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Abstract

We behaviorally model an agent in an intertemporal context who

exhibits diminishing impatience with respect to the size of consump-

tion stakes. Our representation result describes the agent as a dis-

counted utility maximizer, where the discount function is determined

by a cognitive process that optimally uses a limited stock of cognitive

resources to improve the agent’s "telescopic faculties".

1 Introduction

When deciding if it is worthwhile to sacrifice immediate consumption for

larger future consumption, we need to consider not just the magnitude of

the future outcome, but also our willingness to wait for it. The standard

Discounted Utility model of intertemporal choice views “willingness to wait”

to be a fixed feature of the agent’s preference, modelling it as a discount

function. However, in this paper we study the possibility that our willingness

to wait may have rich properties. In particular, we may be more willing to

wait for larger outcomes. Our willingness to wait for a $10,000 outcome next

week may be substantially different from that for a $3 outcome. In trying to
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understand why, we provide a theory where the difference comes from the

fact that $10,000 invokes a rich mental picture, whereas $3 does not.

Taking a preference over the space of consumption streams as a primitive,

we formalize the notion of “diminishing impatience with respect to scale”

in an axiom that we call Increasing Attention. We prove a representation

theorem for an agent who respects Increasing Attention along with some

regularity conditions. The representation describes the agent as evaluating

streams in terms of their discounted utility, but the discount function may

change with the stream. The dependence is such that as any stream is scaled

up, the discount function weakly increases, and moreover, it may be that

a change in the outcome in one period can nontrivially impact how other

periods are discounted.

The representation goes further, however, and provides a story for why

the discount function may be so. Specifically, it is as if the discount function

is the result of a cognitive process that operates as follows.

The cognitive process is motivated to maximize the discounted utility of

the stream. The instrument available to it for doing so is attention (which

leads to a higher discount function). Intuitively, the promise of future utility

motivates the focus of attention, and the attention in turn enhances the

current appreciation of it — in a sense, affect feeds cognition and cognition

feeds affect. There is a pool of cognitive resources that can be used, at a cost,

for producing attention.1 These resources are limited, and thus there are

bounds on the agent’s attention. The cognitive process solves the attention

allocation problem optimally.

While Pigou described discounting as arising due to “faulty telescopic

faculties”,2 our model views the agent’s telescopic faculties as something that

can be sharpened by the mind in response to the promise of future utility.

In our interpretation of the model, the agent’s focus on future outcomes

is not necessarily conscious and deliberate, but rather it is the outcome of a

non-conscious cognitive process. Indeed, our axioms do not carry with them

any suggestion of deliberation on the part of the agent, and they are in fact

consistent with some reduced form of the representation where the discount

function just depends on the size of outcomes in particular ways in some

unexplained way. We show nevertheless that this discount function can be

1See Kahneman (1973) for a model in cognitive psychology that views attention as a

scarce resource that is allocated across alternatives being considered.
2Quoting Pigou (1920), “our telescopic faculty is defective, and we, therefore, see future

pleasures, as it were, on a diminished scale”.
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viewed as the outcome of a cognitive optimization problem which disciplines

the dependence of the discount function on the stream. The components of

this cognitive optimization problem are uniquely pinned down by preferences.

The remainder of the paper proceeds as follows. We close the Introduction

with a discussion of related literature. Section 2 presents our primitives

and our axioms, while Section 3 presents our main representation theorem.

Section 4 discusses implications for preferences over rewards, as opposed to

consumption. Section 5 presents a tractable subclass. Section 6 concludes.

All proofs are relegated to appendices.

Related Literature

The idea of diminishing impatience with respect to stake size first orig-

inated in the experimental time preference literature, where it was called a

magnitude effect. For instance, Thaler (1981) reports that his subjects were

indifferent between $3000 now and $4000 in a year, while also being indiffer-

ent between $15 now and $60 in a year, suggesting diminishing impatience

with respect to stake size. Such conclusions in the literature have relied on

assuming linear utility for money. For an experiment that does not rely on

assumptions about utility, see Ericson and Noor (2015). For some theoretical

work on the magnitude effect, see Loewenstein and Prelec (1992) and Noor

(2009, 2011). In this paper we formulate an axiom that clearly captures

diminishing impatience with respect to stake size, and study what it might

imply about the cognitive processes underlying the agent’s choices.

