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1 Introduction

Temporal dependence is one of the primary characteristics of economic and financial

data that are measured sequentially over time. In studying such data, estimation of

and inference on the serial correlation ρk = corr(xt, xt−k) is a common first step in the

analysis of time series data {xt} or regression residuals. For a sample x1, ..., xn, esti-

mation of ρk by the sample serial correlation ρ̂k for various lags k = 1, 2, ... and testing

whether it is significant dates back to the early years of the twentieth century, primar-

ily to Yule (1926) who introduced the terminology serial correlation. Yule highlighted

the need to understand the degree of time persistence in the data prior to applying

correlation/regression analysis and characterized this phenomenon as the ‘time cor-

relation problem’ in his earlier Royal Society address (Yule, 1921). To aid analysis,

Yule introduced the sample serial correlation ρ̂k along with the standard confidence

band ±zα/2/
√
n for testing its significance, H0 : ρk = 0 under the simplifying assump-

tion that the data are identically and independently distributed (i.i.d.), bringing the

problem into the existing framework of the Pearson correlation coefficient.

Bartlett (1946) provided a major step forward in a more general analysis by de-

riving an asymptotic formula, now known as Bartlett’s formula, for cov(ρ̂j, ρ̂k) for a

stationary linear process {xt} driven by i.i.d. errors. The joint asymptotic distribution

of ρ̂ = (ρ̂1, ..., ρ̂m)′ was given by Anderson and Walker (1964) and was found to be

normal with variance-covariance matrix n−1W where the elements of W are given by

Bartlett’s formula. An important aspect of this formula is that the asymptotic variance

matrix depends only on the autocorrelations ρk themselves and not fourth moments,

as is the case for sample autocovariances.1 Hannan and Hyde (1972) relaxed the i.i.d.

assumption on the errors and showed that asymptotic normality remains valid under

some additional regularity assumptions on the noise.

Besides testing for significant serial correlation at one lag k, it is common to test

the cumulative hypothesis H0 : ρ1 = ... = ρm = 0 using the portmanteau statistics of

Box and Pierce (1970) and Ljung and Box (1978). The Box-Pierce statistic is based

on the observation that the matrix W in the asymptotic distribution of ρ̂ reduces to

the identity matrix under the i.i.d. assumption2 on xt, while the Ljung-Box statistic

entails a slightly better performance in finite samples. They find that for i.i.d and

normally distributed data, the cumulative statistics have a χ2
m limit distribution when

1The asymptotic variance of ρ̂h, for instance, is n−1
∑∞

j=1(ρh+j+ρh−j−2ρhρj)
2, a simple derivation

of which is given in Phillips and Solo (1992).
2In this case var(ρ̂h) = n−1

∑∞
j=1(ρh+j + ρh−j − 2ρhρj)

2 = n−1 as the only non-zero element in
the sum occurs when j = h.
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applied to raw data and a χ2
m−p−q limit distribution when used for residuals of fitted

ARMA(p, q) models. They indicated that the normality assumption is not essential for

these results.

Concern that these standard tests of H0 : ρk = 0 and H0 : ρ1 = ... = ρm = 0 are

not suitable under heteroskedasticity or non-independence of uncorrelated noise xt was

highlighted by Granger and Andersen (1978) and by Taylor (1984). The first paper

warned against the use of standard tests in bilinear data and the second raised concerns

for testing in models where the {xt} are heteroskedastic. Taylor (1984) provided a

modified standard error for ρ̂k, resulting in a robust confidence band and a robust

t-statistic t̃k, given in (4) below, as well as a robust cumulative statistic, given in (12).

Since then, various authors have modified the statistic tk =
√
nρ̂k and/or its cumu-

lative portmanteau versions in similar ways to Taylor (1984) so that they are applicable

for testing uncorrelated non-i.i.d. noise in which the covariance matrix W is diagonal

but not the identity – among others, see Diebold (1986), Lo and MacKinlay (1989),

Robinson (1991), Francq and Zaköıan (2009), Kokoszka and Politis (2011).

However, the matrix W is not always diagonal. Practical settings involving eco-

nomic and financial uncorrelated data xt for which a non-diagonal W is relevant appear

in Cumby and Huizinga (1992), Guo and Phillips (2001), Lobato, Nankervis and Savin

(2002) and Francq, Roy and Zaköıan (2005). These papers typically assume that {xt}
is stationary and has a martingale difference structure or is strongly mixing. Guo and

Phillips (2001) estimated the covariance matrix W by its empirical counterpart, while

the other papers used nonparametric procedures. Taking a different approach Romano

and Thombs (1996) and Horowitz, Lobato and Savin (2006) used bootstrap methods to

obtain suitable critical values for standard test procedures under the null assumption

that the uncorrelated data {xt} are strongly mixing.

Similar issues arise in testing cross correlation in bivariate time series {xt, yt}, where

interest and early attempts date back over a century, for instance to Hooker (1901).

Unsurprisingly, the original work on estimation and testing for zero cross-correlation

ρxy,k = corr(xt, yt−k) relied again on sample cross-correlations based on the theory of

the Pearson correlation coefficient. Later studies such as Haugh (1976) and Haugh and

Box (1977) examined testing for zero cross-correlation at an individual lag and using

cumulative versions of the statistics. For the same reason as in the univariate case,

tests for the absence of cross-correlation may be invalidated when the time series are

not i.i.d. Corrected versions of the statistics have been examined (e.g., Kyriazidou,

1998, that extend to the bivariate case the univariate results of Cumby and Huizinga,

1992). However, the assumptions used are restrictive, imposing additional technical
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conditions and excluding unconditional heteroskedasticity.

Test statistics based on the correlogram either with the standard confidence band

±zα/2/
√
n suggested by Yule (1926) or that based on Bartlett’s (1946) formula or

the cumulative statistics of Box and Pierce (1970) and Ljung and Box (1978) are all

still in extensive use today and are present in most statistical packages. Despite the

literature addressing the complications of departures from i.i.d. noise, problems with

finite sample performance and complexity of implementation seem to have prevented

replacement of these methods with procedures that extend applicability to more general

settings. Similarly, cross-correlogram tests are usually implemented with standard

confidence bands and the cumulative Haugh-Box test for cross-correlation is rarely

reported in applications.

The goal of the present paper is to develop a formulation and method of implemen-

tation that will enable testing with both univariate and bivariate time series that is

robust to multiple forms of heteroskedastic and dependence departures from i.i.d noise.

Our approach is based on extending the original robust test by Taylor (1984) for the

absence of correlation at an individual lag and a corresponding cumulative portman-

teau test, together with analogous testing procedures for the bivariate case. Taylor’s

test for correlation at a specific lag and our cumulative test are both easy to apply and

demonstrate good size control for a large class of uncorrelated data covering martingale

difference noise of unspecified form with time varying unconditional variance.

The rest of the paper is organized as follows. Section 2 outlines the model, intro-

duces the tests and presents limit theory for the case of univariate time series testing.

Section 3 develops corresponding tests for zero cross-correlation in the bivariate case,

a problem that has attracted much less attention in the literature in spite of its links

to Granger causality testing. Section 4 considers direct testing of the hypothesis that a

time series is i.i.d. Various tests of this hypothesis have been used in the literature and

often relate to testing the random walk hypothesis using variate differences. Standard

tests based on the squared time series have been proposed by McLeod and Li (1983)

and Campbell, Lo and MacKinlay (1997, Chapter 2) provide for a brief summary. We

suggest testing procedures (both cumulative and individual lag tests) that combine the

tests on correlation of the data in levels with absolutes or squared values. Wong and

Ling (2005) and Zhu (2013) used similar methods to test for absence of autocorrelation

in residuals and absolute (squared) residuals in a general linear model, in particular,

of a fitted ARMA-GARCH model. Different from our tests, those tests do not require

demeaning of residuals and their asymptotic distributions depend on the parameters

of a fitted model. An extensive Monte Carlo study was conducted and the results are
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presented in Section 5 with recommended guidelines for practical implementation of

the various tests. Section 6 reports an empirical application of the test procedures

to financial data. The paper is accompanied by an Online Supplement (Dalla et al.,

2019) consisting of two documents. The first (I) contains proofs of all the results in

the paper. The second (II) reports the findings of the full Monte Carlo study.

An R package and an EViews add-in (named testcorr) have been created by the

authors and are now available to implement all the testing procedures developed in the

paper.

2 Tests for zero correlation

While stationarity is commonly assumed, it is not necessary for testing absence of

correlation in a time series. Indeed, for a series {xt} of uncorrelated random variables

the condition that the autocorrelation function (ACF) ρk = corr(xt, xt−k) = 0 at lag

k = 1, 2, .... is well defined for all t with or without an assumption of stationarity. Its

empirical version, the sample autocorrelation ρ̂k at the lag k 6= 0, based on observed

data x1, ..., xn,

ρ̂k =

∑n
t=k+1(xt − x̄)(xt−k − x̄)∑n

t=1(xt − x̄)2
, x̄ =

1

n

n∑
t=1

xt (1)

remains a valid tool for testing for zero correlation at lag k. Such testing does not

require assumptions of independence or stationarity of {xt}, thereby enabling a more

general approach to testing for white noise uncorrelatedness in data.

There is, of course, a large literature on estimation of the autocorrelation function

ρk by ρ̂k for stationary times series {xt}. The asymptotic distribution of the sample

autocorrelations (ρ̂1, ..., ρ̂m)′ for a stationary linear process was given by Anderson and

Walker (1964) and Hannan and Hyde (1972) and has the form

√
n(ρ̂1 − ρ1, ..., ρ̂m − ρm)→D N (0,W ) (2)

where W is a matrix whose elements are given by Bartlett’s formula. If the {xt} are

i.i.d. random variables, the matrix W reverts to the identity matrix Im and (2) reduces

to the standard asymptotic result

√
n(ρ̂1, ..., ρ̂m)→D N (0, Im) (3)

used for testing H0 : ρk = 0 at lag k, just as in Yule (1926), with the confidence band
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±zα/2/
√
n for zero correlation at significance level α. Methods based on this procedure

are still heavily used and came into prominence following the influential work of Box

and Jenkins (1970).

When {xt} is uncorrelated but not i.i.d. the standard method for testing zero serial

correlation based on the asymptotic distribution in (3) generally fails. This was first

noted by Granger and Andersen (1978) and Taylor (1984). Taylor (1984) suggested

correcting the standard error of ρ̂k, leading to the robust t-statistic

t̃k =

∑n
t=k+1 etk

(
∑n

t=k+1 e
2
tk)

1/2
, etk = (xt − x̄)(xt−k − x̄), (4)

so that in testing H0 the sample autocorrelation ρ̂k should be corrected for its variance

t̃k = ρ̂k ĉk →D N (0, 1), ĉk =
t̃k
ρ̂k
. (5)

This correction leads to a ±zα/2/ĉk confidence band for zero correlation at lag k.

Taylor showed that ĉ−2k is an unbiased estimate of the variance of ρ̂k when xt has

symmetric density but he did not prove the asymptotic normality given in (5). He also

suggested a corrected cumulative test, as given in (12) below.

The t-statistic t̃k takes the form of a self-normalizing sum. Our aim is to establish

asymptotic normality for t̃k as well as corresponding cumulative tests in a general

setting where the observed data sample x1, ..., xn is a series of uncorrelated random

variables that may be dependent and non-stationary. We seek an approach that does

not require verification of additional technical assumptions and allows the applied

researcher to be somewhat agnostic about the structure and generating mechanism of

the uncorrelated data xt.

In this paper we assume that xt satisfies

xt = µ+ htεt, (6)

where {εt} is a stationary ergodic martingale difference (m.d.) sequence with respect

to some σ-field filtration Ft that includes the natural filtration with E[εt|Ft−1] = 0,

Eε4t < ∞, µ = Ext and a deterministic scaling factor ht ≡ htn is a sequence of real

numbers for which, as n→∞,

max
1≤t≤n

h4t = o(
n∑
t=1

h4t ),
n∑
t=2

(ht − ht−1)4 = o(
n∑
t=1

h4t ). (7)
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Then, εt allows for conditional heteroskedasticity via E[ε2t |Ft−1] and ht introduces un-

conditional heterogeneity over t. For any k 6= 0, we have

corr(xt, xt−k) = corr(εt, εt−k) = 0 for all t.

Since m.d. variables εt are uncorrelated, the variables xt are also uncorrelated. In sim-

ulations involving ht we use the examples ht = (t/n) and ht = 1 + aI(τ1 < t/n ≤ τ2)

where 0 ≤ τ1 < τ2 ≤ 1, a 6= 0 and I is the indicator function. In general, it is easy to

see that the (weak trend) scaling factor ht = v(t/n) satisfies (7) if v(x), 0 ≤ x ≤ 1, is a

piecewise bounded differentiable function with a bounded derivative. Our main exam-

ple for an ergodic m.d. sequence {εt} is a stationary GARCH noise. More generally,

if {ηt} is an i.i.d. noise and f is a measurable function then εt = ηtf(ηt−1, ηt−2, ...) is

a stationary ergodic m.d. sequence (e.g. Stout (1974, Th. 3.5.8), an example being

εt = ηtηt−1.

The statistics tk =
√
n ρ̂k, t̃k and their cumulative versions have been examined by

various authors either for raw data or for residuals from some estimated model. In

either case, it is common to assume that {xt} is as in (6) but stronger assumptions on

(ht, εt) are imposed. Most authors assume that ht = 1 and εt is an m.d. noise of a

specific type. A few authors allow ht to be deterministic and to vary with t, but require

{εt} to be i.i.d. so that the xt remain independent. An exception is Lo and MacKinlay

(1989) where ht is permitted to be time varying and mixing conditions are imposed on

{εt} but with restrictive moment conditions that exclude, for example, GARCH data

with skewed innovations.

The following result establishes the asymptotic distribution of the t-statistic t̃k

given in (4).

Theorem 2.1. Suppose that x1, ..., xn is a sample from a sequence given in (6) and

the ht satisfy (7). Then for any fixed integer k 6= 0, as n→∞,

t̃k →D N (0, 1). (8)

Moreover, for m = 1, 2, ...,

(t̃1, ..., t̃m)→D N (0, R) (9)

where R = (rjk) is an m×m matrix with elements

rjk = corr(ε1ε1−j, ε1ε1−k), j, k = 1, ...,m.
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By virtue of (8), ĉkρ̂k →D N (0, 1) where

ĉk = ck(1 + op(1)), ck :=

∑n
t=1 h

2
t

(
∑n

t=1 h
4
t )

1/2

Eε21
(Eε21ε21−k)1/2

→∞, (10)

which leads to a ±zα/2/ĉk confidence band for zero correlation at lag k.

Box and Pierce (1970) and Ljung and Box (1978) suggested the well-known cumu-

lative statistics

BPm = n
m∑
k=1

ρ̂ 2
k , LBm = (n+ 2)n

m∑
k=1

ρ̂ 2
k

n− k
(11)

for portmanteau testing of the joint null hypothesis H0 : ρ1 = ... = ρm = 0. These

tests are based on the property (3) of the sample ACF ρ̂k’s showing that under H0 the

tests are asymptotically χ2
m distributed.

When {xt} is uncorrelated but not i.i.d. and (3) fails these cumulative tests produce

size distortions in testing. In turn, Taylor (1984) suggested the corrected-for-variance

cumulative statistic
m∑
k=1

t̃ 2
k (12)

for testing H0 : ρ1 = ... = ρm = 0. This formulation corresponds to the diagonal

matrix R = I in (9) which holds only when the variables ωj = ε1ε1−j are uncorrelated.

Setting t̃ = (t̃1, ..., t̃m)′, result (9) of Theorem 2.1 implies that

t̃ ′R−1 t̃→D χ2
m, t̃ ′ R̂−1 t̃→D χ2

m, (13)

for any consistent estimate R̂ →p R of R. The matrix R is positive definite and R−1

exists if ε1 6= 0 a.s., see Lemma 3.1 below.

As discussed in the Introduction, various authors have examined statistics (4) and

(12). However, as noted by Guo and Phillips (2001) (see also Cumby and Huizinga

(1992), Lobato et al. (2002) and Francq et al. (2005)) who arrived at (13) under

different assumptions on the data generating process {xt}, there are sequences {xt}
that are uncorrelated but not independent for which the matrix R is not diagonal

and therefore the cumulative statistic (12) is invalid. Guo and Phillips (2001) use a

similar estimate R̂ of R to our estimate given in (14) below. Cumby and Huizinga

(1992) and Lobato et al. (2002) use kernel nonparametric methods and Francq et al.

