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Abstract

This paper proposes a Bayesian Vector Autoregression where the orthogonalised shocks are
assumed to be non-Gaussian. A Gibbs sampling algorithm is provided to approximate the poste-
rior distribution of the model parameters. An application to a model of the yield curve suggests
that there is ample evidence against the assumption of normal shocks. The proposed model
provides notable improvements both in terms of in-sample fit and out of sample forecasting.
JEL classification: C11, C32, C52

Keywords: Bayesian VAR, Non-Gaussian shocks, Density Forecasting

1 Introduction

The last three decades have been characterised by the evolving nature of economic shocks and
changing dynamics of macroeconomic and financial variables in the OECD. The 1970s and the
early 1980s were the decade of volatile shocks and high inflation. The ‘Great Moderation’followed
in the mid-1980s and the early 1990s with most of these economies enjoying low inflation and stable
GDP growth with large adverse shocks mostly absent. This period was disrupted in 2007 when a
large negative shock lead to a severe contraction and asset price volatility.

Bayesian Vector Autoregressions (BVARs) are the model of choice for many researchers when
analysing and forecasting this type of data. However, BVARs incorporate shocks drawn from a
Gaussian distribution. As argued forcefully in Curdia et al. (2013), the assumption of normal
disturbances cannot account for extreme, volatile events such as the ‘Great Recession’seen in the
post-2007 period. Moreover, this assumption rules out the possibility of shocks that originate from
a skewed distribution. The recent movement of macroeconomic and financial data has shown that
this conclusion may not be true. Short term interest rates provide a key recent example —these have
been largely constant over the past five years implying a distribution for conventional monetary
policy shocks that is not symmetric.

In this paper we introduce a BVAR model that allows for the possibility of non-Gaussian
shocks. The non-Gaussianity is introduced through a Markov mixture of normals that is applied
independently to each orthogonal residual of the VAR model. The specification is general — it
allows for departures from normality ranging from fat tails to skewness and excess kurtosis. The
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specification is also flexible as the degree of non-normality can differ across the residuals of the
VAR model.

The paper builds on the recent contributions in Curdia et al. (2013), Chib and Ramamurthy
(2014) and Chiu et al. (2014). Curdia et al. (2013) and Chib and Ramamurthy (2014) introduce
student-T shocks in DSGE models while Chiu et al. (2014) apply the same extension to BVARs (see
also Clark and Ravazzolo (2015) and Chan (2015)). The present paper generalises this approach by
allowing for more general forms of non-normality and builds on the mixture of two normals used in
the seminal paper of Sims (1993). The paper is also closely related to Kalliovirta et al. (2016) who
introduce a frequentist VAR model where the distribution of the vector of endogenous variables
is a mixture of multivariate normals.1 The BVAR proposed in the current paper differs from this
contribution in at least four dimensions. First, we introduce non-normality in the orthogonalised
shocks of the VAR model rather than the endogenous variables directly. These VAR shocks are
proxies for underlying structural disturbances and our model allows them to be drawn from a non-
Gaussian distribution. Second, our proposed model allows the degree of non-normality to differ
across the VAR shocks as the mixing weights are defined independently for each equation. In other
words, our specification accounts for the possibility that shocks to some equations may be more
or less non-Gaussian than others. In contrast, Kalliovirta et al. (2016) define the mixtures jointly
for all variables included in the model. This assumption may be too restrictive for models that
contain a mix of macroeconomic and financial variables. Thirdly, in contrast to Kalliovirta et al.
(2016), regimes (or components of the mixture) in our model follow a Markov process and can,
therefore, be persistent. As discussed below, our model can be extended to allow the transition
probabilities for each latent state to be a function of relevant covariates. This feature implies that
our specification also incorporates the possibility of data-driven regime switches as in Dueker et al.
(2011) and Kalliovirta et al. (2016).2 Finally, following Villani et al. (2009), we adopt a Bayesian
approach. Within our framework, calculation of predictive densities requires a trivial extension of
the estimation algorithm. Similarly, the selection of the number of components can be carried out
in a coherent manner using marginal data densities.

We apply the proposed BVAR to model the dynamics of the US yield curve. The empirical
analysis suggests strong evidence to support the view that shocks to the level, slope and curvature of
the yield curve are drawn from a non-Gaussian distribution. A recursive forecast experiment finds
that allowing for non-Gaussian shocks can lead to substantial gains in point and density forecasting
of yields relative to the standard BVAR model.

The paper is organised as follows. Section 2 presents the proposed model in detail. Section 3
presents the details of the estimation algorithm and discusses selection of components. We present
some Monte-Carlo evidence on the performance of the estimation algorithm in Section 4. Finally,
Section 5 uses the proposed BVAR to model and forecast the US yield curve.

2 BVAR with non-normal disturbances

The proposed BVAR model is defined as follows:

yt = B1yt−1 + · · ·+Bpyt−p + ut t = 1, . . . , T. (1)

1Lanne and Lütkepohl (2010) introduce a structural VAR where the residuals follow a mixture of two normals.
This specification is used to identify the structural shocks of the VAR model.

2Lanne (2006) and Bec et al. (2008) also introduce normal mixture models where the mixing probability depends
on the level of past data.
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where yt is an n× 1 vector of observed endogenous variables; Bi, i = 1, . . . , p are n× n matrices of
coeffi cients; ut are heteroscedastic shocks associated with the VAR equations.

The orthogonalised shocks of the model are given as:

et = Aut (2)

where A is a lower triangular n× n matrix. The orthogonal shock to the ith equation of the VAR
is assumed to follow:

eit = αi,Sit + σi,Sitεit, εit ∼ N(0, 1) (3)

where Sit = 1, 2, ...M denotes the unobserved components or regimes. As explained in Koop (2003)
and Geweke (2005), the formulation in equation 3, describes a mixture of M distributions where
each component is N

(
αi, σ

2
i

)
. The state variable Sit determines the component that is active at a

particular point in time. The law of motion for Sit is chosen to be first order Markov process with
transition probabilities

Pi (Si,t = J |Si,t−1 = I) = pi,IJ (4)

Note that the transition probabilities can be constant or one can assume that they depend on a set
of regressors zt and evolve over time (see Filardo and Gordon (1998)):

Pi (Si,t = J |Si,t−1 = I) = pi,IJ (zt)

This Markov formulation captures possible persistence in the regimes but allows for the possibility
of rapid transitions across components and regime switches that are data-driven.