Becker and Mulligan (1997) hypothesize that an agent can change his dis-

count function through deliberate physical investment in certain commodities

(such as education). In our model, the agent changes his discount function

through non-deliberative subjective investment of cognitive resources.

Brunnermier and Parker (2005) describe optimistic expectations as the

outcome of some underlying process that wishes to increase the utility from

anticipation through beliefs while anticipated real costs of consequent sub-

optimal future decisions discipline these beliefs. The model deals with a very

specialized process, one that requires a special kind of awareness of opti-

mism (the agent believes in his optimal beliefs, but also possesses different

‘true’ beliefs that discipline his optimism). Our model views the agent as

simply maximizing his utility when it comes to choice, and the utility being

determined by a separate non-conscious cognitive process.

In the decision theory literature, Ellis (2015) studies the behavioral foun-

dations of models in the inattention literature where the agent subjectively
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chooses how much information to accumulate. Unlike our model, his model

carries with it the presumption of a deliberative action (choice of informa-

tion) on the part of the agent, and the optimality of the action expresses

itself behaviorally. Moreover, while his model features a cost function 

where the cognitive constraint may be implicitly defined via the effective

domain { : ()  ∞}, in our model the analysis of cognitive resource
constraints is more nuanced and does not coincide with the effective domain

of the cognitive cost function.

2 Axioms

The consumption space is given by a metric space  that is also a mixture

space, and endowed with the metric topology. As we will see, this space

cannot be assumed compact. The time horizon is  + 1  ∞. Consider
the space of consumption streams  = +1, endowed with the product

topology. The primitive of our model is a binary relation % over .

2.1 Basic Axioms

The first two axioms are entirely standard.

Axiom 1 (Order) % is complete and transitive.

Axiom 2 (Continuity) For all  ∈ , { ∈  :  % } and { ∈  :  %
} are closed.

It is conceivable that an agent with limited cognitive resources may possi-

bly exhibit intransitivities; for example the agent may exhibit indifference to

barely noticeable improvements but non-indifference to noticeable improve-

ments. However, with an eye on applications, our modelling choice is to write

a model that can be described by a utility function.

Axiom 3 (Present Equivalents) (i) There exists 0 ∈  s.t.  % (0 0  0)
for all .

(ii) For any  there exists  ∈  s.t. ( 0  0) % 

The first part of the axiom implies that there is a “worst consumption”,

denoted (and interpreted as) 0. The second states that for any stream , there
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is an immediate consumption level (with 0 in every subsequent period) that

is better than . Given other axioms, this ensures the existence of present

equivalents, that is, for any stream  there exists  such that ( 0  0) ∼ .

Present equivalents will be needed to formulate our novel axioms in the next

subsection.

One consequence of the Present Equivalents axiom is that  cannot be

bounded. Imagine that  was bounded and there was a “best consump-

tion” . Then our Monotonicity axiom below would imply that ( 0  0) ≺
(   ), that is, getting  today would not be better than getting  in every

period. Indeed, no present equivalent exists for the latter stream. This is

ruled out by Present Equivalents.

When the context is clear, we use  to denote both an element in  and

the stream ( 0  0). Denote by  the stream that pays  at time  and 0

in all other periods. The standard Impatience axiom can be stated as:

If  Â 0 then   0 =⇒  Â 
0
. If  ∼ 0 then  ∼ 0 for all .

This states that desirable consumption is always preferred sooner, and that

the agent does not care when he receives “zero” consumption. We relax the

first part so that consumption in the future is never more attractive than

immediate consumption.

Axiom 4 (Weak Impatience) (i)  %  for any  and .

(ii) If  ∼ 0 then  ∼ 0 for all .
We impose this axiom despite the fact that we can prove results without it.