(2005) introduce an autoregressive approximation method to estimate W and R. These

authors all assume stationarity of {xt}, thereby excluding unconditional heterogeneity.
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We will estimate R by R̂ = (r̂jk) where r̂jk are sample cross-correlations of the

variables (etj, t = 1, ..., n) and (etk, t = 1, ..., n):

r̂jk =

∑n
t=max(j,k)+1 etjetk

(
∑n

t=max(j,k)+1 e
2
tj)

1/2(
∑n

t=max(j,k)+1 e
2
tk)

1/2
. (14)

To improve the finite sample performance of the cumulative test, we use the thresholded

version R̂∗ = (r̂ ∗jk) of R̂ where

r̂ ∗jk = r̂jkI(|τjk| > λ) with λ = 2.576 (15)

where τjk is a self-normalized t-type statistic

τjk =

∑n
t=max(j,k)+1 etjetk

(
∑n

t=max(j,k)+1 e
2
tje

2
tk)

1/2
. (16)

Notice that R̂∗ is the sample analogue of the variance-covariance matrix of t̃ for which

we threshold the off-diagonal elements by checking at the 1% significance level whether

they are significant. This is a simpler approach to that undertaken by Cumby and

Huizinga (1992), Lobato et al. (2002) or Francq et al. (2005).

The next theorem establishes the asymptotic properties for the cumulative tests

Qm = t̃ ′ R̂−1 t̃, Q̃m = t̃ ′ R̂∗−1 t̃ (17)

for the joint hypothesis H0 : ρ1 = ... = ρm = 0. In the empirical applications and

Monte Carlo study described later in the paper we use the cumulative statistic Q̃m

with the suggested threshold setting λ = 2.576.

Theorem 2.2. Under the assumptions of Theorem 2.1, for any m = 1, 2, ... and with

any threshold λ > 0, as n→∞,

R̂→p R, R̂∗ →p R, (18)

Qm →D χ2
m, Q̃m →D χ2

m. (19)

The assumptions of Theorems 2.1 and 2.2 are minimal and less restrictive than

those used so far in the literature. They allow for both non-stationarity (uncondi-

tional heteroskedasticity) and dependent martingale difference type uncorrelated noise

including GARCH type conditional heteroskedasticity.

The test Qm without thresholding based on property R̂ →p R suffers some size
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distortion in finite samples for moderate and large m and moderate samples sizes n.

We will show that thresholding has no impact on consistency asymptotically, i.e. for

any λ > 0, R̂∗ →p R, but it will improve finite sample performance in many cases

where the off-diagonal elements are either very small or zero, in particular when R is

sparse (see Online Supplement II). The following simple arguments show consistency

r̂ ∗jk = r̂jkI(τjk ≥ λ) →p rjk. Indeed, r̂jk →p rjk, and I(τjk ≥ λ) →p 1 if rjk 6= 0.

The objective of thresholding is to improve estimation of rjk when taking zero values.

Here λ plays the role of a critical level in testing the null hypothesis that rjk (or

its numerator) is zero. We recommend using it as a preselected tuning parameter λ

which does not depend on n. If τjk →D N (0, 1), thresholding with λ = 2.576 can be

interpreted as testing for rjk = 0 at a 1% significance level. Use of thresholding has

negligible impact on power, which is shown in the Online Supplement II.

As will be apparent in the next section, the assumptions of Theorems 3.1 and

3.2 in the bivariate case render the above methods of analysis valid for a univariate

series in a straightforward way. In particular, since any measurable function yt =

f(xt, xt−1, ..., xt−k) of a stationary ergodic process {xt} is also a stationary ergodic

process (e.g., Stout (1974, Cor. 3.5.2)), if E|yt| <∞ it follows that

E
∣∣n−1 n∑

t=1

yt − Ey1
∣∣→ 0, n→∞.

Thus the bivariate series {xt, yt} with yt = xt satisfies the conditions of Theorems 3.1

and 3.2 in the following section, which imply the results of Theorems 2.1 and 2.2, and

Corollary 3.1 implies (10) above.

3 Tests for zero cross-correlation

For bivariate time series {xt, yt} we observe data x1, ..., xn and y1, ..., yn and are in-

terested in testing possible cross-correlation between these time series at various lags.

Denote by ρ̂xy,k the k-th sample cross-correlation estimate of the k-th cross-correlation

ρxy,k = corr(xt, yt−k) for k = 0, 1, ...

ρ̂xy,k =

∑n
t=k+1(xt − x̄)(yt−k − ȳ)

(
∑n

t=1(xt − x̄)2
∑n

t=1(yt − ȳ)2)1/2
, x̄ =

1

n

n∑
t=1

xt, ȳ =
1

n

n∑
t=1

yt.

The asymptotic theory for such sample cross-correlations was given in Hannan

(1970). Haugh and Box (1977) developed a test for cross-correlation under the as-
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sumption of independent series {xt} and {yt}. But there is little literature on testing

cross-correlation using the sample statistic ρ̂xy,k when the series are not independent

or when they are heteroskedastic. Although in regression analysis the issue of het-

eroskedasticity has been addressed, graphs of the sample cross-correlations typically

display confidence bands based on ±zα/2/
√
n, corresponding to the t-statistic

txy,k =
√
nρ̂xy,k (20)

for testing H0 : ρxy,k = 0 under independence conditions. Further, bivariate analogues

of cumulative standard statistics are rarely analyzed and often involve additional tests

for the significance of the univariate autocorrelations of {xt} and {yt}, as in Tsay

(2010) for example. In what follows, we examine the Haugh (1976) and Haugh and

Box (1977) test for cross-correlation

HBxy,m = n2

m∑
k=0

ρ̂ 2
xy,k

n− k
(21)

for testing H0 : ρxy,0 = ρxy,1 = ... = ρxy,m = 0 which assumes independence of the time

series {xt} and {yt}.

Similar arguments to those of the univariate case in Section 2 show that standard

normal and χ2
m approximations for the statistics in (20) and (21) are not always valid for

bivariate times series {xt, yt} which are not uncorrelated and stationary, independent

noises. To provide a more general framework, we assume in this paper that {xt, yt}
satisfy

xt = µx + htεt, yt = µy + gtηt, (22)

where {εt}, {ηt} are stationary sequences, Eεt = Eηt = 0, Eε4t <∞, Eη4t <∞ and ht, gt

are real numbers that satisfy conditions made explicit in Assumption A and Theorem

3.1 below.

Notice that ρxy,k = corr(xt, yt−k) = corr(εt, ηt−k). However, when ρxy,k = 0, the

standard normal approximation for txy,k may not hold because of the presence of het-

eroskedasticity in {xt} and {yt} or dependence between the two uncorrelated series.

For that reason, in order to develop a robust test of H0 : ρxy,k = 0, k ≥ 0, we define

the following robust t-statistic

t̃xy,k =

∑n
t=k+1 exy,tk

(
∑n

t=k+1 e
2
xy,tk)

1/2
, exy,tk = (xt − x̄)(yt−k − ȳ). (23)

11



Our objective is to establish the asymptotic normality

t̃xy,k = ρ̂xy,k ĉxy,k →D N (0, 1), ĉxy,k =
t̃xy,k
ρ̂xy,k

(24)

for k ≥ 0 such that corr(εt, ηt−k) = 0. This correction leads to a ±zα/2/ĉxy,k confidence

band for zero cross-correlation ρxy,k at lag k.

As we see below, (24) requires the first series {xt} to be an uncorrelated noise or,

more specifically, an m.d. sequence. In what follows, we first allow the uncorrelated

series {xt} and {yt} to be mutually dependent, and subsequently examine the case

where they are mutually independent. Test consistency is considered last.

Clearly, for (24) to hold, we need additional assumptions on {εt, ηt}. The conditions

below are formulated in terms of the product series ωtk := εtηt−k, k ≥ 0.

Assumption A. For j, k ≥ 0, {ωtk}, {ωtjωtk} are stationary sequences, Eω2
tk < ∞,

and

E|
(
n−1

n∑
t=1

ωtjωtk
)
− E[ω1jω1k]| → 0, n→∞. (25)

The weights ht, gt satisfy the following conditions: setting qn =
∑n

t=1 h
2
tg

2
t ,

max
t=1,...,n

h4t = o(qn), (
n∑
t=1

h4t )
1/2(

n∑
t=2

(gt − gt−1)4)1/2 = o(qn), (26)

max
t=1,...,n

g4t = o(qn), (
n∑
t=1

g4t )
1/2(

n∑
t=2

(ht − ht−1)4)1/2 = o(qn).

These conditions lead to a transparent asymptotic theory. It can be shown that robust

testing procedures remain valid for a large class of non-smooth scaling factors ht and gt

that meet these conditions.

I: The case of mutually dependent series {xt} and {yt}.

First, we assume that xt and the lagged variables yt−k are uncorrelated but not

mutually independent. For example, suppose that in (22) {εt} is an m.d. sequence

with respect to some σ-field Ft, and ηt−k is Ft−1 measurable. Then εtηt−k is also an

m.d. sequence so that E[εtηt−k|Ft−1] = 0, and thus corr(xt, yt−k) = 0.

Bivariate series xt and yt−k can be uncorrelated at some lags, say k = m0, ...,m

where 0 ≤ m0 ≤ m, and correlated at other lags, say k = 0. The next theo-

rem establishes the multivariate limit distribution of the vector (t̃xy,m0 , ..., t̃xy,m) when

12



corr(xt, yt−k) = 0 for k = m0, ...,m. Subsequently, we use this vector to test the

hypothesis corr(xt, yt−k) = 0, k = m0, ...,m. To show asymptotic normality for the

statistic t̃xy,k based on the centered variables xt − x̄ and yt − ȳ we make the following

assumption.

Assumption B. The autocovariance functions cov(εt, εt−k) = γε,k, cov(ηt, ηt−k) = γη,k

of the stationary sequences {εt} and {ηt} satisfy the following covariance summability

conditions ∑
k |γε,k| <∞,

∑
k |γη,k| <∞. (27)

These conditions are clearly satisfied by white noise/m.d. sequences {εt} or {ηt}.

Theorem 3.1. Suppose that {xt, yt} in (22) satisfy Assumptions A, B and (26).

If {εtηt−k}, k = m0, ...,m (0 ≤ m0 ≤ m) are m.d. sequences with respect to the same

σ-field Ft, with E[εtηt−k|Ft−1] = 0, then, as n→∞,

(t̃xy,m0 , ..., t̃xy,m)→D N (0, Rxy) (28)

where Rxy = (rxy,jk)j,k=m0,...,m is a matrix with elements

rxy,jk = corr(ε1η1−j, ε1η1−k).

In particular, t̃xy,k →D N (0, 1) for k = m0, ...,m.

Simulations confirm that the test for zero cross-correlation at individual lag k =

0, 1, 2, ... based on t̃xy,k is well sized in finite samples for numerous lags when {xt} is

serially uncorrelated and {yt} is serially uncorrelated or series of dependent random

variables.

Theorem 3.1 implies that ĉxy,kρ̂xy,k →D N (0, 1) for k = m0, ...,m. The Corollary below

shows that the “standard error” ĉ−1xy,k = ρ̂xy,k/t̃xy,k has a deterministic asymptotic form.

This implies that the robust non-rejection region ±zα/2/ĉxy,k of the null hypothesis of a

lag k zero correlation at the α significance level can be interpreted as a 1−α confidence

interval for zero correlation. For this result we employ some additional assumptions on

the scaling factors {ht, gt} and the autocovariograms of the stationary sequences {ε2t}
and {η2t }:

maxt=1,...,n h
2
t = o(

∑n
t=1 h

2
t ), maxt=1,...,n g

2
t = o(

∑n
t=1 g

2
t ), (29)

cov(ε2k, ε
2
0)→ 0, cov(η2k, η

2
0)→ 0 as k →∞.

13



Corollary 3.1. Let (29) and the assumptions of Theorem 3.1 hold. Then,

ĉxy,k =
(∑n

t=1 h
2
t

∑n
t=1 g

2
t∑n

t=1 h
2
tg

2
t

Eε21Eη21
E[ε21η

2
1−k]

)1/2
(1 + op(1)) (30)

We next consider cumulative tests. First, note that the matrix Rxy in (28) is

positive definite and R−1xy exists if ε1 6= 0 a.s.; see Lemma 3.1 below. The convergence

(28) implies

t̃′xyR
−1
xy t̃xy →D χ2

m−m0+1 where t̃xy = (t̃xy,m0 , ..., t̃xy,m)′. (31)

For testing the cumulative hypothesis H0 : ρxy,m0 = ... = ρxy,m = 0, we suggest the

following standardized statistics

Qxy,m = t̃ ′xy R̂
−1
xy t̃xy, Q̃xy,m = t̃ ′xy R̂

∗−1
xy t̃xy, (32)

where R̂xy = (r̂xy,jk)j,k=m0,...,m and R̂∗xy are consistent estimates of the matrix Rxy. We

define

r̂xy,jk =

∑n
t=max(j,k)+1 exy,tjexy,tk

(
∑n

t=max(j,k)+1 e
2
xy,tj)

1/2(
∑n

t=max(j,k)+1 e
2
xy,tk)

1/2
, j, k = i, ...,m. (33)

To improve the finite sample performance of the cumulative test, we suggest the thresh-

olded version R̂∗xy = (r̂ ∗xy,jk)j,k=i,...,m of R̂xy where

r̂ ∗xy,jk = r̂xy,jkI(|τxy,jk| > λ) with λ = 2.576 (34)

and τxy,jk is a t-statistic constructed as

τxy,jk =

∑n
t=max(j,k)+1 exy,tjexy,tk

(
∑n

t=max(j,k)+1 e
2
xy,tje

2
xy,tk)

1/2
. (35)

Just as in the univariate case, R̂∗xy is the sample analogue of the variance-covariance

matrix of t̃xy where we threshold its off-diagonal elements by checking at the 1% level

whether they are significant. In our simulations and applications we set λ = 2.576, but

in theory other threshold values λ > 0 can be used.

The limit theory of these statistics for testing cross-correlation between two serially

uncorrelated time series at cumulative lags is given in the following result.

14



Theorem 3.2. Under the assumptions of Theorem 3.1, for any λ > 0, as n→∞,

R̂xy →p Rxy, R̂∗xy →p Rxy, (36)

Qxy,m →D χ2
m−m0+1, Q̃xy,m →D χ2

m−m0+1. (37)

Simulations show that if both {xt} and {yt} are serially uncorrelated the robust cumu-

lative test Q̃xy,m based on the thresholded estimate R̂∗xy with parameter λ = 2.576 in

most cases corrects adequately for size, whereas for large m the cumulative test based

on Qxy,m suffers some size distortion. We note that in simulations for large values of m

the statistic Q̃xy,m may sometimes be negative since the matrix R̂∗xy is not necessarily

positive definite.

Different from the univariate case, Assumption A is employed to avoid assuming

ergodicity of the stationary sequence {ε2tηt−jηt−k}, which implies (25), see Stout (1974,

Corollary 3.5.2). In general, ergodicity of the separate sequences {εt} and {ηt} does

not necessarily imply ergodicity of {ε2tηt−jηt−k} and thus (25). Property (25) alone is

sufficient for the proofs to hold.

Theorem 3.1 assumes {εtηt−k} to be an m.d. sequence. This is a weak assumption

and allows for various types of dependence between the sequences {εt} and {ηt}. For

example, if {εt} is an m.d. sequence with E[εt|Ft−1] = 0 and ηt = g(εt, εt−1, ...) is a

measurable function of εs, s ≤ t, then {εtηt−k} is an m.d. sequence with respect to Ft
for k ≥ 1, so that

E[εtηt−k|Ft−1] = ηt−kE[εt|Ft−1] = 0.

Simulations show that both the modified tests t̃xy,k and Q̃xy,m for zero cross-

correlation (at individual and cumulative lags) manifest good size control when {xt}
and {yt} are series of uncorrelated variables with time varying variances, and when

they are mutually uncorrelated but not necessarily independent. The standard tests

txy,k and HBxy,m require the series {xt} and {yt} to be mutually independent sta-

tionary uncorrelated noises. The test t̃xy,k at individual lags also achieves good size

control when the lagged series is correlated, whereas the standard test txy,k requires

independence of {xt} and {yt} for good performance.

The next result verifies the existence of R−1xy . For z = (z1, ...., zm), m ≥ 1 define

Cov(z) = (cov(zj, zk)) and Corr(z) = (corr(zj, zk)).

Lemma 3.1. Let {ηt} be a stationary sequence with Eηt = 0, 0 < Eη2t < ∞, autoco-

variance sequence γη(h) = E(ηtηt−h), and spectral density fη(x), x ∈ [−π, π]. Then:
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(i) Cov(η) and Corr(η) are positive definite for any η = (η1, ..., ηm); and

(ii) if zj = ε1η1−j, Ezj = 0, Ez2j < ∞ for j ≥ 1 and ε1 6= 0 a.s. then Cov(z) and

Corr(z) are positive definite for any z = (z1, ..., zm).

