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Abstract

Unlike most countries, Korea did not implement a lockdown in its battle against
COVID-19, instead successfully relying on testing and contact tracing. Only one
region, Daegu-Gyeongbuk, had a significant number of infections, traced to a religious
sect. This allows us to estimate the causal effect of the outbreak on the labor market
using difference-in-differences. We find that a one per thousand increase in infections
causes a 2 to 3 percent drop in local employment. Non-causal estimates of this
coefficient from the US and UK, which implemented large-scale lockdowns, range from
5 to 6 percent, suggesting that at most half of the job losses in the US and UK can
be attributed to lockdowns. We also find that employment losses caused by local
outbreaks in the absence of lockdowns are (i) mainly due to reduced hiring by small
establishments, (ii) concentrated in the accommodation/food, education, real estate,
and transportation industries, and (iii) worst for the economically vulnerable workers
who are less educated, young, in low-wage occupations, and on temporary contracts,
even controlling for industry effects. All these patterns are similar to what we observe
in the US and UK: The unequal effects of COVID-19 are the same with or with-
out lockdowns. Our finding suggests that the lifting of lockdowns in the US and UK
may lead to only modest recoveries in employment unless COVID-19 infection rates fall.
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We isolate the economic effect of COVID-19 that operates through the fear

of infection: The fact that people hunker down and curtail economic activity in

response to local outbreaks. Our estimate is not contaminated by the concomi-

tant effect of government-mandated lockdowns or supply and demand shortages

from outside the economy (such as inter-regional and international trade) due to

the epidemic. We estimate the effect on overall employment, hires and separa-

tions, and also examine how the effect is distributed across industries and across

workers of different occupation, education, age, gender and employment type.

Our estimation exploits exogenous regional variation in the COVID-19 out-

break in Korea, as well as the absence of mandatory lockdowns or other social-

distancing measures imposed by the government.1 South Korea had only 30

confirmed infections prior to February 18, 2020, when “Patient 31” attended a

religious gathering of the “Shincheonji” sect in Daegu, a metropolitan city in

the Gyeongbuk province. By February 29, the number of cases in Korea had

exploded to 3,150, with 2,724 cases (or 86.4 percent) in the Daegu-Gyeongbuk

region (DG hereafter) alone. Of these, more than 60 percent were traced to

Shincheonji. Figure 1 shows the cumulative COVID-19 infections per thousand

on February 28 and March 15. It is not the case that DG was more susceptible

to the Shincheonji sect, which has members and churches spread all over Korea.

Thus, the regional variation in infections is uncorrelated with any underlying

socioeconomic factor and provides grounds for a natural experiment.2

Moreover, the Korean government chose intensive testing and contact tracing

as their tool for containing the epidemic rather than enhanced social distancing,

and never mandated a lockdown. This resulted in two additional advantages

of our estimation strategy: (i) The economic reactions were not prescribed by

the government’s promulgation of what are essential or non-essential economic

activities, unlike in the vast majority of countries, and (ii) As of May 20, the

success of its containment strategy resulted in a very low cumulative infection

rate of 0.06 per thousand in Korea, excluding DG, ensuring that the direct effect

1Another celebrated example of a country not implementing a lockdown is Sweden, and researchers have
tried to infer the economic effect of lockdowns by comparing Sweden with other countries (Andersen et al.,
2020; Born et al., 2020). By design, such studies cannot recover the direct, causal effect of the pandemic
and at best, can only estimate the effect of a lockdown. But even the lockdown effects are still subject to
omitted variable bias and endogeneity—lockdowns are a choice variable for the government, not an exogenous
variation across countries. In addition, Sweden has a much higher cumulative infection rate (3.2 per thousand
as of May 20) than some of the comparison countries (e.g., Denmark, 1.9 per thousand), rendering a simple
comparison of economic outcomes less informative.

2The DG region comprises about 10 percent of South Korea’s total population of 52 million and about 9
percent of national GDP.
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Fig. 1: Confirmed COVID-19 infections across administrative regions

(a) February 28, 2020 (b) March 15, 2020

Notes: Circle sizes represent cumulative infection cases per thousand. Regions with more than 0.1
cumulative cases per thousand are shaded in gray. The city of Daegu has the largest circle and the
gray region with the second largest circle is the province of Gyeongbuk.
Source: KCDC

is entirely confined to DG, with a rate of 1.6 per thousand.

We exploit this setting using difference-in-differences (DiD) on data from an

establishment survey and a separate household survey. The scheme captures

the causal effect of the outbreak on local employment relative to the rest of

the country. The establishment survey further allows a breakdown by industry

and by establishment size. The household survey further allows a breakdown by

occupation, education, age, gender and employment type.

