend in common may be able to act together to adopt a new technology. Alter-

natively large groups of individuals, even if they are well connected, may fail to act collectively. We

relax the assumptions on who can and cannot make a joint decision in Section 4. The results can be

generalized because it is the possibility of joint decision making itself, rather than who can make a

joint decision, that drives our results. In Section 5 we also present results when who can and cannot

make a joint decision is unknown.
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3 Results

3.1 Where will the Innovation Spread?

The first question we ask is where a particular innovation will diffuse within a given population. A

measure of interconnectedness, referred to as ‘cohesion’, determines diffusion. However, the direction

of the effect is ambiguous: cohesion can both facilitate adoption or block adoption. In this subsection

we start with definitions and basic intuition on how cohesion affects diffusion. We provide a formal

result (Lemma 1) on what kind of networked groups are resilient to adopting the innovation. Lemma

1 gives a condition showing the trade-off between cohesion being a help and a hindrance. Finally we

characterize exactly where an innovation will diffuse and where it will not (Proposition 1).

The proportionate influence of a subset of the populationR on individual i is simply the proportion

of his links that are within group R.

Definition 3 The proportionate influence of a subset of the population R ⊆ N on individual i is

Ii(R) :=

∑
j∈R wij∑
j∈N wij

.

A group of individuals R is said to be p− cohesive if every individual in R has at least proportion p

of his links within R, and there is no larger value of p for which this is true (Morris, 2000). Cohesion

is thus a measure of how insular a group is (or how strong the community is), since it is the extent to

which individuals in the group have strong relations within the group relative to the outside world.

Figure 3 illustrates a 2/3 − cohesive group, so each individual has at least two thirds of his links

within the group.

Figure 3: Proportionate Influence and Cohesion

1 2

3

4

5

Links shown correspond to a weight of 1, all other weights are 0. We consider group R = {1, 2, 3, 4, 5}
circled. Individual 1 has 2/3 of his links within group R. The proportionate influence of R on individual
1 is I1(R) = 2/3. Individual 2 has 4/5 of his links within group R, hence I2(R) = 4/5. Also I3(R) = 3/4,
I4(R) = 3/4, I5(R) = 4/5. Each individual in the group has at least two thirds of their links within the
group, and so the group is 2/3-cohesive.

Before presenting the formal results we give some intuition for why and how cohesion determines

the spread of an innovation.
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A cohesive group blocks diffusion. An individual adopts an innovation if a high enough

proportion of those he is linked to (more than Q) adopt. Therefore, if the individual has a high

proportion of his links within a given group, he is not willing to adopt until others in the group

adopt. But if everyone in the group has a high proportion of their links within the group, then no

one in the group is willing to adopt until others in the group adopt. It can therefore be difficult for

an innovation to penetrate a sufficiently cohesive group.

A cohesive group facilitates diffusion. An individual’s per period utility from adopting the

innovation is increasing in the proportion of those he is linked to who also adopt. Therefore an

individual who has a high proportion of his links within a particular group has a high benefit from

adoption if the whole group adopts. If all members of the group have a high proportion of their

links within the group, then all members get a high benefit if the group adopts the innovation. Thus

a highly cohesive group, if it is able to make a joint decision, is willing to adopt the innovation

as a group. To be clear, our results are not driven by the idea that certain network structures,

such as cohesive groups, are better able to make joint decisions (although this may also be true).

Rather, when joint decision making occurs, cohesive groups are more willing to adopt the innovation

collectively.

The framework models a trade-off capturing two competing ideas: on the one hand, insular groups

can be ‘backwards’ and resistant to change; on the other hand, insular groups can also be effective

at instigating change together. This intuition is captured formally in the results below.

Recall that an innovation is summarized by its threshold Q which is the proportion of those an

individual is linked to that need to adopt for him to be willing to adopt. For population N, network L
and innovation with threshold Q, Lemma 1 describes the characteristics of a group R that is resilient

to adopting the innovation.

Lemma 1 A set R ⊆ N will never adopt technology Q (R is resilient) if both the following conditions

are satisfied:

(i)

Ii(R) ≥ 1−Q, for all i ∈ R

(ii) there does not exists a subset of two or more individuals, T ∈ Ω, T ⊆ R, with

Ii(R)− Ii(T ) < 1−Q, for all i ∈ T.

All proofs are found in the Appendix.23 Lemma 1 says that a subset of the population R is

resilient - will not adopt the new technology - if two conditions are satisfied. First, group R must

be sufficiently cohesive. Each individual must have a high proportion of his links within group R (at

least 1 − Q by condition (i)), such that no individual is willing to adopt unless others in the group

23The Appendix provides proofs for the extended framework presented in Section 4.
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adopt. This ensures no single individual in the group is influenced to adopt by those outside the

group. Second, there is no subset of individuals within group R which is itself sufficiently cohesive

relative to group R. Condition (ii) ensures that there is no subset T within R which can make a

joint decision and such that each individual in subset T has a high proportion of their links within

T relative to their links within R (thus Ii(T ) should not be too high relative to Ii(R), for each i in

T, as stated in condition (ii)). Condition (ii) must hold so that no subset in R is willing to adopt.

The two conditions in Lemma 1 illustrate the trade-off. A group is resilient if: condition (i),

the group is sufficiently cohesive, and condition (ii), there are no subgroups that are themselves

sufficiently cohesive relative to the wider group. This is illustrated in Figure 4. Figure 4 also shows

that it is not enough to find a cohesive group. To determine adoption one has to zoom in at each

level and look for a cohesive group inside a cohesive group (communities inside communities), and

so on.

Figure 4: A Resilient Set

(a) Links shown have weight 1, all
other weights are 0. Any set of indi-
viduals where each individual in the
set has a link to all others (a clique)
can make a joint decision.

(b) Suppose the whole network has
adopted the new technology, bar the
group circled. Let Q = 2/3. Is the
circled set of non-adopters resilient?

(c) The remaining non-adopters
satisfy condition (i) since they form
a 1/2−cohesive group (circled). No
individual is willing to adopt the in-
novation independently.

(d) A group of individuals may be
willing to adopt collectively. There
exists a group inside the set of non-
adopters (circled) which is itself co-
hesive relative to the set of non-
adopters. That is, each individual
in the circled group has a high pro-
portion of their links within that
group relative to the set of non-
adopters as a whole.

(e) The circled group can act jointly
and is willing to adopt the innova-
tion since each individual then has
at least 3/4 of his links adopting. So
condition (ii) is not satisfied. Fol-
lowing adoption by the group cir-
cled, an adjacent individual (filled
node) is also willing to adopt.

(f) The remaining set of non-
adopters (circled) forms a cohesive
enough group that no individual
alone is willing to adopt. Condition
(i) is satisfied. Checking all groups
that can act jointly, condition (ii) is
also satisfied and no group is willing
to switch. Thus the remaining set is
resilient.

Proposition 1 states that for any given network and any innovation, the (Markov) process of

diffusion converges to a unique absorbing state. Proposition 1 characterizes the set of final adopters

to determine total adoption of the innovation. Lemma 1 gives the conditions for a set to be resilient
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to an innovation with threshold Q. The largest resilient set for threshold Q is the largest (connected

or disconnected) set that satisfies the two conditions in Lemma 1.24 Proposition 1 says that no

individual in the largest resilient set adopts the innovation, while everyone else will adopt.

Proposition 1 For population N, network L and innovation with threshold Q, the process will almost

surely in finite time enter the unique absorbing state a, where

ai = 0 for all i ∈ N in the largest resilient set for threshold Q

ai = 1 otherwise.

The proof is found in the Appendix and we here present a sketch of the proof. It is immediate

from the previous discussion of Lemma 1 why no member of the largest resilient set will adopt. It

is less immediate why all others adopt. Suppose the set of non-adopters is strictly larger than the

largest resilient set. By assumption, the set of non-adopters does not satisfy both conditions for

resilience. If the set does not satisfy both conditions for resilience in Lemma 1, then by definition

there must exist either an individual who is willing to adopt, or group of individuals who can make

a joint decision and are willing to adopt.

3.2 What kind of networks enable more diffusion?

What kind of network structures enable an innovation to spread? What kind of links promote

diffusion? Is a society made up of cohesive groups, where individuals are part of insular communities,

good at diffusing an innovation? Or instead, is a society where individuals have more disperse links

better for diffusion? The previous result highlights the trade-off that cohesive groups can both help

and hinder diffusion. Can we determine which effect dominates?

Providing analytic results that compare outcomes on different networks can be difficult. Networks

are complex objects and two networks can look very different. We can run the above process on

two networks and determine on which network an innovation diffuses further. However, if the two

networks look different, it can be difficult to say anything concrete or meaningful about why an

innovation diffused further through one network structure than the other. This becomes still more

difficult when we want to say something general, about any network, without restricting to some

class of network structures.

In this paper we take any given network and consider a marginal change in the network. We

analyze whether a marginal increase in the strength of a link helps or hinders diffusion. More

precisely, we consider whether a marginal increase in the strength of a link increases or reduces

total diffusion in the population. This is analogous to the idea of adding or taking away a link in

a binary network and asking how this affects diffusion. It turns out that this approach provides a

meaningful and general result to understand how different links (and therefore different networks)

facilitate diffusion.