“Anticipatory utility” has been modelled in the literature (Loewenstein 1987)

as a violation of (the first part of) Weak Impatience. In the interpretation

of our model, appreciation of future utility plays an important role, and

we maintain Weak Impatience to show that behaviorally this not the same

phenomenon as “anticipatory utility” as it is discussed in the literature.

Finally, we require that the agent’s preferences towards risk is standard.

Axiom 5 (Risk Preference) For any  0 00 ∈  and  ∈ [0 1],
 Â 0 =⇒ + (1− )00 Â 0 + (1− )00

Since these are fairly standard axioms we will say that:

Definition 1 (Regularity) % satisfiesRegularity if it satisfies Order, Con-
tinuity, Present Equivalents, Weak Impatience and Risk Preference.
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2.2 Main Axioms

In this section we formulate key axioms that describe an agent who exhibits

diminishing impatience with respect to stake size.

For any  and  ∈ [0 1] define the mixture  := + (1− )0. For any

stream  = (0   ) define

 := (0   )

Intuitively, the stream  uniformly “scales down” the consumption offered

by  in every period. Abusing notation, write  for the stream ( 0 0).

For any  define its present equivalent  = ( 0 0) by

 ∼ 

The agent’s evaluation of  is based only on his evaluation of (immediate)

consumption. In contrast, his evaluation of  is based on the consumption

sequence and also on his level of patience, that is, his willingness to wait for

the future outcomes. A key question is: what behavior reveals changes in

impatience in response to scaling down consumption?

We argue that if impatience does not change in response to scaling down

 by  then it must be that:

 ∼ 

This is because impatience is held constant, and the scaling down affects

the evaluation of consumption equally for both the immediate reward and

the stream (this relies on the fact that we assume Independence for eval-

uation of consumption  in any period — a consequence of Risk Preference

and Monotonicity). On the other hand, if impatience changes in response to

scaling down by , we should observe

 Â 

Although the value of both reduce the same way due to scaled down con-

sumption, the value of the stream  reduces further due to the additional

reason that the agent becomes less willing to wait for the small future out-

comes. Thus we capture diminishing impatience with respect to stakes. This

suggests the following axiom.3

3We use the term “Increasing Attention” instead of “Diminishing Impatience” because

the latter is commonly used in the literature to describe diminishing impatience with

respect to delay.
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Axiom 6 (Increasing Attention) For any ,  and  ∈ [0 1]

 ∼  =⇒  % 

While Risk Preference states that immediate consumption becomes worse

by mixing with 0, Increasing Attention extends this property to future con-

sumption as well: if  6= 0 and   1 then  ∼  Â  % , that is,

 Â .

We have seen how a comparison of  and  for different  allows us

to capture change in behavior towards changing stakes arising from changes

in impatience. We hypothesize further that impatience may not diminish

indefinitely with stake size and that the agent might hit a lower bound. How

do we tell when the agent is at his minimum impatience and when he is not?

We argue that when the agent hits a lower bound, his impatience should not

vary with small changes in the size of the stakes, and in particular:

 ∼  =⇒  ∼  for all  close to 1.

When this condition is satisfied, we say that  is a large stream.

Similarly we can consider the case where the agent has not hit his lower

bound. For such streams, any change in stakes should should alter his impa-

tience. In particular,

 ∼  =⇒  Â  for all  ∈ (0 1).

When this is satisfied, we call  a small stream. Intuitively, for small rewards,

if there is a cognitive process determining impatience through the optimal

use of limited resources, then this process is not hitting the cognitive resource

constraint.

Define the set of small streams  ⊂  by

 = { ∈  :  Â  for all  ∈ (0 1)}
The preceding discussion motivates our next axiom.

Axiom 7 (Small Stakes Regularity) The set  of small stakes is

(i) closed,

(ii) star-shaped:  ∈  =⇒  ∈  for all  ∈ (0 1]
(iii) absorbing:  ∈  =⇒  ∈  for some  ∈ (0 1]
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The axiom states that a (i) a sequence of small rewards converges to a

small reward, (ii) if a stream  is small, then any scaled down version of it

( for any  ∈ (0 1]) is also small, and finally, (iii) any arbitrary stream
can be made small by scaling it down sufficiently.