Results Our causal estimate implies that a one per thousand increase in in-

fections leads to a 2 to 3 percent drop in local employment in the absence of

lockdowns. In comparison, non-causal estimates of this coefficient for the United

States or United Kingdom, which implemented large-scale lockdowns, range from

5 to 6 percent, suggesting that about half of their job losses may be due to volun-

tary reductions in economic activity by private businesses and consumers, rather

than a consequence of government-mandated lockdowns. Alternatively, at most

half the job losses in the US and UK can be attributed to lockdowns.

Employment losses caused by local outbreaks stem mostly from reduced hir-
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ing by businesses and are mirrored by a rise in labor market non-participation

rather than unemployment. By industry, losses are concentrated in the accom-

modation/food, education, real estate, and transportation industries, similar to

(non-causal) patterns observed in the US and UK.

The causal effects of the COVID-19 shock without lockdowns are very un-

equally distributed: More or less all employment losses were accounted for by

small establishments (fewer than 30 employees), while large establishments ac-

tually grew. Less-educated workers, the young, workers in low-wage occupations

and on temporary contracts, and the self-employed lost the most jobs to the

COVID-19 shock, even controlling for industry effects. In a nutshell, the most

economically vulnerable groups even before the shock experienced the most dire

effects. By gender, although the COVID-19 shock hit industries in which women

are over-represented harder, the within-industry effect was positive for women

while negative for men. Consequently, the total causal effect destroyed more jobs

for men than for women.3 All these patterns of causal effects except the effects

by gender are similar to what we observed in the US and UK: The unequal effects

of COVID-19 are the same with or without lockdowns.

Our finding that lockdowns account for at most half the job losses in the US

and UK suggests that the lifting of lockdowns may lead to only modest recoveries

in employment absent larger reductions in COVID-19 infection rates.

Of course, this is not to say that lockdowns are the best policy response. They

are a very blunt tool and may cause more economic damage than necessary. Using

a more theoretical approach, Aum et al. (2020) shows that targeted approaches

can more effectively contain the epidemic at a lower economic cost.

1 Data

We use three data sets. The first is the Labor Force Survey at Establishments

(LFSE), a monthly survey of 40,000 sampled employers (out of 4.1 million in

2018) by the Ministry of Employment and Labor. It reports the number of

employees and vacancies as of the last business day of the month, as well as

the number of new hires and separations for the month. The second is the

Economically Active Population Survey (EAPS), a monthly survey of 35,000

households collected around the 15th of each month by Statistics Korea, which

3Nationwide, the drop in women’s employment was larger than men’s in Korea as well, even in the absence
of a lockdown.
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includes worker characteristics (education, age, gender) and jobs (occupation and

employment type).4 The last is the number of confirmed COVID-19 cases over

time published by the Korea Centers for Disease Control (KCDC).

Fig. 2: COVID-19 infections per thousand population

(a) Survey dates (b) Policy measures

Notes: The curves are the cumulative confirmed infections per thousand in Seoul, the capital with 9.8
million people, (gray solid), Daegu (red solid) and Gyeongbuk (dashed). In the left panel, survey dates
are marked by vertical lines: LFSE on the last business day of each month and EAPS around the 15th of
each month. The right panel shows the government policy timeline: (i) February 4, early authorization
of diagnostic testing kits; (ii) February 26, installation of drive-through test and screening centers;
(iii) March 7, launch of a self-quarantine tracking smartphone app (iv) March 22: social distancing
advisory campaign. The government also mandated schools and universities to delay the beginning of
the academic year on March 2, 2020.
Source: KCDC, Ministry of Employment and Labor, Statistics Korea.

2 Methodology and Estimation Results

The DiD scheme we use requires treatment to be exogenous to outcomes, and

a parallel trends assumption to hold between comparison groups pre-treatment.

In our case, the treatment is DG having experienced a major outbreak, which

was traced to local Shincheonji gatherings. Shincheonji is a popular yet secretive

religious sect, but from what we know, has more than 200,000 members spread

out across Korea regardless of each region’s economic standing. If anything, the

DG region has less followers per capita than other regions. Thus, the epidemic

variation can be considered exogenous.

Economically, DG’s share of national GDP and employment has been stable

for at least the last three years, as well as its share of international trade. In any

4Respondents’ region is not available in the public-use microdata, but Statistics Korea provides detailed
summary tables by province.
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case, Korean exports and imports were in fact higher in February to March 2020

than the monthly average throughout 2019, so it is unlikely that our results are

driven by international factors, especially the contraction of the Chinese economy.

Moreover, to alleviate concerns that differences in industrial or demographic

composition across regions may introduce nonparallel pre-trends, and also to

disaggregate COVID-19’s causal effects, our cross-regional analysis is performed

not only on the entire sample for each of our data sources, but also by industry

and by demographic group.