24The largest resilient set for threshold Q is the union of all resilient sets for threshold Q.
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Figure 5: Strong and Weak Ties
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(b)

Figure 5a illustrates a network. Links shown have weight 1, all other weights are 0. Any set of individuals where
each individual in the set has a link of weight at least α to all others can make a joint decision, where 0 < α ≤ 1.
We determine which pairs in the network in Figure 5a are strong ties and which are weak ties. This is shown in
Figure 5b. Black lines connect pairs which are strong ties and grey lines connect pairs which are weak ties. We
can use Definition 4 to see that all pairs in the set {5, 6, 7, 8} are strong ties: at Q = 3/4 the whole network is
resilient, and so for set T = {5, 6, 7, 8}, for all k ∈ T , Ik(R) = 1 and Ik(T ) ≥ 3/4. Similarly, to see that the pair
1 and 3 is also a strong tie, observe that at Q = 1/2 the set R = {1, 2, 3, 4} is resilient, and so for the subset
T = {1, 2, 3}, for all k ∈ T , Ik(R)− Ik(T ) ≤ 1/2. Analogously, all pairs in the set {1, 2, 3, 4} are strong ties.

We show (Proposition 2) that for any network, the set of all links can be completely partitioned

into exactly two ‘types’. Links of one type, which we refer to as ‘strong ties’ have a very different

effect on diffusion to links of the other type, which we refer to as ‘weak ties’. Intuitively, strong ties

are links which connect between two individuals within a ‘sufficiently cohesive’ group. Strong ties

hinder the diffusion of an innovation with a low threshold of adoption Q, but help in the diffusion

of an innovation with a high threshold of adoption. In contrast, weak ties are all remaining links, so

include links that connect between two different cohesive groups, making those groups less cohesive.

Weak ties have the opposite effect to strong ties. Weak ties facilitate the diffusion of technologies

with low thresholds of adoption, but hinder the diffusion of technologies with high thresholds. The

results of Proposition 2 show that when the threshold of adoption is very low, increasing weak

ties (connecting between cohesive groups) and reducing strong ties (reducing links within cohesive

groups) will increase total adoption. For increasing thresholds of adoption, gradually reducing weak

ties (disconnecting between cohesive groups) and increasing strong ties (building links within cohesive

groups) will increase total adoption.

We first define the partition of links into strong and weak ties, before stating the effect of each

type of link.

Definition 4 For population N and network L, any pair (i, j) is a:

Strong tie: if for some Q, where R is the largest resilient set, i and j are part of a subset T ⊆ R where

T\{j}, T\{i} ∈ Ω such that

Ik(R)− Ik(T ) ≤ 1−Q, for all k ∈ T

Weak tie: otherwise.
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Definition 4 states that any pair of individuals (i, j) is a strong tie if i and j are part of a set T

where each individual in the set has a high proportion of his contacts within the set T relative to the

proportion of his contacts within a wider cohesive set R. The set T must also potentially be able to

make a joint decision.25 That is, strong ties are always among cohesive groups, where each individual

in the group has a high proportion of his links within that group compared to the proportion of his

links within the wider cohesive community. Weak ties are all other ties. Thus links that connect

between cohesive groups are weak ties. Figure 5 provides an example of a network and details which

are strong and which are weak ties. The following proposition states the effect of these two types of

tie, strong and weak, on diffusion.

Proposition 2 For population N and network L, if a pair (i, j) is a:

Strong tie: There exists a value Qij such that

for Q < Qij, total adoption is (weakly) decreasing in wij,

for Q ≥ Qij, total adoption is (weakly) increasing in wij.

Weak tie: There exists a value Qij,

for Q < Qij, total adoption is (weakly) increasing in wij,

for Q ≥ Qij, total adoption is (weakly) decreasing in wij.

Proposition 2 states that for any network, any link is categorized into one of two types, either as a

‘weak tie’ or as a ‘strong tie’. Strong ties hinder diffusion at low thresholds Q, but facilitate diffusion

at high thresholds Q. Weak ties facilitate diffusion at low thresholds but have the opposite effect at

high thresholds. The proof is in the Appendix. The next paragraph gives intuition and Figures 6

and 7 illustrate the result.

We know there exists a trade-off: increasing the cohesion of a group makes it harder for an

innovation to spread from outside into the group, but it also makes the group more willing to adopt

the innovation if they can act collectively. Compare two technologies, one with a low and one with

a high threshold of adoption. The innovation with a low threshold of adoption will spread relatively

easily: once a few contacts adopt the innovation, an individual is willing to adopt it, and then so

are his contacts, and so on. It spreads largely without the need for contacts to adopt collectively.

In contrast, collective adoption is vital for the diffusion of an innovation with a high threshold of

adoption (for example, suppose an individual needs 90% of his contacts to adopt before he is willing

to adopt, clearly getting this innovation adopted requires contacts to cooperate). In summary, for

technologies with a low threshold of adoption, cohesive groups are a hindrance to diffusion. Cohesive

groups are not necessary for the diffusion of a very low threshold technology and, if the members of a

25A set T is the union of groups T\{j} and T\{i}, both of which can make joint decisions. By increasing wij ,
potentially i and j can act jointly where they could not before. Thus the set T , which includes both i and j, may or
may not be able to make a joint decision after the increase in wij . The results capture (albeit at the marginal level)
the idea that a group may or may not be able to make a joint decision.
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cohesive group are not able to act collectively, then such a group can block diffusion. In contrast, for

innovations with higher thresholds of adoption, collective adoption becomes more important, and so

increasingly cohesive groups become crucial for getting an innovation to spread. The next paragraphs

provide more detailed intuition.

As discussed, strengthening any link results in a trade-off. From Section 3.1 we understand that

cohesion within a group can block the spread of an innovation into that group, but it can also facilitate

collective adoption by the group. Consider a strong tie. Strong ties are links within a cohesive group.

Increasing a strong tie further increases cohesion within that group. Making the group more cohesive

increases the benefit to the group of acting collectively to adopt the innovation. On the other hand,

if the group cannot act jointly, then making the group more cohesive makes it more difficult for the

innovation to spread into the group.26 In contrast, the dominant effect of a weak tie is to act as a

connector. Consider a weak tie which connects between two cohesive groups and makes them less

cohesive. Increasing this weak tie makes it easier for the innovation to spread from one part of the

network to another, but makes it more difficult for the individuals (or group) at either end of the

link to adopt in the first place.

To see why a strong tie has a positive effect on diffusion at high thresholds and a negative effect

at low thresholds, consider a cohesive group and a technology with a high enough threshold that

it cannot spread into the group. Making this group more cohesive either has no effect (since the

innovation cannot spread into the group anyway), or it helps diffusion if the group is now cohesive

enough that, if they are able to act collectively, they are willing to adopt. Consider the same cohesive

group and a low enough threshold such that the innovation can spread into the cohesive group without

the need for the group to adopt collectively. Making this group more cohesive either has no effect (if

the group can act together then it will adopt together anyway), or it can hinder the spread of the

innovation into the group if it makes the group so cohesive that the innovation cannot spread and

the cohesive group is not able to act collectively.

An analogous intuition holds for weak ties. Consider increasing a link that connects between two

highly cohesive groups, and consider a technology with a low threshold that is adopted by one group

but not the other. Increasing the connections between the two groups can enable the technology to

spread from the first group into the second. However, for technologies with a high enough threshold,

increasing connections between the two groups can instead make the first group unwilling to adopt.

Proposition 2 is a comparative static. In Section 5.1 we illustrate the result of Proposition 2 for a

class of networks spanning from networks with disperse links to networks made up of highly cohesive

groups. For innovations with low thresholds of adoption, networks with the most disperse links are

optimal (allow for greater total adoption). As the threshold of adoption increases, networks with

increasingly cohesive groups become optimal.

26Increasing the strength of such a link never helps the spread of innovation within the group. The reason is, since
the group is so cohesive, once some individual or individuals in the group adopt, then the rest will adopt. Thus
increasing the strength of a link, if the group cannot act jointly, will only hinder adoption by the group and will not
help spread within the group. Strong ties never act as ‘connectors’ in this sense; instead, the dominant effect of a
strong tie is always to make a group more ‘robust’.
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Figure 6: Addition of a Weak Tie
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Diffusion of an innovation with threshold Q = 3/5. The addition of a weak tie reduces total diffusion.
Figure 6a, shows the diffusion of this innovation in the network illustrated in Figure 5a. Group {5, 6, 7, 8} can
make a joint decision and will adopt the innovation since each individual has at least 3/4 of his neighbors adopting.
The pair 2 and 3 can act jointly but do not adopt since 3 would only have 1/2 of his neighbors adopting. No
other pairs will adopt. Figure 6b shows the addition of a link of weight w36 = γ between individuals 3 and 6.
Consider γ = 1 (a similar example can be show for any value of γ). In network 6b, although group {5, 6, 7, 8}
can act jointly, they choose not to adopt the innovation since individual 6 would have only 3/5 of his neighbors
adopting.
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(c) (d)

Diffusion of an innovation with a lower threshold, Q = 1/2. The addition of a weak tie increases
total diffusion. In Figure 6c, group {5, 6, 7, 8} can act jointly and adopt. The pair 2 and 3 can act jointly but
do not adopt since 3 would only have 1/2 of his neighbors adopt and requires strictly more than 1/2 to be willing
to adopt. In Figure 6d, following the addition of a weak tie, if group {5, 6, 7, 8} adopts then each member has
at least 3/5 of his neighbors adopt and the group will adopt the innovation. The pair 2 and 3, will then act
jointly to adopt the innovation since they then both have strictly more than 1/2 of their neighbors adopting. The
innovation spreads to the whole network.
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Figure 7: Addition of a Strong Tie
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Diffusion of an innovation with threshold Q = 1/2. The addition of a strong tie increases total
diffusion. Figure 7a is the same as Figure 6c. Group {5, 6, 7, 8} adopt, but no others adopt. Figure 7b shows
the addition of a strong tie of weight w13 = γ between 1 and 3. Consider γ = 1/2 (a similar example can be show
for any value of γ). Group {5, 6, 7, 8} continues to adopt. There are then two possibilities: 1. If the new link
enables 1 and 3 to make a joint decision (that is, if a link of weight 1/2 enables joint decision making) then group
{1, 2, 3} can act jointly and is willing to adopt the innovation since each individual in the group then has at least
3/5 of his neighbors adopting. 2. If the new link does not enable joint decision-making between 1 and 3, then
total adoption is unchanged since no pair in group {1, 2, 3, 4} is willing to adopt. Total adoption is unchanged or
strictly increases in the network in Figure 7b.
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(d)

