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I study theoretically and numerically Borda-optimal (BO), i.e., optimal

based on the Borda count as the normative criterion, linear taxation of labour

income. On the theoretical side, I derive a first-order condition that any BO

linear tax schedule must satisfy. Based on this condition, I derive two theo-

retical results. First, an increase in inequality has an ambiguous effect on the

progressivity of the BO linear tax schedule. Second, in the special case of uni-

tary elasticity of labour supply, the BO linear tax schedule is more progressive
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1 Introduction

I study theoretically and numerically Borda-optimal (BO), i.e., optimal based on the

Borda count as the normative criterion, linear taxation of labour income. I do so

in the context of a static model with quasilinear preferences, a constant elasticity of

labour supply (σ), and productivities (types) that are private information. Although

the model is highly stylised and the linearity of tax schedules is restrictive, the set-up

is rich enough for studying (in an admittedly crude way) the optimal progressivity of

labour-income taxation.

On the theoretical side, I derive a first-order condition that any BO linear tax

schedule must satisfy. Based on this condition, I derive two theoretical results. First,

an increase in inequality has an ambiguous effect on the progressivity of the BO linear

tax schedule. Second, in the special case of σ = 1, the BO linear tax schedule is more

progressive (strictly so under an additional, plausible assumption) than the median-

type’s optimal feasible linear tax schedule and, hence, than the majority-rule linear

tax schedule.

I complement the theory with numerical analysis of calibrations of the model that

are tailored to the United States and assume different values of σ. This yields two

findings. First, for each value of σ considered, the BO linear tax schedule is strictly

more progressive than the median-type’s optimal feasible linear tax schedule. Second,

the progressivity of the BO linear tax schedule decreases sharply as σ increases.

1.1 Literature on Optimal Taxation of Labour Income

There exists a literature on optimal linear taxation of labour income based on utili-

tarian and Rawlsian normative criteria (e.g., Sheshinski (1972), Helpman and Sadka

(1978), Hellwig (1986)). The most relevant for the current paper analysis is given in

Helpman and Sadka (1978). In particular, the authors find that a mean-preserving
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spread of the distribution of productivities may increase or leave unaffected the pro-

gressivity of the Rawlsian-optimal linear tax schedule. They also conjecture that such

a spread could have an effect of either sign on the progressivity of the utilitarian-

optimal linear tax schedule. Such ambiguous effects of increases in inequality are in

line with my results.

There is also a literature on linear taxation of labour income based on majority

rule (e.g., Romer (1975), Roberts (1977), Meltzer and Richard (1981)). The most

relevant for the current paper finding in this literature is that, under certain assump-

tions, the progressivity of the majority-rule linear tax schedule increases as inequality

(measured by the ratio between mean and median income) increases (Meltzer and

Richard (1981)).

There exists also a large literature on optimal nonlinear taxation of labour income.

The bulk of this literature is based on a utilitarian or Rawlsian criterion (e.g., Mirrlees

(1971), Diamond (1998), and Saez (2001)). The only paper that is based on the

Borda count is, to the best of my knowledge, Ivanov (2022a).1 This literature largely

emphasises issues such as the shape of the optimal marginal-rate schedule, the sign of

the optimal marginal rates, and the magnitude of the optimal marginal rate at high

incomes. These issues are moot for the purposes of the current paper.

1.2 The Borda Count vs. Other Normative Criteria

The Borda count has several important advantages as a normative criterion. First, it

has been characterised in terms of normatively appealing axioms.2 For the purposes

1Ivanov (2022a) considers BO piecewise linear tax schedules. All the findings in that paper are
obtained based on numerical computations.

2Young (1974) and Maskin (2021) characterise the Borda count under the assumption that in-
dividuals’ preferences between alternatives are strict. For the case in which individuals are allowed
to have weak preferences, (i) Young notes that his characterisation theorem can be proved in much
the same way and (ii) Ivanov (2022b) shows that the Borda count satisfies (extensions to the case of
weak preferences of) Maskin’s axioms as well as an additional normatively appealing axiom. In the
current paper, individuals can exhibit indifference between tax schedules. In addition, because the
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of the current paper, the key distinction between the Borda count and majority

rule is that majority rule satisfies Arrow’s independence of irrelevant alternatives

(IIA) whereas the Borda count only satisfies a weakening of IIA, called modified

IIA, proposed in Maskin (2021). Thus, whether the Borda count or majority rule is

deemed normatively preferable comes down to one’s views on the normative merits

of modified IIA vs. IIA.3 Maskin (2021) argues in favour of the former and Pearce

(2021) argues forcefully against the latter.

Second, preference aggregation based on some “reasonable” method such as the

Borda count (or majority rule) seems central to the idea of democracy. In contrast, the

utilitarian and Rawlsian criteria seem disconnected from this idea. This is awkward

given the broad consensus in many countries that public policy should be determined

through a democratic process.

Third, unlike the utilitarian and Rawlsian criteria, the Borda count can be imple-

mented without going beyond ordinal utility. The flip side of this is that, although the

Borda count exhibits some sensitivity to the intensity of preferences between any two

alternatives by taking into account the number of alternatives ranked in between by

each individual, a policy-maker may wish to be more sensitive to preference intensities

(e.g., based on introspection or individuals’ verbal reports).4

In any case, it is safe to say that the Borda count is a main contender as far

as normative criteria go. However, its implications for optimal public policy are

relatively unexplored. The current paper aims to help fill this gap.

existing literature on the Borda count assumes finitely many alternatives whereas there are infinitely
many linear tax schedules, I propose a natural modification of the Borda count. This modification
has not been axiomatised.

3An important limitation of majority rule is that in many contexts a Condorcet winner may not
exist. In the current paper, this point is moot because a Condorcet winner does always exist.

4A utilitarian or Rawlsian criterion may be better able to accommodate such additional sensi-
tivity. However, it is hard for the researcher writing the optimal-policy paper to know what utility
functions to use in the social welfare function given that the appropriate utility functions would be
based on each policy-maker’s subjective judgements and are also likely to differ across policy-makers.
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2 Set-Up

2.1 Preferences and Productivities

Individuals have preferences over consumption c ≥ 0 and labour l ≥ 0 represented

by the utility function c − σ
1+σ

l
1+σ
σ , where σ > 0 is the (Hicksian and Marshallian)

elasticity of labour supply. Each individual has a productivity (or type) w ≥ 0 which

is her private information. When type w puts in labour l, she earns pre-tax income

wl. There is a unit mass of individuals whose types are distributed according to the

cumulative density function (CDF) F .

2.2 Tax Schedules

I restrict attention to linear tax schedules. Given the slope (i.e., the tax rate)

of a tax schedule, its intercept (i.e., the universal basic income (UBI)) is pinned

down via the government budget constraint. In particular, given tax rate t, in-

dividuals receive a per-capita UBI equal to
∫∞

0
twl(w)dF (w) − R, where l(w) =







(1− t)σwσ if t ≤ 1

0 if t > 1
is type w’s optimal labour supply and R > 0 is the exoge-

nously given government consumption. Letting I denote
∫∞

0
w1+σdF (w), the UBI

can be expressed as







t(1− t)σI − R if t ≤ 1

−R if t > 1
.5 A tax rate is feasible if the associ-

ated UBI is nonnegative so that even type w = 0 obtains nonnegative consumption.6

Given that t(1 − t)σI − R is an inverted-U-shaped function of t on (−∞, 1] and as-

suming t(1 − t)σI > R at the revenue-maximising tax rate t = 1/(1 + σ), the set of

feasible tax rates is of the form [t, t], where 0 < t < t < 1.

5I assume I < ∞ (so that the UBI is finite).
6This definition of feasibility implicitly assumes that w = 0 is in the support of F .
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2.3 Indirect Utility over Tax Rates

Given t ≤ 1, type w’s indirect utility is7

v(t, w) = (1− t)wl(w)
︸ ︷︷ ︸

after-tax income

+ t(1− t)σI −R
︸ ︷︷ ︸

UBI

−
σ

1 + σ
l(w)

1+σ
σ

︸ ︷︷ ︸

disutility from labour

= (1)

1

1 + σ
(1− t)σ

(
w1+σ +

(
(1 + σ)I − w1+σ

)
t
)
−R. (2)

Lemma 1 establishes key properties of v and each type’s optimal feasible tax rate.8

Lemma 1

1) For any t ∈ [t, t) and any type w, v(t, w) > v(t, w).