The specification in equations 3 implies that orthogonalised residuals et are non-Gaussian.
As the number of components increase, the specification can potentially capture features of the
distribution that are very different from the normal distribution. For example, if the means αi vary
across regimes then the distribution can exhibit skewness and have kurtosis less than 3, the value
for the normal distribution. If the means are the same across components, the model is then a scale
mixture of normals. The resulting distribution is symmetric but may have fatter tails than the
normal distribution. In fact, as shown by Geweke (1993) assuming that eit = σi,tεit and adopting

a Gamma prior for 1
σi,t

of the form p
(

1
σi,t

)
=

T∏
t=1

Γ (1, vi) is equivalent to a specification that

assumes a Student-t distribution for eit with vi degrees of freedom. We employ the specification
with Student-t errors as a competing model in the forecast comparison below.

The VAR model proposed above can also be interpreted as a Markov Switching VAR model
(see Hamilton (1994), Sims et al. (2008)). This is easily seen in a bi-variate version of the BVAR
with one lag: (

Yt
Xt

)
=

(
b11 b12

b21 b22

)(
Yt−1

Xt−1

)
+

(
u1t

u2t

)
(5)

where (
e1t

e2t

)
=

(
1 0
A21 1

)(
u1t

u2t

)
(6)

and
e1t = α1,S1t + σ1,S1tε1t

e2t = α2,S2t + σ2,S2tε2t
(7)
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where var
(
ε1t

ε2t

)
= I2. Using equation 7, 6 and 5 one obtains:

(
Yt
Xt

)
=

(
b11 b12

b21 b22

)(
Yt−1

Xt−1

)
+

(
1 0
A21 1

)−1(
α1,S1t

α2,S2t

)
+

(
1 0
A21 1

)−1(
σ1,S1t 0

0 σ2,S2t

)(
ε1t

ε2t

)
(8)

The VAR model in equation 8 has switching intercepts
(

α1,S1t

α2,S2t −A21α1,S1t

)
and reduced form

residuals with a switching covariance matrix
(

σ2
1,S1t

−A21σ
2
1,S1t

−A21σ
2
1,S1t

σ2
1,St

A2
21 + σ2

2,S2t

)
.

The reduced form residuals in the model are a linear combination of the non-normal orthogonal

shocks:
(
u1t

u2t

)
=

(
e1t

e2t −A21e1t

)
. Therefore the setup imparts a flexible specification for uit

which can also depart from Gaussianity in interesting ways.
Note that unlike standard MSVAR models, there are n independent Markov chains in the pro-

posed model that govern the behaviour of each orthogonal error. As noted above, the implied
reduced form intercepts and residuals are a combination of the parameters of the process for the
orthogonal shocks and this implies a more complex structure than standard MSVARs where, typ-
ically, one Markov process controls the regime shifts in the system. For example in equation 8,
the intercept and the error variance in the second equation depend on both S1t and S2t. In other
words, regime switches in Xt depend on the distributional properties of both orthogonal shocks.

This example also makes it clear that the ordering of the variables can matter for the interpre-
tation of the reduced form intercepts and residual variance. The main advantage of assuming a
recursive structure for the A matrix lies in the fact that it greatly simplifies the estimation algo-
rithm. In empirical applications, one can order the variables in an economically meaningful manner
and check if the results of interest are robust to this choice. Such an approach is used frequently
in studies that employ VARs featuring stochastic volatility in the residuals orthogonalised using a
lower triangular A matrix (see for example Cogley and Sargent (2005)).

3 Estimation

We adopt a Bayesian approach to model estimation and forecasting. In this section we describe
the prior distributions and the MCMC algorithm used to obtain the posterior distribution of the
parameters.

3.1 Priors

Following Banbura et al. (2010), the prior for the VAR coeffi cients B = vec([B1, B2, ..Bp]) is
normal and introduced via dummy observations. The prior is defined as p (B) ∼ N(B0, S0), where
B0 = (x′dxd)

−1 (x′dyd) and S0 = (yD − xDb0)′ (yD − xDb0) ⊗ (x′dxd)
−1. The dummy observations

yD and xD that are defined as:

yD =

[
diag(γ1s1...γnsn)

τ
0n×(p−1)×n

]
, xD =

[
JP⊗diag(s1...sn)

τ

]
(9)

where γ1 to γn denote the prior mean for the parameters on the first lag obtained by estimating
individual AR(1) regressions, τ measures the tightness of the prior on the VAR coeffi cients and
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Jp = diag ([1, 2, ..p]). The scaling factor si are set using the standard deviation of the residuals from
the individual AR(1) equations. In addition, we introduce priors on the sum of lagged coeffi cients
by defining the following dummy observations:

yS =
diag (γ1µ1 . . . γnµn)

λ
, xS =

[
(11×p)⊗ diag (γ1µ1 . . . γnµn)

λ

]
(10)

where µ1 to µn denote the sample means of the endogenous variables. In our applications below,
the prior tightness τ is set to 0.1, the value commonly used for US data. As in Banbura et al.
(2010) we assume that λ = 10τ .

The prior for the non-zero and non-one elements Ak is P (Ak) ∼ N (A0,k,Σ0,k). In our appli-
cations, A0,k denotes the non-zero and non-one elements of Ãols where Ãols is the inverse of the
Cholesky decomposition of the OLS estimate of the VAR error covariance with its diagonal elements
normalised to 1. We assume that the variance of the prior for each element is Σ0,k = abs (A0,k)×10.
Therefore this specification allows a large range of values for these parameters apriori.

The prior for αi is assumed to be the same across regimes and VAR equations. The prior is
normal and is given by P (αi) ∼ N (α0, v0) where we set α0 = 0 and v0 = 100 in our applications
below. The prior for σ2

i in each regime is inverse Gamma: P (σ2
i ) ∼ IG (σ0, v0) where we use the

scale parameter σ0 = 0.1 and degrees of freedom v0 = 5.
In our benchmark model, the transition probabilities are assumed to be fixed. In this case,

the prior for pi,IJ is of the following form: P (pi,IJ) = D (uIJ)where D(.) denotes the Dirichlet
distribution. In our empirical applications, we set uIJ = 15 if I = J and uIJ = 1 if I 6= J. This
prior thus places some weight on regimes that are persistent and implies apriori that the process
stays in the current regime with a probability of about 93%. Note, we also consider versions of
the model where the transition probabilities are time-varying. This extended model is described in
section 3.2.1.

