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Abstract

In this paper, we provide evidence that fat tails and stochastic volatility can be impor-
tant in improving in-sample fit and out-of-sample forecasting performance. Specifically,
we construct a VAR model where the orthogonalised shocks feature Student’s t distribu-
tion and time-varying variance. We estimate this model using US data on output growth,
inflation, interest rates and stock returns. In terms of in-sample fit, the VAR model that
features both stochastic volatility and Student’s t-distributed disturbances outperforms
restricted alternatives that feature either attributes. The VAR model with Student’s t
disturbances results in density forecasts for industrial production and stock returns that
are superior to alternatives that assume Gaussianity, and this difference appears to be
especially stark over the recent Great Recession. Further international evidence confirms
that accounting for both stochastic volatility and Student’s t-distributed disturbances
may lead to improved forecast accuracy.
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1 Introduction

Could empirical macroeconomic models with a more realistic shock distribution be able to
better predict economic downturns? Since the Great Recession and during the ensuing uncer-
tainty surrounding the political and economic environment, both academic and policy circles
have paid increasing attention to fat tail events. Many argue that recent events could hardly
be explained or predicted by models that are based on a Gaussian shock structure, mainly
because these models assign virtually zero probability to the macroeconomic outcomes that
we have recently observed.1 This has been recognised by recent efforts of the DSGE litera-
ture including Curdia, del Negro, and Greenwald (2014) and Chib and Ramamurthy (2014)
who found evidence that models with a multivariate t-distributed shock structure are strongly
favoured by the data over standard Gaussian models.

This paper contributes to the literature by empirically investigating the in-sample fit and
out-of-sample forecasting performance of a VAR model incorporated with Student’s t errors
(Student, 1908) and stochastic volatility (TVARSVOL). Building on the previous work on
univariate (Geweke, 1992, 1993, 1994) and multivariate (Ni and Sun, 2005) models with Stu-
dent’s t-distributed shocks, as well as work on the DSGE literature (Fernandez-Villaverde
and Rubio-Ramirez, 2007; Justiniano and Primiceri, 2008; Liu, Waggoner, and Zha, 2011) on
stochastic volatility of the error structure, we provide a Gibbs sampling algorithm to estimate
the TVARSVOL model. Moreover, we apply the particle filter to compute the marginal like-
lihood, and compare the in-sample fit and the out-of-sample forecasting performance of this
model against three other models, namely, a linear Gaussian BVAR model (BVAR), a VAR
model with Student’s t error (TVAR) and a VAR model with stochastic volatility (VARSVOL).

We show that incorporating both fat tails and stochastic volatility can be important in
improving in-sample fit and out-of-sample forecasting performance. Using monthly data on
industrial production growth, inflation rate, short-term interest rate and the SP500 return
for the US, the TVARSVOL model outperforms the other three models in terms of in-sample
fit. When it comes to out-of-sample forecasting, we present international evidence that VAR
models with Student’s t-distributed shocks result in density forecasts for industrial production
and stock returns being superior to alternatives that assume Normality.

Our results have at least two important implications when interpreting historical data.
First, the structural shift in output volatility in the early 1980s, often referred to as the Great
Moderation, may be overestimated when the VAR model does not account for Student’s t-
disturbances. Second, the Student’s t assumption appears especially important over the 2008
and 2009 period. Forecast densities for industrial production generated from VARs with Gaus-
sian disturbances assign a zero probability to the collapse of industrial production observed in
late 2008. In contrast, when Student’s t shocks are incorporated, the left tail of the forecast
density includes the actual outcome.

Our paper is related to the DSGE analysis of Curdia, del Negro, and Greenwald (2014)
1These issues have been discussed in more detail by Mishkin (2011); Elliott and Timmermann (2013); Ng

and Wright (2013) amongst many others.
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showing that by solely focusing on fat-tails and ignoring lower-frequency changes in the volatil-
ity of shocks (as in Ascari, Fagiolo, and Roventini (2015)) tends to bias the results towards
finding evidence in favour of fat tails. Our work is also related to Clark and Ravazzolo (2015)
who work with (V)AR models using quarterly real-time data (GDP growth rate, inflation rate,
unemployment rate and short-term interest rate) of the US. They find empirical evidence that
models with stochastic volatility increase the accuracy of both point and density forecasts
relative to models assuming homoscedasticity. Our paper considers monthly data-sets incorpo-
rating with both real and financial variables from the US and three other developed countries,
and provide evidence that modelling fat-tailed errors on top of stochastic volatility is important
in improving forecasting performance.

The structure of the paper is as follows. Section 2 provides a description of the TVARSVOL
model together with the priors and the conditional posteriors and the computation of the
marginal likelihood. This section also describes the restricted models considered in our study.
Section 3 presents the posterior estimates, compares the models based on in-sample fit and
forecasting performance, and provides sensitivity analysis. Section 4 provides further interna-
tional evidence on the forecasting performance of the different models estimated on data from
Canada, Germany and the UK. Section 5 concludes.

2 The Model

The model presented in this section is a multivariate time series model with both time varying
variance covariance matrix and Student-t distributed shocks in each of the equations (denoted
by TVAR-SVOL). As in Primiceri (2005), the stochastic volatility is meant to capture possible
heteroscedasticity of the shocks and potential nonlinearities in the dynamic relationships of the
model variables, which are related to the low-frequency changes in the volatility. Introducing
Student’s t-distribution in the shock structure is meant to capture high-frequency changes
of in volatility that are often of extreme magnitudes, hence potentially providing an effective
treatment of outliers and extreme events.2 By allowing for stochastic volatility and t-distributed
shocks, we let the data determine whether time variation in the model structure derives from
rare but potentially transient events, or from persistent shifts in the volatility regime.

Consider a simple VAR model:

Yt = c+B1yt−1 + · · ·+Bpyt−p + ut t = 1, . . . , T, (2.1)

where yt is an n × 1 vector of observed endogenous variables, and c is an n × 1 vector of
constants; Bi, i = 1, . . . , p are n × n matrices of coefficients; ut are heteroscedastic shocks
associated with the VAR equations. In particular, we assume that the covariance matrix of ut
is defined as

cov(ut) = Σt = A−1HtA
−1′
, (2.2)

2In an important paper, Jacquier, Polson, and Rossi (2004) provides a detailed analysis of this issue in a
univariate framework.
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where A is a lower triangular matrix and Ht = diag
(
σ2

1,t × 1
λ1,t

, σ2
2,t × 1

λ2,t
, ..., σ2

n,t × 1
λn,t

)
with

ln σk,t = ln σk,t−1 + skt, var(sk) = gk, (2.3)

for k = 1, 2, ..n. As shown by Geweke (1993), assuming a Gamma prior for λk,t of the form
p (λk,t) =

T∏
t=1

Γ̃ (1, vλ,k) leads to a scale mixture of normals for the orthogonal residuals ε̃t = Aut

where ε̃t = {ε̃1,t, ε̃2,t, ..ε̃n,t}. Note that Γ̃ (a, b) denotes a Gamma density with mean a and
degrees of freedom b. The above formulation is equivalent to a specification that assumes
Student’s t-distribution for ε̃k,t with vλ,k degrees of freedom. Our specification allows the
variance of this density to change over time via equation 2.3.