2) For each type w, there is a unique optimal feasible tax rate

t∗(w) =







I−w1+σ

(1+σ)I−w1+σ if w ≤
(

1−(1+σ)t
1−t

I
)1/(1+σ)

t otherwise
. (3)

3) t∗(·) is continuous and strictly decreasing on [0,
(

1−(1+σ)t
1−t

I
)1/(1+σ)

].

4) For each type w, v(·, w) is strictly increasing on [t, t∗(w)] and strictly decreasing

on [t∗(w), t].

For future reference, let vt denote the derivative of v with respect to its first

argument. Also, given t ≤ 1 and w ≥ 0, define τ(t, w) implicitly by the conditions (i)

v(τ(t, w), w) = v(t, w) and (ii) τ(t, w) 6= t whenever more than one value of t̃ solves

v(t̃, w) = v(t, w).9

7This specification of indirect utility implicitly assumes that each individual’s preference over tax
schedules is selfish. This assumption is discussed further in the appendix in Ivanov (2022a).

8All proofs that are not given in the main text can be found in the appendix.
9It is straightforward to verify based on (2) that at most two values of t̃ solve v(t̃, w) = v(t, w).
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3 The Borda Count

3.1 Definition

With a finite number of alternatives, the points that an alternative, x, obtains from

a given individual in the computation of the Borda count equal the number of al-

ternatives the individual ranks strictly below x minus the number of alternatives the

individual ranks strictly above x.10 When the set of alternatives consists of all tax

rates in [t, t], the natural modification is to let the points that tax rate, t, obtains

from an individual of type w equal β(t, w) − α(t, w), where β(t, w) (respectively,

α(t, w)) denotes the Lebesgue measure of tax rates in [t, t] that type w ranks strictly

below (respectively, strictly above) t. Moreover, given part 4) of Lemma 1, individ-

uals can never be indifferent between a positive measure of tax rates in [t, t] so that

β(t, w)−α(t, w) = t− t−2α(t, w). Ignoring irrelevant constants and integrating over

types leads to the following definition of the Borda Count for t ∈ [t, t] given F :

B(t, F ) = −

∫ ∞

0

α(t, w)dF (w). (4)

A BO tax rate (given F ) is one the maximises B(·, F ) on [t, t].11

Note that tax rates above the revenue-maximising rate, 1
1+σ

, are Pareto dominated

and can never maximise B(·, F ). Hence, I will restrict attention to B(·, F ) on [t, 1
1+σ

].

The next section provides a useful way of rewriting B(·, F ) on [t, 1
1+σ

].

10This is the case in the generalisation of the Borda count for the case in which (like in the current
paper) individuals can exhibit indifference between alternatives.

11I treat [t, t] as the set of alternatives. This is unusual because t and t depend on the profile
of individuals’ preferences over consumption and labour whereas in social choice theory the set
of alternatives is specified independently of preferences. An equivalent approach that avoids this
problem is to specify the set of alternatives as (0, 1) and to assume that individuals rank all tax rates
in (0, 1)\ [t, t] as strictly worse (because of their infeasibility) than any t ∈ [t, t]. The justification for
restricting the set of alternatives to (0, 1) is that (i) t ∈ (−∞, 0] cannot be feasible for any preference
profile and (ii) t ∈ [1,∞) cannot be feasible for any preference profile in which each individual strictly
prefers (c, l) to (c′, l′) whenever c′ ≤ c and l′ > l = 0.
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Figure 1: t∗(·) and c1(·).

3.2 Rewriting the Borda Count

Let c1 : [t,
1

1+σ
] → R be the inverse of t∗(·), when the domain of the latter is restricted

to [0,
(

1−(1+σ)t
1−t

I
)1/(1+σ)

]. Figure 1 illustrates how c1(t) is determined. Note that c1(t)

is a threshold type that separates types based on how their optimal feasible tax rates

compare to t.

Also, define c2 : [t,
1

1+σ
] → R as follows: c2(t) = c1(t) and, for t ∈ (t, 1

1+σ
], c2(t) is

the (as can easily be shown) unique w ≥ 0 for which v(t, w) = v(t, w).

Lemma 2

1) For any t ∈ (t, 1
1+σ

], v(t, w) ≤ v(t, w) if and only if w ≤ c2(t).

2) For any t ∈ (t, 1
1+σ

], c2(t) > c1(t).

3) For any t ∈ [t, 1
1+σ

], F (c2(t)) < 1.
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4) vt(t,w)
vt(τ(t,w),w)

< 0 for any t ∈ [t, 1
1+σ

] and w ∈ [0, c1(t)) ∪ (c1(t), c2(t)].

Part 1) of Lemma 2 makes clear that, for t ∈ (t, 1
1+σ

], c2(t) is a threshold type

that separates types based on how v(t, w) and v(t, w) compare. Parts 2)-4) will be

useful further below. Note that part 4) holds because, for t and w in the given ranges,

v(·, w) has a peak and t and τ(t, w) lie on opposite sides of that peak.

Lemma 3 gives the functional form of α(t, w) based on c1(t), c2(t), and τ(t, w).

Lemma 3 For any t ∈ [t, 1
1+σ

],

α(t, w) =







τ(t, w)− t if w ≤ c1(t)

t− τ(t, w) if c1(t) < w ≤ c2(t)

t− t if w > c2(t)

. (5)

Figure 2 depicts α(t, w) for t > t and w ∈ {w1, w2, w3}, where w1 ≤ c1(t) < w2 ≤

c2(t) < w3. The proof shows that, given Lemmas 1 and 2, the functions v(·, w1),

v(·, w2), and v(·, w3) are as drawn in the figure.12

Given expression (5) and part 2) of Lemma 2, the Borda count in (4) can be

rewritten for any t ∈ [t, 1
1+σ

] as:

B(t, F ) = −

∫ c1(t)

0

(τ(t, w)− t)dF (w)−

∫ c2(t)

c1(t)

(t− τ(t, w))dF (w)− (t− t)

∫ ∞

c2(t)

dF (w)

(6)

3.3 Existence of a BO Tax Rate

Assumption 1 F has an associated continuous probability density function (PDF),

f .

Lemma 4 If Assumption 1 holds, a BO tax rate exists.

12The corresponding figure for the case t = t does not add much insight. It is considered as part
of the proof.
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α t,w3)
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v(·,w2)
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Figure 2: α(t, w1), α(t, w2), and α(t, w3), where t > t and w1 ≤ c1(t) < w2 ≤
c2(t) < w3. (If w1 = c1(t), the peak of v(·, w1) occurs at t so that τ(t, w1) = t and
α(t, w1) = 0.)

The proof of the lemma shows that B(·, F ) in (6) is continuous on [t, 1
1+σ

] so that

it must have a maximum on that interval.

3.4 First-Order Condition

Propositions 1 and 2 below will make the following “technical” assumption.

Assumption 2 For any w ∈ [0, c1(t)], the derivative of τ(·, ·) with respect to its first

argument, τt, is continuous at (t∗(w), w) if it exists at that point.

Although I have not been able to prove this assumption, the proof of Proposition

1 shows that, at (t∗(w), w) (where w ∈ [0, c1(t)]), τt exists and is continuous in two

directions in t-w space: (i) in the first argument and (ii) along the c1(·) curve. This

strongly suggests that, absent mathematical pathologies, Assumption 2 holds.

Proposition 1 Suppose Assumptions 1 and 2 hold.
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1) Given t ∈ [t, 1
1+σ

], the derivative of B(·, F ) is

Bt(t, F ) =
∫ c1(t)

0

(

1−
vt(t, w)

vt(τ(t, w), w)

)

f(w)dw −

∫ c2(t)

c1(t)

(

1−
vt(t, w)

vt(τ(t, w), w)

)

f(w)dw −

∫ ∞

c2(t)

f(w)dw.

(7)

2) If t is a BO tax rate, then

Bt(t, F ) ≤ 0, (8)

where the inequality holds with equality if t > t.