3.2 Gibbs sampling algorithm

The marginal posterior distributions are approximated via a Gibbs algorithm. This algorithm
draws successively from the following conditional posterior distributions:

1. G
(
B|Sit, αi,Sit , σ2

i,Sit
, A, ỹT

)
: Given the data ỹT = [y1, y2, .., yT ], regime dependent para-

meters, the latent states Sit and the A matrix, the model can be written as a VAR with
(known) time-varying intercepts and heteroscedastic disturbances. As the regime dependent
parameters are assumed to be observed, the model can be easily transformed into a standard
time-invariant VAR model where the conditional posterior distribution of the VAR coeffi cients
is linear and Gaussian: N

(
BT |T , PT |T

)
. We find that the Kalman filter offers a computa-

tionally stable method to calculate BT |T and PT |T while taking into account the time-varying
intercepts and heteroscedasticity. In particular, we re-write the model in State-Space form:

Yt = XtB
′
t + µt +R

1/2
t Vt

Bt = Bt−1

where Yt = vec(yt),Xt = In⊗xt, xt = [yt−1, yt−2, ..., yt−p], µt = A−1α, Rt = A−1diag(σ2)A−1′,
Vt = vec (εit). Here α denotes n × 1 vector: α = [α1,S1t , α2,S2t , ..αn,Snt ] and σ

2 is the n × 1

vector: α =
[
σ2

1,S1t
, σ2

2,S2t
, ..σ2

n,Snt

]
. Note that, as this step is conditioned on the regime
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switching parameters, the state space model is linear with Gaussian disturbances Vt. Given
the switching parameters and the knowledge of the Markov states, the time-varying matrices
µt and Rt can be calculated at each point in time. The Kalman filter is initialised at B0 and
S0 and the recursions are given by the following equations for t = 1, 2..T

Bt|t−1 = Bt−1|t−1

Pt|t−1 = Pt−1|t−1

ηt|t−1 = Yt −XtBt|t−1 − µt
ft|t−1 = XtPt|t−1X

′
t +Rt

Kt = Pt|t−1X
′
tf
−1
t|t−1

Bt|t = Bt|t−1 +Ktηt|t−1

Pt|t = Pt|t−1 −KtxtPt|t−1

The final iteration of the filter delivers BT |T and PT |T . Alternatively, one can carry out a GLS
transformation directly when calculating the posterior mean and variance. In this case:

BT |T = PT |T

(
vec

(
T∑
t=1

(
xt (yt − µt)′R−1

t

))
+ S−1

0 B′0

)

PT |T =

(
T∑
t=1

(
R−1
t ⊗ xtx′t

)
+ S−1

0

)−1

We find that the computation time of this approach is similar to that of the Kalman filter in our
application. The VAR coeffi cients can then be drawn from the multivariate Normal distribution.

2. G
(
A|B,Sit, αi,Sit , σ2

i,Sit
, ỹT

)
: Conditional on the VAR coeffi cients B, the model can be writ-

ten as et = Aut. For a three-variable VAR (that we consider in the empirical section), this
system is given as

 α1,S1t + σ1,S1tε1t

α2,S2t + σ2,S2tε2t

α3,S3t + σ3,S3tε3t

 =

 1 0 0
a1 1 0
a2 a3 1

 u1t

u2t

u3t

 (11)

where [a1, a2, a3] represent the elements of A.The second equation in this system is thus:

u2t − α2,S2t = −a1u1t + σ2,S2tε2t

This a linear regression with a known variance. Given the knowledge of σ2,S2t , a GLS transformation
can be applied to the regression and the conditional posterior for a1 is given by the standard formula

for linear regression models. Letting y∗t =
u2t−

∑M
j=1 α2,S2t

×Dt,j∑M
j=1 σ2,S2t

×Dt,j
and x∗t = −u1t∑M

j=1 σ2,S2t
×Dt,j

where Dt,j

is a matrix where the jth column denotes a dummy variable that equals 1 at time t when regime
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j is active, the conditional posterior is N (M∗, V ∗):

M∗ = V ∗
(

Σ−1
0,kA0,k + x∗′t y

∗
t

)
V ∗ =

(
Σ−1

0 + x∗′t x
∗
t

)−1

The same procedure can be applied to the remaining equations of the system.

3. G
(
αi,Sit |B,Sit, σ2

i,Sit
, A, ỹT

)
: As in step 2 above, the model can be written in terms of the

orthogonalised residuals given B,A : et = Aut. The ith equation of this system is

eit = αi,Sit + σi,Sitεit (12)

Conditional on knowing the Markov state for this equation Sit and the error variance σi,Sit ,
the procedure for a linear regression again applies. Following Koop (2003), we impose a
labelling restriction on αi,Sit in order to deal with the label switching problem inherent in
Markov Switching models. In particular we impose the condition that αi,Sit=1 < αi,Sit=2 <
... < αi,Sit=M . As shown in Koop (2003), the conditional posterior is then a truncated normal
N (m, v) I (αi,Sit=1 < αi,Sit=2 < ... < αi,Sit=M ) where:

m = v

v−1
0 α0 +

T∑
t=1


M∑
j=1

Dt,j ×
1

σi,Sit

Dteit


v =

v−1
0 +

T∑
t=1


M∑
j=1

Dt,j ×
1

σi,Sit

DtD
′
t

−1

The same procedure is applied for each equation i.

4. G
(
σ2
i,Sit
|B,Sit, αi,Sit , A, ỹT

)
: As shown above, conditional on a draw for B,A, αi,Sit , Sit the

model reduces to the set of regressions given in equation 12. As we condition on the la-
tent states, the conditional posterior for σ2

i,Sit
is standard and given by inverse Gamma

IG
(
σ̄i,Sit , T̄i,Sit

)
. The scale parameter σ̄i,Sit and degrees of freedom T̄i,Sit are defined as:

σ̄i,Sit = ē′itēit + σ0

T̄i,Sit = dim (ēit) + v0

where ēit are the residuals from equation 12 selected for time periods when Sit = j. The same
procedure is repeated for regime j = 1...M and for each equation i.

5. G (pi,IJ |Sit) : Conditional on a draw for Sit, the elements of the transition probability matrix
do not depend on the data. As shown in Chib (1996), the conditional posterior distribution
for the elements of the transition probability matrix is Dirichlet:

pi,IJ = D
(
uIJ + ηi,IJ

)
where ηi,IJ denotes the number of times regime I is followed by regime J when considering
the latent state for the ith orthogonal shock.