Diffusion of an innovation with a lower threshold, Q = 2/5. The addition of a strong tie reduces
total diffusion. In Figure 7c, group {5, 6, 7, 8} adopts. The pair 2 and 3 can act jointly and are willing to adopt
since both individuals then have 1/2 of their neighbors adopting. The innovation spreads through the network.
In 7d, after the addition of the strong tie, group {5, 6, 7, 8} will still adopt. There are two possibilities: 1. If 1
and 3 can act jointly, then group {1, 2, 3} make a joint decision to adopt. 2. If 1 and 3 cannot act jointly, then
the pair 2 and 3 will not adopt since individual 3 has only 2/5 of his neighbors adopt the innovation and he
requires strictly more than 2/5 to be willing to adopt. Total adoption is unchanged or has strictly decreased in
the network in Figure 7d.
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4 Heterogeneous Individuals and Arbitrary Joint Decision

Making

In this section we relax some of the assumptions of the model. Alternatively, the reader can move to

Section 5, where we address the case where who acts jointly is unknown and also provide simulations.

The model can be generalized along at least two important dimensions. First, individuals may have

heterogeneous preferences over technologies. Some individuals may never adopt a new technology,

even if everyone else does so. Some people may value a particular technology much more than others

and will be willing to adopt even if not many others do so. This implies idiosyncratic thresholds

of adoption, denoted by Q
i
. Second, we previously assumed that only those with a strong enough

relationship could act jointly, and they would always manage to act jointly. While this may be a

sensible assumption, it rules out the possibility of joint adoption with a friend of a friend. It also

rules out the possibility of that large groups fail to act collectively. Since we are not aware of any

consensus on how the ability to act jointly relates to the network structure, it is important to show

that our results hold if arbitrary sets of individuals can make joint decisions. In this section we show

that the previous findings hold when individuals are heterogeneous and arbitrary sets of individuals

can make joint decisions. This nests the canonical framework found in Morris (2000) and Acemoglu,

Ozdaglar, and Yildiz (2011), since it subsumes the case of no joint decision-making.

The model is unchanged from Section 2.1 with two generalizations. Now elements of the set Ω are

arbitrary can be independent of the network. This allows for flexible assumptions on who can make

a joint decision with whom. Let T ⊆ N , T ∈ Ω, denote a subset of individuals in the population that

can act jointly. We make one assumption: any subset of a set T ∈ Ω is also an element of the set

Ω. That is, any subset of a group that can act jointly can itself act jointly. As above, all individuals

can make adoption decisions in isolation and so the set Ω necessarily includes each individual as a

separate element. The model captures two (possibly related) social functions. The network captures

who influences who in the decision to adopt. The set Ω captures who is able to make a joint decision

with whom.

Second, individuals may have heterogeneous utility from technologies. Individual i’s per pe-

riod utility from maintaining the current technology, ati = 0, is a constant, individual-specific value

ui(a
t) = vi. Individual i’s per period utility from adopting the innovation, ati = 1, is given by

ui(a
t) = vi(Qi(a

t)) which is individual-specific, and continuous and strictly increasing in the propor-

tion of i’s links who also take action 1 at time t

Qi(a
t) =

∑
j∈N wija

t
j∑

j∈N wij
.

An individual’s per period utility from adopting the innovation is greater than his utility from main-

taining the status quo when the proportion of his links that adopt is greater than Q
i
, where Q

i
solves

vi(Qi) = vi.
27 Thresholds can now be heterogeneous across individuals. The value Q

i
is assumed

27Assuming a solution exists. This assumption is without loss of generality as the behavioral implications of the
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to be composed of two components, an innovation-specific component Q ∈ R which is common to

all i ∈ N , and an idiosyncratic component θi ∈ R, such that Q
i

= Q + θi. Denote the vector of

idiosyncratic components by θ.

Characterization

The conditions for a set to be resilient change to accommodate possibly heterogeneous thresholds:

Lemma 2 A set R ⊆ N (is resilient) will never adopt a technology with innovation-specific compo-

nent Q and idiosyncratic components θ, if both the following conditions are satisfied:

(i)

Ii(R) ≥ 1−Q− θi, for all i ∈ R;

(ii) there does not exist a subset T ∈ Ω, T ⊆ R, with

Ii(R)− Ii(T ) < 1−Q− θi, for all i ∈ T.

The conditions are analogous to Lemma 1, but adjust for the heterogeneous thresholds. Condition

(i) says that in a resilient group each individual must have a high proportion of his links within the

group, as before, but the exact proportion for any individual will also depend on their idiosyncratic

component θi. Consider for example a group where each individual has a low idiosyncratic component

and so a low threshold of adoption Q
i
. Each individual in the group is willing to adopt the innovation

even if few others do. Compare this to a group where individuals are relatively opposed to the new

technology and have high idiosyncratic components and so high thresholds Q
i
. For condition (i) to

be satisfied in both cases, the group with low idiosyncratic components must be weakly more cohesive

than the group with higher idiosyncratic components. A similar intuition applies to condition (ii):

a subset T where each individual in that subset has high idiosyncratic components can be more

cohesive relative to the set R and still maintain resilience, compared to a subset with low idiosyncratic

components.

The generalization of the characterization in Proposition 1 is then immediate.

Proposition 3 For population N, network L, and technology with innovation-specific component Q

and idiosyncratic components θ, the process will almost surely in finite time enter the unique absorbing

state a, where

ai = 0 for all i ∈ N in the largest resilient set at Q and θ,

ai = 1 otherwise.

nonexistence of a solution can be perfectly captured by values of Q
i

outside of the interval [0, 1].
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Comparative Statics

Analogous to Definition 2, for population N, network L and technology with innovation-specific

component Q and idiosyncratic components θ, ‘total adoption’ is defined as the number of individuals

who adopt the technology in the unique absorbing state a. We examine how total adoption changes

when we change the following parameters of the model: the innovation, the extent of joint decision-

making in the population, and the network.

Corollary 1 For population N and network L, all else equal:

• Total adoption of technology (Q, θ) is (weakly) higher than total adoption of technology (Q′, θ′),

where Q ≤ Q′ and θi ≤ θ′i for all i ∈ N ;

• Total adoption of a technology (Q, θ) is (weakly) higher under Ω than Ω′ , where Ω′ ⊆ Ω.

Corollary 1 states that total adoption is decreasing in Q. That is, the more an innovation requires

others to adopt for it to be profitable, the harder it is to diffuse. The diffusion model captures a

coordination problem in adopting innovations: we may all be better off adopting the innovation,

but coordinating a change in regime may be difficult. Clearly, the higher is Q, the more severe the

coordination issue and the harder is diffusion. In contrast, total adoption is increasing in the ability

of groups within the population to make joint decisions. This is because such groups essentially solve

their local coordination problem.

Next we consider the main comparative static. What happens to diffusion if we increase the

weight of a link in a given network? The previous results generalize. We show that all pairs can be

partitioned into exactly two sets with the same effects presented in Proposition 2.

In the model in Section 2, the network and who can make a joint decision are related. Increasing

wij above α enables i and j to act jointly. The idea is that individuals with strong connections are

more likely to be able to act jointly. Consider two family members who talk a lot. If one adopts

a new communication technology this may strongly influence the other’s decision to adopt. But, in

addition, these two family members may also be likely to discuss the new technology and coordinate.

If this is true, then different networks may facilitate different degrees of joint decision-making. For

example, well connected groups may be more likely to be able to act jointly than a disparate group

of individuals with few links between them. In this section we allow arbitrary groups of individuals

to act jointly. However, our results hold even when we allow for the possibility that the network and

who can make joint decisions are related.

Precisely, the results in Proposition 4 hold under Assumption 1 which simply says that increasing

the strength of a link between two individuals i and j, holding all else fixed, may enable i and j to

act jointly. Assumption 1 allows for two possibilities. 1. Joint decision-making in the population

does not change with an increase in the weight of a link wij. 2. An increase in wij can increase joint

decision-making between i and j (and as a result between groups that could already make a joint

decision with i and j separately but not i and j together) but does not affect other individuals.
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Assumption 1 For population N , network L and set of groups that can make a joint decision Ω,

following an increase in wij, the set of groups that can make a joint decision in the new network

includes Ω and possibly new groups from the set

{T : {i, j} ⊂ T, T\{j} ∈ Ω, and T\{i} ∈ Ω}.

The following definition partitions the set of all pairs into strong and weak ties and Proposition

4, analogous to Proposition 2, gives their effect. The only difference from the partition given in Def-

inition 4 is the incorporation of the idiosyncratic components θi and their interaction with cohesion,

described above. Also different sets of groups can act jointly. For population N , network L, set of

groups that can act jointly Ω, and idiosyncratic components θ, we have the following:

Definition 5 Any pair (i, j) is a:

Strong tie: if, for some Q, where R is the largest resilient set, i and j are part of a subset T ⊆ R where

T\{j}, T\{i} ∈ Ω such that

Ik(R)− Ik(T ) ≤ 1−Q− θk, for all k ∈ T

Weak tie: otherwise.