There are two noteworthy things about the BVAR model. First, it allows for both low and
high frequency movements in volatility through the stochastic volatility σk,t and the weights
λk,t respectively. Second, note that these features apply to the orthogonal residuals Aut. This
assumption allows the degrees of freedom for the Student’s t-distribution to be independent
across equations and simplifies the estimation algorithm.3 However, the assumption also implies
dependence on the structure of the A matrix. We show in the sensitivity analysis that the
ordering of the key variables does not have an impact on the main results.

2.1 Estimation and Model Selection

In this section, we describe the prior distributions and provide details of the MCMC algo-
rithm used to estimate the model described above. We also introduce the alternative models
considered in this study, and discuss the computation of the marginal likelihood for model
comparison.

2.1.1 Priors

To define priors for the VAR dynamic coefficients, we follow Banbura, Giannone, and Reichlin
(2010) in implementing the dummy observation approach (Doan, Litterman, and Sims, 1983;
Sims and Zha, 1998). We assume Normal priors, p (B) ∼ N(B0, S0), where B = vec([c;Bj]),
where j = 1, ..., p, B0 = (x′dxd)

−1 (x′dyd) and S0 = (YD −XDb0)′ (YD −XDb0)⊗ (x′dxd)
−1. The

prior is implemented by the dummy observations yD and xD that are defined as:

yD =



diag(γ1s1...γnsn)
τ

0n×(p−1)×n

..............

diag (s1 . . . sn)
..............

01×n


, xD =



JP⊗diag(s1...sn)
τ

0np×1

0n×np 0n×1

..............

01×np c

 , (2.4)

3Chahad and Ferroni (2014) present a VAR model that incorporates a multivariate t-density for the error
term.
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where γ1 to γn denote the prior mean for the parameters on the first lag obtained by estimating
individual AR(1) regressions, τ measures the tightness of the prior on the VAR coefficients,
and c is the tightness of the prior on the constant term. We use relatively loose priors and
set τ = 1. The scaling factor si are set using the standard deviation of the residuals from
the individual AR(1) equations. We set c = 1/1000, implying a relatively flat prior on the
constant. In addition, we introduce priors on the sum of lagged coefficients by defining the
following dummy observations:

yS = diag (γ1µ1 . . . γnµn)
λ

, xS =
[

(11×p)⊗ diag (γ1µ1 . . . γnµn)
λ

0n×1

]
, (2.5)

where µ1 to µn denote the sample means of the endogenous variables using a training sample,
and the tightness of period on this sum of coefficients is set to λ = 10τ .

We follow Geweke (1993) in setting a hierarchical prior on the parameter controlling the
degree of freedom of the Student’s t distributions vλ,n and the weighting vector λk,t,

p (vλ,n) ∼ Γ̃ (v0, 2) (2.6)

p (λk,t) ∼ Γ̃ (1, vλ,n) , (2.7)

where Γ̃ is a Gamma density with the corresponding shape and scale parameters. In the
benchmark case, the prior mean v0 is assumed to equal 20. This allocates a substantial prior
weight to fat-tailed distributions as well as distributions that are approximately Normal. We
show in the sensitivity analysis below that a higher value for v0 produces similar results for
key parameters. The rest of the priors are relatively standard. We follow Cogley and Sargent
(2005) in setting the prior on the variance of the shocks to the volatility transition equation 2.3,
and propose an inverse-gamma distribution, p (gk) ∼ IG(D0, T0), where T0 = 1 and D0 = 0.001
are the degrees of freedom and scale parameter, respectively. The prior for the off-diagonal
elements A is P (A) ∼ N (0, 1000).

2.1.2 The Gibbs Sampling Algorithm

The Gibbs algorithm for the TVAR-SVOL model cycles through the following six conditional
posterior distributions:

1. G(λk,t\Ψ) where Ψ denotes the remaining parameters of the model.

2. G (vλ,k\Ψ)

3. G (gk,t\Ψ)

4. G
(
σ2
k,t\Ψ

)
5. G (A\Ψ)

6. G (B\Ψ)

The details of each conditional posterior density is provided below:
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2.1.2.1 Drawing G(λk,t\Ψ) The conditional posterior distributions related to the t-distributed
shock structure of the model are described in Koop (2003). Note that conditional on B and A,
the orthogonalised residuals can be obtained as ε̃t = Aut. The conditional posterior distribu-
tion for λk,t derived in Geweke (1993) applies to each column of ε̃t. This posterior density is a
gamma distribution with mean (vλ,k + 1) / 1

σk,t
ε̃2
k,t + vλ,k and degrees of freedom vλ,k + 1. Note

that ε̃k,t is the kth column of the matrix ε̃t.

2.1.2.2 Drawing G (vλ,k\Ψ) The conditional distribution for the degree of freedom param-
eter capturing the fatness of tails is non-standard and given by:

G (vλ,k\Ψ) ∝
(
vλ,k
2

)Tvλ,n
2

Γ
(
vλ,n
2

)−N
exp

(
−
(

1
v0

+ 0.5
T∑
t=1

[
ln
(
λ−1
t,n

)
+ λt,n

])
vλ,n

)
. (2.8)

As in Geweke (1993) we use the Random Walking Metropolis Hastings Algorithm to draw
from this conditional distribution. More specifically, for each of the n equations of the VAR,
we draw vnewλ,n = voldλ,n + c1/2ε with ε ∼ N(0, 1). The draw is accepted with probability G(vnewλ,n \λn)

G(voldλ,n\λn)
with c chosen to keep the acceptance rate around 40%.

2.1.2.3 Drawing G (gk\Ψ) The conditional posterior of G (gk\Ψ) is inverse Gamma as
in Cogley and Sargent (2005). The posterior scale parameter is D0 +

(
ln σ2

k,t − ln σ2
k,t−1

)′(
ln σ2

k,t − ln σ2
k,t−1

)
with degrees of freedom T + T0.

2.1.2.4 Drawing G
(
σ2
k,t\Ψ

)
The conditional posterior G

(
σ2
k,t\Ψ

)
is sampled using the

Metropolis Hastings algorithm in Jacquier, Polson, and Rossi (1994). Given a draw for β, the
VAR model can be written as A′

(
Ỹt
)
× H̄1/2

t = ūt, where Ỹt = Yt − c −
L∑
l=1

BlYt−l = vt and

V AR (ūt) = H̃t. Here H̄t = diag(λ1, λ2..) and H̃t = diag
(
σ2

1,t, σ
2
2,t, ..

)
. Conditional on other

VAR parameters, the distribution σ2
k,t is then given by:

f
(
σ2
k,t\σ2

k,t−1, σ
2
k,t+1, un,t

)
= f

(
un,t\σ2

n,t

)
× f

(
σ2
n,t\σ2

n,t−1

)
× f

(
σ2
k,t+1\σ2

k,t

)
= 1
σk,t

exp
(
−u2

n,t

2σ2
k,t

)
× 1
σ2
k,t

exp

−
(
ln σ2

k,t − µ
)2

2σhk

 ,
where µ and σhk denote the mean and the variance of the log-normal density 1

σ2
k,t

exp
(
−(lnσ2

k,t−µ)
2

2σhk

)
.

Jacquier, Polson, and Rossi (1994) suggest using 1
σ2
k,t

exp
(
−(lnσ2

k,t−µ)
2

2σhk

)
as the candidate gener-

ating density with the acceptance probability defined as the ratio of the conditional likelihood
1
σk,t

exp
(
−u2

k,t

2σ2
k,t

)
at the old and the new draw. This algorithm is applied at each period in the

sample.