6. G
(
S̃iT |σ2

i,Sit
, αi,Sit , pi,IJ , ẽiT

)
: Here S̃iT denotes the vector [Si1, Si2, .., SiT ] and ẽiT is the
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vector [ei1, ei2, .., eiT ]. Following Kim and Nelson (1999) we use a multi-move Gibbs step to
sample from the conditional posterior of Sit. Kim and Nelson (1999) show that the markov
property of Sit implies that

G
(
S̃iT |ẽiT

)
= G (SiT |ẽiT )

T−1∏
t=1

G (Sit|Sit+1, ẽiT ) (13)

where we supress dependence on the parameters αi,Sit , σ
2
i,Sit

for notational simplicity. This
density can be simulated in two steps:

(a) Calculating G (SiT |ẽiT ): The Hamilton (1989) filter provides G (SiT |ẽiT ) from which SiT
can be simulated. Denoting ξ̂i,t as a vector where the jth element equals Pr (Sit = j),
the filter iterates on the following two equations for t = 1, ....T :

ξ̂i,t+1|t = Pi.ξ̂i,t|t (14)

ξ̂i,t|t =
F (eit|Sit = j)� ξ̂i,t|t−1

J∑
j=1

F (eit|Sit = j)� ξ̂i,t|t−1

(15)

where Pi denotes the transition probability matrix and

F (eit|Sit = j) =
(
2πσ2

i,Sit

)−T/2
exp

(
−(eit − αi,Sit)

′ (eit − αi,Sit)
2σ2

i,Sit

)

The last iteration of the filter provides the probabilities ξ̂i,T |T which can be used to draw
SiT .

(b) Kim and Nelson (1999) show that:

G (Sit|Sit+1, ẽiT ) ∝ G (Sit+1|Sit)G (Sit|ẽiT ) (16)

The first term on the right hand side of this expression G (Sit+1|Sit) denotes the transi-
tion probability. The second term G (Sit|ẽiT ) represent the filter probabilties Pr (Sit = j)
obtained by running the Hamilton (1989) filter in step a. Expression 16 can be used to
draw Sit. For example, in a two regime model we proceed by calculating Pr (Sit = 1|Sit+1, ẽiT ) =

G(Sit+1|Sit=1)G(Sit=1|ẽiT )∑M
j=1G(Sit+1|Sit=j)G(Sit=j|ẽiT )

. If this probability is larger than a draw from a standard

uniform, then Sit = 1, else Sit = 2.

3.2.1 Time-varying transition probabilities

The model can be easily extended to allow the transition probabilities to depend on k × 1 vector
of relevant covariates zit. For simplicity consider a model with two components for the orthogonal
shocks. The transition probabilties are then defined as:

Pi (Sit = J |Sit−1 = I) =

(
pi,11 (zit) 1− pi,22 (zit)

1− pi,11 (zit) pi,22 (zit)

)
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As discussed in Filardo and Gordon (1998), the process for the transition probabilties can be
represented as a Probit model:

Sit = 2 ⇐⇒ s∗it ≥ 0 (17)

s∗it = λi,0 + γi,1zit + λi,1Sit−1 + vit, vit ∼ N(0, 1)

where s∗it is a latent variable. The parameters λi,0 and λi,1 are regime-specific intercepts while
the slope coeffi cients γi,1 drives the time-variation in the transition probabilties. The transition
probabilties are then given by:

pi,11 (zt) = Pr
(
vit < −

(
λi,0 + γi,1zit + λi,1Sit−1

))
pi,22 (zt) = Pr

(
vit ≥ −

(
λi,0 + γi,1zit + λi,1Sit−1

))
which can be easily calculated using the normal CDF.

We assume a normal prior for the coeffi cients of equation 17: P(γi) ∼ N (γ0, Vγ) where γ =
[λi,0, γi,1, λi,1]. The Gibbs algorithm presented above requires minor modifications. First, step 5
now involves a draw of the latent variable s∗it. Conditional on γi, the latent variable can be drawn
easily from a truncated normal distribution. That is

s∗it ∼ NI>0 (µi, τ) if St = 1 (18)

s∗it ∼ NI<0 (µi, τ) if St = 2

where I < 0 denotes truncation below zero and I > 0 denotes truncation above zero. Here
µ = λi,0 + γi,1zit + λi,1Sit−1 while τ = 1 for identification. Given a draw for s∗it, equation 17 is
simply a regression with a unit variance. The conditional posterior for λi,0 is thus normal: N (M,V )

V =
(
V −1
γ + z̄′itz̄it

)
M = V

(
V −1
γ γ0 + z̄′its

∗
it

)
where z̄it = [1, zit, , Sit−1] denotes the matrix of regressors. Finally note that step 6 above needs a
minor modification to account for the fact that a different transition probability matrix applies at
each point in time.

3.3 Selection of the number of components

Choosing the number of components or regimes in the proposed BVAR model is a crucial specifi-
cation choice. We carry out model selection by comparing the marginal likelihood across models
with a different number of components. The marginal likelihood is defined as:

f (ỹ) =

∫
f (ỹ|Ξ) p (Ξ) dΞ (19)

where ỹ = [y1, y2, .., yT ], Ξ denotes the unknown parameters of the model, f (ỹ|Ξ) is the likelihood
and p (Ξ) is the proper prior distribution. As is well known, the integration problem in equation
19 is non-trivial and several numerical methods have been proposed for this calculation.

In our study we consider two approaches to estimating f (ỹ). First we use the reciprocal
importance sampling estimator proposed in Gelfand and Dey (1994). These authors show that the
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reciprocal of the marginal likelihood can be defined as:

E

[
q (Ξ)

f (ỹ|Ξ) p (Ξ)

]
=

1

f (ỹ)
(20)

where q (Ξ) is an importance density. Given M draws of Ξ from the Gibbs algorithm described

above, the expectation in equation 20 can be approximated as 1
M

M∑
j=1

q(Ξj)
f(ỹ|Ξj)p(Ξj) . Following Geweke

(1999) we use a truncated normal distribution as the importance density. As discussed in Fruhwirth-
Schnatter (2004), the performance of this estimator can be adversely affected by the tail behaviour
of the importance density. Instead, Fruhwirth-Schnatter (2004) suggests using the bridge sampling
estimator proposed in Meng and Wong (1996). The bridge sampling estimator is based on the
following identity

f (ỹ) =
Eq (α (Ξ) f (Ξ|ỹ))

Ef (α (Ξ) q (Ξ))
(21)

where f (Ξ|ỹ) = f (ỹ|Ξ) p (Ξ) and Ex denotes the expectation with respect to x. Given a choice for

the function α (Ξ), this can be approximated as
L−1

∑L
l=1 α(Ξl)f(Ξl\ỹ)