We present three sets of estimates using DiD, using LFSE data as of February

28 and March 31, and EAPS data as of March 15. Since the Korean government

closed schools on March 2 and commenced social distancing campaigns on March

22, later estimates may be biased; that is, both labor market outcomes and the

spread of the epidemic are endogenous to government policy. Nonetheless, at

no point did the government suggest the possibility of a lockdown, so all our

estimates are free of potentially large-scale disruptions.

2.1 Establishment-side employment data (LFSE)

We first focus on the LFSE data as of February 28, nine days after the Shincheonji

outbreak. At this point, the Korean government is yet to implement any social

distancing measures, instead relying exclusively on contact tracing, testing, and

quarantine of the confirmed infected. Given the exogenous regional variation in

confirmed infections and the timing of the survey, we estimate the causal effect

of the outbreak on the labor market using the following DiD specification:

yir,t = βi
0 + βi

1 ·Dr(DG) + βi
2 ·Dt(Feb) + γi ·Dr(DG) ·Dt(Feb) + εir,t, (1)

where yir,t is the variable of interest for industry i, region r at month t, Dr(DG)

is a dummy variable that equals 1 if r =DG and 0 otherwise, and Dt(Feb) equals

1 if t is February 2020 or later months, and 0 otherwise. The primary coefficient

of interest is the DiD term γi, designed to capture the effect on the DG region,

which was the lone hot spot. In some cases, we will compare γi with βi
2, the effect

of the epidemic on the country as a whole, which we cannot interpret as causal

but is still informative as it is uncontaminated by government-led lockdowns.

We report estimation results for employment growth from January to Febru-

ary and from January to March in Table 1. We estimate the regression coefficients

for the whole sample and also separately for the 18 different industries that span
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Table 1: COVID-19 effect on employment, total and by industry

Monthly till Feb 2020 Bimonthly till March 2020
β2 γ β2 γ

Total −0.89∗∗∗ (0.09) −1.02∗∗∗ (0.17) −2.08∗∗∗ (0.20) −1.22∗∗∗ (0.41)

Accommodation, food svc. −5.70∗∗∗ (0.14) −9.45∗∗∗ (0.51) −13.19∗∗∗ (0.37) −7.30∗∗∗ (1.08)
Facility mgmt., support, rental −0.98∗∗∗ (0.11) −0.50∗ (0.27) −2.83∗∗∗ (0.28) 1.36∗∗∗ (0.48)
Repair, other personal svc. −1.15∗∗∗ (0.08) 0.43∗ (0.22) −3.17∗∗∗ (0.19) −2.60∗∗∗ (0.38)
Real estate 0.14∗ (0.08) −1.25∗∗∗ (0.22) −0.43∗∗ (0.19) −2.60∗∗∗ (0.40)
Health, social svc. −0.56∗∗∗ (0.08) −1.03∗∗∗ (0.14) −1.49∗∗∗ (0.17) −3.41∗∗∗ (0.28)
Arts, sports, recreation −1.99∗∗∗ (0.32) 0.89 (0.68) −9.07∗∗∗ (0.73) −0.33 (1.70)
Water, sewage, waste mgmt. 0.05 (0.08) 1.17∗∗∗ (0.20) 0.18 (0.18) 0.85∗ (0.44)
Wholesale, retail −0.76∗∗∗ (0.06) −0.09 (0.30) −1.96∗∗∗ (0.11) −1.81∗∗∗ (0.57)
Public adm., defense 1.60∗∗∗ (0.25) 0.55 (0.45) 3.42∗∗∗ (0.48) −0.57 (0.96)
Transportation, storage −0.31∗∗∗ (0.06) −0.37∗∗ (0.16) −2.36∗∗∗ (0.12) −3.16∗∗∗ (0.24)
Manufacturing −0.21∗∗∗ (0.03) −0.23∗∗ (0.08) −0.59∗∗∗ (0.06) −0.00 (0.14)
Mining 0.64∗∗ (0.27) 1.12 (0.88) 1.35∗∗ (0.51) −1.37 (1.56)
Construction −0.55∗∗ (0.24) −0.52 (0.60) 0.29 (0.61) −0.49 (1.45)
Education −2.37∗∗∗ (0.51) −3.31∗∗∗ (0.78) −3.05∗∗ (1.33) −1.46 (1.87)
Professional, scientific −0.04 (0.05) −1.11∗∗∗ (0.21) −0.07 (0.11) −0.60 (0.46)
Information, comm. −0.31∗∗∗ (0.07) 0.50∗∗ (0.17) −0.89∗∗∗ (0.11) −1.28∗∗∗ (0.31)
Electricity, gas 0.18 (0.18) −0.95∗∗∗ (0.22) −0.09 (0.50) −0.91 (0.55)
Finance, insurance 0.53∗∗∗ (0.08) −1.01∗∗∗ (0.14) −0.24∗∗ (0.11) 0.63∗∗ (0.30)