Proposition 4 holds under Assumption 1. For population N , network L, set of groups that can

act jointly Ω, and idiosyncratic components θ, we have the following:

Proposition 4 If a pair (i, j) is a:

Strong tie: There exists a value Qij such that

for Q < Qij, total adoption is (weakly) decreasing in wij,

for Q ≥ Qij, total adoption is (weakly) increasing in wij.

Weak tie: There exists a value Qij,

for Q < Qij, total adoption is (weakly) increasing in wij,

for Q ≥ Qij, total adoption is (weakly) decreasing in wij.

5 When who can Act Jointly is Unknown

We know that joint decision-making between individuals sometimes occurs when people adopt a new

technology or innovation. Suppose we want to evaluate the extent to which a particular innovation is

likely to be adopted in a given population. We observe the population and the network structure, we

also know that some people may act jointly, but we do not know who they are. Can we say anything
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about what networks are better for diffusing the innovation when we do not know which groups can

act jointly? Are our previous results robust to this more difficult problem?

The model is unchanged from above. We know the network, which consists of a finite set of

individuals N = {1, 2, . . . , n}, a set of links L, and weights wij. As above, there is some set of groups,

denoted Ω, where each group is able to coordinate amongst itself and decide whether or not to adopt

the innovation together. The only difference is that we do not know which these groups are. We

continue to make the (arguably uncontroversial) assumption that all individuals can make adoption

decisions independently so are in the set Ω. For simplicity, we also assume the set Ω stays fixed

following a marginal increase in wij, but this can be extended to the more general case (Assumption

1). The rest of the model is unchanged. We consider homogenous preferences and therefore a

homogenous threshold Q for all individuals in the population.28

Figure 8: A Strongly-Cohesive Group
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(a) The group {1, 2, 3, 4} satisfies the conditions of a
strongly-cohesive group. Each member of the group
has a high proportion of his links within the group
and the group is evenly connected with no discernable
subgroups.

2

3

4

1

(b) After removing the link between 1 and 3, the group
{1, 2, 3, 4} does not satisfy the conditions of a strongly-
cohesive group. Consider the set {1, 2, 4}. Any mem-
ber of this set has at most 1/4 of his links to 3. Individ-
ual 3 has 2/3 of his links to the set {1, 2, 4}. Since the
set {1, 2, 4} is relatively disconnected from 3, 3 does
not have a high enough proportion of his links to this
group to satisfy the definition of strong cohesion. In
other words, {1, 2, 4} and 3 are discernable subgroups.

We define what we call a strongly-cohesive group. Very informally, a strongly-cohesive group is a

discernable community which does not comprise any discernable sub-communities. Precisely:

Definition 6 A set R is ‘strongly-cohesive’ if:

• for each T ⊂ R, find Q̂ that satisfies Ii(R)− Ii(T ) ≤ 1− Q̂ for all i ∈ T with equality for some

i, then any subset T ′ ⊆ R\T has Ii(R)− Ii(T ′) > Q̂ for some i ∈ T ′;

• and there is no larger set R′ ⊃ R which satisfies the above.

A strongly cohesive set is defined by the network only and is independent of the set Ω which is

unknown. The definition of a strongly-cohesive set is similar but stronger than the idea of cohesion.

28This can be extended to allow for heterogeneous thresholds of adoption.

26



A strongly-cohesive group is a group in which each individual in the group either has a high proportion

of his links within the group, or other individuals in the group have a high proportion of their links to

him. Second, there can be no subset of the group in which individuals have a low proportion of their

links out of the subset and the rest of the set has a low proportion of their links into the subset. The

idea is similar to cohesion but takes into account both links out and links in for an individual in the

group. It also ensures that the strongly cohesive set is relatively evenly connected, such that there

are no discernable sub-communities. That is, within the strongly-cohesive set there are no subsets

which are ‘poorly connected’ to the rest of the group. Figure 8 gives an example.

The following proposition shows that links between two individuals within a strongly-cohesive

group act like strong ties. Increasing such links increases total diffusion for innovations with high

thresholds of adoption, but reduces diffusion for innovations with low thresholds of adoption. In

contrast links connecting between two distinct strongly-cohesive groups act like weak ties. Increasing

such links weakly decreases total diffusion for innovations with high thresholds of adoption, but

increases diffusion for innovations with low thresholds of adoption.

Proposition 5 For population N , network L and an unknown set of groups that can make joint

decisions Ω, if i and j are part of a strongly-cohesive set, then the link (i, j) is a strong tie and there

exists a value Qij such that

for Q < Qij, total adoption is (weakly) decreasing in wij,

for Q ≥ Qij, total adoption is (weakly) increasing in wij.

If i and j are part of distinct strongly-cohesive sets, then the link (i, j) is a weak tie and there exists

a value Qij such that

for Q < Qij, total adoption is (weakly) increasing in wij,

for Q ≥ Qij, total adoption is (weakly) decreasing in wij.

We find that links within a strongly-cohesive group are strong ties, while links that connect

between two strongly-cohesive groups are weak ties. In a strongly-cohesive set, individuals in the set

are so influenced by the others that once an individual or any part of the group is willing to adopt,

the innovation will spread to the rest of the group. Therefore any link within a strongly-cohesive

group acts as a strong tie. Increasing a link within a strongly-cohesive group has one of the following

two effects. If the link connects between individuals that act jointly to adopt, this will increase the

benefit to that group of adopting the innovation and so facilitate diffusion. Otherwise, since the link

makes the group more insular, it makes it weakly more difficult for the innovation to penetrate the

group. Why does a link within a strongly-cohesive group never act as ‘a connector’ to enable the

innovation to spread better within the group? The reason is that, by definition, a strongly-cohesive

group is connected in such a way that once the innovation enters the group it spreads everywhere

in that group, and so the role of ‘a connector’ is redundant. In contrast, links connecting different
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strongly-cohesive sets are weak ties. These links connect between two groups which are connected in

such a way that once any individual in either group is willing to adopt it spreads through the whole

of that group. Links out of a group can make it harder for the innovation to penetrate the group in

the first place, however, once one of the groups adopts, this link will make it easier to spread from

one group to the other.

5.1 Simulations

1 
2 

3 

4 

(a) Four individuals in a small-world
network with no rewiring. The cohesion of
group {1, 2, 3} is 1/2. The cohesion of group
{1, 2, 4} and group {1, 2, 3, 4} is also 1/2.

1 
2 

3 

4 

(b) Four individuals in a small-world net-
work after a link is rewired. The link be-
tween 1 and 3 is deleted and a new link is added
between 3 and some other individual in the net-
work. The cohesion of group {1, 2, 3} and group
{1, 2, 3, 4} is now 1/4.

Figure 9: Example of four individuals in a small-world network

We test our model by simulating diffusion over a well-studied class of networks known as ‘small-

world’ networks (Watts and Strogatz (1998)). Small-world networks are binary, symmetric networks

with two properties found in many real networks. The first is small average path lengths, such that

any two randomly chosen individuals tend to be connected to each other via relatively few links.

The second is high clustering, that is, individuals tend to have links in common with those they

are linked to. In a classic paper, Watts and Strogatz (1998) consider random rewiring in small-

world networks. They start with a highly clustered network. They then randomly remove links and

add new ones. This process gradually breaks up tightly knit groups, creating networks with more

disperse links. Acemoglu, Ozdaglar, and Yildiz (2011) show that reduced clustering is associated

with reduced cohesion of groups within a network. Therefore, as the amount of rewiring in these

small-world networks increases, this is associated with reduced cohesion of groups in the network. We

follow their example of using this class of networks to consider diffusion across comparable networks

but which move from networks made up of cohesive groups to networks with disperse ties. Figure 9

shows a group of 4 individuals in a small-world network and what happens to the cohesion of these

4 individuals following rewiring.

Precisely, we start with a ring lattice with 1000 individuals and 4 links per individual (Figure 9a

shows what the connections for 4 neighboring individuals look like in this network - this is repeated

throughout the network). The rewiring probability is a probability p for each link that the link

is deleted and reconnected between two random individuals.29 A higher value of p results in more

29A link will not be rewired to connect between two individuals who already have a link or to connect an individual
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Figure 10: Simulations across different networks
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Figure 10a plots average total adoption for an innovation with a high threshold of adoption across the class of networks
we consider (from networks with rewiring probability p = 0 to rewiring probability p = 0.3). The top graph in Figure
10a plots average total adoption when joint decision-making does not occur during the diffusion process. The bottom
graph in Figure 10a plots average total adoption when joint decision-making does occur during the diffusion process.
Moving from Figure 10a through to Figure 10f, we repeat the same process but for innovations with increasingly lower
thresholds of adoption. Figure 10f shows diffusion for the innovation with the lowest threshold of adoption. When
no joint decision-making takes place (the top graph in Figure 10a to Figure 10f) the lines are upward sloping: the
relationship between total adoption and cohesion is negative, for all thresholds of adoption. When joint decision-
making occurs, at high thresholds of adoption the slope of the line is instead negative, see Figure 10a and Figure 10b.
The relationship between total adoption and cohesion is positive and the optimal network is the most cohesive network
in the class of networks we consider. When joint decision-making occurs, as the threshold of adoption decreases, the
optimal network is less and less cohesive. For the lowest threshold of adoption we consider, in Figure 10f, the slope of
the line is positive and the least cohesive society we generate allows the most adoption.
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rewiring and so breaks up more links inside clustered groups and rewires them randomly to generate

more disperse ties. We thus create a class of networks with different rewiring probabilities, where

higher rewiring probabilities are associated with fewer cohesive groups and more disperse ties.