II: The case of mutually independent series {xt} and {yt}.

If {xt} and {yt} are mutually independent, then corr(xt, yt−k) = 0 and corr(yt, xt−k) =

0 for k ≥ 0. Properties (28) and (37) of the test statistic t̃xy,k for an individual lag

and the corresponding cumulative test statistic are preserved if the series {xt} is an

uncorrelated m.d. sequence while {yt} may be sequence of dependent variables.

Theorem 3.3. Assume that {xt, yt} in (22) satisfy Assumptions A, B and (26) and

{xt} and {yt} are mutually independent. Suppose {εt} in (26) is an m.d. sequence.

Then, for any 0 ≤ m0 ≤ m, as n→∞,

t̃xy = (t̃xy,m0 , ..., t̃xy,m)′ →D N (0, Rxy), (38)

t̃yx = (t̃yx,m0 , ..., t̃yx,m)′ →D N (0, Ryx),

where Rxy = Ryx = Ry = (ry,jk) and ry,jk = corr(yj, yk), j, k = m0, ...,m.

In particular, t̃xy,k →D N (0, 1) for any lag k = ...− 1, 0, 1, ... Moreover,

Qxy,m →D χ2
m+1, Q̃xy,m →D χ2

m+1 (39)

t̃′yxR̂
−1
xy t̃yx →D χ2

m−m0+1, t̃′yxR̂
∗−1
xy t̃xy →D χ2

m−m0+1 (40)

where R̂xy and R̂∗xy are defined as above in (33) and (34) with m0 = 0.

Consistent estimates R̂xy and R̂∗xy of Rxy = Ry require the first variable {xt} to be

an uncorrelated m.d. sequence. Notice that R̂yx →p I 6= Ryx = Ry. Hence, applying

the test Q̃yx,m instead of t̃′yxR̂
∗−1
xy t̃xy in (40) when the lead series {yt} is dependent may

lead to significant size distortions.

Remark 3.1. Testing for cross-correlations, the robust cumulative test Q̃xy,m is well

sized in simulations when both {xt} and {yt} are serially uncorrelated but suffers

size distortions after a few lags when one of the series is serially correlated. Clearly,

thresholding does not improve the estimate of Rxy,m sufficiently in finite samples when

Rxy,m is not sparse as in Theorem 3.3 and the robust test Q̃xy,m produces correct size

only for a few low lags (see Figure 3(c)). Size can be distorted for all lags when the lead

series is dependent (see Theorem 3.3). Hence, in applied work we recommend using

the robust cumulative test Q̃xy,k in cases when both series are serially uncorrelated.
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Finally, if the time series {xt} and {yt} are mutually independent but neither {xt}
nor {yt} is white noise, the standard normal approximation for t̃xy,k does not generally

hold. In such cases, even if

t̃xy,k →D N (0, σ2
xy)

the variance σ2
xy =

∑∞
j=−∞ corr(ε0, εj)corr(η0, ηj) is not unity, as shown in the following

result.

Proposition 3.1. Assume that {xt, yt} in (22) satisfy Assumptions A, B and (26).

Suppose that sequences {xt} and {yt} are mutually independent. Then, for any k ≥ 0,

t̃xy,k = snk + op(1), n→∞, (41)

where Esnk = 0, var(snk)→ σ2
xy =

∑∞
j=−∞ corr(ε0, εj)corr(η0, ηj). For the definition of

snk see (23) in the proof in Online Supplement I.

III: Test consistency.

To conclude this section we show that the test for correlation at lag k based on t̃xy,k,

is consistent when corr(xt, yt−k) 6= 0. To do so, we make some further assumptions on

the components ωtk = εtηt−k and (ht, gt) of {xt, yt} in (22).

Assumption C. {ωtk} is a stationary sequence whose covariances statisfy the summa-

bility condition

∑∞
j=−∞ |cov(ω1k, ωjk)| <∞, (42)

and (ht, gt) are such that

∑n
t=k+1 |ht(gt − gt−k)| = o(

∑n
t=1 htgt), q

−1/2
n

∑n
t=1 htgt →∞, (43)

where qn =
∑n

t=1 h
2
tg

2
t , as defined earlier.

Condition (42) is a standard weak dependence condition on the covariances of the

sequence {ωtk}, and condition (43) is satisfied by many weight sequences (ht, gt) that

induce unconditional heterogeneity in the series over time, such as linear time trends.

Theorem 3.4. Let {xt, yt} be as in (22) and Assumptions A, B, C and (26) hold.

Suppose that for some k ≥ 0, corr(xt, yt−k) 6= 0. Then, as n→∞,

t̃xy,k =
(
∑n

t=1 htgt)

(
∑n

t=1 h
2
tg

2
t )

1/2

cov(ε1, η1−k)

(E[ε21η
2
1−k])

1/2
(1 + op(1)). (44)
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Consistency of the tests follow directly from (44) in view of (43).

Remark 3.2. Our results cover as a special case the test for zero Pearson correlation r

between two variables x and y, which is the cross-correlation ρxy,0 at lag k = 0 between

x and y. When samples of x and y are selected randomly and do not have the same

variance, the test for r = 0 based on the standard test statistic t̂xy,0 is susceptible to

size distortions whereas the robust test t̃xy,0 remains well-sized.

4 Tests for the i.i.d. property

In this section we examine a simple test for the i.i.d. property of a time series {xt} based

on a sample x1, ..., xn. Campbell et al. (1997, Chapter 2) provide a brief exposition of

this approach for use in financial econometrics. We assume that

xt = µ+ εt (45)

where {εt} is a sequence of i.i.d. random variables with Eεt = 0, Eε2t < ∞. Denote

ρx,k = corr(xt, xt−k) and define

ρ|x|,k = corr
(
|xt − µ|, |xt−k − µ|

)
, ρx2,k = corr

(
(xt − µ)2, (xt−k − µ)2

)
.

Clearly, if {xt} is i.i.d., then ρx,k = ρ|x|,k = ρx2,k = 0 for k 6= 0. With this approach, the

problem of testing the i.i.d. property of the time series {xt} is reduced to testing for

the absence of correlation in {xt} and {|xt−Ext|} , or alternatively in {xt} and {(xt−
Ext)2}. Other tests involving nonparametric density estimation (e.g., Gretton and

Györfi, 2010) are available but are considerably more complex in their implementation.

The present approach has the benefit of simplicity and makes use of the test machinery

developed earlier.

Our test statistics combine the levels of the data {xt} and either absolute {|xt− x̄|}
or squared {(xt − x̄)2} deviations from the sample mean x̄. We denote by ρ̂x,k, ρ̂|x|,k

and ρ̂x2,k the sample correlation (1) computed using the data xt, |xt− x̄| and (xt− x̄)2,

respectively. Define

τx,k =
n

(n− k)1/2
ρ̂x,k, τ|x|,k =

n

(n− k)1/2
ρ̂|x|,k, τx2,k =

n

(n− k)1/2
ρ̂x2,k.

Denote rε,|ε| = corr(ε1, |ε1|), rε,ε2 = corr(ε1, ε
2
1), and set
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Vx,|x| =

(
1 r2ε,|ε|
r2ε,|ε| 1

)
, Vx,x2 =

(
1 r2ε,ε2

r2ε,ε2 1

)
.

The next theorem establishes the joint distribution for the statistics (τx,k, τ|x|,k) and

(τx,k, τx2,k).

Theorem 4.1. Let x1, ..., xn be a sample from an i.i.d. sequence (45). If τx2,k is

employed, assume in addition that Eε41 <∞. Then for m ≥ 1,

(τx,1, τ|x|,1, ..., τx,m, τ|x|,m)→D N (0, Vx,|x|,2m), (46)

(τx,1, τx2,1, ..., τx,m, τx2,m)→D N (0, Vx,x2,2m) (47)

where Vx,|x|,2m = diag(Vx,|x|, ..., Vx,|x|) and Vx,x2,2m = diag(Vx,x2 , ..., Vx,x2) are 2m × 2m

block-diagonal matrices. In particular, for k ≥ 1,

(τx,k, τ|x|,k)→D N (0, Vx,|x|), (τx,k, τx2,k)→D N (0, Vx,x2). (48)

Observe that Vx,|x|,2m = I, Vx,x2,2m = I are identity matrices if the {εt} have a sym-

metric distribution, since then rε,|ε| = rε,ε2 = 0. In general, the non-diagonal elements

r2ε,|ε| and r2ε,ε2 in the matrices Vx,|x|,2m and Vx,x2,2m are likely to be small. Hence, the

standard normal limit N (0, I) may be a good approximation in (46) and (47) in finite

samples. This suggests the following approximation

m∑
k=1

(τ 2x,k + τ 2|x|,k) ∼ χ2
2m,

m∑
k=1

(τ 2x,k + τ 2x2,k) ∼ χ2
2m, (49)

which is easy to use in applied work. Good performance of the latter statistics is

confirmed by simulations in the Monte Carlo study.

To verify the i.i.d. property of {xt}, we test at individual lags and cumulatively for the

absence of correlation in levels {xt} and absolute values {|xt − Ext|} via the following

null hypotheses

H0: ρx,k = 0, ρ|x|,k = 0 at individual lag k ≥ 1,

H0: ρx,k = 0, ρ|x|,k = 0 for k = 1, ...,m for m ≥ 1 (cumulative)

using respectively the statistics

Jx,|x|,k =
n2

n− k
(ρ̂ 2
x,k + ρ̂ 2

|x|,k), Cx,|x|,m =
m∑
k=1

Jx,|x|,k. (50)

Alternatively, we may test for the absence of correlation in levels {xt} and squares
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{(xt − Ext)2} via the hypotheses

H0: ρx,k = 0, ρx2,k = 0 at individual lag k ≥ 1,

H0: ρx,k = 0, ρx2,k = 0 for k = 1, ...,m (cumulative)

using respectively the statistics

Jx,x2,k =
n2

n− k
(ρ̂ 2
x,k + ρ̂ 2

x2,k), Cx,x2,m =
m∑
k=1

Jx,x2,k. (51)

If an i.i.d. time series {xt} has a symmetric distribution, then Theorem 4.1 shows

that, as n→∞,

Jx,|x|,k, Jx,x2,k →D χ2
2, Cx,|x|,m, Cx,x2,m →D χ2

2m. (52)

Simulations confirm that the χ2
2m distribution provides a good approximation also for

i.i.d. time series xt with non-symmetric distributions that do not exhibit severe skew-

ness. Simulations show that these tests have good power in the presence of dependence,

conditional heteroskedasticity or non-stationarity when Ext or Var(xt) varies with time.

Related to these results, we recall that some standard tests are already in the

literature as mentioned in the Introduction. Notably, convergence for the cumulative

test statistic ∑m
k=1

n2

n−k ρ̂
2
x2,k →D χ2

m

based on squares x2t of an i.i.d. sequence was established by McLeod and Li (1983).

The present tests involve both levels and absolute values or both levels and squares.

Similar tests for residuals of a fitted ARMA-GARCH model were used by Wong and

Ling (2005) and Zhu (2013). Different from our testing procedures, residual based

tests do not require demeaning and their asymptotic distribution may depend on the

parameters of a fitted model.

5 Monte Carlo experiments

This section presents Monte Carlo findings on the finite sample performance of the

standard and robust tests for zero correlation given in Sections 2 and 3 and the tests for

the i.i.d. property given in Section 4. We use a variety of models for {xt} and {xt, yt},
sample sizes n = 100, 300, 1000 and the experiments each involve 5, 000 replications.

We evaluate the rejection frequency (in %) of the test statistics at significance level

α = 5% using the asymptotic critical values and power is not size corrected. The
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standard test tk and the robust t̃k are based on 1.96 critical values, respectively. Figures

1-5 report rejection frequencies (size and power) for a subset of models for n = 300

and k,m = 0, 1, 2, ..., 30 lags. The full findings for n = 300 are given in the Online

Supplement II of this paper to which readers are referred for complete details and

results for n = 100, 1000 are available upon request.

Figures 1 and 2 report size and power of the tests for zero correlation based on

the statistics t̃k, tk, Q̃m with λ = 2.576 and LBm. Figure 1 shows that the standard

statistic tk and the cumulative LBm statistic have distorted size when the data are

non-i.i.d., see e.g. models (b)-(d). The accumulation of the t-test size distortion in the

LBm test is evident at all lags. On the other hand, the robust statistics t̃k and Q̃m

achieve the nominal size of α = 5% for all models in Figure 1. For the i.i.d. data in

model (a) the standard and robust methods give similar results as expected. Figure 2

displays test power. The results show some loss in power for the robust test statistics

compared to the standard tests. All tests show spurious power when the data xt is

uncorrelated but has time varying mean, see models (c)-(d).

Figures 3 and 4 report test results for zero cross-correlation for bivariate time

series {xt} and {yt} based on the statistics t̃xy,k, txy,k, Q̃m with λ = 2.576 and HBm.

When series of independent variables {xt} and {yt} are heteroskedastic but jointly

independent, as in Figure 3 model (a), the robust statistics produce correct size whereas

the standard tests are all oversized. When the time series {xt} and {yt} are uncorrelated

but not mutually independent, as in model (b), the robust statistics give correct size

whereas the standard ones over-reject. When {xt} and {yt} are mutually independent,

but one of the two has either autocorrelation or time varying mean, as in models (c) and

(d), then both the standard and robust tests at individual lag give the correct size, but

the cumulative tests tend to become oversized. The latter outcome was unexpected,

as the theory of Section 3 for model (c) would suggest the cumulative tests would be

well-sized. It seems that R̂∗xy,m does not estimate well the non-sparse autocorrelation

matrix Ry of yt for this moderate sample size, especially for bigger lags m. When the

time series are cross-correlated, as in Figure 4 models (a)-(b), we observe similar power

across the standard and robust statistics, with some loss in power at bigger lags for

the robust cumulative statistic. In Figure 4 models (c)-(d), the time series {xt} and

{yt} are jointly independent but we observe spurious power, when both of them have

autocorrelation, like in (c) and as suggested by theory, or when both of them have time

varying mean, as in (d).

Figure 5 reports the test results for the i.i.d. property using the statistics Jx,|x|,k, Jx,x2,k

and Cx,|x|,m, Cx,x2,m. The size of the tests at individual lags and the size of the cumu-
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lative tests are satisfactory in model (a), and we observe good power in discriminating

the non-i.i.d. models (b)-(d). In particular, the statistics based on the absolute values

have overall similar or better power properties than those based on the squares.

Some general conclusions from the simulation study are as follows. First, we find

that in testing for correlation or for the i.i.d. property, tests at individual lag k perform

well at all lags. The cumulative tests with λ = 2.576 perform overall well at most lags,

with tiny distortions at the bigger lags. This conclusion is based on the Monte Carlo size

properties of our tests for the models considered in the Online Supplement II. Second,

we note that one needs to test for a constant mean prior to applying the univariate

(both standard and robust) tests for absence of correlation. Third, for bivariate tests

it is useful to check for constant mean (e.g. using the Bai and Perron (1998) test for

multiple structural breaks) as well as for serial correlation in each time series prior to

applying the tests. Fourth, the findings indicate that our tests for the i.i.d. property

based on the χ2
2m approximation perform well unless the distributions are extremely

skewed.

Remark 5.1. The theory and Monte Carlo study suggest the following:

(i) In testing for autocorrelation the series needs to have constant mean.

(ii) In testing for cross-correlation each of the series needs to have constant mean and

to be serially uncorrelated when applying the portmanteau type statistics or at least

one when applying the t-type tests.