M−1
∑M
m=1 α(Ξm)q(Ξm)

where Ξl denotes draws from

the importance density q (Ξ) while Ξm represent the draws from the Gibbs sampler. Meng and
Wong (1996) show that an optimal choice for α (Ξ) is 1

Lq(Ξ)+M
f(Ξ|ỹ)
f(ỹ)

. As this expression involves

f (ỹ), Meng and Wong (1996) propose an iterative approach. The algorithm starts with an initial
guess for f (ỹ) (set to the the reciprocal importance sampling estimator in our applications) and
iterates on the following recursion until convergence:

[f (ỹ)]new = [f (ỹ)]old

L−1
∑L

l=1

f(Ξl|ỹ)

Lq(Ξl)+M
f(Ξl|ỹ)
[f(ỹ)]old

M−1
∑M

m=1
q(Ξm)

Lq(Ξm)+M
f(Ξm|ỹ)

[f(ỹ)]old

(22)

We use a mixture distribution as our choice for the importance density. The exact components
and weights are provided in Appendix A.

A simpler alternative to marginal likelihood calculation is based on model selection criteria.
Koop (2003) (chapter 10) demonstrates that the Akaike (AIC) and Schwarz (SIC) information
criteria perform well in selecting the number of components in a single equation mixture model.
These are defined as:

AIC = ln f (ỹ|Ξ)− 2P

SIC = ln f (ỹ|Ξ)− P ln(T )

where P denotes the number of parameters and following Koop (2003), the likelihood is evaluated at
the posterior mean. The recent empirical literature has made heavy use of the deviance information
criterion (DIC) introduced in Spiegelhalter et al. (2002). The DIC is defined as:

DIC = D̄ + pD. (23)

The first term is D̄ = E (−2 ln f (ỹ|Ξm)) ≈ 1
M

∑
m (−2 ln f (ỹ|Ξm)) where f (ỹ|Ξm) is the likelihood

evaluated at the draws from the Gibbs sampler. This term measures goodness of fit. The second
term pD is defined as a measure of the number of effective parameters in the model (or model
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complexity). This is defined as pD = D̄ − D
(
Ξ̄
)

= E (−2 ln f (ỹ|Ξm)) − (−2 ln f (ỹ|E(Ξm))) and

can be approximated as pD = 1
M

∑
m (−2 ln f (ỹ|Ξm)) −

(
−2 lnL

(
1
M

∑
m

Ξm

))
We consider the

performance of these criteria along with the marginal likelihood in the Monte-Carlo experiment
presented below.

Note that the calculation of marginal likelihoods and information criteria requires an estimate
of the likelihood of the BVAR model. This can be calculated via the Hamilton (1989) filter. We
first re-write the model as a Markov switching VAR (as in equation 8). We then define a new
composite state variable S̄t that accounts for the independent state variable in each equation. In
the simple example considered in equation 8, S̄t takes four values:

S̄t = 1 if S1t = 1 and S2t = 1 (24)

S̄t = 2 if S1t = 1 and S2t = 2

S̄t = 3 if S1t = 2 and S2t = 1

S̄t = 4 if S1t = 2 and S2t = 2

The transition probabilties associated with S̄t are then given by P̄ = P1 ⊗ P2. With the model
written in this form, the recursions of the Hamilton (1989) filter in equations 14 and 15 provide

the likelihood for each observation t : likt =
J∑
j=1

F (eit|Sit = j)� ξ̂i,t\t−1. The log likelihood for the

model can be obtained as ln f (ỹ|Ξ) =
∑T

t=1 ln likt.

4 Estimation using artificial data

In this section we present a simple Monte-Carlo experiment. The aim is to evaluate the performance
of the Gibbs sampling algorithm and to assess the methods for model selection considered above.

We generate data from the following bi-variate VAR model:(
y1t

y2t

)
=

(
B11 B21

B12 B22

)(
y1t−1

y2t−1

)
+

(
u1t

u2t

)
(25)

where (
B11 B21

B12 B22

)
=

(
0.9 −0.1
0.1 0.8

)
(26)

and (
e1t

e2t

)
=

(
1 0
A21 1

)(
u1t

u2t

)
(27)

with A21 = −0.5. The error terms are defined as:

e1t = α1,S1t + σ1,S1tε1t

e2t = α2,S2t + σ2,S2tε2t
(28)

with ε1t, ε2t ∼ N(0, 1). The orthogonal residuals are assumed to be characterised by two compo-
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nents where

αi,Sit=1 = −0.5, αi,Sit=2 = 0.5 (29)

σ2
i,Sit=1 = 0.1, σ2

i,Sit=2 = 0.3

with transition probabilities pi,11 = 0.95, pi,22 = 0.95. We generate 500 samples of length T + 100
discarding the first 100 observations and carrying out estimation on the remaining T . We consider
two sample sizes T = 400 and T = 150. For each iteration of the Monte-Carlo, we run the Gibbs
sampler for 5000 iterations using the final 1000 draws for inference. In addition to estimating
the model with two components we also estimate a three component model and a fixed coeffi cient
BVAR and calculate the marginal likelihood, the AIC, SIC and the DIC for model comparison.

12



Figure 1: Results from the Monte-Carlo Experiment
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Figure 1 plots the histogram of the posterior mean of the parameters across the 500 Monte-
Carlo iterations. The red lines display the results when the sample size equals 400 while the blue
lines display the results for the smaller sample with 150 observations. The vertical black dotted
lines represent the true values of the parameters. The final four sub-plots present the distribution
of the difference between the true and estimated value of Sit.

When the sample size equals 400, the estimated distribution of the VAR coeffi cients Bij and
A21 is tightly centered around the true values. Similarly, the regime switching parameters and
transition probabilties are estimated with a reasonable precision. Finally, note that the bias in
Sit is close to zero across the replications. With the smaller sample size, there is an expected
increase in the variance of the estimated distribution. While the mean estimate is close to the true
value for the time-invariant parameters and αi,Sit , there appears to be a slight downward bias in
the estimates of σ2

i,Sit
and the transition probabilties. The results therefore suggest that given a

reasonable sample size, the MCMC algorithm delivers a good performance.3

Probability of selecting the model
T=400 T=150

Marginal Likelihood (Reciprocal Importance Sampling)
3 Components 0.002 0

2 Components (True Model) 0.998 0.854
Linear BVAR 0 0.146
Marginal Likelihood (Bridge Sampling)

3 Components 0.002 0
2 Components (True Model) 0.998 0.862

Linear BVAR 0 0.138
AIC

3 Components 0.002 0.006
2 Components (True Model) 0.998 0.992

Linear BVAR 0 0.002
SIC

3 Components 0.002 0
2 Components (True Model) 0.998 0.954

Linear BVAR 0 0.046
DIC

3 Components 0.974 0.964
2 Components (True Model) 0.026 0.036

Linear BVAR 0 0

Table 1: Performance of model selection procedures.