The form of Bt(t, F ) in (7) is obtained by applying the Leibniz integral rule to

B(t, F ) in (6) and using the implicit function theorem to express τt(t, w) as
vt(t,w)

vt(τ(t,w),w)
.

The role of Assumptions 1 and 2 is to ensure that the Leibniz integral rule can indeed

be used. Expression (8) is a standard first-order condition.13

4 BO Tax Rate and Increases in Inequality

Consider a PDF over productivities, g, such that (i) g is continuous, (ii)
∫∞

0
wg(w)dw =

∫∞

0
wf(w)dw, and (iii) for some 0 ≤ k1 < k2 ≤ k3 < k4 ≤ k5 < k6, we have g > f on

(k1, k2) ∪ (k5, k6), g < f on (k3, k4), and g = f outside of (k1, k2) ∪ (k3, k4) ∪ (k5, k6).

Thus, g maintains the mean of f while increasing inequality by shifting probability

mass away from the middle interval (k3, k4) and towards the outer intervals (k1, k2)

and (k5, k6). Let t
BO(f) and tBO(g) be the sets of BO tax rates if types are distributed

according to f and g, respectively.

13The proof of Proposition 1 shows that Bt(
1

1+σ , F ) < 0. Thus, we need not be concerned that

t = 1
1+σ is BO and Bt(t, F ) > 0 at that corner.
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Proposition 2 Suppose that Assumptions 1 and 2 hold.

1) There exists g satisfying (i)-(iii) above such that tBO(f) = tBO(g).

2) There exists g satisfying (i)-(iii) above such that, for any tf ∈ tBO(f) and any

tg ∈ tBO(g), tf ≤ tg, the inequality being strict if tf > t.

3) There exists g satisfying (i)-(iii) above such that, for any tf ∈ tBO(f) and any

tg ∈ tBO(g), tf ≥ tg, the inequality being strict if tg > t.

The punchline of Proposition 2 is that an increase in inequality can have an

ambiguous effect on the set of BO tax rates.

In the proof below, G denotes the CDF associated with g.

Proof of part 1):

Take k1 ≥ c2(t). In this case, relative to f , g just shifts around probability mass

on (c2(t),∞).14 Thus, as is evident from (6), B(t, F ) = B(t, G) for all t ∈ [t, 1
1+σ

].

Q.E.D.

Proof of part 2):

Take k2 ≤ c1(t) ≤ k3 and c2(t) ≤ k5. In this case, relative to f , g shifts probability

mass from (c1(t),∞) to (0, c1(t)) and does not add probability mass to (c1(t), c2(t)).
15

Given Theorems 2.8.4 and 2.8.5 in Topkis (1998), it suffices to show that Bt(t, G)−

14Given part 3) or Lemma 2, f puts positive mass on (c2(t),∞). Hence, k3 and k4 can be chosen
so that g < f on (k3, k4).

15Given part 3) or Lemma 2, f puts positive mass on (c1(t),∞). Hence, k3 and k4 can be chosen
so that g < f on (k3, k4).
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Bt(t, F ) > 0 for all t ∈ [t, 1
1+σ

]. For any t ∈ [t, 1
1+σ

], we have

Bt(t, G)− Bt(t, F ) =
∫ c1(t)

0

(

1−
vt(t, w)

vt(τ(t, w), w)

)

(g(w)− f(w))dw+

∫ c2(t)

c1(t)

(

1−
vt(t, w)

vt(τ(t, w), w)

)

(f(w)− g(w))dw +

∫ ∞

c2(t)

(f(w)− g(w))dw ≥

∫ c2(t)

c1(t)

(

1−
vt(t, w)

vt(τ(t, w), w)

)

(f(w)− g(w))dw +

∫ ∞

c2(t)

(f(w)− g(w))dw ≥

∫ ∞

c1(t)

(f(w)− g(w))dw > 0.

The first inequality holds because, for all w ∈ (0, c1(t)), 1 −
vt(t,w)

vt(τ(t,w),w)
> 1 (by part

4) of Lemma 2) and g(w) ≥ f(w). The second inequality follows because, for all

w ∈ (c1(t), c2(t)), 1−
vt(t,w)

vt(τ(t,w),w)
> 1 (by part 4) of Lemma 2) and f(w) ≥ g(w). The

last inequality follows because g puts more mass than f on (0, c1(t)) and, hence, less

mass than f on (c1(t),∞). Q.E.D.

Proof of part 3):

Take c1(t) ≤ k1 < k2 ≤ c2(t) ≤ k3. In this case, relative to f , g shifts probability

mass from (c2(t),∞) to (c1(t), c2(t)).
16

Given Theorems 2.8.4 and 2.8.5 in Topkis (1998), it suffices to show that Bt(t, G)−

16Given part 3) or Lemma 2, f puts positive mass on (c2(t),∞). Hence, k3 and k4 can be chosen
so that g < f on (k3, k4).
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Bt(t, F ) < 0 for all t ∈ [t, 1
1+σ

]. For any t ∈ [t, 1
1+σ

], we have

Bt(t, G)− Bt(t, F ) =
∫ c1(t)

0

(

1−
vt(t, w)

vt(τ(t, w), w)

)

(g(w)− f(w))dw+

∫ c2(t)

c1(t)

(

1−
vt(t, w)

vt(τ(t, w), w)

)

(f(w)− g(w))dw +

∫ ∞

c2(t)

(f(w)− g(w))dw =

∫ c2(t)

c1(t)

(

1−
vt(t, w)

vt(τ(t, w), w)

)

(f(w)− g(w))dw +

∫ ∞

c2(t)

(f(w)− g(w))dw <

∫ ∞

c1(t)

(f(w)− g(w))dw = 0

The second equality holds because f = g on (0, c1(t)). The inequality follows because

1 − vt(t,w)
vt(τ(t,w),w)

> 1 for all w ∈ (c1(t), c2(t)) (recall part 4) of Lemma 2), f ≤ g on

(c1(t), c2(t)), and f < g on (k1, k2) ⊆ (c1(t), c2(t)). The third equality holds because

f and g put the same mass on (c1(t),∞). Q.E.D.

5 Borda Count vs. Majority Rule when σ = 1

Let w50 denote the median type (which I assume is unique). Given that, by part 4)

of Lemma 1, v(·, w) is single-peaked on [t, t] for each w, the following result is not

surprising.

Lemma 5 For any t ∈ [t, t] such that t 6= t∗(w50), strictly more than half of the

population strictly prefers t∗(w50) to t.

The following proposition compares, for the special case when σ = 1, the BO tax

rate with t∗(w50) and, hence, with the majority-rule (MR) tax rate.

Proposition 3 Suppose that Assumption 1 holds and σ = 1. If tBO is a BO tax rate,

then tBO ≥ t∗(w50). Moreover, the inequality is strict if
∫ c1(t)

0
f(w)dw > 1/3.
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The condition
∫ c1(t)

0
f(w)dw > 1/3 requires that more than one-third of individuals

have an optimal feasible tax rate strictly above t (see Figure 1). This seems like the

empirically relevant case.

Proof:

Suppose σ = 1. As shown in the completion of this proof in the appendix, (i)

Assumption 2 holds and (ii) the vt(t,w)
vt(τ(t,w),w)

terms under the integrals in (7) equal −1.

As a result of (i), expression (7) for Bt(t, F ) and the first-order condition (8) apply.

As a result of (ii), (8) simplifies to

∫ c1(t)

0

f(w)dw ≤

∫ c2(t)

c1(t)

f(w)dw +
1

2

∫ ∞

c2(t)

f(w)dw. (9)

First, suppose that t∗(w50) > t and consider any t ∈ [t, t∗(w50)]. Based on Figure 1,

it is clear that c1(t) ≥ w50. Thus, the left-hand side of (9) is greater than or equal

to 0.5 while, given that by part 3) of Lemma 2 there is a positive mass of types on

(c2(t),∞), the right-hand side of (9) is strictly below 0.5. Thus, t cannot be BO.