2.1.2.5 Drawing G (A\Ψ) The conditional posterior G (A\Ψ) for the off-diagonal elements
of matrix A is standard. Consider the representation of the system as in Cogley and Sargent
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(2005), adopted for our 4-variable VAR below:


vt

v2t + v1tα21,t

v3t + v2tα32,t + v1tα31,t

v4t + v3tα43,t + v2tα42,t + v1tα41,t

 =



(
σ1,t

1
λ1t

)1/2
ε1t(

σ2,t
1
λ2t

)1/2
ε2t(

σ3,t
1
λ3t

)1/2
ε3t(

σ4,t
1
λ4t

)1/2
ε4t


. (2.9)

The second, third and fourth lines give the following system of linear regressions:

v2t =− vtα21,t + (σ2,t$2,t)1/2 e2t

v3t =− v2tα32,t − v1tα31,t + (σ3,t$3,t)1/2 e3t

v4t =− v3tα43,t − v2tα42,t − v1tα41,t + (σ4,t$4,t)1/2 e4t,

(2.10)

where, conditional on λk,t and σk,t, the parameters α′s have a Normal posterior and formulas
for Bayesian linear regressions apply.

2.1.2.6 Drawing G (B\Ψ) Finally, the posterior distribution of the VAR coefficients is
linear and Gaussian, G (B\Ψ) ∼ N

(
BT\T , PT\T

)
. We use the Kalman filter to estimate BT\T

and PT\T where we account for the fact that the covariance matrix of the VAR residuals changes
through time. The final iteration of the filter delivers BT\T and PT\T .

2.1.3 Marginal Likelihood

For convenience, re-consider the main equations of the estimated model given by:

Yt = c+
P∑
j=1

bjYt−j + Σ1/2
t et, (2.11)

Σt = A−1HtA
−1′ (2.12)

Ht = diag
(
σ2

1t (1/λ1) ...
)
. (2.13)

Following Chib (1995), the estimate of the marginal likelihood is based on the following identity:

lnG (Yt) = lnF
(
Yt\B̂, Â, ĝ, λ̂, v̂λ,Ξ

)
+lnP

(
B̂, Â, ĝ, λ̂, v̂λ,Ξ

)
−lnH

(
B̂, Â, ĝ, λ̂, v̂λ,Ξ

)
, (2.14)

where the subscriptˆdenotes the posterior mean, F (.) denotes the likelihood function, P (.) is
the joint prior density, H(.) is the posterior distribution and Ξ denotes the state variables in
the model. Equation 2.14 is simply the Bayes equation in logs re-arranged with the marginal
likelihood G (Yt) on the LHS. Note that this equation holds at any value of the parameters,
but is usually evaluated at high density points like the posterior mean. The joint prior density
is straightforward to evaluate. The likelihood and posterior are more involved and described
in Section A of the Appendix.
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2.1.4 Data

We use the data-set of Stock andWatson (2012) and focus on three key macroeconomic variables
for the US: industrial production, inflation and the interest rate. In addition, we add the SP500
stock market index. The data is available at monthly frequency, spanning the period from
January 1959 to September 2011. As a measure of output we use industrial production (Total
Index). Inflation is calculated based on the personal consumption expenditure (chain-type)
price index. Interest rate is measured as the 3-month Treasury Bill (secondary market) rate.
Output growth, inflation and stock returns are calculated by taking the first difference of the
logarithm of the series. The primary data source for all the four variables is the St. Louis Fed.

2.2 Alternative Models

We consider three restricted versions of the benchmark BVAR model with stochastic volatility
and fat tails. First, we assume that the orthogonolised shocks are Gaussian and consider a
VAR model with stochastic volatility only. This model (VARSVOL) is defined as

Yt = c+B1yt−1 + · · ·+Bpyt−p + ut, (2.15)

where

Σt = A−1HtA
−1′ (2.16)

Ht = diag
(
σ2

1t, σ
2
2t, ..σ

2
nt

)
, (2.17)

where ln σ2
k,t follows the process defined in equation 2.3. In contrast, the second restricted model

does not incorporate stochastic volatility but only assumes that the orthogonolised residuals
follow an independent t distribution (TVAR). This model, therefore, is defined as:

Yt = c+B1yt−1 + · · ·+Bpyt−p + ut (2.18)

Σt = A−1HtA
−1′ (2.19)

Ht = diag
(
σ2

1
1
λ1t

, σ2
2

1
λ2t

, ..σ2
n

1
λnt

)
. (2.20)

The final model considered is a standard BVAR. The estimation of these restricted models
is carried out via Gibbs sampling using a simplification of the algorithm presented in section
2.1.2. The marginal likelihood for each of these alternative models is computed via the Chib
(1995) algorithm.

3 Empirical Results

In this section we present results on the relative performance of each of the empirical models,
both in terms of in-sample fit and recursive forecast performance. Before moving to model
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Figure 1: The posterior density of degrees of freedom in the benchmark model (TVAR-SVOL)
and in the TVAR
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Notes: The red lines (blue bars) represent the frequency distribution of the DOF parameters from the TVAR
(TVAR-SVOL) model.

comparison, however, we present some of the key parameter estimates of the benchmark model
over the full sample and compare them with some of the restricted models.

3.1 A Summary of the Posterior

3.1.1 Degrees of Freedom

Figure 1 plots the estimated marginal posterior density of the degrees of freedom (DOF) from
the TVAR-SVOL. Consider the estimates for the industrial production index. There is strong
evidence that the orthogonolised shock associated with this variable is characterised by fat tails
with the posterior density centered around 4 or 5 DOF. Similarly, the estimated posterior for
the DOF associated with the orthogonolised residuals of the SP500 equation points towards
non-normality. In contrast, the estimated posteriors for inflation and the T-Bill rate equations
indicate DOF that are substantially higher. This suggests that the usual normality assumption
is appropriate for the residuals associated with these equations. We show in the sensitivity
analysis below that these results are robust to changing the ordering of the variables in the
VAR.

The dotted red lines in figure 1 show the posterior density of the DOF from the TVAR
model. It is interesting to note that when the VAR model does not incorporate stochastic
volatility, the estimated posterior densities indicate stronger evidence in favour of fat tails for
all four residuals. This confirms the argument in Curdia, del Negro, and Greenwald (2014)
that ignoring low frequency movements in volatility may bias the estimates of DOF downwards,
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Figure 2: Stochastic Volatility in the TVARSVOL and in the VARSVOL model
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Notes: The estimated median time-series of volatility in the model with Student’s t-distributed shocks and
stochastic volatility (in red with 32nd and 68th percentiles of the distribution) and in the model with stochastic
volatility only (in black).

thereby overestimating the fatness of tails in the shock distributions.