(iii) The values λ = 1.96, 2.576 are good candidates for the threshold in the robust

portmanteau statistics, with λ = 2.576 performing better at relatively large lags.
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Figure 1: Size. Rejection frequencies (in %) at α = 5% of robust (red line) t̃k and

standard (grey line) tk tests (left) and robust (red line) Q̃m and standard (grey line)
LBm cumulative tests (right) at lags k,m = 1, 2, ..., 30. εt ∼ iid N (0, 1).
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Figure 2: Power. Rejection frequencies (in %) at α = 5% of robust (red line) t̃k and

standard (grey line) tk tests (left) and robust (red line) Q̃m and standard (grey line)
LBm cumulative tests (right) at lags k,m = 1, 2, ..., 30. εt ∼ iid N (0, 1).
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(d) xt = (htεt)
2, ht = 1 + I(t/n > 0.5)
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Figure 3: Size. Rejection frequencies (in %) at α = 5% of robust (red line) t̃xy,k and

standard (grey line) txy,k tests (left) and robust (red line) Q̃xy,m and standard (grey
line) HBxy,m cumulative tests (right) at lags k,m = 0, 1, ..., 30. εt, ηt ∼ iid N (0, 1),
{εt}, {ηt} independent.
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(a) xt = htεt, yt = htηt, ht = 1 + I(t/n > 0.5)
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(b) xt = εt, yt = exp(zt)ηt, zt = 0.7zt−1 + εt
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(c) xt = εt, yt = 0.7yt−1 + ηt
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(d) xt = mt + εt, yt = htηt, mt = I(t/n > 0.5), ht = 1 + I(t/n > 0.5)
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Figure 4: Power. Rejection frequencies (in %) at α = 5% of robust (red line) t̃xy,k and

standard (grey line) txy,k tests (left) and robust (red line) Q̃xy,m and standard (grey
line) HBxy,m cumulative tests (right) at lags k,m = 0, 1, ..., 30. εt, ηt ∼ iid N (0, 1),
{εt}, {ηt} independent.
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Figure 5: Size and power. Rejection frequencies (in %) at α = 5% of Jx,|x|,k (red
line) and Jx,x2,k (grey line) tests (left) and Cx,|x|,m (red line) and Cx,x2,m (grey line)
cumulative tests (right) at lags k,m = 1, 2, ..., 30. εt ∼ iid N (0, 1).
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6 Empirical application

We report an application of these methods to financial market data covering the period

2008-18. Both the standard and robust tests for absence of correlation are used. We

analyze univariate time series of daily returns {xt} of the FTSE100 index and the

bivariate series {xt, yt} of the daily returns of the FTSE100 index and gold price.3

Graphical inspection of the data suggests that the means of both the FTSE100 and

gold returns are likely constant.

The results of the univariate analyses are shown in Figures 6 and 7. Panel (a) of

Figure 6 contains the correlogram ρ̂k (AC) for lags k = 1, 2, ..., 10 along with 95% and

99% confidence bands (CBs) for insignificant correlation, the standard CBs are based

on ±zα/2/
√
n and the robust on ±zα/2(ρ̂k/t̃k) at significance levels α = 5%, 1%. Panel

(b) reports the values of the standard LBm and robust Q̃m cumulative statistics with

threshold λ = 2.576 for lags k = 1, 2, ..., 30 along with their asymptotic critical values

at significance levels α = 5%, 1%. The CBs of the standard test for correlation at

individual lags show evidence of serial correlation at lags k = 2, 5 at the 1% and at lags

k = 3, 4 at the 5%. The latter is magnified in the LBm cumulative test. However, in

agreement with the robust CBs, the evidence of serial correlation is insignificant at all

individual lags at the 5% level. As such, the cumulative hypothesis of no correlation is

not to be rejected by the cumulative test Q̃m. To test for the i.i.d. property of xt, we

evaluated the statistics Jx,|x|,k, Jx,x2,k, Cx,|x|,m and Cx,x2,m, which are shown in Figure

7. Evidently, this hypothesis is strongly rejected. We therefore conclude that the daily

returns of the FTSE100 index during 2008-18 are uncorrelated, but strong evidence

affirms that the series is not i.i.d.

The results of bivariate testing are shown in Figure 8. Just as the FTSE100 returns

were found to be uncorrelated, similar analysis (not reported here) confirms uncorre-

latedness of the gold returns. Panels (a) and (c) contain the cross-correlograms ρ̂xy,k

and ρ̂yx,k (CC) for lags k = 0, 1, ..., 10 along with the standard 95% and 99% confi-

dence bands, based on ±zα/2/
√
n and the robust ones based on ±zα/2(ρ̂xy,k/t̃xy,k) and

±zα/2(ρ̂yx,k/t̃yx,k) at significance levels α = 5%, 1%. In Panels (b) and (d), we re-

port the standard HBxy,m, HByx,m and robust Q̃xy,m, Q̃yx,m cumulative statistics with

threshold λ = 2.576 for lags k = 0, 1, ..., 30 and their asymptotic critical values at

3The data are sourced from YahooFinance for the FTSE100 index and from the Federal Reserve
Bank of St.Louis for the London Bullion Market Association (LBMA) gold price. Both prices are
in British pounds. The FTSE100 index is measured at the market closing at 4:30 GMT. The gold
price is at 3:00 GMT. Returns are calculated as first differences of log-prices. Missing observations
are deleted.
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the α = 5%, 1%. Standard inference suggests evidence of significant contemporaneous

cross-correlation ρxy,0 at 1%, as well as cross-correlation ρxy,k for lags k = 2, 8 at 1%

and ρyx,k for leads k = 5 at 1% and for k = 8, 9 at 5% between FTSE100 and gold

returns xt and yt. The cumulative hypothesis of zero cross-correlation is rejected at

1% for all m by standard tests HBxy,m, HByx,m. However, the robust CBs do not

produce as much evidence of significant cross-correlation. We do find evidence from

the robust tests of contemporaneous cross-correlation ρxy,0 for k = 0 at 5%, as well

as cross-correlation ρxy,k for lags k = 2 at 5% and k = 8 at 1% and ρyx,k for lead

k = 5 at the 5% between FTSE100 and gold returns xt and yt. Subsequently, using

modified test statistics the cumulative hypothesis of zero cross correlation is rejected

when m = 0 at the 5%. Furthermore, when the FTSE100 return xt is leading the

hypothesis of zero cross-correlation is rejected at 5% for some m and when it is lagging

the hypothesis of zero cross-correlation is not rejected at 5% for all m. Overall, these

results indicate evidence that the daily returns of the FTSE100 index and gold during

2008-18 have contemporaneous cross-correlation at k = 0 but not at different leads and

lags for k ≥ 1.

Figure 6: FTSE100 daily returns, 2008-2018. Correlogram
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Figure 7: FTSE100 daily returns, 2008-2018. I.i.d. test
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Figure 8: FTSE100 (x) and gold (y) daily returns, 2008-2018. Cross-correlogram
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7 Conclusions

The procedures developed in this paper belong to a class of econometric tests that

robustify existing procedures to take account of realistic features of economic and

financial data. Tests for zero autocorrelation and zero cross-correlation are among the

fundamental starting points in analyzing time series and they are methods that have

remained in common use since influential work by Box and Jenkins (1970) and others.

The validity of standard procedures of testing is fragile to latent dependencies and non-

stationarities that are well known to be present in much economic and financial data.

The methods and limit theory in the present paper correct for such fragilities and in

doing so complement and generalize earlier work to accommodate such dependencies.

The Monte Carlo experiments corroborate the validity of the proposed methods and

provide guidelines for practitioners in implementing the new procedures. The empirical

application to financial return data demonstrates the utility of these methods in taking

account of latent dependencies and thereby avoiding potentially spurious inferences

about autocorrelation and cross-correlations in such data. In subsequent work, we

plan to adapt the test procedures developed in this paper to models that involve an

evolving mean function and a stochastic heterogeneity factor ht. We plan to show

that robust testing procedures remain valid for scaling factors ht that do not satisfy

the specific smoothness condition (7). Such results naturally involve a more complex

correlation matrix R which depends on {ht}.
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1 Introduction

This Supplement I provides proofs of the results given in the text of the main paper.

Equation references to the main paper are denoted with the affix M as (#M) and

references to theorem and proposition numbers in the main paper are signified as

“Theorem #M” and “Proposition #M”. Details of the full Monte Carlo experiment

are provided in Supplementary II. References used here are the same as those given in

the main paper and are not listed.

2 Proofs of Results in the Main Paper

The univariate tests for the absence of autocorrelation for a time series {xt} in Section

2 form a special case of the bivariate tests given in Section 3 for the absence of cross-

correlation between two series {xt} and {yt}. Setting yt = xt simplifies the assumptions

of the bivariate tests. We demonstrate next how the results of Section 3 may be used

to imply those of Section 2.

Proof of Theorem 2.1M. We show that under the assumptions of Theorem 2.1M,

the bivariate series {xt, yt} with yt = xt satisfies the assumptions of Theorem 3.1M.

*Dalla acknowledges financial support from ELKE-EKPA. Phillips acknowledges support from the
Kelly Fund at the University of Auckland, a KLC Fellowship at Singapore Management University,
and the NSF under Grant No. SES 18-50860.
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First, in such a case, (22M) holds with µx = µy, ht = gt and εt = ηt, while qn =∑n
t=1 h

2
tg

2
t =

∑n
t=1 h

4
t and assumption (7M) on ht implies assumption (26M) on (ht, gt).

Second, since in Theorem 2.1M, {εt} is a stationary ergodic m.d. sequence with respect

to some σ-field filtration Ft that includes the natural filtration then for any k ≥ 1 the

sequence ωtk := εtεt−k is an m.d. sequence with respect to the same σ-field Ft. Recall

that Eε4t <∞.

Third, we verify that the ωtk satisfy Assumption A of Theorem 3.1M. Recall, that if {εt}
is a stationary ergodic sequence and φ(.) is a measurable function, then the sequence

zt = φ(εt, εt+1, ...) is also stationary and ergodic (Stout, 1974, Thm. 3.5.8). In addition,

by Stout (1974, Cor. 3.5.2.), if {zt} is stationary and ergodic with E|z1| <∞ then

E|n−1
n∑
t=1

zt − Ez1| → 0, n→∞. (1)

This implies that for any k, j ≥ 0, {ωtk} and {ωtkωtj} are stationary ergodic sequences

with E|ωtkωtj| < ∞, and zt = ωtkωtj = ε2t εt−jεt−k has property (1). This verifies

Assumption A.

Fourth, {εt} satisfies Assumption B of Theorem 3.1M since the εt are uncorrelated

variables.

Thus, all assumptions of Theorem 3.1 are satisfied and (28M) implies that

(t̃1, ..., t̃m) = (t̃xx,1, ..., t̃xx,m)→D N (0, Rxx) (2)

whereRxx = (rxx,jk, j, k = i, ...,m) is a matrix with elements rxx,jk = corr(ε1ε1−j, ε1ε1−k).

This proves (9M) and completes the proof of Theorem 2.1M. �

Proof of Theorem 2.2M. In the bivariate case {xt, yt} with yt = xt and m0 = 1

all test statistics are the same as in the univariate case discussed in Theorem 2.2M.

In addition, we showed above that under the assumptions of Theorem 2.1M the as-

sumptions of Theorem 3.1M are satisfied. Hence Theorem 3.2M implies the results of

Theorem 2.2M. �

To prove the results given in Section 3 we use the following theorem establishing

the asymptotic normality of self-normalized sums of products xtyt−k, t = 1, ..., n with

lag k ≥ 0 of the random variables

xt = htεt, yt = gtηt t = ...− 1, 0, 1, ... (3)
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where {εt} and {ηt} are stationary sequences, Eεt = Eηt = 0, Eε4t <∞, Eη4t <∞ and

ht, gt are positive real numbers. Define

t̃∗xy,k =

∑n
t=k+1 xtyt−k(∑n

t=k+1 x
2
ty

2
t−k
)1/2 , t̃xy,k =

∑n
t=k+1(xt − x̄)(yt−k − ȳ)(∑n

t=k+1(xt − x̄)2(yt−k − ȳ)2
)1/2 . (4)

Recall Assumption A and B and assumption (26M) on (ht, gt) from Section 3 which

will be used in what follows.

The theorem below establishes the multivariate limit distribution of the vector

(t̃∗xy,m0
, ..., t̃∗xy,m) when corr(xt, yt−k) = 0 for k = m0, ...,m (0 ≤ m0 ≤ m).

Theorem 2.1. Let {xt, yt} be as in (3), and Assumption A and (26M) hold.

If for some 0 ≤ m0 ≤ m, {εtηt−k}, k = m0, ...,m are m.d. sequences with respect

to the same σ-field Ft, then, as n→∞,

(t̃∗xy,m0
, ..., t̃∗xy,m)→D N (0, Rxy) (5)

where Rxy = (rxy,jk, j, k = m0, ...,m) is a matrix with elements

rxy,jk = corr(ε1η1−j, ε1η1−k).

In particular, t̃∗xy,k →D N (0, 1) for k = m0, ...,m.

Corollary 2.1. Under the assumptions of Theorem 2.1 and Assumption B, as n→∞,

t̃xy,k = t̃∗xy,k + op(1), k = i, ...,m, (6)

(t̃xy,i, ..., t̃xy,m)→D N (0, Rxy). (7)

Proof of Theorem 2.1. Denote

qnjk =
∑n

t=max(j,k)+1 h
2
tgt−jgt−k, j, k ≥ 0. (8)

Write t̃∗xy,k in (4) as a self-normalized sum

t̃∗xy,k =

∑n
t=k+1 ζtk(∑n

t=k+1 ζ
2
tk

)1/2 (9)

of random variables

ζtk = (qnE[ε21η
2
1−k])

−1/2xtyt−k.
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We will show that

t̃∗xy,k =
∑n

t=k+1 ζtk + op(1) = snk + op(1), snk :=
∑n

t=k+1 ζtk. (10)

The latter follows from

∑n
t=k+1 ζ

2
tk →p 1,

∑n
t=k+1 ζtk = Op(1). (11)

The first claim is shown in (42) below. Under the assumptions of the theorem, {ζtk}
is an m.d. sequence. So, Eζt = 0, E[ζtkζsk] = 0 for t 6= s, and

E
(∑n

t=k+1 ζtk
)2

=
∑n

t=k+1 Eζ2tk = q−1n
∑n

t=k+1 h
2
tg

2
t−k = qnkk/qn → 1,

by Lemma 2.1. Hence
∑n

t=k+1 ζtk = Op(1) which proves the second claim in (11) and

completes verification of (10).

Hence, to prove (5), i.e. (t̃∗xy,m0
, ..., t̃∗xy,m)→D N (0, Rxy), it suffices to show that

(snm0 , ..., snm)→D N (0, Rxy). (12)

By the Cramér-Wold device, the latter holds if for any real numbers am0 , am0+1, ..., am,

Sn =
m∑

k=m0

aksnk → N (0, σ2
m), σ2

m =
m∑

j,k=m0

ajakrxy,jk. (13)

Using the definition of snk, we can write

Sn =
n∑
t=1

ζ̃t, ζ̃t :=
m∑

k=m0

I(t ≥ k + 1)ak(qnE[ε21η
2
1−k])

−1/2xtyt−k. (14)

Under the assumptions of the theorem, {ζ̃t} is an m.d. sequence with finite variance

Eζ̃2t < ∞. Hence, by Theorem 3.2 of Hall and Heyde (1980), to prove (13) it suffices

to show that

(a)
n∑
t=1

ζ̃2t →p σ
2
m, (b) max

t=1,...,n
|ζ̃t| →p 0, (c) E[ max

t=1,...,n
ζ̃2t ] = O(1). (15)

Denote ωtk = εtηt−k. We have

n∑
t=k+1

ζ̃2t =
m∑

j,k=m0

ajak(Eω2
1jEω2

1k)
−1/2

(
q−1n

n∑
t=max(j,k)+1

x2tyt−kyt−j

)
.
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Under the assumptions of the theorem, by (42) of Lemma 2.2 below,

q−1n
∑n

t=max(j,k)+1 x
2
tyt−kyt−j →p E[ω1jω1k].

Hence,

n∑
t=k+1

ζ̃2t →
m∑

j,k=m0

ajak(Eω2
1jEω2

1k)
−1/2E[ω1jω1k] =

m∑
j,k=m0

ajakrxy,jk = σ2
m

which proves (15)(a).

To prove (15)(b), notice that

|ζ̃t| ≤ c0
∑m

k=m0
|ζtk|I(t ≥ k + 1), c0 := maxk=i,...,m |ak|.

To show that P (maxt=1,...,n |ζ̃t| ≥ ε)→ 0, it suffices to prove that for k = m0, ...,m and

for any ε > 0,

P ( max
t=k+1,...,n

|ζtk| ≥ ε)→ 0.

We have

P ( max
t=k+1,...,n

|ζtk| ≥ ε) ≤
n∑

t=k+1

P (|ζtk| ≥ ε) ≤ ε−2
n∑

t=k+1

Eζ2tkI(ζ2tk ≥ ε2). (16)

Write ζ2tk = ctkω
2
tk, where ctk = (qnEω2

tk)
−1h2tg

2
t−k. By (26M),

max
t=1,...,n

ctk ≤ Cq−1n max
t=1,...,n

h2t max
t=1,...,n

g2t =: δn = o(1).