Our last axiom rules out the possibility where if the agent becomes less

impatient toward an outcome in period  then his impatience towards out-

comes in adjacent periods is affected.4 That is, when he is not hitting a lower

bound on impatience, his impatience towards each part of the stream will

be assumed to be independent of this impatience towards other parts.5 This

motivates a form of separability when dealing with small streams.

To formulate an axiom that expresses this, let  denote the stream that

pays according to  at  and according to  otherwise. As above,  denotes

the present equivalent of .

Axiom 8 (Small-Stakes Separability) For all  ∈  and all ,

1

2
0 +

1

2
0 ∼ 1

2
 +

1

2
0

Given that preferences over immediate consumption satisfy Independence

and that the axiom considers lotteries over present equivalents, we interpret

the above axiom via its analogy with the following condition defined for

a hypothetical preference that is defined over lotteries over streams that

satisfied independence:

1

2
◦ 0 + 1

2
◦ 0 ∼ 1

2
◦ + 1

2
◦ 0

For instance, in a three period setting,

1

2
◦ (0 0 0) + 1

2
◦ ( 0 00) ∼ 1

2
◦ ( 0 00) + 1

2
◦ (0 0 0)

This says that the agent only cares about the distribution of consumption

across periods, and not the possible correlation across periods.

An axiom that is conspicuously missing from our list is Monotonicity,

that is, the condition that a stream that yield more preferred consumption

4Alternatively, we require that the duration of a period is sufficiently “long” that such

effects disappear.
5While conceptually not necessary for the model, the axiom will allow us to provide a

representation with uniqueness properties.
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in each period than another must also be preferred. We will revisit this

later. For now we just note that our axioms imply that preferences must

be monotone on certain subdomains. First, given separability, monotonicity

will hold on . Second, preferences will be monotone along rays: For any

0 6=  ∈  and   1,  Â . This is implied by Increasing Attention and

Risk Preferences.6

3 Representation Theorem

Consider a tuple ( ()) where

(i)  :  → R is a continuous utility index with min∈ () = 0

(ii)  : [0 1] → R+ ∪ {∞} is a increasing convex cost function that
satisfies (0) = 0 and is strictly increasing, strictly convex and differentiable

on the effective domain,7 and,

(iii)  :  → R ∪ {∞} is a continuous function satisfying
 =  for any  and   0

Here  represents the agent’s instantaneous utility from consumption,

and  is the cognitive cost function. The function  describes the stock of

cognitive resources available to the agent when he is facing stream . This

stock is invariant to the scale of the stream — this will be interpreted below.

We define:

Definition 2 (Bounded Attention Representation) A Bounded Atten-

tion representation for % is a tuple ( ()) satisfying (i)-(iii) such that

% is represented by the function  : → R defined by

() = (0) +

X
=1

() ¦ ()

s.t.  = arg max
∈Λ

{
X
=1

() ¦ ()− (())}

Λ = { :

X
=1

(()) ≤ }

6By these axioms, for any  6= 0 and   1,  ∼  Â  % .
7The effective domain of  is the set { ∈ [0 1] : () ∞}.
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The cognitive constraint set Λ is defined by the set of discount functions

whose cost does not exceed the stock . Therefore it is as if, when faced

with , the agent has available resources of amount , and he draws on this

at a cost to pay attention to the future. As discussed in the Introduction,

it is as if the cognitive process is motivated to appreciate future rewards,

and it does so by focusing attention. The cognitive process participates in

producing affect.

The dependence of the stock  on the stream  can be interpreted as

follows: while there may be an overall stock , the agent may incur some

fixed costs to understanding the structure of a given stream (the stream may

be an action, such as buying an investment property, and determining the

implied consumption stream may require some thinking), leaving him with

 ≤  resources to devote to appreciating the stream.