3.1.2 Stochastic Volatility

Figure 2 plots the estimated stochastic volatility from the benchmark model and compares
it with the estimate obtained from the VARSVOL model. Consider the top left panel of the
figure. The estimated volatility of the IP shock from the benchmark model is estimated to be
high until the early 1980s. It then declines smoothly and by 1985 is substantially lower than
its pre-1985 average. There is some evidence of an increase in this volatility towards the end
of the sample period. It is interesting to note that the estimated volatility of this shock from
the model that does not account for the possibility of fat tails behaves very differently. The
dotted black line shows that this estimate is more volatile indicating large fluctuations over
the 1970s and the 1980s. While the decline in volatility in the early 1980s coincides across the
two models, the VARSVOL model indicates a substantial increase in shock volatility that is
missing from the benchmark estimate. Given that the shock to the IP equation displays fat
tails (see figure 1), this difference highlights the fact that ignoring the possibility of non-normal
disturbances can lead to very different interpretation of historical movements in volatility.

Similar conclusions have been reached by Jacquier, Polson, and Rossi (2004) in a univariate
context and by Curdia, del Negro, and Greenwald (2014) using an estimated DSGE framework.
These results suggest that the size of the structural break in the volatility of of US output in the
early 1980s studied by the Great Moderation literature (McConnell and Perez-Quiros, 2000)
may be overestimated.
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The implication of these results is that the unit root assumption for stochastic volatility
models, widely adopted since Primiceri (2005), while ignoring high-frequency movements of
volatility may be a less favourable choice. Section B of the Appendix provides a Monte Carlo
analysis of model misspecification, which may arise when the true data-generating process fea-
tures both stochastic volatility and Student’s t errors, while the estimation ignores Student’s t
errors. The simulation results confirm that (i) the VARSVOL model overestimates the volatil-
ity whereas the TVAR-SVOL model can come close to recovering the true DGP, and (ii) this
problem of misspecificiation becomes more severe as the data feature more fatness (captured
by the DOF parameter) in the shock distribution.

3.2 Model Comparison

3.2.1 Marginal Likelihood

We begin the model comparison by calculating the marginal likelihood for each of the four
models. Table 1 lists the estimated log marginal likelihood for each model using the full sample.

Table 1: Marginal Likelihood

Model Log Marginal Likelihood
TVAR-SVOL -1725.3
VAR-SVOL -1757.9
TVAR -2444.6
BVAR -2852.2

Notes: Each model includes 13 lags and is estimated using 50.000 iterations (40.000 burns). The computation
of the marginal likelihood uses 20.000 iterations (10.000 burns).

The marginal likelihood is estimated via the Chib (1995) method as described in Section 2.1.3
earlier. We use 10,000 additional Gibbs iterations to estimate the components of the posterior
density. It is clear from table 1 that the benchmark model displays the best in-sample fit while
the BVAR has the lowest estimated marginal likelihood. Allowing for fat tails or stochastic
volatility improves the fit relative to the BVAR model. However, it is the combination of fat
tails and stochastic volatility that delivers the best fitting specification. This indicates that
both these features are crucial for the data we study.

3.2.2 Forecast Performance

We proceed by comparing the forecast performance of the four models considered above via
a pseudo out-of-sample forecasting exercise. The four models are estimated recursively from
January 1970 to September 2010. At each iteration, we construct the forecast density for the
models:

P
(
Ŷt+k\Yt

)
=
ˆ
P (Ŷt+k\Yt,Ψt+k)P (Ψt+k\Ψt, Yt)P (Ψt\Yt) dΨ, (3.1)

where k = 1, 2, . . . , 12 and Ψ denotes the model parameters. The last term in equation 3.1
represents the posterior density of the parameters that is obtained via the MCMC simulation.
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The preceding two terms denote the forecast of the (time-varying) parameters and the data
that can be obtained by simulation. The point forecast is obtained as the mean of the the
forecast density. The recursive estimation delivers 490 forecast densities.

Table 2: RMSE relative to the BVAR model

1M 3M 6M 12M
IP Growth

TVAR-SVOL 0.904 0.914 0.927 0.945
TVAR 0.899 0.906 0.921 0.950

VARSVOL 0.903 0.909 0.925 0.946
π

TVAR-SVOL 1.011 1.027 1.048 1.065
TVAR 0.994 1.011 1.031 1.050

VARSVOL 0.993 1.011 1.027 1.041
SP500 Return

TVAR-SVOL 0.951 0.953 0.959 0.974
TVAR 0.950 0.951 0.956 0.970

VARSVOL 0.956 0.955 0.958 0.971
R

TVAR-SVOL 0.935 0.885 0.879 0.912
TVAR 0.930 0.886 0.888 0.928

VARSVOL 0.940 0.896 0.881 0.908
Notes: The numbers are computed from the mean values obtained from the 490 rolling estimations for each of
the four models (1960 estimated models in total). Each rolling estimation uses 13 lags and 11.000 iterations.

Table 2 presents the average root mean squared error (RMSE) for each model relative to
that obtained using the BVAR. The table shows that it is difficult to distinguish between the
models in terms of point forecasts. For variables such as industrial production, the interest
rate and the stock price index, each of the three models produce forecasts that lead to a 5% to
10% reduction in RMSE relative to the BVAR. For inflation, the point forecast performance
of the models under consideration is very similar to that of the BVAR.

In the section below we focus on density forecast comparison as described in detail by
Amisano and Geweke (2011, 2013) amongst other recent papers. The density forecasts are
evaluated using log scores (LS) are defined as:

LSt = lnP (Yt+k) , (3.2)

where P (Yt+k) denotes the forecast density evaluated at the realised data. A higher value
for LSt suggests a more accurate density forecast. Note that we employ kernel methods to
estimate the density and distribution function of the forecasts. This enables us to account for
any potential non-linearities in the forecast distribution.

3.2.2.1 Log Score Comparison Table 3 considers the log score for each model relative to
that obtained via the BVAR. The table presents the average estimates across the forecasting
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sample, with a positive number indicating an improvement over the BVAR model. Consider
the results for industrial production. At the 1 month horizon, allowing for fat tails or stochastic
volatility leads to a similar improvement over the BVAR density forecasts. This is is not the
case at longer horizons where fat tails are clearly important. At the 6 month horizon, the
TVAR offers a 35% improvement over the BVAR log score. In contrast, the VARSVOL model
performs worse than the BVAR. Therefore, it appears that allowing for t-distributed shocks is
crucial for industrial production at policy relevant forecasting horizons. The results for SP500
are similar. At the 6 month and the 1 year horizon, the TVAR model outperforms the other
models, highlighting the role of fat tails.

Table 3: Percentage Improvement in Log Scores over the BVAR Model

1M 3M 6M 12M
IP Growth

TVAR-SVOL 25.328 28.941 29.131 11.427
TVAR 27.356 32.937 35.005 30.937

VARSVOL 25.154 -13.997 -23.766 4.700
π

TVAR-SVOL 36.352 59.407 62.374 61.425
TVAR 34.845 52.010 46.987 51.887

VARSVOL 24.869 74.385 36.016 15.308
SP500 Return

TVAR-SVOL 28.294 31.653 8.082 -21.550
TVAR 23.196 23.189 18.207 19.572

VARSVOL 32.420 31.181 17.647 -9.359
R

TVAR-SVOL 155.022 177.246 33.412 6.605
TVAR 85.714 44.122 16.813 7.378

VARSVOL 153.714 175.536 34.522 10.032
Notes: The numbers are computed from the mean values obtained from the 490 rolling estimations for each of
the four models (1960 estimated models in total). Each rolling estimation uses 13 lags and 11.000 iterations.