Next, suppose that t∗(w50) = t. Then, tBO ≥ t∗(w50) must hold. If we further

assume
∫ c1(t)

0
f(w)dw > 1/3, then, at t = t, (i) the left hand-side of (9) is strictly above

1/3 while (ii) the right-hand side equals 1
2

∫∞

c1(t)
f(w)dw = 1

2

(

1−
∫ c1(t)

0
f(w)dw

)

<

1/3. Thus, t∗(w50) cannot be BO. Q.E.D.

6 Numerical Analysis

σ = 1 is probably towards the high end of empirically plausible values. Thus, I

next explore numerically how the (as it will turn out unique) BO linear tax schedule

and the MR linear tax schedule compare under different values of σ. The numerical

analysis will also shed some light on how the BO tax rate depends on σ.
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6.1 Calibration

6.1.1 Elasticity of Labour Supply

There is considerable controversy regarding the responsiveness of labour supply to

wages and taxes.17 Therefore, in a model with quasilinear preferences and a constant

elasticity of labour supply, Saez and Stantcheva (2018) perform their computations

separately for σ ∈ {0.25, 0.5, 1}. I follow these authors and perform my computations

for these three values of σ. In addition, because Proposition 3 applies to the case

σ = 1, it makes sense to also perform the computations for some σ > 1. Thus, I also

consider σ = 1.5.

6.1.2 Distribution of Types

The main idea for calibrating the distribution of types goes as follows. First, I assume

that the actual labour-income tax schedule is linear with a 30 percent marginal tax

rate. Given this tax schedule, type w’s optimal pretax labour income is y∗(w) =

0.7σw1+σ. Second, I back out the distribution of types based on y∗(·) and data from

the World Inequality Database (WID) on the empirical distribution of pretax labour

income for individuals over age 20 in the US in 2014.18

6.1.3 Government Consumption Per Capita

According to WID, US national income per individual over age 20 in 2014 was

$65,192.19 According to Piketty, Saez, and Zucman (2018), total (i.e., federal, state,

and local) government consumption in the US has been around 18 percent of national

income since the end of World War II. Thus, I set R = 65, 192× 0.18 ≈ 11, 735. This

17Keane (2011) and Saez et al. (2012) provide surveys of the literature.
18The details are in the appendix. The appendix also discusses some important aspects of the

WID data
19All dollar amounts in the numerical analysis are in 2014 dollars.
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Tax Rate UBI
σ = 0.25 σ = 0.5 σ = 1 σ = 1.5 σ = 0.25 σ = 0.5 σ = 1 σ = 1.5

MR 0.61 0.44 0.28 0.24 $11,114 $5,285 $754 $0
BO 0.67 0.52 0.37 0.29 $12,259 $6,905 $2,670 $1,087

Table 1: BO and MR tax rates and UBI.

calculation assumes that government consumption must be financed entirely from

labour income taxation, which seems like the natural theoretical benchmark based on

Atkinson and Stiglitz (1976).

6.2 Results

Table 1 presents the BO and MR tax rates as well as the associated UBIs. The table

yields the following two findings.

Finding 1 For each σ ∈ {0.25, 0.5, 1, 1.5}, the BO tax rate and BO UBI are higher

than the MR tax rate and MR UBI, respectively.

Finding 2 The BO tax rate and BO UBI sharply decrease as σ increases on {0.25, 0.5, 1, 1.5}.
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7 Appendix: Distribution of Types

7.1 Calibration

I assume that the actual labour-income tax schedule is a 30 percent flat tax. Given

this tax schedule, type w’s optimal pretax labour income is y∗(w) = 0.7σw1+σ.

I use data from WID on pretax labour income for individuals over the age of 20

in the US in 2014.20 In particular, I obtain from WID the data presented in Table 2.

Percentile Pretax labour income

5 1264.5269

10 4906.4861

15 7233.2855

20 9610.6254

25 12139.6792

20WID defines pretax labour income as the sum of all pretax personal income flows accruing to
the individual owners of labor as a production factor, before taking into account the operation of the
tax/transfer system, but after taking into account the operation of the pension system. The base
unit is the individual (rather than the household) but resources are split equally within couples.

22



30 14567.6519

35 17096.7977

40 20030.5452

45 22964.2909

50 26403.9035

55 30652.7167

60 35407.4916

65 40465.6912

70 46434.3576

75 52807.7141

80 60698.4899

85 71017.3259

90 85989.5812

91 90238.4864

92 95195.5111

93 101063.0963

94 108245.7491

95 117350.5085

96 129490.1877

97 148711.4384

98 182095.5655

99 261003.6644

99.1 277189.9954

99.2 295399.505

99.3 315632.3865

99.4 342946.6831
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99.5 377342.5145

99.6 426912.9817

99.7 495704.6629

99.8 621148.3276

99.9 925652.6564

99.91 987362.7844

99.92 1062224.324

99.93 1153272.102

99.94 1264552.771

99.95 1416299.129

99.96 1638860.375

99.97 1962585.89

99.98 2508872.558

99.99 3864473.291

99.991 4117383.735

99.992 4420876.636

99.993 4805300.271

99.994 5260539.622

99.995 5887757.761

99.996 6717304.348

99.997 7981856.566

99.998 10318750.34

99.999 15579289.96

Table 2: Various percentiles of pretax labour income.
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I augment this data in two ways.21 First, I assume that the lowest income equals

$0.22 Second, WID does not report the income of the highest earner. It does report

that the 99.999th income percentile equals $15,579,290 and the average income in the

top 0.001 percent equals $32,134,644. I impute an income to the highest earner by

assuming that this income and the 99.999th income percentile are symmetrically situ-

ated around $32,134,644. That is, I assume that the highest earner has an income of

$48,689,999. I make this assumption on simplicity grounds. Given that the top 0.001

of earners earned only 0.7 percent of all income, it is unlikely that this assumption is

of much consequence.

Then, using y∗(·) and the augmented WID income data, I back out the various

type percentiles (i.e., the 0th percentile, the 100th percentile, and all the percentiles

listed in Table 2). E.g., given that the 5th income percentile equals 1264.5269, I infer

that the 5th type percentile is w5 = y∗−1(1264.5269) = 1264.5269
1

1+σ /0.7
σ

1+σ , where

y∗−1(·) denotes the inverse of y∗(·).

Finally, equipped with the various type percentiles, I specify the cumulative den-

sity function, F , of the distribution of types through linear interpolation. E.g., de-

noting the pth type percentile by wp, I assume that, on [w10, w15], F (w) = 0.1 +

0.15−0.1
w15−w10

(w − w10).

7.2 Comments on the WID Data

A few comments regarding the WID data on pretax labour income are in order. First,

this data is based on all individuals over age 20 and it counts income from public and

private pensions as labour income. This is not ideal for the purpose of backing out

21For brevity, in the rest of this section I will write “income” although in fact I mean “pretax
labour income”

22WID reports a negative 0th income percentile. (I believe this is largely due to the partial
imputation of the losses of privately owned businesses to labour income.) However, this is not
consistent with the assumption that productivities are nonnegative.
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productivities because the relationship between pension income and productivity is

probably different from the relationship between a working-age individual’s labour

income and productivity.

Second, income is split equally within couples, which forces us to treat spouses as

having the same productivity. This seems preferable for the purposes of the current

paper because it ensures that the same preference over tax schedules is imputed to

both spouses.

Third, although using cross-sectional data on the distribution of annual income

to back out productivities is common (e.g., see Saez (2001)), this probably leads us

to exaggerate the dispersion in lifetime productivities. The latter are probably more

relevant if we are concerned with the design of a long-term tax system.23

8 Appendix: Proofs

8.1 A Preliminary Lemma

I start by stating and proving a preliminary lemma that will be useful in the proofs

of the results stated in the main body of the paper.24

Lemma 0

1) For any w < ((1 + σ)I)1/(1+σ), (i) v(·, w) is strictly increasing on (−∞, I−w1+σ

(1+σ)I−w1+σ ]

and strictly decreasing on [ I−w1+σ

(1+σ)I−w1+σ , 1] and (ii) limt→−∞ v(t, w) = −∞. For

any w ≥ ((1 + σ)I)1/(1+σ), v(·, w) is strictly decreasing on (−∞, 1].