In the simulations, we consider a given innovation and how this will diffuse throughout the class

of networks generated. For that given innovation, we generate an idiosyncratic threshold for each

individual, Q
i
, from a uniform distribution. To consider innovations with higher thresholds, we select

individual thresholds from a uniform distribution with a higher support. We generate 100 networks

for each rewiring probability we consider. That is, we generate 100 of the most cohesive type of

network, 100 of the next most cohesive, and so on. For each network we randomly select some groups

of 3 or more completely connected individuals who are able to make joint adoption decisions. We seed

the network so that 1 individual is selected to adopt in period 0 and then run the diffusion process

described in the framework above. We compare how this given innovation diffuses across more or less

cohesive networks in our class. We repeat the whole process again for a range of innovations with

different thresholds.

Figure 10 plots the findings from the simulations. Figure 10a shows the average number of

adopters of a given innovation, for each network in the class (from no rewiring, p = 0, which is the

most cohesive, to rewiring with probability p = 0.3, which is the least cohesive network we consider),

and for the case of no joint decision-making (top graph) and the case with joint decision-making

(bottom graph). Figure 10b does the same for a given innovation with a lower threshold of adoption

than that in Figure 10a. Figure 10c, Figure 10d, and so on, show the simulations for innovations with

increasingly lower thresholds of adoption. The relationship between rewiring and adoption is always

positive when joint decision-making does not take place; that is, cohesion hurts diffusion. When joint

decision-making occurs, for high thresholds (e.g. Figure 10a) the relationship between rewiring and

adoption goes in the opposite direction, it is negative: cohesion helps diffusion. However, we see the

peak of the ‘with joint-decision making’ plots gradually moving to the right as rewiring increases. As

the threshold decreases, less cohesive and increasingly disperse networks generate the most adoption.

6 Discussion: Innovation, Society, and Policy

The model identifies two key parameters that determine diffusion. The first, related to the innovation,

is the threshold of adoption (the proportion of contacts that must adopt an innovation before an

individual is willing to adopt it). The second, related to the network, is the extent to which the

society is made up of cohesive groups. In this section we consider evidence on these two parameters.

Which societies are comprised of more cohesive groups? What kind of innovations have higher or

lower thresholds? We then consider the policy implications for governments wanting to encourage

adoption of technologies. As well as the implications for firms trying to diffuse a product.

with himself.
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6.1 Measures of Societal Structure

What evidence is there on the extent to which people tend to interact within a cohesive group versus

having loosely knit ties? Does this vary and, if so, how does this vary across societies? If this is an

important feature of different societies then our findings have consequences, not only for technological

progress and specialization, but also for policy and marketing strategies of firms.

In fact, this dimension of society has been extensively documented. Societies made up of closely

knit groups, with interactions mainly within the group and few outside, are referred to as collec-

tivist. Societies where individuals have more disperse connections are referred to as individualist.

Avner Greif, in important work in economics showing the effect of culture on institutions, describes

differences across societies as follows:30

‘In collectivist societies the social structure is “segregated”, in the sense that each individual

interacts socially and economically mainly with members of a particular religious, ethnic, or familial

group...In Individualistic societies, the social structure is “integrated”, in the sense that economic

transactions are conducted among people from different groups, and individuals frequently shift from

one group to another.’

Such differences in the degree to which individuals in a society interact within an insular groups

is considered an aspect of a society’s culture. Gorodnichenko and Roland (forthcoming) point out

that ‘the individualism-collectivism distinction is considered by cross-cultural psychologists to be the

main dimension of cultural variation’.

Such differences have been documented even across historic societies. Cohesive, large, kinship

groups were part of most early societies (Greif and Tabellini (2010)). Greif and Tabellini (2010)

document how such groups persisted in China and how clans remained part of the structure of

Chinese society even in late imperial China. In contrast, in Europe, tribal tendencies were undone

by the Church so that by the 9th century ‘large kinship groups remained only on Europe’s social and

geographical margins’.

The best known modern measure of collectivism was collected by Hofstede (2003). Like Avner

Greif, his description of this dimension of social structure mirrors the network definition we present

in the theoretical results above:

‘Individualism on the one side versus its opposite, collectivism, is the degree to which individuals

are integrated into groups. On the individualist side we find societies in which the ties between

individuals are loose...On the collectivist side, we find societies in which people from birth onwards

are integrated into strong, cohesive in-groups, often extended families...’

Hofstede (2003) surveyed IBM employees across various countries. He then used factor analysis

to construct the collectivist/individualist index. Although the above definition refers to relations

between individuals, Hofstede (2003) did not map out social connections but instead asked survey

questions. Details can be found in Fogli and Veldkamp (2013) and Gorodnichenko and Roland

(forthcoming), as well as references to follow-up work which links the index to social networks. Table

1 gives some examples of the individualism scores of various countries in the Hofstede Index. The

30Greif (1993), Greif (2006).
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higher the score the more individualist the country.

Table 1: Hofstede Index of Individualism for a sample of countries, from 0− 100 where 100 is most
individualist

Country Score

United States 91
Great Britain 89
Canada 80
Netherlands 80
Italy 76
France 71
Germany 67
Israel 54
Spain 51
Japan 46
Brazil 38
Mexico 30
Malaysia 26
China 20
South Korea 18
Indonesia 14

There are clearly difficulties in collecting and developing a country-specific measure of social struc-

ture. Recent work in economics has used creative approaches to develop new variables relevant to this

dimension of social structure, but which avoid some of the problems associated with Hofstede’s Index.

Fogli and Veldkamp (2013) use the difference in prevalence between human and zoonotic disease to

capture the network structure. The idea is that communicable diseases influence the ‘prevalence of

collectives’ in a society since such groups have greater protection against the spread of disease and

so will be less likely to die out in environments with a high disease burden.31 Gorodnichenko and

Roland (forthcoming) use genetic research suggesting that certain genes can affect the prevalence

of collectivist culture and showing a correlation between the two. This works through the effect of

a gene in increasing the intensity of stress when faced with social rejection, leading to collectivist

cultures that protect against social rejection. They also consider a second gene that increases the

risk of depression, with the argument that this gene encourages individuals to embed themselves to

a greater extent in strong communities to again offer some protection.

A literature in economics on the family, also captures, although in a different way, the idea of a

cohesive group.32 This literature shows that some societies have particularly strong relations between

group members, where the group, in this case, is the family. As a result, societies with strong family

relations typically have weaker relations between non-family members. Societies with strong family

ties have a similar interpretation to that of the clan, these are societies made up of insular, tightly-

knit groups. Indeed family relations can vary dramatically ‘at one extreme, nuclear families are those

31This is supported by results in network design. Goyal and Vigier (2014) suggest that when attack resources are
higher (here the disease burden) then optimal networks involve segregating a population into more groups.

32See Alesina and Giuliano (2014) for a review of the literature.
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in which children are emancipated from their parents and leave the household at the time of marriage

or before. At the opposite extreme, the extended family typically consists of three generations living

together and cooperating’ (Alesina and Giuliano (2010)). Alesina and Giuliano (2010) document the

strength of family ties across different countries and create an index of how this varies.

Given societies differ systematically along the dimension suggested by our theory, our findings

have consequences not only for technological progress and specialization, but also for government

policy and marketing strategies of firms. Government policies to induce adoption of a wide spectrum

of technologies are ubiquitous, both across the developing and developed world. Which technologies

governments should promote depends on how effectively that effort translates into adoption. Firms

have limited resources to spend on marketing a product and maybe limited in the number of markets

they can enter. Which markets they should enter is an important consideration.

Our findings suggest different technologies will spread differently in different societies and by

potentially different means. A government or other body wanting to encourage adoption of tech-

nologies, be it through subsidies or other programmes, should choose carefully which technologies

to ‘promote’ depending on the structure of society. Technologies with high thresholds will be very

difficult to diffuse in ‘individualist’ societies with disperse social connections. This is true even if joint

decision-making amongst individuals is relatively prolific. In collectivist societies, except in relation

to technologies with very low thresholds, diffusion of a technology can only take place if accompanied

by joint decision-making. Devoting resources to encouraging cooperation in more collectivist societies

and among insular groups (if it is possible to do so) will aid diffusion.

A firm or other organization wanting to increase adoption of a certain technology has a slightly

different problem. They must choose carefully in which societies to spend scarce resources. Tech-

nologies with high thresholds of adoption will be very difficult to diffuse in individualist societies, and

should be targeted at collectivist societies. Targeting a technology with a low threshold of adoption

at an individualist society will result in higher take-up of the product.

6.2 Threshold of Adoption of an Innovation

This paper considers innovations where an individual’s utility from adopting the innovation depends

on others adopting. We review evidence on the different channels this works through. We use this to

provide micro-foundations to determine how thresholds of adoption differ across different technologies

and why. In this section we simply state the results, while the formal micro-foundations are found

in the Appendix. We discuss how this relates to findings and policy implications.

Value of the Network versus Independent Value

Consider a technology whose value derives from the network of users (its usefulness depends on others

using the technology) and which has independent value (it has some value independent of whether

others use the technology). The higher the independent value of the technology, the lower its thresh-

old of adoption.
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Example: Communication Technologies. At one extreme are technologies whose value derives com-

pletely from who else is using them. This can be a feature of communication technologies and suggests

a high threshold of adoption.33 Messaging applications such as WhatsApp provide a good example.

The value of a messaging application comes solely through communication with contacts who also

use the application. Individuals tend to use only one messaging application (rather than use different

applications with different contacts), and hence messaging applications are argued to have a high

threshold since it is difficult to get people to switch to new applications without their contacts.34

The adoption of mobile phones in developing countries also provides a good example. In developing

countries, which typically do not have expansive fixed-line networks, and where internet services on

phones were not widely used during the adoption phase, the benefit of using a mobile phone comes

solely from others using one too.35

The value of some communication technologies may depend on the network of other users, but

also have independent value. The higher the independent value, the lower the threshold of adoption.