Table 1 considers the performance of the model selection procedures discussed in section 3.3.
It reports the probability of selecting the linear BVAR or the model with two or three components
using either the marginal likelihood or model selection criteria. With a sample size of T = 400,
the two estimators of the marginal likelihood perform equally well, selecting the true model almost
100% of the time. It is interesting to note that the AIC and the SIC deliver an equally impressive
performance. In contrast, the DIC selects the 3 component model 97% of the time. When T =

3 In a previous version of this paper we show that similar conclusions are reached if data is generated from a three
component model. See Chiu et al. (2016).
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150, the performance of the marginal likelihood based method deteriorates slightly, with a larger
probability attached to the selection of the BVAR model. In contrast, the AIC still delivers an
excellent performance and selects the correct model in almost all replications. The performance
of the SIC in the smaller sample is also impressive. These results suggest tentatively that both
marginal likelihood comparisons and the Akaike and Schwarz criteria perform well in moderately
large samples. The latter criteria appear to be particularly useful when the sample is small.

5 Empirical application: Modelling and forecasting the yield curve

Several recent studies have highlighted the fact that the yield curve and the macroeconomy are
closely related (see for e.g. Diebold et al. (2006)). This is one of the motivations behind the large
literature that focuses on forecasting the yield curve. Note, however, that some recent papers have
pointed out that the dynamics of the yield curve are subject to structural shifts. For example,
Mumtaz and Surico (2009) and Bianchi et al. (2009) show that innovations to the level and the
slope of the yield curve feature heteroscedasticity. In addition, it is well known that yields at
longer maturities have been trending downwards in recent years (i.e. ‘Greenspan’s conundrum’).
This provides prima facie evidence that the shocks to the yield curve may be characterised by
non-normality. In this section we investigate if allowing for non-Gaussian shocks in a simple model
of the yield curve can improve model fit and out-of-sample forecasting performance.

We follow Diebold and Li (2006) and model the yield curve using the Nelson and Siegel (1987)
specification. Letting yt (τ) denote zero coupon government bond yields at maturity τ , the Nelson
and Siegel (1987) model is defined as:

yt (τ) = β1t + β2t

(
1− e−λtτ
λtτ

)
+ β3t

(
1− e−λtτ
λtτ

− e−λtτ
)

(30)

where λt controls the exponential decay rate. The level, slope and the curvature of the yield curve
are captured by β1t, β2t and β3t, respectively. These three factors can be easily estimated by fixing
λt and estimating the factors via OLS for each t. Diebold and Li (2006) use λt = 0.0609, the value
that maximises the loading on the curvature factor. The dynamics of the factors can be modelled
as a VAR process which is used in Diebold and Li (2006) to produce out of sample forecasts. In
this section, we compare this VAR specification with the following extended model:

Zt = c+

L∑
l=1

BlZt−l + ut

where Zt = {β1t, β2t, β3t} and et = Aut. The orthogonal shock to the ith equation of the VAR is a
Markov mixture of normals:

eit = αi,Sit + σi,Sitεit, εit ∼ N(0, 1) (31)

where we allow for the possibility of multiple regimes.

5.1 Data

We obtain monthly data on zero coupon yields from Gürkaynak et al. (2007) which runs from
December 1971 to January 2016. The estimation of the yield curve factors follows Diebold and Li
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Figure 2: Estimated yield curve factors. Shaded areas represent NBER recession dates.

(2006) with λt = 0.0609. The cross-section regression at each month is based on the beginning-
of-month quotes for all available yields of different years of maturity. This means that the yield
curve factors are estimated using Treasuries of 1-15, 1-20 and 1-30 years of maturity for the periods
December 1971 to June 1981, July 1981 to November 1985 and December 1985 to January 2016,
respectively. The estimated factors are shown in figure 2 and have a high correlation with those
estimated by Diebold and Li (2006).

5.2 Full sample estimation

We consider models with up to four regimes. The models are estimated using 105000 Gibbs repli-
cations with last 5000 iterations used for inference. The appendix presents recursive mean plots of
key parameters that provide evidence for the convergence of the algorithm. The bridge sampling
estimate of the log marginal likelihood suggests that the two component model fits the data best
—the marginal likelihood is estimated to be 134.77 for the two component model which is larger
than the estimates for the three component model ( 126.62), the four component model (111.34)
and the Bayesian VAR (−36.66).4

Table 2 and figure 3 presents the posterior estimates of the regime switching parameters and
transition probabilties. It is clear from 2 that regime 1 is associated with a negative mean and high
variance for the shocks to the level and curvature equations. For the slope equation, regime 2 is
characterised by high variance.5 The high variance regime was active over the late 1970s, the early

4The reciprocal importance sampling estimator provides the same result.
5 In Appendix C we present results from a version of the model where the order of the factors is assumed to be:

(1) curvature, (2) slope and (3) level. The results shows that the interpretation of the regimes remains as in the
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Figure 3: Regime probabilities and orthogonalised shocks. The stacked area chart plots Pr (Sit = 1)
(blue area) and Pr (Sit = 2) (yellow area). The red dotted lines show eit estimated using the
posterior mean of the model parameters.

Figure 4: Quantile-quantile plots for the distribution of the orthogonalised shock for equation of
the level factor.
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Equation αi,Sit=1 αi,Sit=2 σ2
i,Sit=1

σ2
i,Sit=2

Pi

Level
−0.024

[−0.055,−0.006]
0.017

[−0.008, 0.045]
0.241

[0.210, 0.283]
0.041

[0.037, 0.046]

(
0.946 0.022
0.054 0.978

)
Slope

−0.029
[−0.071,−0.007]

0.064
[−0.006, 0.171]

0.105
[0.093, 0.117]

1.340
[1.148, 1.573]

(
0.983 0.058
0.017 0.942

)
Curvature

−0.935
[−1.235,−0.628]

−0.545
[−0.759,−0.326]

1.978
[1.733, 2.340]

0.368
[0.306, 0.442]

(
0.934 0.069
0.066 0.931

)
Table 2: Estimates of regime dependent parameters. Median and 68 percent highest posterior
density interval