The stock  is assumed to be invariant along the ray { :   0}, that
is,  is constant for a given stream  and any scaling of it. Note that 

could equivalently be written as a function of the normalized distribution of

utilities offered by the stream (
()
=0 ()

)∈{0}. This observation further

supports the interpretation that some fixed cost is incurred to understand

the structure of the stream. While not imposed on the model, one would

presume that constant streams are the easiest to understand.

The sum in the cognitive constraint is taken over   0, since discount-

ing refers to the future. However, the cognitive resource  depends on the

entire stream including the value of immediate consumpion. One case where

dependence on immediate consumption may arise is in temptation: the possi-

bility of higher immediate consumption may shift the agent’s attention to the

present and reduce the amount of cognitive resources available to evaluate

the future. We leave it to future research to explore this.

A priori one might imagine that a cognitive cost function  would be

sufficient to describe cognitive constraints via the effective domain of , i.e.

{ : ()  ∞}. However our axioms deliver a model where the cognitive
constraint Λ is generically a strict subset of the effective domain.

8 The

behavioral significance of this remains to be understood.

It is worth noting that in the representation, while the cognitive costs

impact the cognitive choice of , these costs are not deducted from the

8When   ∞ is constant, it is always a strict subset. We conjecture, in fact, that

it is only in trivial cases (such when there is no cognitive constraint,  = ) where it

equals the effective domain .
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utility of the stream.9 This is intuitive. The cognitive costs are sunk by

the time that the agent makes his choices. Therefore the impact of these

costs must be limited only to the role they played in the evaluation of the

alternatives.

3.1 Results

The main result of this paper is the following representation theorem:

Theorem 1 A preference% satisfies Regularity, Increasing Attention, Small-
Stakes Regularity and Small-Stakes Separability if and only if it admits a

Bounded Attention Representation.

The construction of the utility representation from our axioms is as fol-

lows. Regularity and Small-Stakes Separability yields an additively separable

representation on the space of small rewards . This representation can be

rewritten in the obvious way so that it looks like a discounted utility as

in the desired representation, with the discount function  dependent on

the stream. Since  and  is given, we can using the first order condition

() = 0(()) for each  to obtain an additive cost function  =
P



for which  is optimal. This yields a representation close to the desired one

on the space of small rewards  (the constraint remains to be defined) The

remaining problem is as follows. Increasing Attention requires that along a

ray { :   0}, as  increases,  should increase and eventually become

constant once  crosses the boundary of . The nontrivial step in proving

the theorem was to find a cognitive constraint Λ for which the optimal 

has this property. An arbitrary closed and convex set Λ ⊂ [0 1] satisfying
Λ = Λ for all  does not define a model that is consistent with Increasing

Attention.10 We find that the cognitive constraint in the Bounded Attention

representation does the job.

9Such a model would take the form

() = max
∈Λ

{
X
=0

() ¦ ()− (())}

which is related to the model of ambiguity due to Maccheroni, Marinacci and Rustichini

(2006).
10Fix  and let Λ = Λ = Λ. Increasing Attention requires that as stakes are increased,

the discount function eventually ceases to change. But without additional structure on Λ,

this property may not obtain. To see this suppose  is optimal for , that is, it satisfies
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The model has strong uniqueness properties, inherited from the separabil-

ity of the representation on the subdomain  and because min∈ () = 0

is assumed in the representation. Say that ( ()) has “maximal cost”

if for any other representation of the form ( (b)) we have  ≥ b for

all .11 Then

Theorem 2 If there are two representations ( (
) 

),  = 1 2 of the

same preference %, then there exists   0 such that (i) 2 = 1, (ii)

2 = 1 , and (iii) 
2 = 1.

This theorem implies that for all ,

Λ2 = { : 

X
=1

1 (()) ≤ 1()} = Λ1

Therefore,

arg max
∈Λ1

{
X
=1

()1()− 1 (())} = arg max
∈Λ2

{
X
=1

()2()− 2 (())}

That is,  is uniquely determined from preference. Moreover, the theorem

also ensures that the curvature or elasticity of  is uniquely derived from

preference.