Notes: Industries sorted in ascending order of average hourly wage in February 2020. Robust standard
errors in parentheses. *, **, *** represent significance at 10, 5, 1 percent. Dependent variable is
employment change in percent. β2: coefficient on time dummy Dt(Feb); γ: coefficient on interaction
term Dr(DG)·Dt(Feb).

our data. The industry composition varies across regions and may introduce het-

erogeneous pre-trends, but the industry-by-industry estimation alleviates such

concerns.

The first row shows the effect of the incipient COVID-19 epidemic on over-

all employment. Between the end of January and the end of February (from 11

confirmed cases to 3,150 nationwide), employment fell by 0.89 percent (not annu-

alized) in Korea, shown by the estimate of β2. To put this number in perspective,

employment grew by an average of 0.23 percent per month (not annualized) from

Jan 2018 to Jan 2020, and there is only negligible seasonality. Although causality

cannot be established, it strongly suggests the effect of the incipient epidemic on

the entire Korean economy. The effect was much stronger for DG, which ac-

counted for 86.5 percent of the 3,150 total confirmed cases (there were no case

in DG as of January 31). The estimated γ shows that employment in DG fell at

more than double the rate for the entire country, by 1.91 (0.89 plus 1.02) percent
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in a month.5 The estimate of γ is the direct causal effect of the local epidemic

on local employment, given the exogenous nature of the variation in confirmed

infections by region.

Table 1 shows that the effects differ across industries, sorted in ascending

order of average wage. Not surprisingly, accommodations/food service industries

were hit hardest, not only nationwide (-5.7 percent), but especially in DG (-15.2

percent), as people avoided contact-intensive services. They also happen to be

the lowest-paying industry. Employment in education industries, which does not

include public school teachers, also saw a large drop (2.4 percent nationwide

and 5.7 percent in DG). Employment in arts/sports/recreation fell substantially

nationwide (2 percent) but there was no additional effect from local infections.

On the other hand, real estate shows a significant negative causal effect, although

its employment went up weakly nationwide.

The right panel of Table 1 shows the cumulative employment effect from the

end of January to the end of March (9,569 cases nationwide, 83.4 percent in DG)

from a regression of bimonthly data. Employment fell by 2.1 percent nation-

wide over two months (not annualized) and by 3.3 percent in DG. The Korean

government delayed the start of the school year on March 2 and implemented

enhanced social distancing measures on March 22, both at the national level. As

a result, the estimated β2 partly reflects the effect of government policies and

the γ estimate is likely biased downward. The estimates of the causal effect of

the local outbreak γ are similar to those in the left panel, with accommoda-

tion/food services showing the largest additional employment decrease in DG.

Wholesale/retail, health/social services, transportation/storage industries show

a significant additional drop in DG in March (1.8, 3.4 and 3.2 percent, respec-

tively), much more so than in February, suggesting a delayed impact. On the

other hand, the differential effect on education industries in DG disappear in

March, which is not surprising given the nationwide delay of the school year.

To unpack the decline in employment, we estimate equation (1) with three

alternative dependent variables: the monthly number of hires, separations and

vacancies, all as a percentage of the previous month’s employment. Table 2 shows

that the February employment drop in DG caused by the outbreak is entirely

driven by decreased hiring and not by increased separations (layoffs and quits).

5Regional LFSE data are available only from January 2018, implying that γ compares 25 monthly obser-
vations with one (January 2018 to January 2020 vs. February 2020). This is a small sample, especially post
COVID-19, but most of our estimates are still highly significant.
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Table 2: COVID-19 effect on hiring and separations

Employment Hires Separations Vacancies
β2 γ γ γ γ

−0.89∗∗∗ −1.02∗∗∗ −1.08∗∗∗ −0.24 −0.21∗∗∗

(0.09) (0.17) (0.23) (0.19) (0.05)

Notes: Robust standard errors in parentheses. *, **, *** represent significance at 10, 5, 1 percent.
Dependent variables are employment changes, new hires, separations, and vacancies, all as percent of
the previous month’s employment. β2: coefficient on time dummy Dt(Feb). γ: coefficient on interaction
term Dr(DG)·Dt(Feb).