23Guvenen et al. (2021) have recently provided data on the distribution of lifetime labour incomes.
This data is also not ideal for the purposes of the current paper. Remarkably, in the WID data
and the Guvenen et al. data, the distribution of income across the population is very similar. The
appendix in Ivanov (2022a) elaborates on these points.

24t∗(·) is defined in (3). c1(·) and c2(·) are defined at the start of section 3.2.
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2) c1(·) is given by

c1(t) =

(
1− (1 + σ)t

1− t
I

)1/(1+σ)

(10)

3) c1(t) < ((1 + σ)I)1/(1+σ).

4) For any t ∈ [t, 1
1+σ

], v(·, c1(t)) is strictly increasing on (−∞, t] and strictly

decreasing on [t, 1].

5) For any w ≤ c1(t), v(·, w) is strictly increasing on (−∞, t∗(w)] and strictly

decreasing on [t∗(w), 1].

6) c2(·) is given by

c2(t) =







c1(t) if t = t
(

t(1−t)σ−t(1−t)σ

(1−t)1+σ−(1−t)1+σ (1 + σ)I
)1/(1+σ)

if t < t ≤ 1
1+σ

. (11)

7) For any t ∈ (t, 1
1+σ

], v(t, w) ≤ v(t, w) if and only if w ≤ c2(t).

8) c2(·) is continuous.

9) c2(·) is strictly decreasing.

10) For any t ∈ (t, 1
1+σ

], c2(t) > c1(t).

11) For any t ∈ [t, 1
1+σ

], c2(t) ≤ c1(t).

Figure 3 summarises some of the information from Lemma 0.

Proof of Part 1):

Taking the derivative of the right hand-side of (2) yields

vt(t, w) = (1− t)σ−1
(
I − w1+σ −

(
(1 + σ)I − w1+σ

)
t
)
. (12)
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For w below this value, v(·,w) has a peak

t
�
�+σ

t

c�(t)

((1+σ)I)1/(1+σ)

w

c1 (a function of the t)
and t* (a function w)

c2 (a function of the t)

Figure 3: t∗(·) restricted to w ∈ [0,
(

1−(1+σ)t
1−t

I
)1/(1+σ)

], c1(·), and c2(·).

Note that vt(t, w) has the same sign as I − w1+σ − ((1 + σ)I − w1+σ) t. Thus, if

w < ((1 + σ)I)1/(1+σ), vt(·, w) is strictly positive on (−∞, I−w1+σ

(1+σ)I−w1+σ ), zero at t =

I−w1+σ

(1+σ)I−w1+σ , and strictly negative on ( I−w1+σ

(1+σ)I−w1+σ , 1]; if w ≥ ((1 + σ)I)1/(1+σ), vt(·, w)

is strictly negative on (−∞, 1].

Also, when w < ((1 + σ)I)1/(1+σ), limt→−∞ 1− t = ∞ and

limt→−∞ (w1+σ + ((1 + σ)I − w1+σ) t) = −∞. Thus, one can see from (2) that limt→−∞ v(t, w) =

−∞. Q.E.D.

Proof of Part 2):

Expression (10) follows from solving t = I−w1+σ

(1+σ)I−w1+σ for w. Q.E.D.

Proof of Part 3):

Using (10), c1(t) < ((1 + σ)I)1/(1+σ) can be written as

(
1− (1 + σ)t

1− t
I

)1/(1+σ)

< ((1 + σ)I)1/(1+σ) ,

which simplifies to σ > 0. Q.E.D.
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Proof of Part 4):

The fact that c1(·) is decreasing (see Figure 1) and part 3) imply c1(t) < ((1 + σ)I)1/(1+σ)

for all t ∈ [t, 1
1+σ

]. Then, by part 1), v(·, c1(t)) has its peak at I−c1(t)1+σ

(1+σ)I−c1(t)1+σ . Using

(10) to substitute for c1(t) into the latter expression, we obtain I−c1(t)1+σ

(1+σ)I−c1(t)1+σ = t.

Q.E.D.

Proof of Part 5):

Given (3) and (10), t∗(w) = I−w1+σ

(1+σ)I−w1+σ for w ≤ c1(t). The statement follows from

parts 1) and 3). Q.E.D.

Proof of Part 6):

Expression (11) follows from solving v(t, w) = v(t, w) for w when t ∈ (t, 1
1+σ

].

Q.E.D.

Proof of Part 7):

Fix t ∈ (t, 1
1+σ

]. Using (2), it is straightforward to show that v(t, w) ≤ v(t, w) can

be rewritten as

w ≤

(
t(1− t)σ − t(1− t)σ

(1− t)1+σ − (1− t)1+σ
(1 + σ)I

)1/(1+σ)

.

Given (11), the latter inequality is equivalent to w ≤ c2(t). Q.E.D.

Proof of Part 8):

It is clear from (11) that c2(·) is continuous on (t, 1
1+σ

]. c2(·) is also continuous at
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t because

lim
t↓t

c2(t) =

lim
t↓t

(
t(1− t)σ − t(1− t)σ

(1− t)1+σ − (1− t)1+σ
(1 + σ)I

)1/(1+σ)

=

(

(1 + σ)I lim
t↓t

t(1− t)σ − t(1− t)σ

(1− t)1+σ − (1− t)1+σ

)1/(1+σ)

=

(

(1 + σ)I lim
t↓t

(1− t)σ−1(1− t− σt)

(1 + σ)(1− t)σ

)1/(1+σ)

=

(

I lim
t↓t

(1− (1 + σ)t)

(1− t)

)1/(1+σ)

=

(

I
(1− (1 + σ)t)

(1− t)

)1/(1+σ)

= c1(t) = c2(t),

where the third equality uses l’Hópital’s rule. Q.E.D.

Proof of Part 9):

Take t′, t ∈ (t, 1
1+σ

] such that t′ > t. We have v(t, c2(t)) = v(t, c2(t)) > v(t′, c2(t)),

where the equality follows from the definition of c2(t) and the inequality follows

because, given part 1), v(t, c2(t)) = v(t, c2(t)) implies that the peak of v(·, c2(t))

must occur between t and t. From part 7), v(t, c2(t)) > v(t′, c2(t)) if and only if

c2(t) > c2(t
′). Thus, c2(·) is strictly decreasing on (t, 1

1+σ
]. Moreover, because c2(·) is

continuous at t (by part 8)), c2(·) is strictly decreasing on [t, 1
1+σ

]. Q.E.D.

Proof of Part 10):

Fix t ∈ (t, 1
1+σ

]. Given part 1), v(t, c2(t)) = v(t, c2(t)) implies that the peak of

v(·, c2(t)) must occur strictly between t and t. Given part 4), the peak of v(·, c1(t))

occurs at t. Thus, given part 1), we must have I−c2(t)1+σ

(1+σ)I−c2(t)1+σ < I−c1(t)1+σ

(1+σ)I−c1(t)1+σ . Given

that (again by part 1)) (1 + σ)I > c2(t)
1+σ and (1 + σ)I > c1(t)

1+σ, the inequality in

the last sentence can be rewritten as c2(t) > c1(t). Q.E.D.
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Proof of Part 11):

We have c2(t) ≤ c2(t) = c1(t), where the inequality follows from part 9). Q.E.D.

8.2 Proof of Lemma 1

Proof of part 1):

Given any t ∈ [t, t), we have

v(t, w) =
1

1 + σ
(1− t)1+σw1+σ + t(1− t)σI − R ≥

1

1 + σ
(1− t)1+σw1+σ >

1

1 + σ
(1− t)1+σw1+σ =

1

1 + σ
(1− t)1+σw1+σ + t(1− t)σI − R = v(t, w).

The first and last equality use (1), plugging in for l(w). The first inequality uses the

fact that the UBI is nonnegative for any tax rate t ∈ [t, t). The penultimate equality

uses the fact that the UBI for tax rate t equals zero. Q.E.D.

Proof of part 2):

Given part 1) of Lemma 0, type w’s optimal feasible tax rate equals I−w1+σ

(1+σ)I−w1+σ

if w < ((1 + σ)I)1/(1+σ) and w ≤
(

1−(1+σ)t
1−t

I
)1/(1+σ)

and equals t otherwise.25,26

Given c1(t) =
(

1−(1+σ)t
1−t

I
)1/(1+σ)

(see (10)) and part 3) of Lemma 0, w ≤
(

1−(1+σ)t
1−t

I
)1/(1+σ)

implies w < ((1 + σ)I)1/(1+σ). Thus, type w’s optimal feasible tax rate is given by

t∗(·) as defined in (3). Q.E.D.