3.2 Monotonicity

Axiom 9 (Monotonicity) For any  0 ∈ ,

( 0  0) % (0 0  0) for all  =⇒  % 0

 · () − ()   · () − () for all  ∈ Λ (the strict inequality comes from
the strict convexity of the cost function, which yields a unique maximizer). This can be

rewritten as

 · ()− · ()  ()− ()

for all  ∈ Λ. However, suppose  · ()− · ()  0 for some  ∈ Λ. Exploiting the
linearity of , it is readily seen that scaling up  to  for   1 can lead to the inequality

 · ()− · ()  ()− ()

Consequently, even if  is on the boundary of Λ, scaling up rewards may change the

agent’s discount function in a way inconsistent with Increasing Attention.
11The cost function is pinned down by preference only on some interval [0 ] ⊂ [0 1]

and in a maximal representation the cost is set to infinity outside this interval.
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Moreover, if ( 0  0) Â (0 0  0) for some  then  Â 0

This condition may fail around the boundary of . Imagine that 

dominates  but also comes with a much lower . Intuitively,  is a better

stream but understanding the stream (the fixed cognitive cost) requires a

very high cognitive cost, leaving little cognitive resources to appreciate the

stream.

[Characterization in progress].

4 Attention to “Bad” Outcomes

In this section we clarify some matters related to discounting, attention and

‘bad’ outcomes.

Consider the intuition that people pay more attention not just to larger

gains but also to larger losses. A key point to note is that this intuition is

based on preferences over changes in consumption, while our model is one of

preferences over consumption (where consumption is always more desirable

than 0). Consequently, the proper application of the model to study “bad”

outcomes is by looking at the induced preferences over streams of changes

relative to a given consumption profile.

Our model implies that, for a given base-line consumption stream , a

stream ∆ of changes in consumption is accepted if and only if12

X
=0

+∆()( +∆)−()() ≥ 0

That is, the agent considers not just the change in  but also the change in

 associated with ∆.

How is the change in associated with attention? Because is increasing

with consumption, it is intuitive that higher gains ∆  0 will get higher

levels of attention. To the extent that “attention is increasing in losses”

means that “the loss is deemed worse as the magnitude of the loss increases”,

this in fact still requires  to be increasing in consumption, as in our model.

For instance, without a change in  (intuitively, holding attention fixed),

losing −∆ at time  (and no change in any other period) yields a loss of

()( −∆)−()()  0

12We have not defined additive changes in consumption but this can be viewed as no-

tation for proportional changes for each period, which is well-defined.
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but the loss is greater in magnitude only with a decrease in  due to lower

consumption, that is, if −∆()  ():

−∆()( −∆)−()()  ()( −∆)−()()  0,

as was to be shown. Intuitively, increases in  are increases in appreciation,

not increases in attention. If attention towards losses means diminished

appreciation of the consumption offered, then this requires  to decreasing

with (), as in our model.

One may wish further to impose a property analogous to “loss aversion”:

()()−−∆()( −∆)  +∆()( +∆)−()()

This can be captured by imposing concavity of ()().

5 A Special Case

5.1 Axioms

By Increasing Attention (along with Order and Continuity), we know that

for any  ∈  and , there exists    s.t.

 ∼ 

In order to place more structure on the preference, we impose that 
must be independent of . Intuitively, a worsening of each component of the

stream by (say) 10% should lead to a worsening of the entire stream by 20%,

regardless of the stream being faced. While this does not preclude the possi-

bility that discounting depends on the outcome, it requires that discounting

be homogenous with respect to changes in the scale of the outcome.

Axiom 10 (Homogeneous Attention) For any  ∈ (0 1) there is  such
that for any 0 6=  ∈ ,

 ∼ 

Turning to the next axiom, recall that larger streams will induce higher

levels of attention from the agent. Thus the agent hits her cognitive con-

straint for streams that are higher up her preference ranking. A simple
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condition that can be used to define the boundary between small and large

rewards is that the boundary is in fact an indifference curve when looking at

streams with constant immediate consumption (recall that immediate con-

sumption does not contribute to cognitive costs). We view this not as a

descriptive assumption, but rather one that is very attractive from the per-

spective of building a tractable model. The value of this will be demonstrated

in the application below.