Table 3: Effect on employment by establishment size (selected industries)

Small Medium Large
γ γ γ

Total −2.29∗∗∗ (0.26) 0.10 (0.26) 0.77∗∗ (0.27)

Accommodation, food svc. −10.04∗∗∗ (0.63) −3.38∗∗∗ (0.93) ·
Real estate −1.51 (1.03) −0.80 (1.03) −12.71∗∗∗ (3.45)
Health, social svc. −1.13∗∗∗ (0.28) −1.49∗∗∗ (0.30) 0.18 (0.28)
Wholesale, retail −0.22 (0.36) 0.63∗ (0.32) −1.16∗∗ (0.42)
Transportation, storage −0.81∗∗ (0.39) −0.23 (0.39) 2.36∗∗∗ (0.58)
Manufacturing −0.75∗∗∗ (0.11) 0.24∗∗ (0.10) 0.02 (0.13)
Education −10.46∗∗∗ (1.22) 0.85 (1.29) 1.17 (1.20)
Professional, scientific −1.79∗∗∗ (0.37) 0.11 (0.38) −0.94∗∗ (0.43)
Information, comm. 0.95∗∗ (0.38) −0.27 (0.35) 2.42∗∗ (1.10)

Notes: Selected industries sorted in ascending order of average hourly wage in February 2020. Robust
standard errors in parentheses. *, **, *** represent significance at 10, 5, 1 percent. Dependent variable
is percentage employment change. Small, medium, and large denote establishments with fewer than
30, between 30 and 299, and 300 or more employees, respectively. γ: coefficient on interaction term
Dr(DG)·Dt(Feb) by establishment size category.

The top row of Table 3 shows that the causal effect of the local outbreak

disproportionately affected small establishments (fewer than 30 employees) while

if anything large establishments (300 or more employees) increased employment

(first row) between January and February in DG. This result is partly driven by

industrial composition: Most establishments in accommodation/food services,

the industry hardest hit, are small. However, even within industries, small

establishments lost employment by more than large establishments, especially

in accommodation/food services and education, the two industries showing the

largest causal impact in Table 1. In fact, in transportation/storage and informa-

tion/communication industries, large establishments increased employment sig-

nificantly in response to the local outbreak. The lone exception is the real estate

industry, where the negative effect was concentrated among large establishments.
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Table 4: Employment, non-participation and unemployment

Employment Non-participation Unemployment
β2 γ β2 γ β2 γ

−0.64∗∗∗ −2.53∗∗∗ 0.72∗∗∗ 1.13∗∗∗ 0.12 -0.15
(0.19) (0.34) (0.11) (0.22) (0.12) (0.20)

Notes: Robust standard errors in parentheses. *, **, *** represent significance at 10, 5, 1 percent.
Dependent variable is employment change in percent, percentage point change in labor force non-
participation rate, and percentage point change in unemployment rate. β2: coefficient on time dummy
Dt(Mar). γ: coefficient on interaction term Dr(DG)·Dt(Mar).

2.2 Household survey data (EAPS)

We now turn to our estimates from EAPS, the household survey that provides

more worker-side information. We still use the estimation equation (1), but now

i indexes a demographic group and the time dummy is Dt(Mar), because the

first post-Shincheonji survey was as of March 15. This is one week before the

launching of the social distancing advisory campaign, but after the decision to

delay the beginning of the school year on March 2.

Table 4 shows that employment fell by 0.6 percent nationwide and by 3.2

(0.64 plus 2.53) percent in DG between February 15 and March 15 (not an-

nualized). These numbers are not directly comparable to the February LFSE

estimates (0.89 and 1.91), because of the newly confirmed infections between

February 28 (the LFSE survey date) and March 15, and also because EAPS in-

cludes the self-employed, not included in the LFSE.6 One noteworthy result is

that the fall in employment did not manifest as a rise in unemployment, either

nationwide or in DG. People who left employment instead reported themselves

as non-participants. One possible explanation is that they are waiting out the

epidemic rather than searching for jobs in the midst of it. Alternatively, they

may be expecting to return to their previous job and are thus not searching for

jobs, such as if they were furloughed.7

Table 5 shows the nationwide change in employment, β2, and the causal

effect of DG’s outbreak on local employment, γ, by occupation, educational

attainment, gender, age and employment type. We focus on the causal effect

of local outbreaks, γ. The first panel, which stratifies the labor force by one-digit

6EAPS definition of “self-employed” is non-employers with zero employees, who are not covered by the
establishment survey of employers.