Proof of part 3):

25w ≤
(

1−(1+σ)t
1−t I

)1/(1+σ)

is obtained by rearranging I−w1+σ

(1+σ)I−w1+σ ≥ t.

26Note that I−w1+σ

(1+σ)I−w1+σ ≤ 1
1+σ < t, where the first inequality holds because I−w1+σ

(1+σ)I−w1+σ is

maximised at w = 0 (the derivative of I−w1+σ

(1+σ)I−w1+σ with respect to w equals −σ(1+σ)Iwσ

((1+σ)I−w1+σ)2 < 0)

and the second inequality holds because t is above the revenue-maximising rate, 1
1+σ .
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The only possible discontinuity of t∗(·) would be at w =
(

1−(1+σ)t
1−t

I
)1/(1+σ)

. How-

ever, by plugging into (3), one can directly verify that t∗
((

1−(1+σ)t
1−t

I
)1/(1+σ)

)

= t.

That t∗(·) is strictly decreasing on [0,
(

1−(1+σ)t
1−t

I
)1/(1+σ)

] follows from the fact that

the derivative of I−w1+σ

(1+σ)I−w1+σ with respect to w equals −σ(1+σ)Iwσ

((1+σ)I−w1+σ)2
< 0. Q.E.D.

Proof of part 4):

From the proof of part 2), it is clear that t∗(w) can be written as

t∗(w) =







I−w1+σ

(1+σ)I−w1+σ if w < ((1 + σ)I)1/(1+σ) , I−w1+σ

(1+σ)I−w1+σ ≥ t

t otherwise
.

Part 4) then follows from part 1) of Lemma 0. Q.E.D.

8.3 Proof of Lemma 2

Proof of part 1):

This has already been proved–see part 7) of Lemma 0. Q.E.D.

Proof of part 2):

This has already been proved–see part 10) of Lemma 0. Q.E.D.

Proof of part 3):

Given part 11) of Lemma 0, F (c2(t)) ≤ F (c1(t)) must hold for any t ∈ [t, 1
1+σ

].

To complete the proof, I now show that F (c1(t)) < 1.

Suppose F (c1(t)) = 1. Then, for any type w in the support of F , we have

w1+σ ≤
1− (1 + σ)t

1− t
I.
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Summing over the population, yields

∫ ∞

0

w1+σdF (w) ≤
1− (1 + σ)t

1− t
I,

which, given the definition of I is equivalent to

1 ≤
1− (1 + σ)t

1− t
.

The latter inequality can be rewritten as σt ≤ 0, a contradiction. Q.E.D.

Proof of part 4):

Fix t ∈ [t, 1
1+σ

] and w ∈ [0, c1(t)) ∪ (c1(t), c2(t)] such that w 6= c1(t) (or, equiva-

lently, such that t 6= t∗(w)–see Figure 3). We have (1+σ)I > w1+σ (again, see Figure

3) so that, by parts 1) and 5) of Lemma 0, v(·, w) has a peak at t∗(w) = I−w1+σ

(1+σ)I−w1+σ .

From (12), it is clear that vt(t
′, w) 6= 0 for any t′ 6= t∗(w). Moreover, given that the

peak of v(·, w) occurs at t∗(w), it must be that t and τ(t, w) lie on opposite sides of

t∗(w), so that τ(t, w) 6= t∗(w), vt(τ(t, w), w) 6= 0, and vt(t,w)
vt(τ(t,w),w)

< 0. Q.E.D.

8.4 Proof of Lemma 3

I will consider separately the cases t > t and t = t. The proof is based on Figure 2

(which pertains to the case t > t) and Figure 4 (which pertains to the case t = t).

Note that part 4) of Lemma 1 ensures the single-peakedness of the v functions in

these figures.

Case t > t:

First, consider type w1 ≤ c1(t). Then, v(·, w1) is as in Figure 2. In particular,

based on Figure 1, t∗(w1) ≥ t (with strict inequality if w1 < c1(t)) and, by part 1) in

Lemma 1, v(t, w1) > v(t, w1). From Figure 2, it is obvious that α(t, w1) = τ(t, w1)−t.
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α(t,w�)

t=t τ(t,w�

��� 	��


v(·,w�

v(·,w�

Figure 4: α(t, w1) and α(t, w2), where t = t and w1 < c1(t) ≤ w2.

Next, consider type w2 such that c1(t) < w2 ≤ c2(t). Then, v(·, w2) is as in

Figure 2. In particular, c1(t) < w2 ensures that t∗(w2) < t (see Figure 1) and part

1) of Lemma 2 guarantees that v(t, w2) ≤ v(t, w2). From Figure 2, it is obvious that

α(t, w2) = t− τ(t, w2).

Finally, consider type w3 > c2(t). Then, v(·, w3) is as in Figure 2. In particular,

by part 2) of Lemma 2, w3 > c1(t), which implies t∗(w3) < t (see Figure 1). By part

1) of Lemma 2, v(t, w3) > v(t, w3). From Figure 2, it is obvious that α(t, w3) = t− t.

Case t = t:

In this case, expression (5) simplifies to

α(t, w) =







τ(t, w)− t if w ≤ c1(t)

0 if w > c1(t)
. (13)

By part 4) of Lemma 0, v(·, c1(t)) has its a peak at t so that τ(t, c1(t)) = t. Thus,
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(13) can be rewritten as

α(t, w) =







τ(t, w)− t if w < c1(t)

0 if w ≥ c1(t)
. (14)

First, consider type w1 < c1(t). Then, v(·, w1) is as in Figure 4. In particular, based

on Figure 1, t∗(w1) > t and, by part 1) in Lemma 1, v(t, w1) > v(t, w1). From Figure

4, it is obvious that α(t, w1) = τ(t, w1)− t.

Next, consider type w2 ≥ c1(t). Then, v(·, w2) is as in Figure 4. In particular,

t∗(w2) = t (see Figure 1). From Figure 4, it is obvious that α(t, w2) = 0. Q.E.D.

8.5 Proof of Lemma 4

I first state and prove the following claim.

Claim 1 τ is continuous at any point in {(t, w)|t ≤ t ≤ 1
1+σ

, 0 ≤ w ≤ c2(t)}.

Proof:

Consider a point (t, w), where t ≤ t ≤ 1
1+σ

and 0 ≤ w ≤ c2(t), and let {(tn, wn)}
∞
n=1

be such that (tn, wn) → (t, w).

Note that {τ(tn, wn)}
∞
n=1 is bounded based on the following argument. Take ŵ

such that c2(t) < ŵ < ((1 + σ)I)1/(1+σ).27 Given that v is strictly increasing in its

second argument (see (2)), we have v(·, ŵ) > v(·, wn) for all large enough n. Also,

v(tn, wn) > 0 for all large enough n because v is continuous and v(t, w) > v(t, w) =

1
1+σ

(1− t)1+σw1+σ > 0 (that the equality holds can be seen in the proof of part 1) of

Lemma 1). Thus, for all large enough n, τ(tn, wn) is greater than the smaller of the

two values of t̃ that solve v(t̃, ŵ) = 0.28 Thus, {τ(tn, wn)}
∞
n=1 is bounded from below.

27We have c2(t) ≤ c1(t) < ((1 + σ)I)
1/(1+σ)

, where the first and last inequalities follow from parts
11) and 3), respectively, of Lemma 0. Thus, ŵ can be picked in this way.

28ŵ < ((1 + σ)I)
1/(1+σ)

guarantees that, apart from t̃ = 1, there is another, smaller value of t̃
that solves v(t̃, ŵ) = 0 (see part 1) of Lemma 0).
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It is also clearly bounded from above given that τ(tn, wn) ≤ 1 for all n.

Also, note that, by the continuity of v, v(tn, wn) → v(t, w). Hence, given that

v(tn, wn) = v(τ(tn, wn), wn), we must have v(τ(tn, wn), wn) → v(t, w).