For inflation and interest rates, both stochastic volatility and fat tails appear to be impor-
tant. The TVAR-SVOL model produces the largest improvement over the BVAR for inflation
at the 6 and the 12 month horizon. At the 1 and the 3 month horizon, the benchmark model
produces the best performance, with the VARSVOL model delivering the largest improvement
over the BVAR at longer horizons.

Furthermore, we ask how the different models perform in jointly forecasting financial vari-
ables (SP500 and the interest rate) relative to macro-variables (industrial production and infla-
tion). To answer this question we use the adaptive kernel density estimator of Botev, Grotowski,
and Kroese (2010) to construct bivariate log-scores for the IP growth – inflation and SP500
– interest rate pairs. Table 4 shows the relative improvements of the three volatility models
relative to the BVAR. The results suggest that the relative improvement of each model tends
to be larger for the SP500 – interest rate pair than for the IP growth – inflation pair. The
results also confirm that the modelling of both high- and low-frequency movements in volatility
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Table 4: Percentage Improvement in Bivariate Log Scores over the BVAR Model

1M 3M 6M 12M
IP-π pair

TVAR-SVOL 40.108 35.511 24.799 19.269
TVAR 38.675 32.284 23.423 20.850

VARSVOL 29.790 23.577 12.630 3.494
SP500-R pair

TVAR-SVOL 89.296 82.362 44.618 6.758
TVAR 50.027 41.581 23.906 12.628

VARSVOL 85.950 77.289 43.168 9.217

Figure 3: Log scores (3 month horizon) relative to those from the BVAR model over the recent
financial crisis

increases forecast accuracy.

3.2.3 Forecasting the Great Recession

One of the main criticisms macroeconometric models have received is related to their inability
to forecast the recent the Great Recession. This led econometricians and macroeconomists to
question the adequacy of their analysis (Ng and Wright, 2013). To see whether accounting for
fat-tails would have changed this result, we consider the evolution of log scores over the recent
financial crisis as shown in Figure 3.

The left axis in each panel shows the percentage improvement in log scores over the BVAR
model. In this figure we consider the 3 month forecasting horizon but the results are similar
at other horizons. The right axis shows the actual data for the variable under consideration
which is plotted as an area chart.
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Figure 4: Forecasting the Great Recession
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Note: The panels show the 3 month-ahead forecast distributions for industrial production in September 2008.
The actual out-turn (−4.3%) is depicted by the dashed vertical red line.

The top left panel shows the results for industrial production. The performance of the three
models is similar before the onset of the deep recession at the end of 2008. The large decline
in industrial production coincided with a very large divergence in the performance of models
with and without fat tails. The TVAR and the TVARSVOL model show a huge improvement
in the log score. In contrast, the accuracy of the VARSVOL model deteriorates substantially
relative to the BVAR model.

To get a better understanding of this divergence in the forecast performance, we take a
closer look at the outcome in September 2008 when industrial production fell by 4.3%. Given
that the mean and the standard deviation of industrial production growth in sample are 0.23%
and 0.83%, respectively, a forecasting model with normally distributed shocks would assign
virtually zero probability to such an outcome.

To illustrate this, Figure 4 shows the 3 month ahead forecast density of industrial production
for September 2008 from the four models together with the actual out-turn in that month
depicted by the vertical red line. The left tails of the densities from the BVAR and the
VARSVOL model do not include the actual industrial production out-turn of −4.3%. In
contrast, the densities from the models with fat tails cover this eventuality. This highlights
the fact that the assumption of normality may lead to one to ignore the possibility of large
movements in the data as seen in the recent financial crisis. It is interesting to note that the
performance of the three models was similar during the second dip in industrial production
seen in December 2008 and January 2009. This is because the 2% fall during this episode was
accounted for by the forecast densities from all models.
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For the stock price index and inflation, both stochastic volatility and t-disturbances appear
to be important, with the TVARSVOL model showing a large improvement during late 2008
and early 2009. The performance of these models was more mixed for the interest rate over the
initial cutting phase of 2007 and 2008. However, stochastic volatility appears to be important
over the post 2009 period that was characterised by persistently low interest rates.

3.2.4 Sensitivity Analysis

In this subsection, we ask whether our results are robust to choosing alternative priors for
the degree of fatness of shock distribution and to choosing different orderings of the variables.
In the benchmark model, we used the prior v0 = 20 for p (vλ,n) ∼ Γ (v0, 2) which assigns a
reasonable probability to extreme events. As an alternative prior, we re-estimate the models
using the value v0 = 50, implying a higher prior weight on the possibility of normality. Table 5

Table 5: Percentage Improvement in Log Scores of the TVARSVOL over the BVAR Model

1M 3M 6M 12M
IP 23.184 20.395 30.253 30.544
π 38.261 62.279 40.970 60.381

SP500 32.287 31.482 16.459 -4.231
R 154.945 177.268 33.664 7.591

Notes: The numbers are computed from the mean values obtained from the 490 rolling estimations for each of
the four models (1960 estimated models in total). Each rolling estimation uses 13 lags and 11.000 iterations.

presents the estimated log scores (relative to the BVAR) from a version of the benchmark model
that uses an alternative prior. The results indicate that for industrial production and stock
market returns (the variables for which the orthogonolised errors displayed the most evidence
for non-Gaussianity), the average relative log scores are fairly similar to the benchmark case.
This provides some evidence that the key results do not depend on the benchmark prior.

Moreover, Figure 5 presents the marginal posterior for the DOF for the industrial production
and SP500 returns using alternative orderings for these variables in the TVARSVOL model.
For example, while in the benchmark case IP is ordered first, ‘order1’, ‘order2’ and ‘order3’ refer
to versions of the model where IP is ordered second, third and fourth respectively. Similarly,
SP500 is ordered first, second and fourth in these alternative models. It is clear from the top
panel of the figure that the strong evidence for non-normality of the orthogonal residuals of the
IP equation is not influenced by the recursive structure of the A matrix in equation 2.2. The
bottom panel of the figure suggests a similar conclusion for SP500. While there is a rightward
skew in the marginal density when SP500 is ordered last, the posterior is centered around a
value of DOF less than 10 in all cases.

4 Results for Canada, Germany and the UK

In this section, we carry out further robustness checks by estimating the four model specifica-
tions for other countries including the UK, Germany and Canada. Monthly data for the UK
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Figure 5: Sensitivity of the DOF Posterior to Alternative Orderings

are taken from the Global Financial Database is the source for the following data: (i) monthly
data for the UK covering the period 1959M1-2011M9, including the FTSE all-share Index, CPI,
industrial production, the 3-month Treasury Bill yield and the industrial production Index; (ii)
monthly data for Germany covering the period 1961M1-2011M9, including the CDAX compos-
ite index, CPI and industrial production. The OECD Economic Outlook is the data source for
monthly data for Canada covering the period 1961M1-2011M9 and for the short-term German
interest rate. Monthly growth rates are calculated for all the variables except the interest rate.
As in the case of the US, we recursively estimate the forecast density 3.1 for of each of the
models and for each of the countries.4

Table 6 presents the results for Canada that are similar to those found for the US. With
the exception of inflation, forecasts of all variables are more accurate relative to the BVAR
model which performs the worst in predicting the interest rate. Results for log scores suggest
that, relative to the SVOL model, the TVAR tends to outperform in terms of forecasting
inflation and stock returns and tends to under-perform in terms of forecasting output growth
and interest rates. Over the 1 month horizon, the TVAR-SVOL model comes first in predicting
stock returns and the interest rate.