Therefore, ζ2tk ≤ δnω
2
tk. By the assumptions of the theorem, {ω2

tk} is a stationary

sequence such that Eω2
1k <∞. Hence,

P ( max
t=k+1,...,n

|ζtk| ≥ ε) ≤
n∑

t=k+1

ctkEω2
tkI(ω2

tk ≥ δ−1n ε2) = (
n∑

t=k+1

ctk)Eω2
1kI(ω2

1k ≥ δ−1n ε2) = o(1)

because
∑n

t=k+1 ctk = (Eω2
1k)
−1qnkk/qn → (Eω2

1k)
−1 by (37), and Eω2

1kI(ω2
1k ≥ δ−1n ε2)→

0 since Eω2
1k < ∞ and δn → 0. This proves (b). (15)(c) can be shown using a similar

argument. This proves (13) and (5) and completes the proof of the theorem. �
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Proof of Corollary 2.1. Denote ζ∗tk = (qnEω2
tk)
−1/2(xt − x̄)(yt−k − ȳ). Then

t̃xy,k =

∑n
t=k+1 ζ

∗
tk(∑n

t=k+1 ζ
∗ 2
tk

)1/2 =

∑n
t=k+1 ζtk +Rn1(∑n

t=k+1 ζ
2
tk +Rn2

)1/2 (17)

where ζtk is defined as in (9) and

Rn1 =
n∑

t=k+1

(ζ∗tk − ζtk), Rn2 =
n∑

t=k+1

(ζ∗ 2tk − ζ2tk).

In (43) and (44) we show that

Rn1 = op(1), Rn2 = op(1). (18)

Together with (17) this implies

t̃xy,k =

∑n
t=k+1 ζtk + op(1)(∑n

t=k+1 ζ
2
tk + op(1)

)1/2 =

∑n
t=k+1 ζtk(∑n

t=k+1 ζ
2
tk

)1/2 + op(1) = t̃∗xy,k + op(1). (19)

This verifies (6) and together with (5) proves (7). �

Proof of Theorem 3.1M. The claim of the theorem is shown in Corollary 2.1. �

Proof of Corollary 3.1M. Set sxn =
∑n

t=k+1(xt − x̄)2, syn =
∑n

t=k+1(yt − ȳ)2. By

definition,

ĉxy,k =
ρ̃xy,k
ρ̂xy,k

=
s
1/2
xn s

1/2
yn

(
∑n

t=1 e
2
xy,tk)

1/2
.

We will show that

sxn = Eε21 (
n∑
t=1

h2t )(1 + op(1)), syn = Eη21 (
n∑
t=1

g2t )(1 + op(1)), (20)

n∑
t=1

e2xy,tk = E[ε21η
2
1−k]qn(1 + op(1)) (21)

which implies (30M):

ĉxy,k =
(∑n

t=1 h
2
t

∑n
t=1 g

2
t∑n

t=1 h
2
tg

2
t

Eε21Eη21
E[ε21η

2
1−k]

)1/2
(1 + op(1)).

Proof of (20). We prove the claim for sxn (the claim for syn follows using a similar
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argument). Without restriction of generality, assume that Ext = 0. Then, xt = htεt,

sxn =
n∑
t=1

x2t − nx̄2 =
n∑
t=1

h2t ε
2
t − nx̄2. (22)

We have
∑n

t=1 Ex2t = Eε2t
∑n

t=1 h
2
t . We will show that

var(
n∑
t=1

x2t ) = op
(
(
n∑
t=1

h2t )
2
)
, nx̄2 = op(

n∑
t=1

h2t ) (23)

which together with (22) proves (20) for sxn.

Denote νt−s = cov(ε2t , ε
2
s). Let L > 0. Write

var(
n∑
t=1

x2t ) =
n∑

t,s=1

h2th
2
sνt−s ≤

n∑
t,s=1:|t−s|≥L

h2th
2
s|νt−s|+

n∑
t,s=1:|t−s|≤L

h2th
2
s|νt−s| =: i1,n+ i2,n.

By assumption of the corollary, νk → 0 as k →∞. Therefore, δL := maxk:|k|≥L |νk| → 0

as L→∞. Then

i1,n ≤ δL

n∑
t,s=1

h2th
2
s = δL(

n∑
t=1

h2t )
2.

On the other hand, for any fixed L,

i2,n ≤
n∑

t,s=1:|t−s|≤L

h2th
2
s|νt−s| ≤ ν0( max

1≤j≤n
h2j)

n∑
t=1

h2t (
∑

s:|t−s|≤L

1) = o((
n∑
t=1

h2t )
2)

because max1≤s≤n h
2
s = o(

∑n
t=1 h

2
t ) by assumption of the corollary. This proves i2,n =

o
(
(
∑n

t=1 h
2
t )

2
)

which implies the first claim in (23).

To prove the second claim in (23), we use the bound Ex̄2 ≤ Cn−2
∑n

t=1 h
2
t estab-

lished in (54), which yields nEx̄2 ≤ C maxt=1,...,n h
2
t = o(

∑n
t=1 h

2
t ) by assumption of the

corollary. Therefore, nx̄2 = op(
∑n

t=1 h
2
t ).

Proof of (21). Recall the notation ζ∗tk = (qnE[ε21η
2
1−k])

−1/2(xt − x̄)(yt−k − ȳ) and ζtk =

(qnE[ε21η
2
1−k])

−1/2(xt − Ext)(yt−k − Eyt) used in (17) and (10). Then

n∑
t=k+1

e2xy,tk = qnE[ε21η
2
1−k] (

n∑
t=k+1

ζ∗ 2tk ).

By (18) and (11),
∑n

t=k+1 ζ
∗ 2
tk =

∑n
t=k+1 ζ

2
tk + op(1) = 1 + op(1), which proves (21) and

completes the proof of the corollary. �
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Proof of Theorem 3.2M. Suppose for simplicity that µx = µy = 0. First we show

that r̂xy,jk →p rxy,jk.

Under the assumptions of the theorem, (42) and (44) of Lemma 2.2 imply that for

j, k = m0, ...,m,

q−1n

n∑
t=max(j,k)+1

exy,tjexy,tk → E[(ε1η1−j)(ε1η1−k)].

This together with definition (33M) implies

r̂xy,jk →
E[(ε1η1−j)(ε1η1−k)]

(E(ε1η1−j)2)1/2(E(ε1η1−k)2)1/2
= corr(ε1η1−j, ε1η1−k) = rxy,jk

because by assumption {εtηt−k} is an m.d. sequence and therefore E[ε1η1−k] = 0.

Next we show that r̂ ∗xy,jk →p rxy,jk for any λ > 0. Since r̂xy,jk →p rxy,jk, then

r̂ ∗xy,jk = r̂xy,jkI(|τxy,jk| > λ) = (rxy,jk + op(1))I(|τxy,jk| > λ). (24)

If rxy,jk = 0, then |r̂xy,jk ∗| ≤ |r̂xy,jk| → |rxy,jk| = 0.

Let rxy,jk 6= 0. To show r̂ ∗xy,jk →p rxy,jk, in view of (24), it suffices to prove that

I(|τxy,jk| > λ)→p 1. To prove the latter we will show that

|τxy,jk| →p ∞. (25)

Write τxy,jk = An/B
1/2
n where

An = q−1n
∑n

t=max(j,k)+1 exy,tjexy,tk, Bn = q−2n
∑n

t=max(j,k)+1 e
2
xy,tje

2
xy,tk.

We will prove (25) by showing that

An → E[ε21η1−jηt−k] = cov(ε1η1−j, ε1η1−k) 6= 0, Bn = op(1). (26)

The results (42) and (44) of Lemma 2.2 imply the claim about An in (26).

To evaluate Bn, denote e′xy,tk = xtyt−k. Then

e2xy,tje
2
xy,tk−e′ 2xy,tje′ 2xy,tk = (e2xy,tj−e′ 2xy,tj)(e2xy,tk−e′ 2xy,tk)+e′ 2xy,tk(e2xy,tj−e′ 2xy,tj)+e′ 2xy,tj(e2xy,tk−e′ 2xy,tk).

Hence, setting vnk =
∑n

t=max(j,k)+1 |e2xy,tk − e′ 2xy,tk|, q′nkk =
∑n

t=max(j,k)+1 e
′ 2
xy,tk, we obtain
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in :=
n∑

t=max(j,k)+1

|e2xy,tje2xy,tk − e′ 2xy,tje′ 2xy,tk| ≤ vnjvnk + q′nkkvnj + q′njjvnk.

Since vnk = op(qn) by (44) of Lemma 2.2, and q′nkk = Op(qn) by (59), this implies

in = op(q
2
n). To prove Bn = op(1), it remains to show that

i′n :=
∑n

t=max(j,k)+1 e
′ 2
xy,tje

′ 2
xy,tk = op(q

2
n). (27)

First observe that by (26M),

δ̃nk := max
t=k+1,...,n

h2tg
2
t−k ≤ max

t=1,...,n
h2t max

t=1,...,n
g2t = o(qn).

Therefore, there exists νn →∞ such that δ̃nkνn = o(qn).

Recall that e′ 2xy,tk = x2ty
2
t−k = h2tg

2
t−kω

2
tk where ω2

tk = ε2tη
2
t−k. Bound ω2

tk as ω2
tk ≤

ω2
tkI(ω2

tk ≥ νn) + νn. Setting zntk = ω2
tkI(ω2

tk ≥ νn), we obtain, e′ 2xy,tk ≤ νnδ̃nk +

h2tg
2
t−kzntk. Hence,

i′n ≤ νnδ̃n
∑n

t=max(j,k)+1 e
′ 2
xy,tj +

∑n
t=max(j,k)+1 h

2
tg

2
t−kzntke

′ 2
xy,tj

≤ νnδ̃nq
′
njj + (

∑n
t=max(j,k)+1 h

2
tg

2
t−kzntk)(

∑n
t=max(j,k)+1 e

′ 2
xy,tj)

= νnδ̃nq
′
njj + (

∑n
t=max(j,k)+1 h

2
tg

2
t−kzntk)q

′
njj

= op(q
2
n) + (

∑n
t=max(j,k)+1 h

2
tg

2
t−kzntk)Op(qn).

Notice that

E(
n∑

t=max(j,k)+1

h2tg
2
t−kzntk) = (

n∑
t=max(j,k)+1

h2tg
2
t−k)Ezn1k = qnkkE[zn1k] = o(qn)

because qnkk = O(qn) by Lemma 2.1 and Ezn1k = E[ω2
1kI(ω2

1k ≥ νn)] → 0 because

νn → ∞. This implies i′n = op(q
2
n) which proves (27), (26) and r̂ ∗xy,jk →p rxy,jk and

completes the proof of (36M).

Thus, R̂xy →p Rxy and R̂∗xy →p Rxy. This together with (31M) proves (37M) which

completes the proof of theorem. �

Proof of Lemma 3.1M. Suppose that a′Cov(η)a = 0 for some a = (a1, ..., am)′ with

||a|| = 1. Since the autocovariance sequence {γη(h) = Cov(ηj, ηj−h)} is non-negative

definite and the spectral density fη(x) exists, Cov(ηj, ηk) =
∫ π
−π e

i(j−k)xfη(x)dx by

9



Herglotz’s theorem. It follows that

a′Cov(η)a =
m∑

j,k=1

ajakCov(ηj, ηk) =

∫ π

−π
|
m∑
j=1

aje
ijx|2fη(x)dx = 0.

Therefore |
∑m

j=1 aje
ijx|2fη(x) = 0 a.e. with respect to Lebesgue measure. Since

|
∑m

j=1 aje
ijx|2 can have at most a finite number of zeroes on [−π, π], this implies

fη(x) = 0 a.e.. So, var(ηt) =
∫ π
−π fη(x)dx = 0 which contradicts the assumption

Eη2t > 0. Since ηt is a stationary series, the same argument implies that Corr(η) is

positive definite.

Now let a′Cov(z)a = 0 and ||a|| = 1. By assumption, zj = ε1η1−j, Ezj = 0 and

Ez2j <∞. Thus, Cov(zj, zk) = E[zjzk] = E[ε21η1−jη1−k], and

a′Cov(z)a =
m∑

j,k=1

ajakCov(zj, zk) =
m∑

j,k=1

ajakE[zjzk] = E[ε21(
m∑
j=1

ajη1−j)
2] = 0.

Since by assumption ε1 6= 0 a.s. this implies E(
∑m

j=1 ajη1−j)
2 = 0. So,

E(
m∑
j=1

ajη1−j)
2 =

m∑
j,k=1

ajakCov(ηj, ηk) = 0.

As shown above, this implies Eη2j = 0 which leads to a contradiction.

Observe that Ez2j > 0 for any j ≥ 1. Otherwise, the equality Ez2j = E[ε21η
2
1−j] = 0

and the assumption ε1 6= 0 a.s. would imply Eη21−j = 0 which leads to a contradiction.

Then an argument similar to the above implies that Corr(z) is a positive definite

matrix. �

Proof of Theorem 3.3M. By assumption {εt} is an m.d. sequence with respect

to some σ-field Ft and {xt} and {yt} are mutually independent sequences. Therefore

for k = ...,−1, 0, 1, ... {εtηt−k} are m.d. sequences with respect to the σ-field F∗nt =

Ft ∪ σ(ηs, s = 1, ..., n), i.e. E[εtηt−k|F∗n,t−1] = 0. Moreover, for any negative or positive

integers j, k,

corr(εtηt−j, εtηt−k) = corr(ηj, ηk).

Clearly, Corollary 2.1 implies convergence t̃xy = (t̃xy,m0 , ..., t̃xy,m) →D N (0, Ry) in

(38M) and together with Theorem 3.2M proves (39M).
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The same argument as in the proof of (6) and (10) implies that

t̃∗yx,k = syx,nk + op(1), syx,nk :=
∑n

t=k+1 ζyx,nk (28)

where ζyx,nk = (qnE[η21ε
2
1−k])

−1/2ytxt−k. Rewriting syx,nk as

syx,nk = (qnE[ε21η
2
1−k])

−1/2
n−k∑
t=1

xtyt+k = sn(−k)

we arrive at the sum as in (10) where yt+k appears with a negative lag. Since for any

integer k, {εtηt+k} is an m.d. sequence with respect to σ-field F∗nt, the same argument as

in the proof of Theorem 3.2M implies convergence t̃yx = (t̃yx,m0 , ..., t̃yx,m)→D N (0, Ry)

in (38M), and the same argument as in the proof of Theorem 3.2M implies (40M). �

Proof of Proposition 3.1M. Properties (6) and (10) do not require {εt} or {ηt} to be

an m.d. sequence and hold under assumptions of the proposition. They imply (41M),

t̃xy,k = snk + op(1). (29)

By definition (10), we have snk =
∑n

t=k+1 ζtk, ζtk = (qnE[ε21η
2
1−k])

−1/2htgt−kωtk, ωtk =

εtηt−k.

Clearly, Esnk = 0 since Eωtk = 0. Moreover,

γω,t−s := cov(ωtk, ωsk) = cov(εt, εs)cov(ηt−k, ηs−k) = γε,t−sγη,t−s.

By mutual independence of {xt} and {yt},

rj := γω,j/E[ε21]E[η21] = corr(ε1, ε1−j)corr(η1, η1−j).

Moreover, under Assumption B,
∑

j |rj| <∞. Hence,

Es2nk =
∑n

t,s=k+1 E[ζtkζsk] = q−1n
∑n

t,s=k+1 htgt−khsgs−krt−s (30)

= q−1n
∑n

t,s=k+1:|t−s|>L[...] + q−1n
∑n

t,s=k+1:|t−s|≤L[...] =: νn,1 + νn,2

where L > 0 is a fixed large number. Bound

νn,1 ≤ q−1n (
n∑

t=k+1

h2tg
2
t−k)(

∑
|j|>L

|rj|) = q−1n qnkk(
∑
|j|>L

|rj|). (31)

By (37), q−1n qnkk → 1 as n → ∞, while
∑
|j|>L |rj| → 0 as L → ∞. Thus, νn,1 → 0 as

11



n, L→∞.

Next we will show that for any fixed L, as n→∞,

νn,2 →
∑
|j|≤L rj. (32)

Let t− s = ` where ` ≥ 0 is fixed. Then, s = t− `, and

q−1n

n∑
t,s=k+1

htgt−khsgs−krt−s = q−1n (
n∑

t=k+1

htgt−kht−`gt−`−k)r` → r`

by the first claim in (38) below, which proves (32).

Since
∑
|j|≤L rj →

∑∞
j=−∞ rj = σ2

xy as L → ∞, this proves Es2nk → σ2
xy as n → ∞

which completes the proof of the proposition. �

Proof of Theorem 3.4M. Denote νn =
∑n

t=k+1 htgt−kωtk. By (29),

t̃xy,k = snk + op(1) = (qnE[ω2
1k])

−1/2νn + op(1).

We will show

Eνn = E[ε1η1−k](
∑n

t=1 htgt)(1 + o(1)), var(νn) = O(qn). (33)

This implies q
−1/2
n νn = q

−1/2
n (

∑n
t=1 htgt)E[ε1η1−k](1 + op(1)) which proves (44M).

Under assumption (43M), Eνn = (
∑n

t=k+1 htgt−k)Eω1k = Eω1k(
∑n

t=1 htgt)(1 + o(1)).