For example, mobile phone technology in developed countries was introduced alongside extensive

fixed-line networks. A mobile phone therefore had some value even if none of an individual’s contacts

adopted one. Of course, the utility of adopting a mobile phone is still increasing as contacts adopt a

mobile phone, since it allows both users to communicate wherever they are, as well as for new forms

of communication (e.g. text messages). This implies a lower threshold of adoption than technologies

whose value depends solely on the network. Another example is choice of mobile phone operator. In

many countries, operators differentiate the cost of calls to users of the same operator and the cost

to users of a different operator. Then the benefit of an operator depends on the proportion of an

individual’s contacts who also use the same operator. However, having a particular operator has

independent value, even if an individual’s contacts all use different operators, since communication

is still possible across operators, it is just more costly. Analysis of choice of network provider in the

UK finds ‘considerable inertia [in an individual’s choice of provider],...but is heavily influenced by the

choices of others in the same household’ (Birke and Swann (2006)). Similarly, computers have both

network benefits, as well as independent value. Goolsbee and Klenow (2002) show that individuals

are more likely to buy their first home computer when a larger share of their family and friends do,

and that this is tied to the use of email and internet.

The framework in this paper predicts that communication technologies whose value depends

solely on the networks of users will be adopted to a greater extent in societies formed of more

cohesive groups, compared to communication technologies with some independent value which will

be adopted to a greater extent in societies with less cohesive groups and more disperse ties. The fax

33Technologies can also have indirect benefits from other users. Direct benefits occur when the value of the good
comes from other users, while indirect benefits occurs when more consumers induces a response from the supply side. In
this paper we are concerned with direct benefits. For work on direct benefits but from the supply side see Economides
and Himmelberg (1995).

34‘Why Telegram has become the hottest messaging app in the world’ www.theverge.com. Of course, an interesting
question, that we do not ask here, is why firms do not make their messaging application compatible with other
messaging applications. For interesting work on this see Economides and Skrzypacz (2003).

35Björkegren (2015) looks at adoption in Rwanda where ‘usage and availability of mobile internet data during the
period of interest was negligible’.
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machine is one such technology whose value depends solely on the network of users. In the 1980s, the

fax machine gradually became the mode of business communication, superseding telex (a network

of printers that sent long-distance text based messages). However, widespread adoption of the fax

machine did not occur in the US where it was invented. The fax machine was invented in 1843

and continuously improved upon by companies in the United States, but it failed to reach a mass

market. In the 1980s however, widespread adoption occurred in Japan. Japan ranks as one of the

most collectivist high-income countries in the world. The fax machine spread so widely in Japan it

became a standard not only in businesses but also homes. It was only after the fax machine was

adopted extensively in Japan that it finally became a widespread technology in the West.36

Complementarities in Adoption versus Pure Externalities

Consider a technology with complementarities in adoption (the utility from adopting the innovation

is increasing as others adopt) and with pure externalities (the utility for an individual who does not

adopt the innovation is increasing as others adopt it). The higher the complementarities in adoption,

the lower the threshold of adoption. The higher the pure externalities, the higher the threshold of

adoption.

Example: Health Technologies. Subsidies and other interventions to increase adoption of various

health technologies are common across the developing world.37 As discussed in the introduction,

adopting safe sanitation may not have particularly high benefit if neighboring households practice

open defecation and flies continue to carry germs from nearby. A household may then want to adopt

safe sanitation only when some proportion of neighboring households do so. Guiteras, Levinsohn, and

Mobarak (2015) show that when some members of communities in Bangladesh are given subsidies for

hygienic latrines, this increases ownership both among those individuals and their neighbors. In the

same way, using a bed net to prevent malaria may have fewer benefits if a low proportion of others

in the community use bed nets since then the risk of malaria in the community can remain high.38

Dupas (2014) finds that individuals are more likely to adopt a bed net if they receive a subsidy or

if they do not receive a subsidy but their neighbors do. Another example is deworming treatment.

Treating a child may have higher returns for that child if other children at school also get treatment,

since it reduces the child’s likelihood of reinfection (Miguel and Kremer (2004)).

A number of influences could play a role in an individual’s decision to adopt such health technolo-

gies. First, how valuable the health technology is to an individual when none of his contacts adopt

it. Second, the degree of complementarity associated with the health technology: how much does

an individual’s benefit from adopting the health technology increase as his contacts adopt it. Third,

the degree of pure externality: how much does the individual’s utility from not using the technology

increase as others adopt it. We show in the Appendix that the threshold of adoption Q is decreasing

36Information on the fax machine from Beise (2003).
37See Dupas (2014), Guiteras, Levinsohn, and Mobarak (2015).
38See Killeen, Smith, Ferguson, Mshinda, Abdulla, Lengeler, and Kachur (2007) for details on malaria transmission

and bed net usage in communities.
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as the value to an individual of adopting the health technology when none of his contacts adopt it

increases. The threshold of adoption Q is decreasing in the degree of complementarity and increasing

in the degree of pure externality.

One implication of our framework is that health technologies with high pure externalities (where

individuals benefit from others adopting even if they personally do not adopt), will not only be

extremely difficult to diffuse but, without providing extra incentives, will be adopted only in insular

tightly knit communities. In urban areas, where living conditions are typically more inter-connected

and individuals are less likely to be living in insular neighborhoods, our findings imply it will be

difficult to get health technologies adopted. Consider the example of sanitation. Suppose a household

will not adopt sanitation unless a high proportion of neighbors adopt. In an area with many inter-

connected households, a given household does not want to adopt until his neighbors adopt, but his

neighbors do not want to adopt unless their neighbors adopt. In an urban setting, where individuals

are not part of insular groups, the neighbors of a household’s neighbors are not his neighbors. This

means that for any household to want to adopt, a high proportion of the population as a whole must

adopt. This is not because the behavior of a large proportion of the population influences a single

household, rather this is a result of the indirect effect of each household needing a high proportion

of his neighbors adopting and the structure of the network.

In an experiment studying the adoption of an online health technology, Centola (2010) is able to

analyze directly whether the health technology will spread further on some types of network than

others. He assigns participants in his study ‘health buddies’ and looks at whether they sign up to an

online health forum (the health technology), which rates different health resources. Those who sign

up to the online health forum receive ratings and feedback about health resources from their buddies.

Centola (2010) shows that participants are more likely to sign up when more of their health buddies

sign up. He then shows that the health technology spreads further in networks where health buddies

form clustered groups, compared to networks where individuals have more random ties to different

health buddies.

7 Conclusion

We developed a model of diffusion to incorporate an additional feature of adoption behavior observed

in the real world. Family, friends, neighbors, and other contacts do not just influence each other’s

adoption decision, they also discuss and make adoption decisions together. We showed which societal

structures allow for greater diffusion of an innovation. Accounting for joint decision-making behavior

is important since it alters our understanding of what kind of network structures allow for greater

diffusion. The extent to which an innovation will diffuse depends systematically on a particular

dimension of network structure: the extent to which a society is more or less ‘community-based’. For

innovations with low thresholds of adoption, less community-based societies enable more diffusion.

As the threshold of adoption increases, gradually more and more community-based societies become

superior at diffusing the innovation.

These findings suggest technology specialization across different societies and imply that gov-
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ernments, development organizations, and firms that aim to promote or subsidize adoption of tech-

nologies should carefully consider both technologies and markets. That is, a government wanting

to promote adoption of new technologies in a particular population should choose carefully which

technologies to subsidize. A firm marketing its product should choose carefully in which populations

and markets to spend resources.

A lot of detailed work in the development literature studies how best to get populations to adopt

various technologies. Applying our predictions in such micro-level studies would enable a careful test

of the theory as well as provide evidence on how to target technologies at particular communities.
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Appendix

Proof of Proposition 3

First note that there always exists at least one resilient set. Specifically, the empty set is always

resilient. Let S1, S2 be two resilient sets. Consider S = S1∪S2. We show that S is resilient. Assume

that it is not. That is, there exists T ∈ Ω, T ⊆ S such that for all i ∈ T , Ii(S)− Ii(T ) < 1−Q
i
. T

must intersect S1 and or S2. Assume w.l.o.g. that T ∩ S1 =: T1 6= ∅. As S1 ⊇ T1, for all i ∈ T1 we

have that:

Ii(S1)− Ii(T1) =

∑
j∈S1

wji −
∑

j∈T1 wji∑
j∈N wji

=

∑
j∈S1∪(T\T1) wji −

∑
j∈T1∪(T\T1) wji∑

j∈N wji

=

∑
j∈S1∪T wji −

∑
j∈T wji∑

j∈N wji
≤

∑
j∈S wji −

∑
j∈T wji∑

j∈N wji
= Ii(S)− Ii(T ) < 1−Q

i

which contradicts S1 being resilient. Thus there exists a unique maximal resilient set S∗, in which

all resilient sets S are set included S ⊆ S∗. For any i ∈ R ⊆ N for any R which satisfies Lemma 2,

then i ∈ S∗. For all other i, then i /∈ S∗.
Denote

St := {i ∈ N : ati = 0}.

Take any t − 1 where St−1 ⊇ S∗. Note that S0 ⊇ S∗. Let T ∈ Ω be the coalition selected in period

t according to a distribution Ξ(.) which has full support on Ω. If T ∩ S∗ = ∅, then clearly St ⊇ S∗.

Assume that T ∩ S∗ 6= ∅. Denote T1 := T ∩ S∗. Note that by the definition of Ω, T1 ∈ Ω. Seeking a

contradiction, suppose

ui(aT = 1, aN\T = at−1
N\T ) > ui(a

t−1) for all i ∈ T.