Results for the UK are presented in table 7 providing some interest results. First, the
calculated log score values for the interest rates are infinity. The reason for this is as follows:
the Bank of England engineered a 400 bp jump in the short rate between the end of June
and the end of July of 1973. The one-period-ahead forecast density produced in 1973M6

4The recursive algorithm starts with the estimation of each of the models up to 1970 January in the case of
the UK and up to 1972 January in the case of Canada and Germany. This delivers 490 forecast densities for
the UK and 464 forecast densities for Germany and Canada.
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Table 6: Forecast Comparison Results for Canada

(a) Relative RMSE values

1M 3M 6M 12M
IP Growth

TVAR-SVOL 0.956 0.959 0.963 0.971
TVAR 0.959 0.963 0.968 0.977

VARSVOL 0.949 0.956 0.961 0.969
π

TVAR-SVOL 1.006 1.013 1.011 1.003
TVAR 1.003 1.011 1.010 1.004

VARSVOL 0.998 1.007 1.004 0.996
Stock Return

TVAR-SVOL 0.973 0.967 0.972 0.982
TVAR 0.971 0.964 0.969 0.979

VARSVOL 0.978 0.966 0.970 0.980
R

TVAR-SVOL 0.969 0.942 0.932 0.912
TVAR 0.956 0.924 0.911 0.900

VARSVOL 0.967 0.939 0.926 0.901

(b) Relative Log-scores values

1M 3M 6M 12M
IP Growth

3.239 3.631 2.037 0.627
4.025 3.135 1.555 1.081
5.087 3.261 1.156 1.453

π

-14.672 -3.064 -35.606 -31.201
12.735 12.585 9.244 1.793
-23.246 -48.188 -35.477 -19.110

Stock Return
41.383 15.236 20.681 3.683
24.024 15.749 38.415 18.718
23.419 6.610 1.814 -29.917

R
203.198 66.803 28.984 24.943
165.721 49.443 17.478 20.992
202.175 68.106 32.803 28.563

Note: The mean RMSE and log-scores values obtained from the 466 rolling estimations for each of the four
models (1864 estimated models in total). Each rolling estimation uses 13 lags and 11.000 iterations.

produced by the BVAR simply has no probability mass to cover such a jump, leading to a
–Inf in log score. Hence, our models, which are able to generate a tail long enough to cover
this event (though the probability is very low), produce an infinite percent improvement in
the log score. Furthermore, the results highlight the dangers of ignoring the slow-moving
component of volatility when using fat-tailed VAR models for forecasting purposes. Outliers
such as the aforementioned interest rate jump lead to an over-estimation of the fatness of the
shock distribution in case of the TVAR model, which in this case substantially worsens the
point forecasts for all the variables. The reason why this problem is particularly severe in the
case of the UK is related to the high level of inflation volatility that characterised the 1970s
and early 1980s (Liu and Mumtaz 2011), which was also substantially higher than in the US,
Canada and Germany during the same time (Mumtaz and Surico 2012).

To sum up, the log-score results for the UK suggest that the TVAR-SVOL model outper-
forms the other competing volatility models, with the exception of the 1 month ahead forecast
of stock returns and output growth, in which case the VARSVOL delivers more accurate density
forecasts.

Results for Germany are broadly in line with the previous findings. With the exception
of inflation, the point forecasts of all variables improve by either volatility models, and the
TVAR-SVOL model tends to dominate other volatility models, at least in the short-run.

As in the case of the UK, the presence of the inf log-score values is due to extreme val-
ues. Specifically, the infinite relative improvements of the volatility models in predicting 3
month ahead inflation are related to the extremely large negative observation of January 1991
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Table 7: Forecast Comparison Results for the UK

(a) Relative RMSE values

1M 3M 6M 12M
IP Growth

TVAR-SVOL 0.955 0.973 0.986 1.00
TVAR 0.960 1.394 1.302 1.234

VARSVOL 0.970 0.980 0.988 1.131
π

TVAR-SVOL 0.969 0.952 0.944 0.922
TVAR 0.951 1.916 2.010 1.862

VARSVOL 0.930 0.923 0.926 1.083
Stock Return

TVAR-SVOL 0.985 0.989 0.995 1.001
TVAR 3.060 2.149 1.849 4.309

VARSVOL 0.990 0.991 0.999 2.108
R

TVAR-SVOL 0.986 0.965 0.968 0.969
TVAR 12.817 7.976 5.795 8.591

VARSVOL 0.965 0.943 0.964 3.029

(b) Relative Log-scores values

1M 3M 6M 12M
IP Growth

28.354 32.823 35.220 36.373
26.456 29.045 27.649 26.557
31.983 30.677 30.949 28.351

π

63.984 78.263 68.334 79.877
59.271 67.140 51.538 61.716
63.364 80.726 65.190 72.388

Stock Return
109.816 109.552 99.838 105.163
101.013 95.805 99.265 106.761
112.098 108.108 96.489 98.820

R
Inf 87.846 64.693 39.441
Inf 67.655 45.342 23.607
Inf 83.237 57.088 25.683

Note: The mean RMSE and log-scores values obtained from the 490 rolling estimations for each of the four
models (1960 estimated models in total). Each rolling estimation uses 13 lags and 11.000 iterations.

Table 8: Forecast Comparison Results for Germany

(a) Relative RMSE values

1M 3M 6M 12M
IP Growth

TVAR-SVOL 0.946 0.955 0.971 0.983
TVAR 0.948 0.957 0.973 0.984

VARSVOL 0.952 0.956 0.970 0.982
π

TVAR-SVOL 0.989 0.993 0.997 1.001
TVAR 0.982 0.985 0.990 0.994

VARSVOL 0.998 0.996 1.000 1.003
Stock Return

TVAR-SVOL 0.973 0.978 0.983 0.986
TVAR 0.978 0.982 0.986 0.989

VARSVOL 0.971 0.980 0.983 0.987
R

TVAR-SVOL 0.925 0.847 0.848 0.855
TVAR 0.924 0.864 0.868 0.878

VARSVOL 0.900 0.836 0.840 0.853

(b) Relative Log-scores values

1M 3M 6M 12M
IP Growth

23.165 16.330 13.709 20.284
21.639 14.465 11.694 18.903
14.637 12.250 10.145 21.281

π

76.055 Inf 79.753 5.820
111.258 Inf 121.558 104.502
128.675 Inf 113.001 117.387

Stock Return
53.356 35.559 37.985 41.023
40.707 33.865 38.310 37.958
51.325 34.981 37.943 40.467

R
50.090 31.095 31.269 44.232
28.100 19.721 17.103 57.359
38.159 30.262 31.774 52.103

Note: The mean RMSE and log-scores values obtained from the 466 rolling estimations for each of the four
models (1864 estimated models in total). Each rolling estimation uses 13 lags and 11.000 iterations.
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(−2.07%) in the midst of the economic recession following the German reunification. Given
that the mean and the standard deviation of the monthly German inflation rate in the sample
are 0.23% and 0.27%, respectively, the BVAR model assigns virtually zero probability to this
event.