Under (42M), the same argument as in the proof var(snk) → σ2
xy in Proposition 3.1M

implies that var(νn) = O(qn) which completes the proof of (33) and the theorem. �

Proof of Theorem 4.1M. We will verify (46M). (Proof of (47M) follows using a

similar argument). Denote ξtk = εtεt−k, |ξ|tk = (|εt| − E|εt|)(|εt−k| − E|εt−k|). By

Lemma 2.4,

τx,k = τ̃x,k + op(1), τ̃x,k :=
1

σ2
ε(n− k)1/2

n∑
t=k+1

ξtk

τ|x|,k = τ̃|x|,k + op(1), τ̃|x|,k :=
1

σ2
|ε|(n− k)1/2

n∑
t=k+1

|ξ|tk.

Hence, to prove (46M), it suffices to show that

(τ̃x,1, τ̃|x|,1, ..., τ̃x,m, τ̃|x|,m)→D N (0, Vx,|x|,2m). (34)
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Observe that for any k ≥ 1, {ξtk}, {|ξ|tk} are m.d. sequences with respect to the σ-field

Ft = σ(εs, s ≤ t). Moreover, Eξ2tk = E[ε2t ε
2
t−k] = σ4

ε ,

E|ξ|2tk = (E[(|εt| −E|εt|)2])2 = σ4
|ε|, E[ξtk|ξ|tk] = (E[εt(|εt| −E|εt|)])2 = cov2(ε1, |εt|).

In addition, for k > j ≥ 1, E[ξtkξtj] = 0, E[|ξ|tk|ξ|tj] = 0, E[ξtk|ξ|tj] = 0. Finally,

n−1
∑n

t=k+1 ξ
2
tk → Eξ21k = σ4

ε , n−1
∑n

t=k+1 |ξ|2tk → E|ξ|21k = σ4
|ε|, (35)

n−1 =
∑n

t=k+1 ξtk|ξ|tk → E[ξtk|ξ|tk] = cov2(ε1, |ε1|).

Recall that an i.i.d. sequence {εt} is ergodic. Therefore ξ2tk, |ξ|2tk and ξtk|ξ|tk are

also ergodic sequences since they are measurable functions f(εt, εt−k) of the ergodic

sequence {εt}. The latter implies (35), see Remark 2.1. Hence, (34) follows using the

same argument as in the proof of (12). �

To prove Theorem 2.1 we use the following technical lemma. Recall the definition

of qn and qnkj given in (26M) and (8). Set

qnijk =
∑n

t=max(i,j,k)+1 htht−igt−jgt−k, (36)

∆njk =
∑n

t=max(j,k)+2 |h2tgt−jgt−k − h2t−1gt−1−jgt−1−k|.

Lemma 2.1. Let ht, gt, t ≥ 1 satisfy (26M) and k ≥ i, j ≥ 1 be fixed. Then, as

n→∞,

qn − qnjk = o(qn), qnjk/qn → 1, (37)

qn − qnijk = o(qn), ∆njk = o(qn). (38)

Proof of Lemma 2.1. We have

|qn − qnkj| ≤
∑k

t=1 h
2
tg

2
t +

∑n
t=k+1 h

2
t |g2t − gt−jgt−k|. (39)

By (26M),
∑k

t=1 h
2
tg

2
t ≤ kmaxt=1,...,n h

2
t maxt=1,...,n g

2
t = o(qn). Next we show that

∑n
t=k+1 h

2
t |g2t − gt−jgt−k| = o(qn). (40)

Assumption (26M) implies that

δn := (
n∑
t=1

h4t )
1/2(

n∑
t=2

(gt − gt−1)4)1/2/(
n∑
t=1

h2tg
2
t )→ 0.

13



We have g2t − gt−jgt−k = gt(gt − gt−j) + gt(gt − gt−k) + (gt−j − gt)(gt − gt−k). Using the

inequalities

|gt(gt − gt−k)| = |δ1/4n gtδ
−1/4
n (gt − gt−k)| ≤ δ1/2n g2t + δ−1/2n (gt − gt−k)2,

|(gt−j − gt)(gt − gt−k)| ≤ (gt−j − gt)2 + (gt − gt−k)2,

we obtain |g2t − gt−jgt−k| ≤ 2δ
1/2
n g2t + (δ

−1/2
n + 1)[(gt − gt−j)2 + (gt − gt−k)2]. So,

n∑
t=k+1

h2t |g2t − gt−jgt−k| ≤ 2δ1/2n

n∑
t=k+1

h2tg
2
t

+(δ−1/2n + 1)
n∑

t=k+1

h2t [(gt − gt−j)2 + (gt − gt−k)2]

≤ 2δ1/2n qn + (δ−1/2n + 1)(
n∑

t=k+1

h4t )
1/2
[
(

n∑
t=k+1

(gt − gt−j)4)1/2 + (
n∑

t=k+1

(gt − gt−k)4)1/2.
]

Using the inequality (a1 + ....+ ak)
4 ≤ k3(a41 + ....+ a4k), we obtain

(gt−gt−j)4 = [(gt−gt−1)+(gt−1−gt−2)+...+(gt−j+1−gt−j)]4 ≤ j3[(gt−gt−1)4+...+(gt−j+1−gt−j)4].

Hence,
n∑

t=k+1

(gt − gt−j)4 ≤ j4
n∑
t=2

(gt − gt−1)4

which together with definition of δn implies

n∑
t=k+1

h2t |g2t − gt−jgt−k| ≤ 2δ1/2n qn + (δ−1/2n + 1)(j2 + k2)(
n∑
t=1

h4t )
1/2(

n∑
t=2

(gt − gt−1)4)1/2

= 2δ1/2n qn + (δ−1/2n + 1)(j2 + k2)δnqn = o(qn)

since δn → 0.

This proves (40) and together with (39) proves the claim qn − qnjk = o(qn) of (37).

The latter implies qnjk/qn = 1− (qn − qnjk)/qn → 1.

Next we show the claim qnijk − qn = o(qn) in (38). We have htht−igt−jgt−k =
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−h2tg2t−j + h2tgt−jgt−k + htht−ig
2
t−j + ht(ht−i − ht)gt−j(gt−k − gt−j). Hence,

qnijk =
n∑

t=k+1

htht−igt−jgt−k = qn + (qn −
n∑

t=k+1

h2tg
2
t−j) + (

n∑
t=k+1

h2tgt−jgt−k − qn)

+(
n∑

t=k+1

htht−ig
2
t−j − qn) + (

n∑
t=k+1

ht(ht−i − ht)gt−j(gt−k − gt−j))

=: qn + vn,1 + vn,2 + vn,3 + vn,4 = qn + o(qn) + vn,4

because vn,` = o(qn) for ` = 1, 2, 3 by relation qnjk − qn = o(qn) shown above in (37).

By the Hölder inequality,

|vn,4| ≤
( n∑
t=k+1

h4t

n∑
t=k+1

(ht−i − ht)4
n∑

t=k+1

g4t−j

n∑
t=k+1

(gt−k − gt−j)4
)1/4

≤
(
|k − j|4

n∑
t=1

h4t

n∑
t=2

(gt − gt−1)4
)1/4(

i4
n∑
t=1

g4t

n∑
t=2

(ht − ht−1)4
)1/4

= o(qn)

by (26M) which proves qnijk − qn = o(qn).

We complete the proof of lemma by showing the last claim in (38), ∆njk = o(qn).

Since h2tgt−jgt−k − h2t−1gt−1−jgt−1−k = h2t (gt−jgt−k − g2t ) − h2t−1(gt−1−jgt−1−k − g2t−1) +

(h2tg
2
t − h2t−1g2t−1), we can bound

∆njk ≤
n∑

t=k+2

h2t |gt−jgt−k− g2t |+
n∑

t=k+2

h2t−1|gt−1−jgt−1−k− g2t−1|+
n∑

t=k+2

|h2tg2t − g2t−1h2t−1|.

By (40) the first and the second sum is o(qn). We can bound the last sum by

n∑
t=k+2

|h2tg2t − g2t−1h2t−1| ≤
n∑

t=k+2

h2t |g2t − g2t−1|+
n∑

t=k+2

g2t−1|h2t − h2t−1|.

By (40) and under assumption (26M), the latter is o(qn) which completes the proof. �

Recall the notation e′tk = xtyt−k = htgt−kεtηt−k used in the proof of Theorem 3.2M

and etk = (xt − x̄)(yt−k − ȳ) in (22M), respectively. We drop the subscript xy in e′tk
and etk for simplicity in what follows.

Lemma 2.2. Let ht, gt, t ≥ 1 satisfy (26M). Assume that for some k ≥ j ≥ 0,

{ε2tηt−jηt−k} is a stationary sequence, E|ε21η1−jη1−k| <∞, and as n→∞,

E
∣∣∣(n−1∑n

t=k+1 ε
2
tηt−jηt−k)− E[ε21η1−jη1−k]

∣∣∣→ 0. (41)
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Then,

q−1n
∑n

t=k+1 e
′
tje
′
tk →p E[ε21η1−jη1−k]. (42)

In addition, if Assumption B holds, then

q
−1/2
n

∑n
t=k+1 etk − q

−1/2
n

∑n
t=k+1 e

′
tk →p 0, (43)

q−1n
∑n

t=k+1 |etjetk − e′tje′tk| →p 0. (44)

In particular, (41) holds if {ε2tηt−jηt−k} is an ergodic sequence.

To prove Lemma 2.2, we shall use the following result.

Lemma 2.3. (Dalla, Giraitis and Koul (2014), Lemma 10). Let Tn =
∑n

t=1 cntVt,

where {Vt} is a stationary ergodic sequence, E|V1| <∞, and cnt are real numbers such

that for some 0 < αn <∞, n ≥ 1,

n∑
t=1

|cnt| = O(αn), |cn1|+
n∑
t=2

|cnt − cn,t−1| = o(αn). (45)

Then E|Tn − ETn| = o(αn).

Remark 2.1. The proof of Lemma 2.3 in Dalla, Giraitis and Koul (2014) uses the

property

E
∣∣(n−1∑n

t=1 Vt)− EV1
∣∣→ 0, (46)

of ergodic sequence {Vt}, see Stout (1974, Cor. 3.5.2). Lemma 2.3 remains valid if the

assumption of ergodicity of {Vt} is replaced by assumption (46).

Proof of Lemma 2.2. The proof is based on Lemma 2.3 and Remark 2.1. Denote the

left hand side of (42) by Tn. Write

Tn =
n∑

t=k+1

cntVt, (47)

where stationary series Vt = ε2tηt−jηt−k satisfies (46) and cnt = q−1n h2tgt−jgt−k. Next we

show that cnt satisfies (45) with αn = 1

In particular, we show that as n→∞,

∑n
t=k+1 cnt → 1, cn,k+1 +

∑n
t=k+2 |cnt − cn,t−1| = o(1). (48)
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By (37),
∑n

t=k+1 cnt = q−1n qnjk → 1 which proves the first claim in (48). By defini-

tion (36) of ∆njk and (38),

∑n
t=k+2 |cnt − cn,t−1| ≤ q−1n ∆njk = o(1).

By definition of cnt and (26M),

|cn,t| = q−1n h2t |gt−jgt−k| ≤ q−1n max
k=1,...,n

h2k max
k=1,...,n

g2k = o(1).

This proves the second claim in (48).

Thus, by Lemma 2.3, E|Tn − ETn| → 0. Observe that

ETn =
n∑

t=k+1

cntEVt = E[ε21η1−jη1−k]q
−1
n

n∑
t=k+1

h2tgt−jgt−k = E[ε21η1−jη1−k]q
−1
n qnjk

where q−1n qnjk → 1 by (37). Hence, Tn = ETn + op(1) = E[ε21η1−jη1−k] + op(1) which

proves (42).

Proof of (43). It suffices to show that

rn1 :=
∑n

t=k+1(etk − e′tk) = op(q
1/2
n ). (49)

We have

etk − e′tk = x̄ȳ − ȳxt − x̄yt−k, (50)

rn1 =
n∑

t=k+1

(x̄ȳ − ȳxt − x̄yt−k) = (n− k)x̄ȳ − 2nx̄ȳ + ȳ
k∑
t=1

xt + x̄
n∑

t=n−k+1

yt.

Hence,

|rn1| ≤ 3n|x̄ȳ|+ |ȳ| |
∑k

t=1 xt|+ |x̄| |
∑n

t=n−k+1 yt|. (51)

We will show below that for any fixed k ≥ 1, as n→∞,

x̄ = op(n
−1/2q

1/4
n ),

∑k
t=1 xt = op(q

1/4
n ),

∑n
t=1 x

2
t = op(nq

1/2
n ) (52)

ȳ = op(n
−1/2q

1/4
n ),

∑n
t=n−k+1 yt = op(q

1/4
n ),

∑n
t=1 y

2
t = op(nq

1/2
n ).
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Together with (51) this implies rn1 = op(q
1/2
n ) which verifies (49). Observe that

Ex̄2 ≤ Cn−2
∑n

t=1 h
2
t , Eȳ2 ≤ Cn−2

∑n
t=1 g

2
t , (53)

E|
∑k

t=1 xt| ≤ E|ε1|
∑k

t=1 |ht|, E|
∑n

t=n−k+1 yt| ≤ E|η1|
∑n

t=n−k+1 |gt|.

E
∑n

t=1 x
2
t ≤ Eε21

∑n
t=1 h

2
t , E

∑n
t=1 y

2
t ≤ Eη21

∑n
t=1 g

2
t .

Indeed, by Assumption B, the stationary sequences {εt} and {ηt} have absolutely

summable autocovariance functions γε,k and γη,k. Hence,

Ex̄2 = n−2
∑n

t,s=1 hthscov(εt, εs) ≤ 2n−2
∑n

t=1 h
2
t

∑∞
k=−∞ |cov(εt, εt−k)| (54)

= Cn−2
∑n

t=1 h
2
t , C = 2

∑∞
k=−∞ |γε,k| <∞,

which proves the first claim in (53). The claim for Eȳ2 follows using similar arguments,

and the remaining bounds in (53) are obvious.

Now we are ready to prove (52). By assumption (25M), maxt=1,...,n h
2
t = o(q

1/2
n ) and

maxt=1,...,n g
2
t = o(q

1/2
n ). Hence from (53) we obtain Ex̄2 = O(n−1q

1/2
n ), E|

∑k
t=1 xt| =

o(q
1/4
n ) and E

∑n
t=1 x

2
t = o(nq

1/2
n ) which implies the claimed orders for the sums involv-

ing the xt’s in (52). The claimed orders for the sums involving the yt’s follow using the

same argument.

Proof of (44). It suffices to show that

rn2 :=
∑n

t=k+1 |etjetk − e′tje′tk| = op(qn). (55)

We have, etjetk− e′tje′tk = (etj − e′tj)(etk− e′tk) + e′tk(etj − e′tj) + e′tj(etk− e′tk). So, setting

Dnk =
∑n

t=k+1(etk − e′tk)2,

|rn2| ≤ D
1/2
nj D

1/2
nk +D

1/2
nj (
∑n

t=k+1 e
′ 2
tk)

1/2 +D
1/2
nk (
∑n

t=k+1 e
′ 2
tj )

1/2. (56)

We will show that

(a) Dnk = op(qn), (b)
n∑

t=k+1

e′ 2tk = Op(qn), (57)

which together with (56) implies rn2 = op(qn) proving (55).
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First we show (a). By (50),

(etk − e′tk)2 = (x̄ȳ − ȳxt − x̄yt−k)2 ≤ 3(x̄ȳ)2 + 3(ȳ2x2t ) + 3(x̄2y2t−k),

Dnk =
n∑

t=k+1

(etk − e′tk)2 ≤ 3n(x̄ȳ)2 + 3ȳ2
n∑

t=k+1

x2t + 3x̄2
n∑

t=k+1

y2t−k. (58)

In view of (52), x̄ = op(n
−1/2q

1/4
n ), ȳ = op(n

−1/2q
1/4
n ),

∑n
t=k+1 x

2
t = op(nq

1/2
n ), and∑n

t=k+1 y
2
t−k = op(nq

1/2
n ). These orders in conjunction with (58) prove (a):

Dnk = op(qn) + op(q
1/2
n )n−1op(nq

1/2
n ) = op(qn).