Then, for all i ∈ T ,

Q
i
< Qi(aT = 1, aN\T = at−1

N\T ) ≤
∑

j /∈St\T wji∑
j∈N wji

≤
∑

j /∈S∗\T wji∑
j∈N wji

,

giving

1−Q
i
> 1−

∑
j /∈S∗\T wji∑
j∈N wji

=

∑
j∈S∗\T wji∑
j∈N wji

=

∑
j∈S∗ wji −

∑
j∈T∩S∗ wji∑

j∈N wji

= Ii(S
∗)− Ii(T ∩ S∗) = Ii(S

∗)− Ii(T1),

which contradicts resilience of S∗. So, there must exist i ∈ T with ui(aT = 1, aN\T = at−1
N\T ) ≤

ui(a
t−1), implying at = at−1 and St = St−1. So, for all t, St ⊇ S∗.

Now, as S∗ is the maximal resilient set, if St 6= S∗, there must exist T ∈ Ω, T ⊆ St such that for
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all i ∈ T ,

1−Q
i
> Ii(S

t)− Ii(T ) =
∑
j∈St

wji −
∑
j∈T

wji =
∑

j∈St\T

wji,

implying

Q
i
<

∑
j /∈St\T

wji = Qi(aT = 1, aN\T = at−1
N\T )

which implies ui(aT = 1, aN\T = at−1
N\T ) > ui(a

t−1). The probability of such a T being selected by

Ξ(.) is bounded below by a strictly positive number, so with probability 1 such a set will be selected

in finite time and will choose to protest, giving Sτ ⊂ St for some τ > t.

Iterating, with probability one, a state at, t ∈ N+, will be reached such that St = S∗. By the

arguments in the first paragraph of this proof, such a state must be absorbing.

Proof of Proposition 4

For population N , network L with weights w, set of coalitions Ω, common threshold Q and idiosyn-

cratic components θ :

(i) Denote by S∗(w,Q, θ,Ω) the set of individuals who do not adopt under the unique absorbing

state.

(ii) Define the threshold for adoption by i

Λi(w, θ,Ω) = min{Q : i ∈ S∗(w,Q, θ,Ω)}.

(iii) Define an adoption path

S0, S1, ..., St, ...,

where St is the set of non-adopting nodes at any time t. A maximal adoption path is a path

with St = S∗(w,Q, θ,Ω) for some finite t.

(iv) Define the maximal possible set of feasible coalitions after an increase in wij

Ω(max) ≡ Ω ∪ {T : {i, j} ⊂ T, T\{j} ∈ Ω, and T\{i} ∈ Ω}.

(v) Without loss of generality suppose Λi(w, θ,Ω(max)) ≥ Λj(w, θ,Ω(max)).

Lemma 3 For any r ∈ N , under network L, with coalitions Ω, idiosyncratic components θ, and

Q = Λr(w, θ,Ω), there exists a coalition T ∈ Ω where T ⊆ S∗(w,Q, θ,Ω) such that

∀ k ∈ T, Ik(S
∗(w,Q, θ,Ω))− Ik(T ) ≤ 1− (Q+ θk). (1)

Select some such T which satisfies (1). If r ∈ T then stop, and T terminates the iteration. If r /∈ T
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then there exists a coalition T ′ ⊆ S∗(w,Q, θ,Ω)\T such that

∀ k ∈ T ′, Ik(S
∗(w,Q, θ,Ω)\T )− Ik(T ′) ≤ 1− (Q+ θk). (2)

Select some such T ′ which satisfies (2). If r ∈ T ′ then stop, and T ′ terminates the iteration. If r /∈ T ′

then repeat.

By definition of Λr(w, θ,Ω), r does not adopt at Q = Λr(w, θ,Ω), but adopts for all Q <

Λr(w, θ,Ω). For all Q < Λr(w, θ,Ω), there must exist an adoption path such that at time t, St =

S∗(w,Q, θ,Ω), since any path up to some St available under Q is also available under all Q lower.

Further, since the resilient set at all Q < Λr(w, θ,Ω) does not include r, then the resilient set for all

Q < Λr(w, θ,Ω), must be a strict subset of S∗(w,Q, θ,Ω).

To show that (1) must hold, suppose that when Q = Λr(w, θ,Ω), for all T ⊆ S∗(w,Q,Ω, θ,Ω)

there exists k ∈ T such that

Ik(S
∗(w,Q, θ,Ω))− Ik(T ) > 1− (Q+ θk).

Then this continues to hold at Q = Λr(w, θ,Ω) − ε for ε small enough. By definition of resilience,

then S∗(w,Q, θ,Ω) is resilient for some Q < Λr(w, θ,Ω). A contradiction.

Now, for any Q < Λr(w, θ,Ω), some T which satisfies (1) is selected at time t + 1 with positive

probability, and so there exists a feasible adoption path with St+1 = S∗(w,Q,Ω, θ,Ω)\T. If r ∈ St+1,

by the argument above, the resilient set is a strict subset of St+1 for all Q < Λr(w, θ,Ω), and there

exists T ′ ⊆ St+1 such that

∀ k ∈ T ′, Ik(S
t+1)− Ik(T ′) ≤ 1− (Λr(w̃) + θk). (3)

The argument repeats itself until the feasible adoption path has r adopt. �

For weighted network w, coalitions Ω(max), suppose @T where {i, j} ⊆ T that satisfies (1)

For weighted network w, coalitions Ω(max), first take the case where j /∈ T for any possible

terminating coalition in Lemma 3.

Then S∗(w,Q, θ,Ω) = S∗(w,Q, θ,Ω(max)) for all Q and Λk(w, θ,Ω) = Λk(w, θ,Ω(max)) for all k.

Under w and Ω(max), for all Q < Λi(w, θ,Ω(max)), there exists a maximal path of adoption such

that i adopts as part of a coalition T where j /∈ T and for all Q ≥ Λi(w, θ,Ω(max)), there exists a

maximal path that does not include i or j. Clearly the same such path is available under w and Ω,

thus S∗(w,Q, θ,Ω) ⊆ S∗(w,Q, θ,Ω(max)) for all Q. Since a reduction in the set of feasible coalitions

(weakly) decreases total adoption, S∗(w,Q, θ,Ω) ⊇ S∗(w,Q, θ,Ω(max)), for all Q.
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Next, show that under w, Ω, at Q = Λi(w, θ,Ω) that S∗(w,Q, θ,Ω) remains resilient following a

marginal increase in wij. By definition of resilience, under w for all T ⊆ S∗(w,Q, θ,Ω), T ∈ Ω, there

exists k ∈ T such that

Ik(S
∗(w,Q, θ,Ω))− Ik(T ) =

∑
l∈S∗(w,Q,θ,Ω)\T wlk∑

l wlk
≥ 1−Q− θk. (4)

To show S∗(w,Q, θ,Ω) remains resilient, we show that the inequality in (4) holds following a marginal

increase in wij not only for all T ∈ Ω, but also T ∈ Ω(max), since new coalitions may become feasible.

For k 6= i, j there is no change in (4) following a marginal increase in wij. For k = i, j and T such that

{i, j} * T then the left hand side of (4) increases after a marginal increase in wij and (4) continues

to hold. By assumption, for k = i, j and for any T ∈ Ω(max) such that {i, j} ⊆ T, then by Lemma

3, (4) holds strictly for some k, and so for a small enough marginal increase in wij (4) continues to hold.

Next examine the change in Λj(w, θ,Ω) if Λi(w, θ,Ω) > Λj(w, θ,Ω).Under w, Ω, for all Λj(w, θ,Ω) ≤
Q < Λi(w, θ,Ω), there exists an initial part of an adoption path S0, .., St

′
such that i adopts action

1 at time t′. For any Q < Λj(w,Ω), there exists a continuation to this path denoted St
′+1, ..., St

′′
, ...

such that j adopts action 1 at time t′′, and then a further extension to a maximal path of adoption.

For all k ∈ T for all coalitions T which adopt action 1 on this path at each time t:

Ik(S
t−1(w,Q, θ,Ω))− Ik(T ) =

∑
l∈St−1(w,Q,θ,Ω)\T wlk∑

l wlk
< 1− (Q+ θk). (5)

Consider a marginal increase in wij. For any Q < Λj(w,Ω), the maximal path of adoption described

above continues to exist. For all k 6= i, j, (5) continues to hold since there is no change. For k = i,

for wij small enough (5) holds, since before the marginal increase it holds for some Q > Λj(w,Ω).

Hence for a small enough increase in wij this path remains feasible.

Thus, for some small enough marginal increase in wij there exists ε ≥ 0 such that, for allQ < Λi−ε,
i will adopt and, for all Q ≥ Λi − ε, i will not adopt. It is then immediate from the above that for

all Q < Λi − ε total adoption is weakly higher and for all Q ≥ Λi − ε total adoption is weakly lower.

The remaining possibility is that for network w, coalitions Ω(max) that {i, j} ⊆ T for some ter-

minating coalition in Lemma 3 (although by assumption, there is no such T that satisfies (1) where

{i, j} ⊆ T ). Following a marginal increase in wij, the inequality in Lemma 3 continues to hold for T

where {i, j} ⊆ T. But for a small enough marginal increase in wij this coalition will not adopt until

some coalition T that satisfies (1) adopts. Therefore under w and Ω(max), adoption is invariant to

a marginal increase in wij. The same holds if {i, j} ⊆ T for some terminating coalition in Lemma 3

when the set of coalitions is Ω. If not, then we are in the situation above and the above threshold

holds.