Moreover, table 9 shows the estimated values of the marginal likelihood for the three coun-
tries. The results are in line with the evidence for the US: The BVAR and the TVAR have
worse in-sample fit than the TVAR-SVOL and VAR-SVOL models. The TVAR-SVOL has the
best in-sample fit in the case of Canada, whereas the VAR-SVOL model comes first in the case
of Germany and the UK.

Table 9: Marginal Likelihood

Model Canada Germany UK
TVAR-SVOL -1857.2 -2428.7 -3201.6
VAR-SVOL -1980.0 -2406.6 -3058.6
TVAR -2479.6 -3136.2 -4375.8
BVAR -2133.4 -4445.8 -3615.1

Notes: Each model includes 13 lags and is estimated using 50.000 iterations (40.000 burns). The computation
of the marginal likelihood uses 20.000 iterations (10.000 burns).

To sum up, our findings suggest that models which account for heteroscadisticity in the error
structure can exhibit considerably improved forecast accuracy relative to the baseline BVAR
model. These results are consistent with those recently presented by Clark and Ravazzolo
(2015). An additional result is that explicitely modelling both the low- and high-frequency
movements in volatility could provide further improvements in the forecast accuracy as well as
in the in-sample fit, as shown in the case of the US and Canada.

5 Conclusions

This paper introduces a BVAR model that incorporates stochastic volatility and fat tailed
disturbances. We show that this model fits a monthly US data-set better than alternatives
that do not include these features. The estimates of the model present strong evidence that
disturbances to industrial production and stock market returns are non-normal. Incorporating
this non-normality in the model leads substantial improvements in the accuracy of forecast
densities. In particular, BVARmodels with Gaussian disturbances fail to attach any probability
to low values of industrial production seen in late 2008 in the US. Our results, that are also
consistent with findings for a further set of countries, highlight the importance of incorporating
the possibility of fat tails in forecasting models.
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A Computation of the Marginal Density

A.1 Likelihood

The likelihood function of the model is calculated using a particle filter using 10,000 particles.
We re-write the model in state space form:

Xt = HΓt (A.1)

Γt = µ+ FΓt−1 +Q
1/2
t εt (A.2)

ln qKt = ln qKt−1 + vt, (A.3)

where εt = {ε1t, ..εNt} with εKt follows a Student’s t-density with vK degrees of freedom and
qKt denotes the diagonal elements of Q. Xt is observed data, while Φt = (Γt, qKt) are the
state-variables. Given the non-normal disturbances, the Kalman filter cannot be employed.

Consider the distribution of the state variables in the model denoted Φt conditional on
information up to time t (denoted by zt):

f (Φt\zt) = f (Xt,Φt\zt−1)
f (Xt\zt−1) = f (Xt\Φt, zt−1)× f (Φt\zt−1)

f (Xt\zt−1) . (A.4)

Equation A.4 implies that this density can be written as the ratio of the joint density of the
data and the states f (Xt,Φt\zt−1) = f (Xt\Φt, zt−1)× f (Φt\zt−1) and the likelihood function
f (Xt\zt−1) where the latter is defined as:

f (Xt\zt−1) =
ˆ
f (Xt\Φt, zt−1)× f (Φt\zt−1) dΦt. (A.5)

Note also that the conditional density f (Φt\zt−1) can be written as:

f (Φt\zt−1) =
ˆ
f (Φt\Φt−1)× f (Φt−1\zt−1) dΦt−1. (A.6)

These equations suggest the following filtering algorithm to compute the likelihood function:

1. Given a starting value f (Φ0\z0) calculate the predicted value of the state

f (Φ1\z0) =
ˆ
f (Φ1\Φ0)× f (Φ0\z0) dΦ0,

2. Update the value of the state variables based on information contained in the data

f (Φ1\z1) = f (X1\Φ1, z0)× f (Φ1\z0)
f (X1\z0) ,

where f (X1\z0) =
´
f (X1\Φ1, z0)×f (Φ1\z0) dΦ1 is the likelihood for observation 1. By

repeating these two steps for observations t = 1...T , the likelihood function of the model
can be calculated as ln lik = ln f (X1\z0) + ln f (X2\z1) + ... ln f (XT\zt−1)
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In general, this algorithm is inoperable because the integrals in the equations above are dif-
ficult to evaluate. The particle filter makes the algorithm feasible by using a Monte-Carlo
method to evaluate these integrals.In particular, the particle filter approximates the condi-
tional distribution f (Φ1\z0) via M draws or particles from the Student’s t-density using the
transition equation of the model. For each draw for the state variables the conditional like-
lihood Wm = f (X1\z0) is evaluated. Conditional on the draw for the state variables, the
predicted value for the variables X̂M

i1 can be computed using the observation equation and the
prediction error decomposition is used to evaluate the likelihood Wm. Note that as the predic-
tive density is degenerate in this model, we need to add measurement error. The update step
involves a draw from the density f (Φ1\z1). This is done by sampling with replacement from
the sequence of particles with the re-sampling probability given by Wm∑M

m=1 W
m
. This re-sampling

step updates the draws for Φ based on information contained in the data for that time period.
By the law of large numbers the likelihood function for the observation can be approximated
as ln likt = ln

∑M

m=1 W
m

M
.

A.2 Evaluation of the Posterior Density H(·)

Consider the following decomposition:

H
(
B̂, Â, ĝ, λ̂, vλ,Ξ

)
= H

(
B̂\Â, ĝ, λ̂, v̂λ,Ξ

)
×H

(
Â\ĝ, λ̂, v̂λ,Ξ

)
×H

(
ĝ\λ̂, v̂λ,Ξ

)
(A.7)

×H
(
λ̂\v̂λ,Ξ

)
×H (v̂λ,Ξ) . (A.8)

Each term can be evaluated directly or by using a further MCMC run:

1. H
(
B̂\Â, σ̂2, λ̂, vλ,Ξ

)
. This is a complete conditional density with a known form: a

Normal with mean and variance that can be calculated via the Kalman filter. The
evaluation in done via an additional Gibbs sampler that draws from:

(a) H
(
Bi\Â, σ̂2, λ̂, vλ,Ξj

)
(b) H

(
Ξi\Â, σ̂2, λ̂, vλ, Bi

)
After a burn-in period H

(
B̂\Â, σ̂2, λ̂, vλ,Ξ

)
.

2. H
(
Â\σ̂2, λ̂, vλ,Ξ

)
=
´
H
(
Â\σ̂2, λ̂, v̂λ, B,Ξ

)
×H

(
B\σ̂2, λ̂, v̂λ,Ξ

)
dB . This term can be

approximated using an additional Gibbs run that samples from the following conditionals
with the current and previous draws indexed by i and j:

(a) H
(
Ai\σ̂2, λ̂, v̂λ, Bj,Ξj

)
(b) H

(
Bi\σ̂2, λ̂, v̂λ, Aj,Ξj

)
(c) H

(
Ξi\Bj, σ̂

2, λ̂, v̂λ, Aj
)

After a burn-in period H
(
Â\σ̂2, λ̂, vλ,Ξ

)
≈ 1

J

∑J
i=1H

(
Â\σ̂2, λ̂, v̂λ, Bi,Ξj

)
where

H
(
Â\σ̂2, λ̂, v̂λ, Bi,Ξj

)
is the Normal density described above.
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3. H
(
ĝ\λ̂, v̂λ,Ξ

)
=
´
´ H (

ĝ\λ̂, v̂λ, B̂, Â,Ξ
)
×H

(
Â\λ̂, v̂λ, B̂,Ξ

)
dA

H(ĝ\λ̂,v̂λ,B̂,Ξ)

×H (
B̂\λ̂, v̂λ,Ξ

)
dB̂.