(b) follows noting that by the definition of e′tk,

E[
n∑

t=k+1

e′ 2tk] =
n∑

t=k+1

h2tg
2
t−kE[ε2tη

2
t−k] ≤ (Eε41Eη41)1/2

n∑
t=k+1

h2tg
2
t−k ≤ Cqnkk = O(qn) (59)

by (37) of Lemma 2.1. This completes the proof of (57) and of the lemma. �

Lemma 2.4. Let xt = µ + εt, where {εt} is an i.i.d. sequence with Eεt = 0 and

Eε2t <∞. Assume that Eε4t <∞ when ρ̂x2,k is considered. Then for k ≥ 1,

n

(n− k)1/2
ρ̂x,k =

1

σ2
ε(n− k)1/2

n∑
t=k+1

εtεt−k + op(1), (60)

n

(n− k)1/2
ρ̂|x|,k =

1

σ2
|ε|(n− k)1/2

n∑
t=k+1

(|εt| − E|εt|)(|εt−k| − E|εt−k|) + op(1),(61)

n

(n− k)1/2
ρ̂x2,k =

1

σ2
ε2(n− k)1/2

n∑
t=k+1

(ε2t − Eε2t )(ε2t−k − Eε2t−k) + op(1), (62)

where σ2
ε = var(ε1), σ2

|ε| = var(|ε1|) and σ2
ε2 = var(ε21).

Proof of Lemma 2.4. Without loss of generality, assume that µ = 0. We prove (61).

(The proof of (60) and (62) is simpler and follows using similar arguments).

Denote zt = |xt − x̄| − E|xt|, yt = |xt| − E|xt|. Then, by (1M),

n

(n− k)1/2
ρ̂|x|,k =

(n− k)−1/2
∑n

t=k+1(zt − z̄)(zt−k − z̄)

n−1
∑n

t=1(zt − z̄)2
(63)

=
(n− k)−1/2(

∑n
t=k+1 ytyt−k +Qn1)

n−1(
∑n

t=1 y
2
t +Qn2)
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where

Qn1 =
∑n

t=k+1

(
(zt − z̄)(zt−k − z̄)− ytyt−k

)
, Qn2 =

∑n
t=1

(
(zt − z̄)2 − y2t

)
.

We will show that

(a) Qn1 = op(n
1/2), (b) Qn2 = op(n), (c) n−1

n∑
t=1

y2t → var(|ε1|). (64)

Together with (63) this implies (61):

n

(n− k)1/2
ρ̂|x|,k = var(|ε1|)−1(n− k)−1/2

n∑
t=k+1

ytyt−k + op(1). (65)

Proof of (64)(a). To prove Qn1 = op(n
1/2), we write Qn1 = qn1 + qn2 with

qn1 =
n∑

t=k+1

((zt − z̄)(zt−k − z̄)− ztzt−k), qn2 =
n∑

t=k+1

(ztzt−k − ytyt−k). (66)

We will show that

qn1 = op(n
1/2), qn2 = op(n

1/2). (67)

As in (50), we have

(zt − z̄)(zt−k − z̄)− ztzt−k = z̄2 − z̄zt − z̄zt−k, (68)

qn1 =
n∑

t=k+1

(z̄2 − z̄zt − z̄zt−k) = (n− k)z̄2 − 2nz̄2 + z̄
k∑
t=1

zt + z̄
n∑

t=n−k+1

zt.

Hence,

|qn1| ≤ 3n|z̄2|+ |z̄| |
∑k

t=1 zt|+ |z̄| |
∑n

t=n−k+1 zt|. (69)

Write

|z̄| = n−1|
b∑
t=1

zt| ≤ n−1|
n∑
t=1

(|xt−x̄|−|xt|)|+n−1|
n∑
t=1

(|xt|−E|xt|)| ≤ |x̄|+|ȳ| = Op(n
−1/2)

because
∣∣|xt − x̄| − |xt|

∣∣ ≤ |x̄| and |x̄| = Op(n
−1/2), |ȳ| = Op(n

−1/2). The latter

holds because {xt} and {yt} are i.i.d random variables, Ext = Eyt = 0, Ex2t < ∞,

Ey2t < ∞. Since, E
∑k

t=1 |zt| + E
∑n

t=n−k+1 |zt| ≤ 2kE|z1|, this together with (69)

implies qn1 = Op(1) = op(n
1/2) which proves the first claim in (67).
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To evaluate qn2, write

ztzt−k − ytyt−k = (|xt − x̄| − E|xt|)(|xt−k − x̄| − E|xt−k|)− (|xt| − E|xt|)(|xt−k| − E|xt−k|)

= (|xt − x̄| − |xt|)(|xt−k − x̄| − |xt−k|) + (|xt − x̄| − |xt|)yt−k + (|xt−k − x̄| − |xt−k|)yt.(70)

Hence,

qn2 =
∑n

t=k+1(|xt − x̄| − |xt|)(|xt−k − x̄| − |xt−k|) +
∑n

t=k+1(|xt − x̄| − |xt|)yt−k
+

∑n
t=k+1(|xt−k − x̄| − |xt−k|)yt =: qn2,1 + qn2,2 + qn2,3.

Since ||xt − x̄| − |xt|| ≤ |x̄|, we have

|qn2,1| ≤ n|x̄|2 = Op(1).

Next we show qn2,2 = op(n
1/2). (qn2,3 = op(n

1/2) follows using a similar argument).

Denote x̄(t−k) = n−1
∑n

j=1:j 6=t−k xj, x̄(t−k,s−k) = n−1
∑n

j=1:j 6=t−k,s−k xj. Hence

qn2,2 =
n∑

t=k+1

(|xt − x̄| − |xt − x̄(t−k)|)yt−k +
n∑

t=k+1

(|xt − x̄(t−k)| − |xt|)yt−k =: vn + v′n.

We will show that

E|vn| = o(n1/2), Ev′2n = o(n) (71)

which proves qn2,2 = op(n
1/2).

Since ||xt − x̄| − |xt − x̄(t−k)|| ≤ |x̄− x̄(t−k)| = n−1|xt−k|, we have

E|vn| ≤
n∑

t=k+1

n−1E|xt−kyt−k| ≤ C

which implies vn = Op(1). On the other hand,

Ev′ 2n = E
n∑

t,s=k+1

(|xt − x̄(t−k)| − |xt|)yt−k(|xs − x̄(s−k)| − |xs|)ys−k

= E
n∑

t,s=k+1:|t−s|≤2k

[...] + 2E
n∑

t,s=k+1:t>s+2k

[...] =: Sn1 + 2Sn2.
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To bound Sn1, notice that

E
∣∣(|xt − x̄(t−k)| − |xt|)yt−k(|xs − x̄(s−k)| − |xs|)ys−k∣∣
≤ E

∣∣x̄(t−k)yt−kx̄(s−k)ys−k∣∣ ≤ (E[x̄2(t−k)y
2
t−k]E[x̄2(s−k)y

2
s−k])

1/2

= (E[x̄2(t−k)]E[y2t−k]E[x̄2(s−k)]E[y2s−k])
1/2 ≤ Cn−1

where C does not depend on t, s. Hence, |Sn1| ≤ Cn−1
∑n

t,s=k+1:|t−s|≤2k 1 ≤ C = O(1).

To bound Sn2, write

|xt− x̄(t−k)|− |xt| = (|xt− x̄(t−k)|− |xt− x̄(t−k,s−k)|) + (|xt− x̄(t−k,s−k)|− |xt|). Then,

(|xt − x̄(t−k)| − |xt|)yt−k(|xs − x̄(s−k)| − |xs|)ys−k
= (|xt − x̄(t−k)| − |xt − x̄(t−k,s−k)|)yt−k(|xs − x̄(s−k)| − |xt − x̄(t−k,s−k)|)ys−k

+(|xt − x̄(t−k,s−k)| − |xt|)yt−k(|xs − x̄(t−k,s−k)| − |xs|)ys−k
+(|xt − x̄(t−k)| − |xt − x̄(t−k,s−k)|)yt−k(|xs − x̄(t−k,s−k)| − |xs|)ys−k
+(|xt − x̄(t−k,s−k)| − |xt|)yt−k(|xs − x̄(s−k)| − |xs − x̄(t−k,s−k)|)ys−k

=: gt1 + gt2 + gt3 + gt4.

Observe that

|gt1| ≤ |x̄(t−k)−x̄(t−k,s−k)||x̄(s−k)−x̄(t−k,s−k)||yt−kys−k| ≤ (n−1|xs−k|)(n−1|xt−k|)|yt−kys−k|.

Hence,

E
n∑

t,s=k+1:t>s+2k

|gt1| ≤ Cn−2
n∑

t,s=k+1:t>s+2k

1 ≤ C.

Recall that by assumption {xt} are i.i.d. random variables. Then for t > s+ 2k in

gt2 and gt3 only yt−k = |xt−k| − E|xt−k| depends on xt−k. Since Eyt−k = 0, this implies

Egt2 = 0 and Egt3 = 0. In gt4 only ys−k = |xs−k| − E|xs−k| depends on xs−k. Hence,

Egt4 = 0.

This proves Sn2 = O(1) which completes the proof of (71) and proves (64)(a) for Qn1.

Proof of (64)(b). Write

Qn2 =
∑n

t=1

(
(zt − z̄)2 − z2t

)
+
∑n

t=1

(
z2t − y2t

)
.
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By the first claim of (67),
∑n

t=1

(
(zt − z̄)2 − z2t

)
= op(n). By (70)

z2t − y2t = (|xt − x̄| − |xt|)2 + 2(|xt − x̄| − |xt|)yt.

Hence, |z2t − y2t | ≤ x̄2 + 2|x̄yt|. Then,

E|
∑n

t=1

(
z2t − y2t

)
| ≤

∑n
t=1(Ex̄2 + 2(Ex̄2)1/2(Ey2t )1/2)

= nEx̄2 + 2(Ex̄2)1/2
∑n

t=1(Ey2t )1/2 ≤ Cn1/2 = o(n).

This proves that Qn2 = op(n).

Proof of (64)(c). Since an i.i.d. sequence {εt} is also an ergodice sequence, then

y2t = (|xt| − E|xt|)2 = (|εt| − E|εt|)2 is a stationary ergodic sequence with Ey2t < ∞.

Thus, by Stout (1974, Cor. 3.5.2),

n−1
n∑
t=1

y2t → Ey21 = var(|ε1|). �
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1 Introduction

This Supplement II provides details of the full Monte Carlo experiment reported in the text of the

main paper. Equation references to the main paper are denoted with the affix M as (#M) and

references to theorem and proposition numbers in the main paper are signified as “Theorem #M”

and “Proposition #M”. Proofs of the theorems and propositions in the main paper are provided in

Supplementary I. References used here are the same as those given in the main paper.

2 Monte Carlo study

We present here the full set of results for the Monte Carlo study on the finite sample performance

of the standard and robust tests for zero serial correlation, cross-correlation and tests for the i.i.d.

property. We evaluate the rejection frequency (in %) of the tests statistics using 5,000 replications

for sample sizes n = 100, 300, 1000. Here we present tables for n = 300. Results for the other

sample sizes are available upon request. We set the significance level at α = 5%. For the univariate

standard test tk, LBm and the robust tests t̃k, Q̃m for absence of serial correlation, results on size

are reported for lags k,m = 1, 2, ..., 40 and on power for lags k,m = 1, 2, ..., 20 when n = 100, 300,

while for n = 1000 on size for lags k,m = 1, 4, ..., 118 and on power for lags k,m = 1, 4, ..., 58.

Same lags are used for the bivariate standard tests txy,k, tyx,k, HBxy,m, HByx,m and the robust tests

*Dalla acknowledges financial support from ELKE-EKPA. Phillips acknowledges support from the Kelly Fund at
the University of Auckland, a KLC Fellowship at Singapore Management University, and the NSF under Grant No.
SES 18-50860.
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t̃xy,k, t̃yx,k, Q̃xy,m, Q̃yx,m, including the lag k,m = 0, and tests for the i.i.d. property Jx,|x|,k, Jx,x2,k,

Cx,|x|,m, Cx,x2,m. We set the threshold λ = 2.576 in the robust cumulative statistics Q̃m, Q̃xy,m, Q̃yx,m.

The models used in the univariate case for {xt} and in the bivariate case for {xt, yt} are listed later

on. First, we summarize our main findings.

1 The standard tests for testing zero serial correlation perform well when the data are i.i.d.,

but may over-reject when the data are non-i.i.d. and this over-rejection increases with sample

size. The robust tests achieve the right size. The power of the tests are similar and in few

cases the robust tests show some loss in power.

2 All the tests for zero serial correlation, standard and robust, produce spurious power when

the data do not have constant mean. This spurious power increases with sample size. It is

therefore advisable to examine whether the data have constant mean prior to applying the

tests.

3 The robust tests for testing zero cross-correlation (at individual and cumulative lags) achieve

correct size when both series are uncorrelated with constant mean and either constant or

time-varying variance. The robust test at individual lag preserves the correct size when the

leading series is uncorrelated and the lagged series is serially correlated, but the size of the

cumulative test may become distorted.

The standard tests for testing zero cross-correlation (at individual and cumulative lags) per-

form well when both series are serially uncorrelated, stationary and mutually independent.

But these tests over-reject when the series are mutually dependent or when both of them have

time varying variance.

The powers of the standard and robust tests are similar and in few cases the robust tests have

some loss in power.

4 All the tests for zero cross-correlation, standard and robust, produce spurious power when

the two series do not have constant mean or both series have serial correlation. This spurious

power increases with sample size for the first case and remains approximately constant in the

second case. It is again advisable to examine whether each series has constant mean and no

serial correlation prior to applying the tests.

5 In testing for zero serial correlation or cross-correlation at a fixed lagm using robust cumulative

statistics, the need for thresholding increases when the sample size decreases. Thresholding is

required even in the i.i.d. case at moderate lags m. The sensitivity of the robust test to the

thresholding level depends on the nature of the departure for data from the i.i.d. assumption.

The values λ = 1.96, 2.576 are good candidates for the threshold, with λ = 2.576 performing

better at big lags.
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6 The tests for the i.i.d. property show satisfactory size and power.

7 At individual lag the robust statistics for testing zero correlation or cross-correlation and the

tests for the i.i.d. property have satisfactory size performance for all lags k examined here.

Tests for zero serial correlation

Tables 1-6 present testing results for zero serial correlation at individual lag k based on the statistics

t̃k and tk, and at cumulative lags 1, ...,m based on the statistics Q̃m and LBm. The results for the

size are given in Tables 1-2, for the power in Tables 3-4 and for the spurious power in Tables 5-6.

Tables 1 and 2. Models:

(a) xt = εt, εt ∼ i.i.d. N(0,1),

(b) xt = εt, εt ∼ i.i.d. t(6),

(c) xt = εtεt−1, εt ∼ i.i.d. N(0,1),

(d) xt = h1tεt, h1t = 1 + I(t/n > 0.5), εt ∼ i.i.d. N(0,1),

(e) xt = h2tεt, h2t = t/n, εt ∼ i.i.d. N(0,1),

(f) xt = rt, rt = σtεt, σ
2
t = 1 + 0.2r2t−1 + 0.7σ2

t−1, εt ∼ i.i.d. N(0,1),

(g) xt = h1trt, h1t = 1 + I(t/n > 0.5), rt = σtεt, σ
2
t = 1 + 0.2r2t−1 + 0.7σ2

t−1, εt ∼ i.i.d. N(0,1).

In models (a) and (b), the data are i.i.d. Both the standard and robust tests, tk, LBm and t̃k, Q̃m

have good size, however, the size of the standard test tk slightly drops when the lag k increases

because of standardization
√
n in tk instead of n/

√
n− k as it is done in the cumulative LBm

test. In model (c), the series is uncorrelated, but not independent. In models (d)-(g), the data

have unconditional and/or conditional heteroskedasticity. In models (c)-(g) the robust tests t̃k, Q̃m

produce the appropriate size. On the other hand, the standard test tk overrejects at lag k = 1 in

model (c) and at several lags in models (d)-(g), which is magnified in the cumulative test LBm.

Size performance is satisfactory at all k for t̃k and in the worst case up to m ≈ 31 for Q̃m.

Tables 3 and 4. Models:

(a) xt = 0.2xt−1 + εt,

(b) xt = εt + 0.2εt−1,

(c) xt = r21,t, r1,t = σ1,tεt, σ
2
1,t = 1 + 0.2r21,t−1,

(d) xt = |r1,t|, r1,t = σ1,tεt, σ
2
1,t = 1 + 0.2r21,t−1,

(e) xt = r22,t, r2,t = σ2,tεt, σ
2
2,t = 1 + 0.2r22,t−1 + 0.7σ2

2,t−1,

(f) xt = |r2,t|, r2,t = σ2,tεt, σ
2
2,t = 1 + 0.2r22,t−1 + 0.7σ2

2,t−1,

(g) xt = |εtεt−1|,

εt ∼ i.i.d. N(0,1).
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The tables below report the power of the tests for dependent stationary time series models (a)-(g).

In (a)-(b), the data follow the AR(1) and MA(1) models. The standard tk, LBm and robust t̃k, Q̃m

tests show similar power. In (c)-(f), the data are squared and absolute transformations of ARCH

and GARCH series and we observe some loss in power for the robust statistics. In the last model

(g), the series is correlated only at lag 1 and the standard and robust statistics have similar power

properties.