1980s and during the recent financial crisis for the first two equations. The shock to the curvature
equation is subject to regular regime shifts. It is interesting to note that for each equation, there
are periods of time when the probability of both states is non-negligible and the implied mixture
distribution of the shocks may depart from normality. As an example, we draw 10, 000 random
numbers from the implied distribution of the shock to the level equation in January 2009, 2010, 2012
and 2016.6 Figure 4 plots the quantiles of the standard normal distribution against the quantiles
of these random numbers. These plots strongly suggest that the distribution was characterised by
non-normality in post-2010 period.7

5.3 Forecasting performance

We now consider how the BVAR with non-Gaussian shocks performs in terms of out-of-sample
point and density forecasting. We use models with two and three regimes in the forecast experi-
ment. The model comparison for the full sample suggests that the fit deteriorates substantially if
more regimes are considered and therefore we use relatively parsimonious models. The competing
models are assumed to be (1) a linear BVAR (2) a BVAR where the orthogonal shocks are assumed
to be drawn from a T-distribution and (3) a BVAR where the variance of the orthogonal resid-
uals follows a stochastic volatility (SVOL) process. The linear BVAR offers a simple benchmark
that incorporates the assumptions of normality. The remaining two models feature high and low
frequency fluctuations in the volatility of the errors, respectively. This can induce fat tails in the
error distribution but leaves the density symmetric.

The BVAR with T-distributed shocks is defined as:

Zt = c+
L∑
l=1

BlZt−l +Aet (32)

where A is lower triangular the ith residual eit is assumed to be distributed as T
(
0, σ2

i , dfi
)

where σ2
i is the variance while dfi denotes the degrees of freedom of the T-density. Chiu et al.

(2014) present details on the MCMC algorithm used to estimate this model. The BVAR with
stochastic volatility has the same form as equation 32 above but the orthogonal residuals are now
defined as eit ∼ N(0, σ2

it) where lnσ2
it = lnσ2

it−1 + q1/2ηit. Estimation of this model is standard
and also discussed in Chiu et al. (2014). Note that we employ the prior described in section 3.1 for

benchmark specification suggesting that ordering is not important for this application.
6This is defined as Pr (S1t = 1)×R1 + Pr (S1t = 2)×R2 where Rj˜N(α1,S1t=j , σ

2
1,S1t=j

).
7We also estimated a version of the model where the transition probabilties are assumed to depend on lagged

output growth and inflation. The results from this model are similar to benchmark case and available on request.

18



the coeffi cients of all the VARs used in the forecasting experiment.
We conduct a pseudo real-time forecasting exercise. In particular, we estimate the forecasting

models using data from December 1971 to December 1979. Then each model is estimated recursively
adding one month of data at a time until January 2015. At each recursion, we produce a 12 month
density forecast for the three factors.8 The k step ahead forecast density from the proposed model
is defined as:

P
(
Ẑt+k|Zt

)
=

M∑
m=1

P
(
Ẑt+k|Sit+k = o, Zt,Ξ

)
Pi (Sit+k = o|Sit = m)P (Sit = m|Zt,Ξ) (33)

where Ξ represents the model parameters. The first term in equation 33 denotes the Gaussian fore-
cast density conditioned on the parameters in regime o. The second term is denotes the transition
probability and the final term is the filter probability obtained from the Hamilton (1989) filter.
The point forecast is obtained as the mean of the forecast density.

We assess the point forecasts using root mean squared errors (RMSE) and the density forecasts
using the continuous rank probability score (CRPS). Our preference to use CRPS instead of using
log scores is related to the relative advantages of CRPS: it is better at rewarding values from the
predictive density that are close to but not equal to the outcome, and it is less sensitive to outlier
outcomes (see Gneiting and Raftery (2007)).

RMSE CRPS

1M 3M 6M 12M 1M 3M 6M 12M
Level Factor

VAR-T 0.990 0.984 0.988 0.981 0.986 0.987 0.994 0.987
M2-VAR 0.981 0.977 0.975 0.947 0.964 0.953 0.953 0.902
M3-VAR 0.996 1.006 1.006 0.972 0.990 1.003 0.994 0.923
SVOL-VAR 0.979 0.977 0.979 0.958 0.960 0.959 0.966 0.924

Slope Factor
VAR-T 0.965 0.943 0.948 0.977 0.938 0.932 0.957 1.017
M2-VAR 0.991 0.977 0.982 0.985 0.930 0.952 0.981 0.991
M3-VAR 0.982 0.971 0.970 0.988 0.924 0.947 0.991 1.050
SVOL-VAR 0.949 0.920 0.918 0.940 0.900 0.881 0.928 1.011

Curvature Factor
VAR-T 0.972 0.981 0.993 1.009 0.973 0.982 1.000 1.017
M2-VAR 0.984 0.987 0.991 0.995 0.978 0.989 1.011 1.032
M3-VAR 0.986 0.991 0.996 1.002 0.986 0.999 1.030 1.046
SVOL-VAR 0.991 1.006 1.023 1.052 0.985 1.014 1.051 1.091

Table 3: RMSE and CRSP relative to a BVAR. Average over the period 1980M1-2015M1. VAR-T
is the VAR with fat tailed shocks, SVOL-VAR is the VAR with stochastic volatility. M2-VAR is
the proposed model with 2 components. M3-VAR is the proposed model with 3 components

Tables 3 and 4 present the results of the forecast evaluation. The first four columns of each table
shows the RMSE of the forecasting model relative to the RMSE obtained from the BVAR. The
last four columns display the relative CRPS. In 3 these relative RMSE’s and CRPS’s are averaged

8As noted by Diebold and Li (2006), forecasting the factors in this model is equivalent to forecasting the underlying
yields.
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RMSE CRPS

1M 3M 6M 12M 1M 3M 6M 12M
Level Factor

VAR-T 0.787 0.774 0.780 0.762 0.775 0.763 0.788 0.769
M2-VAR 0.779 0.772 0.773 0.730 0.765 0.748 0.759 0.682
M3-VAR 0.792 0.797 0.807 0.761 0.780 0.781 0.801 0.708
SVOL-VAR 0.786 0.776 0.783 0.758 0.767 0.751 0.774 0.737

Slope Factor
VAR-T 0.778 0.765 0.807 0.900 0.750 0.766 0.868 0.999
M2-VAR 0.777 0.761 0.790 0.858 0.729 0.730 0.816 0.918
M3-VAR 0.784 0.762 0.789 0.866 0.730 0.729 0.835 0.982
SVOL-VAR 0.760 0.735 0.765 0.856 0.717 0.705 0.805 0.967