This term can be approximated using an additional Gibbs run that samples from the fol-
lowing conditionals:

(a) H
(
gi\λ̂, v̂λ, Bj, Aj,Ξj

)
(b) H

(
Bi\gj, λ̂, v̂λ, Aj,Ξj

)
(c) H

(
Ai\Bj, gj, λ̂, v̂λ,Ξj

)
(d) H

(
Ξi\Aj, Bj, gj, λ̂, v̂λ

)
After a burn-in period H

(
ĝ\λ̂, v̂λ,Ξ

)
≈ 1

J

∑J
i=1H

(
gi\λ̂, v̂λ, Bj, Aj,Ξj

)
where this is an

inverse Gamma pdf.

4. H
(
λ̂\v̂λ,Ξ

)
. As in step 3 above, this term can be approximated by a Gibbs run that

draws from the following densities:

(a) H (λi\gj, v̂λ, Bj, Aj,Ξj)

(b) H (gi\λj, v̂λ, Bj, Aj,Ξj)

(c) H (Bi\gj, λj, v̂λ, Aj,Ξj)

(d) H (Ai\Bj, gj, λj, v̂λ,Ξj)

(e) H (Ξi\Ai, Bj, gj, λj, v̂λ)

After a burn-in period H
(
λ̂\v̂λ

)
≈ 1

J
H
(
λ̂\σ2

j , v̂λ, Bj, Aj,Ξj

)
which has a Gamma pdf.

5. The final term H (v̂λ) is an unknown density. Therefore the algorithm of Chib and
Jeliazkov (2001) is required. They show that this density can be approximated as:

H (v̂λ) = E1 (α (vλ, v̂λ\B,A, σ2, λ,Ξ) q (vλ, v̂λ\B,A, σ2, λ,Ξ))
E2
(
α
(
v̂λ, v

j
λ\B,A, σ2, λ,Ξ

)) ,

where α
(
voldλ , vnewλ

)
denotes the acceptance probability of Metropolis move from voldλ to

vnewλ and q(voldλ , vnewλ ) is the candidate density. The numerator term can be approximated
by averaging the quantity from the main MCMC run:

α
(
vjλ, v̂λ\B,A, σ2, λ,Ξ

)
q
(
vjλ, v̂λ\B,A, σ2, λ,Ξ

)
,

where j indexes the MCMC draws. The denominator term requires an additional Gibbs
sampler as α

(
v̂λ, v

j
λ\B,A, σ2, λ,Ξ

)
is conditioned on the posterior mean v̂λ. This sampler

draws from each posterior density conditioned on v̂λ, and then draws from the candidate
density vjλ ∼ q (v̂λ, vλ\B,A, σ2, λ). The average acceptance probability produces an esti-
mate of the denominator.
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B Monte Carlo Analysis of Stochastic Volatility Estima-
tion

The model of Primiceri (2005) is by now the benchmark for estimating VAR models with
stochastic volatility. This section presents results from a Monte Carlo exercise in order to
illustrate the consequences of model misspecification, which may arise when the true data-
generating process features both stochastic volatility and Student’s t errors, while the esti-
mation ignores Student’s t errors. We simulate 300 data-sets using a bi-variate TVAR-SVOL
model. For each data-set, we simulate 3000 observations and retain the last 250 to remove
any effect caused by the initial values. The parameter values, as listed below, are taken from
a bi-variate VAR featuring the quarterly growth rates of GDP and price level of the United
States between 1950 and 2013. We intend our simulated data-sets to bear the features of the
dynamics of the two major variables: yt

πt

 =
 0.64

0.13

+
 0.32 0.05

0.06 0.64

 yt−1

πt−1

+
 0.08 −0.22

0.02 0.14

 yt−2

πt−2

+
 εyt

επt

 , (B.1)

with the following variance-covariance structure:

cov

 εyt

επt

 = Σt = A−1ĤtA
−1′,

Ĥt =
 σ2

1,t 0
0 σ2

2,t

 ,
where ln σk,t = ln σk,t−1+sk,t, var (sk) = gk. Denote ut = [uyt uπt ]′ as the vector of orthogonalised
shocks, which are iid and follow Student’s t distribution with degrees of freedom m1 and m2,
respectively. We assume the variance of the volatility shocks to be gk = 0.001 for both variables.
The lower triangular matrix A is assumed to be [1 0; 0.1 1]. As for the degrees of freedom,
we assume m1 = 4, m2 = 10. For each of the 300 data-sets we estimate a VAR-SVOL and a
TVAR-SVOL model. Given the estimated volatility paths, we first compute the median of the
posterior distribution, then calculate how different these medians are from the true volatility
processes. We express the differences in percentage points.

We then collect and sort these percentage differences across the 300 simulated data-sets
and present them in Figures 6 and 7, as well as in Tables 8 and 9. A positive percentage points
indicates over-estimation of the true volatility. At the 68% interval, we find strong evidence
that the differences between the estimated median volatilities and the true ones are significantly
positive for VARSVOL but not for TVARSVOL. At the 50th percentile, the VARSVOL model
generates median volatility estimates that are 70 percent points larger for variable 1, and 30
percent points larger for variable 2. Overall, the simulation results suggest that the VAR-SVOL
model over-estimates the underlying true volatility, whereas TVARSVOL model provides more
precise estimates of it.
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Figure 6: Stochastic Volatility Estimates from the VARSVOL Model
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Figure 7: Stochastic Volatility Estimates from the TVARSVOL Model
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Figure 8: Stochastic Volatility Estimates : Equation 1

TVARSVOL VARSVOL
selected (% difference of the median (% difference of the median

data point estimated volatility from the true volatility) estimated volatility from the true volatility)
16th prctile 50th prctile 84th prctile 16th prctile 50th prctile 84th prctile

50 -12.03 17.82 59.20 30.34 74.21 136.78
75 -14.47 14.54 46.72 16.33 64.42 122.78
100 -14.13 13.84 47.86 28.58 71.40 126.67
125 -11.90 12.65 50.81 29.46 75.31 125.78
150 -11.65 15.85 48.28 35.22 79.73 130.59
175 -12.56 14.48 51.58 33.96 76.55 132.39
200 -13.75 14.10 46.32 30.28 72.55 126.55
225 -12.74 15.33 51.55 25.60 73.02 144.70
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Figure 9: Stochastic Volatility Estimates : Equation 2

TVARSVOL VARSVOL
selected (% difference of the median (% difference of the median

data point estimated volatility from the true volatility) estimated volatility from the true volatility)
16th prctile 50th prctile 84th prctile 16th prctile 50th prctile 84th prctile

50 -14.25 8.46 57.94 3.26 28.83 63.47
75 -14.64 11.66 50.44 7.09 30.25 61.81
100 -15.38 10.96 46.32 10.15 30.17 62.51
125 -11.43 10.24 48.12 10.29 30.26 63.21
150 -11.35 10.39 41.79 9.96 32.35 68.12
175 -13.67 11.91 40.93 8.59 30.81 68.43
200 -12.77 11.20 47.51 6.99 31.91 68.27
225 -12.96 12.53 47.46 4.96 31.37 67.75
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