44



For network w, coalitions Ω(max), suppose ∃T that satisfies (1) where {i, j} ⊆ T

It follows immediately from Lemma 3 that Λi(w, θ,Ω(max)) = Λj(w, θ,Ω(max)). For network w

and coalitions Ω(max), for all Q < Λi(w, θ,Ω(max)) there exists an initial part of a maximal path

S0, ..., S∗(w,Λi(w, θ,Ω(max)), θ,Ω(max)). By Lemma 3, there exists a continuation to this path such

that a coalition T where {i, j} ⊆ T adopts on the path. For all k ∈ T for each coalitions T which

adopts action 1 at each time t:

Ik(S
t−1(w,Q, θ,Ω(max)))− Ik(T ) =

∑
l∈St−1(w,Q,θ,Ω(max))\T wlk∑

l wlk
< 1− (Q+ θk). (6)

Following an increase in wij, for k 6= i, j the inequality (6) holds. For k = i, j then on this path i

and j both adopt as part of the same coalition T and the left hand side of inequality (6) decreases.

Thus the same path remains feasible following a marginal increase in wij with Ω(max) held fixed.

The equality Λi(w, θ,Ω) = Λj(w, θ,Ω) follows from Λi(w, θ,Ω(max)) = Λj(w, θ,Ω(max)). If for

network w and coalitions Ω there exists T that satisfies (1) where {i, j} ⊆ T, then by the same

argument as above adoption cannot decrease following a marginal increase in wij. If not, but some

such coalition becomes available following an increase in wij then as above. If not, and no such

coalition becomes available following an increase in wij, then by the same arguments as the section

above, Λi(w, θ,Ω) = Λj(w, θ,Ω) is weakly decreasing in wij.

For Q < Λi(w, θ,Ω) total adoption weakly decreases following a marginal increase in wij. Fix

Q < Λi(w, θ,Ω), then for all T ⊆ S∗(w,Q, θ,Ω) there exists l ∈ T such that

Il(S
∗(w,Q, θ,Ω))− Il(T ) =

∑
h∈S∗(w,Q,θ,Ω)\T whl∑

hwhl
≥ 1−Ql. (7)

Following a marginal increase in wij, for any l 6= i, j then (7) is invariant to a marginal increase in

wij. Since i, j /∈ S∗(w,Q, θ,Ω) then for all T ⊆ S∗(w,Q, θ,Ω) there exists l ∈ T such that (7) holds,

and further the marginal increase in wij does not create new coalitions contained in S∗(w,Q, θ,Ω).

For Q ≥ Λi(w, θ,Ω) total adoption weakly increases following a marginal increase in wij. For any

Q > Λi(w, θ,Ω), take any feasible adoption path S0, ..., St, ... At each time t where a coalition T

adopts the innovation, for all k ∈ T

Ik(S
t−1)− Ik(T ) =

∑
l∈St−1\T wlk∑

l wlk
< 1− (Q+ θk). (8)

For fixed St−1 and any k 6= i, j this expression is invariant to a marginal increase in wij. Therefore,

since i, j do not adopt on this path, this path remains feasible following a marginal increase in wij.
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Proof of Proposition 5

Given population N, network w, coalitions Ω, and a strongly-cohesive set R, let Q̃ be the highest

value of Q at which no individual in the set R adopts, but some individual in R adopts for all Q < Q̃.

That is at Q = Q̃: 1. in the absorbing state, ai = 0 for all i ∈ R, and 2. in the absorbing state, for

some set T1 ⊂ R and some coalition T ∈ Ω, where T1 ⊆ T and T\T1 ∩R = ∅∑
j /∈R ajwij∑

j wij
+

∑
j∈T wij∑
j wij

≥ Q̄, for all i ∈ T, (9)

with equality for some i ∈ T1. The whole set R will then adopt in the absorbing state for all Q < Q̃.

Suppose not, and let T̃ ⊂ R be the maximal set of individuals that do not adopt in the absorbing

state for some Q < Q̃. By definition of a strongly-cohesive set, Ii(R) − Ii(T̃ ) > Q̃ for some i ∈ T̃ .

But then since aj = 1 for all j ∈ R\T̃ in the absorbing state for any Q < Q̃, then when i ∈ T̃ is

selected to update he chooses ai = 1. A contradiction.

Consider a marginal increase in wij for i and j both part of such a set T1. The left hand side

of (9) increases and so the inequality continues to be satisfied. Then the set R continues to adopt

in the absorbing state following a marginal increase in wij and total adoption does not decrease, for

all Q < Q̃. Similarly, since R does not adopt in the absorbing state for any Q ≥ Q̃, then if no

member of R adopts following a marginal increase in wij then there is no change in the absorbing

state. However, if (9) becomes strict for all i ∈ T following a marginal increase in wij, then T1 will

adopt in the absorbing state at Q̃ and total adoption strictly increases at this value.

Consider a marginal increase in wij for i and j where neither i nor j are part of any such set

T1 that satisfies (9). From above, the whole set R continues to adopt for all Q < Q̃ since the in-

equality Ii(R)− Ii(T̃ ) > Q̃ remains strict following a small enough marginal increase in wij. The set

R will never adopt for any Q ≥ Q̃ since (9) is never satisfied with a strict inequality for any such T1.

There is no change in total adoption at any Q.

Consider a marginal increase in wij where i is part of some set T1 that satisfies (9) and j is not

part of the same set T1. The left hand side of (9) weakly decreases for i and the condition may no

longer hold. If some other set continues to satisfy this condition following a marginal increase in wij,

then the effect is the same as a marginal increase in wij for i and j where neither are part of any

such set T1 (above). If no other group satisfies the condition following a marginal increase in wij,

then total adoption may decrease for some Q less than but approaching Q̃. There is no change for

the remaining Q ≥ Q̃. Set Qij = Q̃, then total adoption is weakly increasing for Q ≥ Q̃ and weakly

decreasing for Q < Q̃.

For some other strongly-cohesive set R′, let ˜̃Q be the highest value of Q at which no individual

in the set R′ adopts in the absorbing state, but some individual in R′ adopts in the absorbing state
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for all Q < ˜̃Q. Suppose Q̃ > ˜̃Q and consider a marginal increase in wij. Suppose condition (9)

continues to be satisfied for some set T1, then by the same argument above, the set R adopts in the

absorbing state for all Q < Q̃ but not for Q ≥ Q̃. Suppose condition (9) is no longer satisfied for any

set T1, then as above, following a small enough marginal increase in wij total adoption may decrease

for some ˜̃Q < Q < Q̃, where Q approaches Q̃. If some member of R adopts the whole set adopts.

There is no change for Q ≥ Q̃. What happens to the set R′? If j is part of some T1 that satisfies

(9) for R′, then the left hand side of (9) weakly increases for j and the condition is possibly satisfied

with strict equality for all members of the coalition. Then the set T1 will adopt at Q = ˜̃Q and total

adoption weakly increases for all Q ≤ ˜̃Q following a marginal increase in wij. Set ˜̃Q ≤ Qij < Q̃, then

total adoption is weakly increasing for Q ≤ Qij and weakly decreasing for Q > Qij.

Suppose instead Q̃ = ˜̃Q. Then condition (9) holds for at least one set T1 ⊆ R and at least one

set T ′1 ⊆ R′. Suppose there is no set T ∈ Ω which satisfies condition (9) and contains both sets

T1 ⊆ R and T ′1 ⊆ R′. By the same argument as above, a marginal increase in wij either has no effect

on total adoption or total adoption may decrease for some Q less than but approaching Q̃. If instead

there exists a set T ∈ Ω which satisfies condition (9) and contains both sets T1 ⊆ R and T ′1 ⊆ R′,

then again as above, a marginal increase in wij may result in adoption in R and R′ at Q = Q̃.

Micro-founding the Threshold of Adoption Q

We micro-found the parameter Q to understand how its value is affected by other parameters. As-

sume homogeneous individuals.

1. Network effects versus independent value.

Fix the utility for individual i from the current technology at some value u > 0. Suppose the

value of the new technology derives solely from interaction with other users (for example messaging

applications). The value to i of adopting the new technology if none of his links adopt (Qi = 0), must

be no greater than zero, denoted v(Qi = 0) ≤ 0. Assume this is increasing at rate ∂v(Qi)/∂Qi > 0.

Then Q is the unique value of Qi that satisfies v(Qi) = u. Hold fixed the technology but assume it

now has some value independent of whether others use the same technology or not. Let this value

to individual i be δ > 0. Then utility from the new technology is v(Qi) + δ with ∂v(Qi)/∂Qi > 0

unchanged. Now Q is the unique value of Qi that satisfies v(Qi) + δ = u. Q is strictly lower.

2. Complementarities and pure externalities.

The utility of individual i when he adopts the technology depends on the proportion of contacts

who have adopted, v(Qi). Similarly i’s utility when he does not adopt the technology can depend

on the proportion of contacts who have adopted the new technology, u(Qi). Suppose u(0) > v(0)

so that i will not adopt if no one else adopts. Then ∂v(Qi)/∂Qi > 0 measures how the utility from

47



adopting the technology increases as others adopt, which we refer to as the degree of complementarity

in the technology. While ∂u(Qi)/∂Qi > 0 measures how the utility when i does not adopt the new

technology increases as others adopt the new technology. This represents pure externalities. Suppose

∂v(Qi)/∂Qi < ∂u(Qi)/∂Qi for all Qi. Then i will never adopt the new technology. Let us consider

the relevant case for our framework where ∂v(Qi)/∂Qi ≥ ∂u(Qi)/∂Qi for all Qi and there exists a

unique value of Q that satisfies v(Q) = u(Q) that occurs for Q ≤ 1. A weak increase in the degree

of complementarity for ∂v(Qi)/∂Qi for all Qi weakly reduces the threshold of adoption Q , while a

weak increase in pure externalities ∂u(Qi)/∂Qi for all Qi weakly increases the threshold of adoption

Q.
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