Axiom 11 (Restricted Boundary) For any   ∈  wih 0 = 0,

  ∈ () =⇒  ∼ 

5.2 Representation Result

Our main result in this section is:

Theorem 3 Consider a preference % that admits a Bounded Attention rep-
resentation. Then the following statements hold:

(i) % satisfies Homogeneous Attention if and only if

() =  ·   ∈ [0 1]

for some   0 that is increasing in  and some scalar   1.

(ii) % satisfies Homogenous Attention and Restricted Boundary if and

only if it is also the case that  is independent of .

Thus Homogenous Attention imposes a lot of structure on the preference,

which gets expressed in the representation by the functional form imposed

on the cost function with one variable and one fixed parameter. With this

structure there is a connection between the utility of streams and the bound-

ary of , which is exploited by Restricted Boundary to obtain a constant

cognitive resource  that does not depend on the stream. Intuitively, there

is no cognitive cost of learning the stream, and all costs are associated with

evaluating it.

Say that a preference admits a Homogeneous Attention representation if

it admits a Bounded Attention representation, and satisfies Homogeneous

Attention and Restricted Boundary.
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5.3 Reduced Form

It is instructive to derive the reduced form of the Homogeneous Attention

model.

Proposition 1 If % admits a Homogeneous Attention representation then

there exist parameters   1   0 and a function  : {0   + 1} →
[0 (−1


)−1] such that % is represented by  : → R where

() ≤  =⇒ () = (0) +
X
0

()()


()   =⇒ () = (0) + 
−1


"X
0

()()


# 1




The utility level  defines an indifference curve, and any stream in the

lower contour set is a small stream, while anything in its complement is a

large stream. If the cost function is parametrized as () = 
1

 then

() =

µ
()



¶ 1
−1

:= ()()−1

that is, the discount function is a power transformation of the utility of the

reward. This is used to compute discounted utility for small rewards, yielding

the expression in the proposition.

We find that for small stakes, the utility function is additively separable,

and future utility from lotteries is a power transformation of the immedi-

ate utility from lotteries. The latter implies that risk aversion is the same

between periods. However, the parameter  will affect intertemporal substi-

tution.

For large stakes we find that the utility function is not longer additively

separable. In fact future utility is evaluated using a concave aggregator.

6 Concluding Remarks

This paper suggests several substantive avenues for future research.

Dynamic extension: [To be added]
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Temptation: An interesting observation about the model is that it con-

tains elements of a story of temptation and self-control in the context of in-

tertemporal choice. The agent normatively wishes to understand his options

fully, that is, to evaluate a stream without discounting the future
P

=0 ().

However, since thinking about the future requires effort, he is “tempted” to

evaluate it only in terms of immediate consumption (0). The cognitive

cost of attention to the future is related to the notion of self-control cost.

Intuitively, one way that an agent may exert self-control is by influencing

choice via thinking about the virtue of the more virtuous action.

A richer domain is required to provide more rigorous behavioral founda-

tions for such an interpretation of the model. For instance, if the agent has a

normative preference to pay maximal attention in his intertemporal choices,

then ex ante the agent may prefer menus that encourage him to do so ex post.

For instance, the agent may ex ante prefer that small rewards spread across

different periods be lumped together as one large reward in one period. We

leave such a study for future research.

Welfare: While this extends beyond revealed preference, one can hy-

pothesize that our agent’s welfare is determined by the preference he would

exhibit if he did not have any cognitive costs. In our model this is given by

 7→
X
=0

()

that is, the undiscounted sum of utility. Whether this is compelling or not

depends on the result of a thought experiment: would we discriminate be-

tween rewards in the present versus the future if we could view the future as

clearly as we could view the present?

APPENDIX [To be added]

BIBLIOGRAPHY [To be added]
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