7While private furloughs exist, the Korean government did not implement any public furlough schemes
that some of their European counterparts did.
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occupations, shows that service, sales, and craft workers were hit the hardest by

the outbreak in DG. In contrast, the number of managers actually increased by

more than 7 percent. The next two panels show that by education, less educated

workers lost disproportionately more jobs, while by gender, the direct causal effect

was larger for men (-2.8 vs. -2.2 percent).8 By age, the causal effect is largest for

younger workers (those in their twenties or younger), followed distantly by those

in their forties and those aged 60 or older. Finally, by employment type, job

losses were heavily concentrated among temporary workers and unpaid family

workers, although self-employment also fell by 2.3 percent. The overall pattern

that emerges from Table 5 is that workers of lower socioeconomic status were

much more vulnerable to the local outbreak.

But are the unequal employment effects across different worker groups driven

by industrial composition? That is, do the effects differ solely because certain

types of workers are over-represented in industries more exposed to the COVID-

19 shock? We answer this question by decomposing the causal employment effect

of a given demographic group, γ, into an industry component (that differs only

between industries) and a group-specific component (that varies within indus-

tries). A potential problem is that the EAPS only provides data by industry or

by region, but not by industry-and-region. We sidestep this issue by computing

what the effect on each group’s employment would have been if a shock to an

industry in DG, estimated off LFSE in Table 1, equally affected all demographic

groups within it, which is the industry-specific effect.9 Then for each demographic

group, the between-industry effect is computed as the average of industry-specific

effects using as weights each group’s nationwide employment share by industry in

February, only available from EAPS, times employment share by industry for all

workers in DG in January, only available from LFSE. The difference between the

actual effect in Table 5 and this between-industry effect is the within-industry

or group-specific effect.10 Figure 3 shows the total effect and the within-industry

effect on the employment of worker groups. We focus on the causal effect of local

outbreaks γ on the right panel.

By occupation, the positive employment effect on managers is entirely an

occupation-specific phenomenon—if anything, the hardest hit industries had

8But nationwide, the drop in women’s employment was larger (-1.4 vs. -0.1 percent).
9As discussed earlier, the magnitude of γ for all workers is larger in EAPS than in LFSE. Thus we also

rescale LFSE’s industry-specific γi’s by the ratio between the EAPS and LFSE estimates for all workers.
10We do a similar exercise for the nationwide estimate β2 as well, for which we encounter no such data

problem since EAPS reports employment of each demographic group by industry.
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Table 5: COVID-19 effect on employment by worker characteristics

Hourly wage Share
β2 γ

(Aug 2019) (percent)

By occupation

Managers 44.9 (1.4) 0.46 (0.51) 7.42∗∗∗ (1.01)
Professionals 25.8 (20.8) −2.02∗∗∗ (0.11) −2.30∗∗∗ (0.32)
Clerks 23.0 (17.7) −1.43∗∗∗ (0.10) −1.21∗∗∗ (0.35)
Service workers 12.1 (11.9) −4.80∗∗∗ (0.20) −5.51∗∗∗ (0.45)
Sales workers 15.0 (11.2) −2.15∗∗∗ (0.16) −5.96∗∗∗ (0.50)
Craft and related trades 17.9 (8.9) 1.07∗∗∗ (0.28) −5.93∗∗∗ (0.49)
Machine operators 17.1 (11.3) −1.01∗∗∗ (0.13) 0.61 (0.40)
Elementary workers 11.5 (12.6) −0.44 (0.68) −2.33∗ (1.29)

By education

Middle school 11.7 (13.6) 0.39 (0.45) −5.00∗∗∗ (0.71)
High school 15.2 (38.5) −1.82∗∗∗ (0.13) −3.79∗∗∗ (0.34)
College 24.0 (47.9) −0.68∗∗∗ (0.10) −2.37∗∗∗ (0.16)

By gender

Male 21.8 (57.2) −0.07 (0.14) −2.82∗∗∗ (0.23)
Female 16.1 (42.8) −1.40∗∗∗ (0.26) −2.19∗∗∗ (0.53)

By age

10-19 9.6 (0.8) −21.58∗∗∗ (1.64) −12.55∗∗∗ (3.68)
20-29 14.5 (14.0) −3.64∗∗∗ (0.19) −6.51∗∗∗ (0.52)
30-39 20.6 (20.6) −1.60∗∗∗ (0.10) −0.23 (0.26)
40-49 22.5 (24.1) −0.45∗∗∗ (0.08) −3.44∗∗∗ (0.16)
50-59 21.7 (23.8) −0.78∗∗∗ (0.16) −1.25∗∗∗ (0.26)
60+ 14.0 (16.8) 2.41∗∗∗ (0.87) −3.35∗∗ (1.26)

By employment type

Regular worker 22.2 (54.4) −0.48∗∗∗ (0.07) −0.56∗∗∗ (0.18)
Temporary worker 12.6 (21.6) −4.76∗∗∗ (0.56) −6.87∗∗∗ (0.96)
Employer · (5.4) −3.61∗∗∗ (0.26) −1.86∗∗ (0.82)
Self-employed · (15.0) 2.84∗∗∗ (0.29) −2.26∗∗∗ (0.42)
Unpaid family worker · (3.6) 6.58∗∗∗ (0.96) −12.66∗∗∗ (1.67)