Curvature Factor
VAR-T 0.934 0.968 0.996 1.036 0.928 0.973 1.016 1.075
M2-VAR 0.944 0.981 1.016 1.049 0.937 1.003 1.070 1.137
M3-VAR 0.943 0.978 1.016 1.053 0.941 1.006 1.089 1.153
SVOL-VAR 0.954 1.005 1.053 1.112 0.942 1.022 1.100 1.178

Table 4: RMSE and CRSP relative to a BVAR. Average over the period 1990M1-2015M1. VAR-T
is the VAR with fat tailed shocks, SVOL-VAR is the VAR with stochastic volatility. M2-VAR is
the proposed model with 2 components. M3-VAR is the proposed model with 3 components

over the period January 1980 to January 2015. Table 4 presents the average, post-1990 a period
associated with a slow, steady decline in the level of yields (see figure 2). Note that a number less
than 1 in the tables implies that the forecasting model improves upon the standard BVAR.

The relative RMSE’s in table 3 show that all models offer a modest improvement in point fore-
casting over the BVAR. For the level factor, the model with two regimes (M2-VAR) has the smallest
relative RMSE at the six and twelve month horizons, albeit with the VAR with stochastic volatility
(SVOL-VAR) a very close second. The SVOL-VAR provides the best forecasting performance for
the slope factor at the one year horizon, while all models are roughly comparable to the BVAR
in forecasting the curvature factor twelve months ahead. The M2-VAR delivers the best density
forecasts for the level factor at all horizons offering an improvement of about 10% over the BVAR
at the one year horizon. However, as in the case of the point forecasts, the SVOL-VAR provides
the best density forecasts for the slope factor at the three and six month horizons with the VAR
with T-distributed shocks (VAR-T) a close competitor. Both the VAR-T and the M2-VAR provide
modest gains in the density forecast of the curvature factor at short horizons.

Over the post-1990 forecast sample, the improvement in forecasting performance over the BVAR
is substantially larger. For example, the M2-VAR and the SVOL-VAR deliver RMSEs in forecast-
ing the level factor which are more than 20% lower than those obtained from the BVAR model.
Similarly, the performance of the M2-VAR in forecasting the slope factor is very close to the SVOL-
VAR which is again the best performing model. At short horizons, the VAR-T and the M2-VAR
provide the lowest relative RMSEs for the curvature factor. At the one year horizon, the density
forecast for the level factor from the M2-VAR is 32% more accurate than that obtained from the
BVAR model. Note that this provides a substantial improvement over both the VAR-T and the
SVOL-VAR. Similarly, the M2-VAR improves upon the SVOL-VAR in terms of the density forecast
of the slope factor at the one year horizon. Note also that the accuracy of the M2-VAR density
forecast for the slope factor is very close to that delivered by the SVOL-VAR at shorter horizons.

20



The forecast experiment suggests the following conclusions: (1) The proposed model with two
components delivers point and density forecasts for the level of the yield curve that are more
accurate than those obtained from the competing models. The M2-VAR’s forecasting performance
is highly competitive with the alternatives when considering the slope and the curvature factors.
(2) The proposed models perform best over a period where the slope of the yield curve shows a slow
and steady decline and displays little volatility. This suggests that these models may be especially
useful over periods when the data is relatively stable. In summary, there is some evidence that the
BVAR with non-Gaussian shocks can be useful for point and density forecasting.

6 Conclusions

This paper proposes a BVAR model where the orthogonal shocks have a non-normal distribution.
The non-normality is introduced via a Markov mixture of normals. We provide a Gibbs sampling
algorithm to approximate the posterior distribution of the parameters and discuss methods to select
the number of components in the mixture. An application to a yield curve model suggests that the
proposed model fits the data better than a BVAR with Gaussian shocks. Moreover, the BVAR with
non-normal shocks provides point and density forecasts of the level and slope of the yield curve
that are more accurate than those obtained from the standard BVAR. The relative improvement
in forecasting performance is especially large over the post-1990 period when the level of the yield
curve displayed little volatility. In future work it would be interesting to check if evidence for
non-normality of shocks can be found in BVAR models that include asset prices such as exchange
rates and oil prices. Given the recent political and economic uncertainty, it has become crucial
for policy makers to obtain accurate forecasts for these variables. It would therefore be useful to
investigate if the proposed model can be helpful for this task.
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A Appendix A: Importance density for calculating the bridge
sampling estimate of the marginal likelihood

We assume that the importance density can be written as p (B,αi,Sit , A)× p
(
σ2
i,Sit

)
× p (Pi). For

the first set of parameters B,αi,Sit , A we use a mixture of three normals with means: [µ, ū, µ] and
variances: [Ω, 5Ω, 10Ω] with weights: [0.5, 0.4, 0.1]. Here µ denotes the posterior mean, µ̄ is the draw
consistent with the maximum value of the posterior over the MCMC draws and Ω is the posterior

covariance matrix of the draws. p
(
σ2
i,Sit

)
is assumed to be a mixture of four normals with means:

[µ, 2µ, 1.5µ, 0.5µ] and variances: [0.1Ω,Ω,Ω,Ω] with weights: [0.9, 0.05, 0.025, 0.025]. Finally p (Pi)
is assumed to be a Dirichlet distribution D

(
uIJ + ηi,IJ

)
where the number of transitions ηi,IJ are

calculated using the posterior median of Si,t.

B Appendix B: Convergence

Figure 5 below shows the recursive means of the parameters of the two component model calculated
every 20 retained draws. The means show little fluctuation providing evidence for convergence.
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Figure 5: Recursive means of retained draws

C Appendix C: Ordering of yield curve factors

Table 5 provides the posterior medians of the switching parameters for a version of benchmark
model in section 5.2 where the order of the factors is reversed. The results show that the pattern of
regime switches remains very similar to the benchmark case. For the level and curvature equations,
regime 1 is the high variance regime while regime 2 is the high variance state for the level factor.

Equation αi,Sit=1 αi,Sit=2 σ2
i,Sit=1

σ2
i,Sit=2

Pi

Level -0.0218 0.0262 0.3054 0.0337
(

0.9508 0.0174
0.0492 0.9826

)
Slope -0.0615 0.0055 0.1034 1.0899

(
0.9719 0.0860
0.0281 0.9140

)
Curvature -1.2419 -0.7963 2.0415 0.3374

(
0.9521 0.0672
0.0479 0.9328

)
Table 5: Estimate regime dependent parameters
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