Now, suppose τ(tn, wn) doesn’t converge to τ(t, w). Then, given that {τ(tn, wn)}
∞
n=1

is bounded, it has a subsequence, {τ(tnk
, wnk

)}∞k=1, that converges to z 6= τ(t, w), so

that, by the continuity of v, v(τ(tnk
, wnk

), wnk
) → v(z, w) as k → ∞.

Consider the following four exhaustive cases. First, if z 6= t, then, given that also

z 6= τ(t, w), we must have v(z, w) 6= v(t, w), which contradicts v(τ(tn, wn), wn) →

v(t, w). Second, if z = t = t∗(w), then, given part 5) of lemma 0, τ(t, w) = z, a

contradiction. Third, if z = t > t∗(w), then, given the continuity of t∗(·), t∗(wnk
) <

tnk
for all large enough k. Hence, τ(tnk

, wnk
) < t∗(wnk

) < tnk
for all large enough k.29

Taking limits as k → ∞ and using the continuity of t∗(·), we get that z ≤ t∗(w) ≤ t,

which contradicts z = t > t∗(w). Fourth, if z = t < t∗(w), then, given the continuity

of t∗(·), tnk
< t∗(wnk

) and t < t∗(wnk
) for all large enough k. The latter inequality

implies t < t∗(wnk
) so that wnk

< c1(t) (see Figure 1) and, hence, by part 5) of

Lemma 0, the peak of v(·, wnk
) lies at t∗(wnk

). Hence, tnk
< t∗(wnk

) < τ(tnk
, wnk

) for

all large enough k.30 Taking limits as k → ∞ and using the continuity of t∗(·), we

get that t ≤ t∗(w) ≤ z, which contradicts z = t < t∗(w).

Thus, we must have τ(tn, wn) → τ(t, w). Q.E.D.

Under Assumption 1, B(t, F ) in (6) can be written as

B(t, F ) = −

∫ c1(t)

0

(τ(t, w)− t)f(w)dw −

∫ c2(t)

c1(t)

(t− τ(t, w))f(w)dw − (t− t)

∫ ∞

c2(t)

f(w)dw

29For all large enough k, wnk
will be close enough to w that wnk

< ((1 + σ)I)
1/(1+σ)

holds (recall

that c2(t) ≤ c1(t) < ((1 + σ)I)
1/(1+σ)

). wnk
< ((1 + σ)I)

1/(1+σ)
guarantees that v(·, wnk

) has an
inverse-U shape with a peak that lies weakly to the left of t∗(wnk

) (see part 1) of Lemma 0). Thus,
τ(tnk

, wnk
) and tnk

will lie on opposite sides of t∗(wnk
).

30For all large enough k, tnk
will be close enough to t that v(tnk

, wnk
) > v(t, wnk

). Thus,
τ(tnk

, wnk
) and tnk

will lie on opposite sides of t∗(wnk
).
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Given Claim 1, the fact that c1(·) is continuous (see 10), and the fact that c2(·) is

continuous (by part 8) of Lemma 0), the first two integrals above are continuous on

[t, 1
1+σ

] (see Theorem 28 and the discussion on p.369 in Erwe (1967)). Hence, B(·, F )

is continuous on [t, 1
1+σ

]. Hence, B(·, F ) has a maximum on the closed and bounded

interval [t, 1
1+σ

]. Q.E.D.

8.6 Proof of Proposition 1

The proof is based on a sequence of claims.

Claim 1 c1(·) and c2(·) are continuously differentiable on [t, 1
1+σ

].31

Proof:

From the functional forms of c1(·) and c2(·) in (10) and (11), it is obvious that

c1(·) and c2(·) are continuously differentiable on [t, 1
1+σ

] and (t, 1
1+σ

], respectively.

It remains to show that c′2(·) exists and is continuous at t. We have

lim
t↓t

c2(t)− c2(t)

t− t
= lim

t↓t
c′2(t) =

− lim
t↓t

I(1− t)σ−1 ((1− t)1+σ + (1− t)σ(σt + t− σt− 1))
(

t(1−t)σ−t(1−t)σ

(1−t)1+σ−(1−t)1+σ (1 + σ)I
) σ

1+σ

((1− t)1+σ − (1− t)1+σ)2
=

− I(1− t)σ−1 lim
t↓t

1

c2(t)σ
lim
t↓t

(1− t)1+σ + (1− t)σ(σt+ t− σt− 1)

((1− t)1+σ − (1− t)1+σ)2
=

−
I(1− t)σ−1

c2(t)σ
lim
t↓t

(1− t)1+σ + (1− t)σ(σt+ t− σt− 1)

((1− t)1+σ − (1− t)1+σ)2
=

−
I

2c2(t)σ(1− t)
lim
t↓t

(1− t)σ − (1− t)σ

(1− t)1+σ − (1− t)1+σ
=

−
I

2c2(t)σ(1− t)
lim
t↓t

σ

(1 + σ)(1− t)
= −

σI

2(1 + σ)c2(t)σ(1− t)2
,

31c′1(t) and c′2(t) are to be understood as right derivatives. c′1(
1

1+σ ) and c′2(
1

1+σ ) are to be under-
stood as left derivatives.
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where the first, fifth, and sixth equalities use l’Hópital’s rule.32 Thus, c2(·) is differen-

tiable at t. Moreover, because c′2(t) = limt↓t c
′
2(t) (as is evident from the first equality

above), c′2(·) is continuous at t. Q.E.D.

Claim 2 At any point in {(t, w)|t ≤ t ≤ 1
1+σ

, 0 ≤ w ≤ c2(t)}, τt exists and is

continuous.

Proof:

By the implicit function theorem, τt exists and is continuous on {(t, w)|t ≤ t ≤

1
1+σ

, 0 ≤ w ≤ c2(t), w 6= c1(t)} because, as can be seen from the proof of part 4) of

Lemma 2, in this region vt(τ(t, w), w) 6= 0.

It remains to show that τt(t, c1(t)) exists for any t ∈ [t, 1
1+σ

] or, equivalently (see

Figure 3), that τt(t
∗(w), w) exists for any w ∈ [0, c1(t)]. Assumption 2 will then imply

that, for any w ∈ [0, c1(t)], τt is continuous at (t
∗(w), w).

I shall first show that, for any w ∈ [0, c1(t)], limt↑t∗(w) τt(t, w) and limt↓t∗(w) τt(t, w)

exist and are both equal to −1. Starting with the former limit, we have:

lim
t↑t∗(w)

τt(t, w) = lim
t↑t∗(w)

vt(t, w)

vt(τ(t, w), w)
=

lim
t↑t∗(w)

(1− t)σ−1 (I − w1+σ − ((1 + σ)I − w1+σ)t)

(1− τ(t, w))σ−1 (I − w1+σ − ((1 + σ)I − w1+σ)τ(t, w))
=

lim
t↑t∗(w)

(1− t)σ−1

(1− τ(t, w))σ−1
lim

t↑t∗(w)

I − w1+σ − ((1 + σ)I − w1+σ)t

I − w1+σ − ((1 + σ)I − w1+σ)τ(t, w)
=

lim
t↑t∗(w)

I − w1+σ − ((1 + σ)I − w1+σ)t

I − w1+σ − ((1 + σ)I − w1+σ)τ(t, w)
=

lim
s↓1

I − w1+σ − ((1 + σ)I − w1+σ)t̂(s)

I − w1+σ − ((1 + σ)I − w1+σ)τ(t̂(s), w)
, (15)

32The continuity of c2(·) at t (see part 8) of Lemma 0) implies that limt↓t c2(t)− c2(t) = 0 so that
l’Hópital’s rule can be used in the first equality.
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where the first equality above uses the implicit function theorem and

t̂(s) =
(1 + σ)I s1/σ−1

s1/σ+1−1
− w1+σ

(1 + σ)I − w1+σ
.

The equality between the last two limits above holds because (i) t̂(·) is strictly de-

creasing for s > 1 and (ii) lims↓1 t̂(s) =
I−w1+σ

(1+σ)I−w1+σ = t∗(w) (because, by l’Hópital’s

rule, lims↓1
s1/σ−1

s1/σ+1−1
= 1/(1 + σ)).