Notes: Robust standard errors in parentheses. *, **, *** represent significance at 10, 5, 1 percent.
Dependent variable is employment change in percent. β2: coefficient on time dummy, Dt(Mar). γ:
coefficient on interaction term Dr(DG)·Dt(Mar). Hourly wage in thousand KRW (approximately 0.82
USD). Shares of the categories are from January 2020.
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Fig. 3: Effect on employment by worker characteristic: within and between industries
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Notes: The dark bars represent the estimates from Table 5. The light bars represent the implied
coefficients if for each each demographic group, employment changes were solely due to industrial
effects only, estimated in Table 1.
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more managers than other industries (i.e., a negative between-industry effect on

manager employment). Similarly, the industry effect alone would have cut ser-

vice worker employment by more than 10 percent, but it was partly offset by a

positive occupation-specific effect on service workers. Sales workers, on the other

hand, were negatively affected by both the industry effect and the occupation-

specific effect. That is, industries with larger drops in employment had relatively

more sales workers, and at the same time, the local outbreak disproportionately

destroyed more sales jobs, even within industries.

By gender, comparing the light bars, we see that industries that were nega-

tively hit had a larger presence of women than men. However, the within-industry

effect is actually positive for women while negative for men, leading to our earlier

observation that the causal effect of the outbreak destroyed men’s jobs more than

women’s.

Next, the figure shows that younger workers were not only more likely to work

in industries that experienced larger employment losses, but also more exposed

to the COVID-19 shock regardless of the industry in which they worked. For

those 60 or older, the causal effect on their employment turns out to be almost

entirely accounted for by the between-industry effect.

Finally, the large drop in the employment of temporary workers and unpaid

family workers caused by the local outbreaks are nearly evenly divided into the

between- and the within-industry effects. Not only did such workers tend to be

employed in vulnerable industries, but they also faced similar disadvantages even

within a given industry.

In summary, this decomposition exercise shows that the large employment

losses experienced by the less educated, young workers and temporary work-

ers were not only caused by their larger presence in industries hit harder by

the COVID-19 shock. In addition, while women were over-represented in more

vulnerable industries, the within-industry effect was such that men were more

exposed to a causal drop in employment from local outbreaks.

3 Fear of COVID-19 vs. Lockdowns

3.1 Impact on total employment

Our estimate of the causal effect parameter γ allows us to calculate how many

jobs are destroyed solely due to private responses to incremental COVID-19

infections in the absence of mandatory lockdowns. The cleanest estimate of

14



γ is -1.02, reported in Table 1 from the February LFSE, the establishment-side

survey. Cumulative infection rates through February 28 were 0.39 per thousand

in DG and less than 0.01 per thousand nationwide, excluding DG. Linearly

extrapolating from our γ estimate, we find that a one per thousand increase in

infections causes a 2.68 percent drop in employment.11 Using our estimate from

the March EAPS, the household survey, we find that a one per thousand increase

in infections causes a 1.85 percent drop in employment.12 This is somewhat

smaller than the calculation based on the February LFSE, possibly because the

nationwide delay of the school year on March 2 biases the estimated causal effect

downward.

These numbers based on our causal estimate, free of any contamination from

mandatory lockdown effects, can be compared to observed labor market out-

comes in the United States and the United Kingdom. Relative to Korea, both

countries experienced very high infection counts with country-wide outbreaks,

and implemented large-scale lockdowns in response.13 Since both countries im-

plemented lockdowns almost at the same time as confirmed cases began to spiral

upward, it is not possible to estimate a causal effect such as our γ. So we instead

compute their counterparts to the overall effect β2. In the US, Cajner et al.

(2020) report a 14-percent decline in active employment between February 15

and April 18, 2020, using ADP payroll data. The cumulative infection count for

the US on April 18 was 738,913, or 2.3 per thousand, implying that a one per

thousand increase in infection counts is associated with a 6.2-percent decline in

employment, a little more than double our causal estimate from Korea. Another

estimate of employment losses in the US comes from Tedeschi and Bui (2020),

who report a 12-percent employment decline between March 1 and April 18 from

Civis Analytics. This implies that a one per thousand increase in infection counts

is associated with a 5.3-percent decline in employment, a number between our

causal estimate and the one implied from the ADP data. For the UK, Gardiner

11The cumulative infection rates through March 31 were 1.56 per thousand in DG and 0.034 per thousand
nationwide, excluding DG. Linearly extrapolating from the γ estimate, a one per thousand increase in
infections causes a 0.8 percent drop in employment. The March 31 effect is smaller than February 28’s
partly because the nationwide policies in March attenuated the causal effect of local outbreaks.

12Cumulative infection rates through March 15 were 1.4 per thousand in DG and 0.02 per thousand
nationwide, excluding DG.

13In the US, lockdown decisions were made by local governments. Forty-two states issued stay-at-home
orders of varying degrees of intensity. Arkansas, Iowa, Nebraska, North Dakota, South Dakota, Oklahoma,
Utah, and Wyoming never issued state-wide orders, but some of their cities still implemented localized
lockdowns. The UK mandated a nation-wide lockdown, but each country had some discretion on when to
ease restrictions.
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and Slaughter (2020) estimate that employment fell by 19 percent (15 percent

furloughed plus 4 percent unemployed) based on data collected between May 6

to 11. The cumulative infection count on May 10 was 3.2 per thousand, im-

plying that a one per thousand increase in infection counts is associated with a

5.9-percent decline in employment.

The three calculations from the US and the UK yield three estimates that

are strikingly close to one another, and they are roughly double the relationship

between employment and infection counts implied by our causal estimate with-

out lockdowns. Thus, our results show that even without lockdowns, infection

counts alone would have caused employment losses half as large. Furthermore,

lockdowns are implemented to contain the epidemic. Suppose that infection

counts would have reached twice the levels we observed in those countries had

they not implemented any lockdown.14 Then our causal estimate implies that

the resulting employment losses in the absence of lockdowns would have been

even larger than currently observed employment losses in the US and the UK.

3.2 Impact across industries and demographic groups

Government implementation of lockdowns specify which activities are essential

and non-essential. As a result, any negative employment effects from a lockdown

would be heterogeneous across industries by design, and to the extent that the

demographic composition of workers differ across industries, the effects would

also be heterogeneous across demographic groups.

We compare the pattern of the causal employment effects from local out-

breaks without lockdowns (Tables 1, 3, 5 and Figure 3) with national patterns

with lockdowns in the US reported by Cajner et al. (2020). First, with or with-

out lockdowns, nearly the same set of industries are hit hardest by the epidemic,

including accommodation/food services, real estate, transportation/storage and

education. One exception is arts/sports/recreation, which fell significantly na-

tionwide in both Korea and the US, but the causal effect (estimated from regional

differences) is insignificant. Second, in both cases, small establishments are hit

hardest, controlling for industry effects. Third, nearly the same sets of work-

ers are disproportionately affected with or without lockdowns: low-skill workers,

young workers, and those on temporary contracts.15 Finally, in both cases, the

14By all accounts, this is a lower-bound of counterfactual infection counts had no control measures been
put in place in those countries, e.g. https://covid19.healthdata.org.

15Coibion et al. (2020) also report this last fact for the US, and the UK data also shows the same pattern
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heterogeneous effects across workers are accounted for by both between-industry

effects and within-industry effects. One difference is the effect by gender. As

shown in Figure 3, the between-industry causal effect is larger for women, but

the within-industry effect is larger for men so that male workers lose more jobs.

In the US, largely due to the between-industry effect, female employment falls

by more, as well in the UK.16

4 Concluding Remarks

We estimate the causal effect of COVID-19 infections on the labor market, ex-

ploiting regional variations in Korea. Our difference-in-differences estimate is

uncontaminated by lockdowns, which were never pursued by the Korean gov-

ernment, capturing only the voluntary response by private businesses and con-

sumers. Moreover, thanks to a successful test/trace/tracking strategy, total infec-

tion counts remained low in Korea and the epidemic was by and large contained

to a single region, DG, which experienced a local outbreak triggered by reasons

exogenous to any underlying economic factor.

Our main result that a one per thousand increase in confirmed infections

causes a 2.7-percent decline in employment is about half the magnitude of non-

causal estimates from the US or UK, which confound the direct effects from

COVID-19 with lockdown effects. Moreover, the causal patterns we obtain across

industries, establishment size classes, and workers’ occupation, education, age

and employment type tell us that the epidemic struck high-contact industries,

small establishments, and workers of lower socioeconomic status the hardest. The

causal patterns are very much in line with descriptive evidence from the US and

UK as well. This suggests that the primary culprit of the COVID-19 recession is

COVID-19 itself, rather than lockdowns, so that the lifting of lockdowns around

the world may lead to only modest recoveries unless the infection rates fall. The

best way to revive the labor market is to eradicate the virus.

(Gardiner and Slaughter, 2020).
16However, our nationwide estimate of β2 shows that women lost more jobs than men in Korea, and that

within-industry effects are much more positive for men than women.
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