Furthermore, letting

τ̂ (s) =
(1 + σ)I s1/σ−1

s1/σ+1−1
s− w1+σ

(1 + σ)I − w1+σ
,

it is straightforward to verify that, for s > 1, τ̂(s) 6= t̂(s) and v(τ̂(s), w) = v(t̂(s), w).

Thus, τ(t̂(s), w) = τ̂(s).33 Thus, (15) can be written as:

lim
s↓1

I − w1+σ − ((1 + σ)I − w1+σ)t̂(s)

I − w1+σ − ((1 + σ)I − w1+σ)τ̂(s)
=

lim
s↓1

1− (1 + σ) s1/σ−1
s1/σ+1−1

1− (1 + σ) s1/σ−1
s1/σ+1−1

s
=

lim
s↓1

(1 + σ)s1/σ − s1/σ+1 − σ

1− (1 + σ)s+ σs1/σ+1
=

lim
s↓1

s1/σ−1(1− s)

σ(s1/σ − 1)
=

lim
s↓1

s1/σ−1

σ
lim
s↓1

1− s

s1/σ − 1
=

1

σ
lim
s↓1

1− s

s1/σ − 1
=

1

σ
lim
s↓1

−σs1−1/σ = −1

33(t̂(s), τ̂ (s)) parameterises the graph of τ(·, w) around t = t∗(w) (excluding t = t∗(w)).
I am grateful to an anonymous user (with username Maxim) on the StackExchange Math-
ematics online forum for suggesting this technique to me. See URL (version: 2022-03-17):
https://math.stackexchange.com/q/4405430
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The third and sixth equalities above make use of l’Hópital’s rule.

An analogous calculation (that uses the same t̂(·) and τ̂(·)) establishes that limt↓t∗(w) τt(t, w) =

−1.

Now, given w ∈ [0, c1(t)], (i) the left derivative of τ(·, w) at t∗(w) equals

lim
t↑t∗(w)

τ(t, w)− τ(t∗(w), w)

t− t∗(w)
= lim

t↑t∗(w)
τt(t, w) = −1,

where the first equality follows from l’Hópital’s rule, and (ii) the right derivative of

τ(·, w) at t∗(w) equals

lim
t↓t∗(w)

τ(t, w)− τ(t∗(w), w)

t− t∗(w)
= lim

t↓t∗(w)
τt(t, w) = −1,

where the first equality follows from l’Hópital’s rule.34 Thus, the left and right deriva-

tives of τ(·, w) at t∗(w) exist and are equal. Hence, τt(t
∗(w), w) exists.35 Q.E.D.

Claim 3 For any t ∈ [t, 1
1+σ

],36

Bt(t, F ) =
∫ c1(t)

0

(

1−
vt(t, w)

vt(τ(t, w), w)

)

f(w)dw −

∫ c2(t)

c1(t)

(

1−
vt(t, w)

vt(τ(t, w), w)

)

f(w)dw −

∫ ∞

c2(t)

f(w)dw.

(16)

Proof:

34The continuity of τ implies that limt↑t∗(w) τ(t, w) − τ(t∗(w), w) = limt↓t∗(w) τ(t, w) −
τ(t∗(w), w) = 0, so that l’Hópital’s rule can be used in (i) and (ii).

35Note that, because limt↑t∗(w) τt(t, w) = limt↓t∗(w) τt(t, w) = τt(t
∗(w), w), τt is continuous at

(t∗(w), w) in the direction of the first argument. Also, because τt(t
∗(w), w) = −1 for all w ∈ [0, c1(t)],

τt is continuous along the c1(·) curve in t-w space (see Figure 3).
36Bt(t, F ) and Bt(

1
1+σ , F ) are to be interpreted as a right and left derivative, respectively.
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Expression (6) can be rewritten as follows in terms of f rather than F .

B(t, F ) =

∫ c1(t)

0

(t− τ(t, w))f(w)dw −

∫ c2(t)

c1(t)

(t− τ(t, w))f(w)dw − (t− t)

∫ ∞

c2(t)

f(w)dw

(17)

Claim 1 in the proof of Lemma 4 and Claims 1 and 2 above ensure that, on

[t, 1
1+σ

], B(·, F ) is differentiable and the Leibniz integral rule can be used to obtain

the derivative of (17).37 Straightforward application of the Leibniz integral rule to

(17) then yields:

Bt(t, F ) = (t− τ(t, c1(t)))f(c1(t))c
′
1(t) +

∫ c1(t)

0

(1− τt(t, w))f(w)dw−

(t− τ(t, c2(t)))f(c2(t))c
′
2(t) + (t− τ(t, c1(t)))f(c1(t))c

′
1(t)−

∫ c2(t)

c1(t)

(1− τt(t, w))f(w)dw−

∫ ∞

c2(t)

f(w)dw + (t− t)f(c2(t))c
′
2(t) =

∫ c1(t)

0

(1− τt(t, w))f(w)dw −

∫ c2(t)

c1(t)

(1− τt(t, w))f(w)dw −

∫ ∞

c2(t)

f(w)dw,

where the second equality holds because τ(t, c2(t)) = t and, by part 4) of Lemma 0,

τ(t, c1(t)) = t.

Finally, by the implicit function theorem, τt(t, w) =
vt(t,w)

vt(τ(t,w),w)
on {(t, w)|t ≤ t ≤

1
1+σ

, 0 ≤ w ≤ c2(t), w 6= c1(t)} because in this region, as can be seen from the proof

of part 4) of Lemma 2, vt(τ(t, w), w) 6= 0. Q.E.D.

Given Claim 3, (8) is a standard first-order condition. Note that, at t = 1
1+σ

,

c1(t) = 0 (see (10)) and vt(t,w)
vt(τ(t,w),w)

< 0 for all 0 < w ≤ c2(t) (recall part 4) of Lemma

2) so that Bt(t, F ) = −
∫ c2(t)

0

(

1− vt(t,w)
vt(τ(t,w),w)

)

f(w)dw −
∫∞

c2(t)
f(w)dw < 0. Thus, we

need not be concerned that t = 1
1+σ

is BO and Bt(t, F ) > 0 at that corner. Q.E.D.

37See page 476 in Wrede and Spiegel (2010).

41



8.7 Proof of Lemma 5

Suppose that t ∈ [t, t] is such that t > t∗(w50). Then, any type w ≤ w50 strictly

prefers t∗(w50) to t given that t∗(w) ≤ t∗(w50) (see part 3) in Lemma 1) and v(·, w)

is single-peaked on [t, t] (see part 4) in Lemma 1). Furthermore, given the continuity

of v(·, ·) in its second argument, one can find ŵ > w50 such that, for all w ∈ (w50, ŵ),

v(t∗(w50), w) > v(t, w). Thus, strictly more than half the population strictly prefers

t∗(w50) to t.38

The case with t < t∗(w50) instead of t > t∗(w50) is analogous. Q.E.D.

8.8 Proof of Proposition 3

To complete the proof given in the main text, it remains to show that (i) Assumption

2 holds and (ii) the vt(t,w)
vt(τ(t,w),w)

terms under the integrals in (7) equal −1.

Suppose w ≤ c1(t). Then, one can obtain directly from the definition of τ(t, w)

that τ(t, w) = 2I−2w2

2I−w2 − t so that τt(t, w) = −1.39 Thus, Assumption 2 holds.

Next, take t ∈ [t, 1
1+σ

] and w ∈ [0, c1(t)) ∪ (c1(t), c2(t)]. Again, τ(t, w) =
2I−2w2

2I−w2 −

t.40 Directly plugging into (12), yields vt(t,w)
vt(τ(t,w),w)

= − I−w2−(2I−w2)t
I−w2−(2I−w2)t

= −1.41 Q.E.D.

38The assumption that there is a unique median type implies that F (·) is strictly increasing around
that type so that there is a positive mass of types in (w50, ŵ).

39Part 3) of Lemma 0 guarantees that 2I − w2 6= 0.
40Parts 3) and 11) of Lemma 0 guarantee that 2I − w2 6= 0.
41w 6= c1(t) guarantees I − w2 − (2I − w2)t 6= 0.
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