Tables 5 and 6. Models:

(a) xt = m1t + εt, m1t = I(t/n > 0.5),

(b) xt = m2t + εt, m2t = I(0.25 < t/n ≤ 0.75),

(c) xt = m3t + εt, m3t = 0.01t,

(d) xt = m2t + h1tεt, m2t = I(0.25 < t/n ≤ 0.75), h1t = 1 + I(t/n > 0.5),

(e) xt = (h1tεt)
2, h1t = 1 + I(t/n > 0.5),

(f) xt = |h1tεt|, h1t = 1 + I(t/n > 0.5),

(g) xt = (m1t + εt)
2, m1t = I(t/n > 0.5),

εt ∼ i.i.d. N(0,1).

In models (a)-(g), the data are independent over time but have non-constant mean. All tests over-

reject and show spurious power. This is especially so in models (a)-(c) where data have either

breaking or trending mean and constant variance. The effect is such that the cumulative tests reach

100% rejection frequency at some lags. The changes in variance seems to dampen this effect, as seen

in model (d). Absolute values of a series with breaking variance produce higher rejection frequency

compared to squared series, see models (e)-(f). When independent data with breaking mean are

squared, as in model (g), the distortions of the size are not as severe.

Tests for zero cross-correlation

Tables 7-16 present testing results for zero serial cross-correlation at individual lag k based on

the statistics t̃xy,k, t̃yx,k and txy,k, tyx,k, and at cumulative lags 0, 1, ...,m based on the statistics

Q̃xy,m, Q̃yx,m and HBxy,m, HByx,m. The results for the size are given in Tables 7-12, for the power

in Tables 13-14 and for the spurious power in Tables 15-16.

Tables 7 and 8. Models:

(a) xt = h1tεt, yt = h1tηt, h1t = 1 + I(t/n > 0.5),

(b) xt = h1tεt, yt = h3tηt, h1t = 1 + I(t/n > 0.5), h3t = 1 + 3I(t/n > 0.5),

(c) xt = r1t, yt = r2t, r1t = σ1tεt, σ
2
1t = 1 + 0.2r21,t−1, r2t = σ2tηt, σ

2
2t = 1 + 0.2r22,t−1 + 0.7σ2

2,t−1,

εt, ηt ∼ i.i.d. N(0,1), {εt} and {ηt} mutually independent.
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In models (a)-(c), series are independent and thus with zero cross-correlation. In (a)-(b), both series

have breaks in the variance. All the robust tests t̃xy,k, t̃yx,k have the right size for all lags k, and so

do the robust cumulative tests Q̃xy,m, Q̃yx,m for all lags m. On the other hand, the standard tests

txy,k, tyx,k show distortions in size at several lags, with the effect accumulating in the standard tests

HBxy,m, HByx,m. In (c), when the series follow stationary ARCH(1) and GARCH(1,1) models that

are uncorrelated and independent, all tests for cross-correlation, standard and modified, achieve the

correct size. However, the standard tests txy,k, tyx,k become slightly undersized when the individual

lag k increases. This size distortion occurs because of the use of normalization
√
n in txy,k, tyx,k

instead of n/
√
n− k as it is done in the cumulative HBxy,m, HByx,m tests.

Tables 9 and 10. Models:

(a) xt = εt, yt = m1t + h1tηt, m1t = I(t/n > 0.5), h1t = 1 + I(t/n > 0.5),

(b) xt = h1tεt, yt = m1t + ηt, m1t = I(t/n > 0.5), h1t = 1 + I(t/n > 0.5), εt, ηt ∼ i.i.d. N(0,1),

(c) xt = εt, yt = 0.7yt−1 + ηt,

εt, ηt ∼ i.i.d. N(0,1), {εt} and {ηt} mutually independent.

In models (a)-(c), the two series are independent of each other. One of the two series, xt, has no

serial correlation, while the second series, yt, has either a break in the mean or is autocorrelated.

In all models, the standard txy,k, tyx,k and robust tests t̃xy,k, t̃yx,k for the individual lag k perform

well at all lags. However, the cumulative versions of tests, standard HBxy,m, HByx,m and robust

Q̃xy,m, Q̃yx,m, show distortions in size which increase in magnitude as the lag m increases. In the

simulation study, the statistics Q̃xy,m, Q̃yx,m use respectively the matrices R̂∗xy,m, R̂
∗
yx,m, rather than

using in both cases R̂∗xy,m as theory would suggest for model (c). Moreover, the correlation matrix

Rxy,m = (0.7|j−k|)j,k=1,...,m is not sparse and so poor performance of the Q̃yx,m test is expected in

this case.

Tables 11 and 12. Models:

(a) xt = εt, yt = |εt|ηt,

(b) xt = εt, yt = εtεt−1,

(c) xt = εt, yt = exp(zt)ηt, zt = 0.7zt−1 + εt,

εt, ηt ∼ i.i.d. N(0,1), {εt} and {ηt} mutually independent.

In models (a)-(c), series xt and yt are series of uncorrelated random variables. They are not cross-

correlated at any lag but they are not independent of each other. The size of the robust tests

t̃xy,k, t̃yx,k is satisfactory for all lags k and for all lags m for the cumulative tests Q̃xy,m, Q̃yx,m albeit

being a bit under-sized in model (c). The standard tests txy,k, tyx,k substantially over-reject at k = 0

in all models and also tyx,k over-rejects at k = 1 in model (b) and k = 1, 2 in model (c). As a

consequence their cumulative versions HBxy,m, HByx,m show size distortions at several lags m.
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Tables 13 and 14. Models:

(a) xt = r1t, yt = r2t, r1t = σ1tεt, σ
2
1t = 1 + 0.2r21,t−1, r2t = σ2tεt, σ

2
2t = 1 + 0.2r22,t−1 + 0.7σ2

2,t−1,

(b) xt = h1tεt, yt = xt + xt−1 + xt−2 + h1tηt, h1t = 1 + I(t/n > 0.5),

(c) xt = h1tεt, yt = m1t + xt + xt−1 + xt−2 + h1tηt, m1t = I(t/n > 0.5), h1t = 1 + I(t/n > 0.5),

εt, ηt ∼ i.i.d. N(0,1), {εt} and {ηt} mutually independent.

In models (a)-(c), series xt is serially uncorrelated, and the two series are cross-correlated. In (a),

both xt and yt are series of uncorrelated variables (ARCH and GARCH). When the two series are

only contemporaneously cross-correlated, as in model (a), we observe strong power for both standard

txy,k, tyx,k and robust tests t̃xy,k, t̃yx,k at lag k = 0, which is transmitted in all the cumulative tests.

In models (b)-(c), series yt is autocorrelated with lag, and yt depends also on xt−1 and xt−2. For

individual lags k = 0, 1, 2, both tyx,k and t̃yx,k exhibit strong power, which is further amplified by

the cumulative tests HByx,m and Q̃yx,m. For k such that xt and yt−k (or yt and xt−k) are not cross-

correlated, the robust tests t̃xy,k, t̃yx,k have correct size, while the standard tests txy,k, tyx,k show size

distortions, in model (a), because the two series are not independent at those lags, and in models

(b)-(c), because both series have breaks in unconditional variance.

Tables 15 and 16. Models:

(a) xt = m1t + εt, yt = m1t + ηt, m1t = I(t/n > 0.5),

(b) xt = m1t + εt, yt = m4t + ηt, m1t = I(t/n > 0.5), m4t = I(t/n > 0.25),

(c) xt = 0.7xt−1 + εt, yt = 0.7yt−1 + ηt,

εt, ηt ∼ i.i.d. N(0,1), {εt} and {ηt} mutually independent.

In models (a)-(c), the two series are mutually independent. They either both have a break in the

mean or both are dependent AR(1) series. In spite of zero cross-correlation, all the tests, standard

and robust, over-reject. When both series have break in the mean, as in models (a)-(b), the over-

rejection is stronger when the break is common. The spurious power is even more evident in the

cumulative tests.

Tests for i.i.d. property

Tables 17-20 report testing results for the i.i.d. property at individual lag k based on the statistics

Jx,|x|,k and Jx,x2,k, and at cumulative lags 1, ...,m based on the statistics Cx,|x|,m and Cx,x2,m. The

results for the size are given in Tables 17-18 and for the power in Tables 19-20.

Tables 17 and 18. Models:

(a) xt = εt, εt ∼ i.i.d. N(0,1),

(b) xt = εt, εt ∼ i.i.d. t(6),
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(c) xt = εt, εt ∼ i.i.d. χ2(3),

(d) xt = exp(2εt), εt ∼ i.i.d. N(0,1).

In models (a)-(d) the data are i.i.d. with different distributions. Both tests Jx,|x|,k and Jx,x2,k have

good size for all individual lags k. When the data are highly skewed, as in model (d), the tests

under-reject which is in line with theory. The cumulative tests Cx,|x|,m and Cx,x2,m perform well

for lags up to m ≈ 38, observing though some distortions when the skewness is high. The size

performance is overall better for the tests based on levels and absolute deviations from the sample

mean, i.e., Jx,|x|,k and Cx,|x|,m.

Tables 19 and 20. Models:

(a) xt = 0.2xt−1 + εt,

(b) xt = rt, rt = σtεt, σ
2
t = 1 + 0.2r2t−1,

(c) xt = rt, rt = σtεt, σ
2
t = 1 + 0.2r2t−1 + 0.7σ2

t−1,

(d) xt = εtεt−1,

(e) xt = m1t + εt, m1t = I(t/n > 0.5),

(f) xt = h1tεt, h1t = 1 + I(t/n > 0.5),

(g) xt = h1tyt, h1t = 1 + I(t/n > 0.5), yt = 0.2yt−1 + εt,

(h) xt = m1t + h1tεt, m1t = I(t/n > 0.5), h1t = 1 + I(t/n > 0.5),

εt, ηt ∼ i.i.d. N(0,1).

In models (a)-(h), the data are not i.i.d. They either have correlation, or non-constant mean or

non-constant variance or both. The tests Jx,|x|,k and Jx,x2,k for i.i.d. property at individual lag have

satisfactory power and there is a boost in power, when the data have combined non-i.i.d features, as

in models (g)-(h). The power of the cumulative tests Cx,|x|,m and Cx,x2,m is magnified with increasing

lag m. The power performance is overall better for the tests based on levels and absolute deviations

from the sample mean, that is, Jx,|x|,k and Cx,|x|,m.

Effect of the threshold λ

Tables 21-22 are for the statistics Qm and Q̃m for testing zero serial correlation at lags 1, ...,m.

Tables 23-24 are for the statistics Qxy,m and Q̃xy,m for testing zero cross-correlation at lags 1, ...,m.

Here, we write Q̃m = Q̃m(λ) and Q̃xy,m = Q̃xy,m(λ) and check the size of the tests for thresholds

λ = 1.645, 1.96, 2.576 at different significance levels α = 10%, 5%, 1%. Recall that Qm = Q̃m(0).

Tables 21 and 24. Models:

(a) xt = εt,

(b) xt = h2tεt, h2t = t/n,
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(c) xt = εt, yt = ηt,

(d) xt = h1tεt, yt = h3tηt, h1t = 1 + I(t/n > 0.5), h3t = 1 + 3I(t/n > 0.5),

εt, ηt ∼ i.i.d. N(0,1), {εt} and {ηt} mutually independent.

In models (a)-(d), the data are i.i.d. or independent with time varying variance. In all these cases,

the univariate Qm and bivariate Qxy,m cumulative tests with no thresholding suffer size distortions

that increase with increasing lag m. Size distortion is observed even for ideal i.i.d. normally

distributed data, in models (a) and (c). It is more evident for heteroskedastic data, in models (b)

and (d). On the other hand, when thresholding is applied, the size of the tests Q̃m and Q̃xy,m is

satisfactory and not as sensitive to the value of the threshold λ for all lags m for i.i.d. data and up

to m ≈ 30 for heteroskedastic data. Overall, the thresholds λ = 1.96, 2.576 are good choices at all

significance levels α = 10%, 5%, 1%, with λ = 2.576 giving better performance at big lags.

Effect of the sample size n

Tests for zero serial correlation

Here we summarize size and power properties of the standard test tk and robust test t̃k at individual

lag k and cumulative Ljung-Box test LBm and robust cumulative test Q̃m at lag m for sample sizes

n = 100, 300, 1000.

The robust t̃k test is well sized for all models, samples sizes and lags k, while the size distortions

of the standard tk test increase with sample size. The robust Q̃m test is well sized for all models,

samples sizes at moderate lags m and shows distortions after some lag that depends on the degree of

the departure from i.i.d. (in the worst case, distortions start after lag m ≈ 17 for n = 100, m ≈ 31

for n = 300 and m ≈ 76 for n = 1000). The size distortions of the standard LBm test increase

with sample size. The power of all tests increases when lags k,m are fixed and the sample size n

increases. When the departure from the null is weak, the power of all the tests is not as satisfactory

for n = 100. At fixed lags k,m spurious power increases with the sample size for all tests.

Tests for zero cross-correlation

We now summarize size and power features of the standard tests txy,k, tyx,k and robust tests t̃xy,k,

t̃yx,k at individual lag k and standard cumulative tests HBxy,m, HByx,m and robust cumulative tests

Q̃xy,m, Q̃yx,m at lag m for sample sizes n = 100, 300, 1000.

We first focus on the ideal case when the series xt and yt have constant mean, are serially uncorre-

lated and mutually independent. If xt and yt are stationary, then both standard and robust tests

are well-sized at all lags k,m and for all sample sizes. If xt and yt are non-stationarity, e.g. their

unconditional variance is changing, the robust tests remain well-sized whereas the size of the stan-

dard tests may be severely distorted with the size distortion increasing slightly with sample size.
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When one series has autocorrelation or non-constant mean, both standard and robust cumulative

tests can be badly-sized even at low lags. Then,for fixed lag m, when n increases the size of the

standard tests HBxy,m, HByx,m tends to improve, while the size of the robust Q̃xy,m, Q̃yx,m tests

may improve or deteriorate depending on the specific model. Nevertheless, in this case the robust

tests t̃xy,k, t̃yx,k perform well at all lags k.

Next, we consider models of series xt and yt that are serially uncorrelated and have constant mean.

In addition, xt and yt are uncorrelated but dependent on each other. Then the robust tests t̃xy,k, t̃yx,k

are well-sized for all samples sizes at all lags k for all models. The robust Q̃xy,m, Q̃yx,m tests are

well sized for samples sizes n = 300, 1000 at all lags m for all models; when n = 100 tests show

size distortions after some lag that depends the nature of the departure from i.i.d. (in the worst

case, distortions start after lag m ≈ 20 for n = 100). The size of the standard tests is distorted and

remains approximately the same across sample sizes.

The power of all tests increases with sample size when lags k,m is fixed. When the departure from

the null is weak, the power of all tests is not as satisfactory for n = 100. Spurious power increases

with sample size for all tests for fixed k,m except the case when both series xt and yt are serially

correlated: then spurious power remains approximately constant over n.

Tests for the i.i.d. property

The Jx,|x|,k and Jx,x2,k tests are well-sized for all sample sizes and at all lags k for all models. The

small distortions due to skewness remain constant with increases in sample size. The Cx,|x|,m and

Cx,x2,m tests are well-sized for all sample sizes at moderate lags m for all models and distortions

due to skewness increase when sample size increases. Size performance is satisfactory for up to lag

m ≈ 21 for n = 100, m ≈ 38 for n = 300 and m ≈ 67 for n = 1000 (when considering the Cx,|x|,m

test) in the cases where the data are symmetric distributed or not heavily skewed. For fixed lags

k,m power increases with sample size for all tests. When the departure from the null is weak, the

power of all tests is not as satisfactory for n = 100.

Effect of the threshold λ

For fixed lag m, the need for thresholding in the univariate Q̃m and bivariate Q̃xy,m robust tests

decreases with increases in sample size. For small (relative to sample size) lags m thresholding is

hardly needed, but is essential for large (relative to sample size) lags. The values λ = 1.96, 2.576

are good candidates for the threshold, with λ = 2.576 performing better at relative big lags m.
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Table 1: Tests for zero serial correlation at lag k. Size of tests t̃k and tk.

xt iid xt iid xt = εtεt−1 xt = h1tεt xt = h2tεt xt = rt xt = h1trt
N(0,1) t(6) εt iid εt iid εt iid rt GARCH rt GARCH

k t̃k tk t̃k tk t̃k tk t̃k tk t̃k tk t̃k tk t̃k tk
1 4.60 4.48 4.42 4.46 4.70 23.04 4.28 8.02 4.76 13.40 4.56 12.58 4.22 16.36
2 5.14 4.96 5.24 4.92 4.34 4.32 5.46 9.22 5.12 14.22 4.70 12.34 5.10 16.20
3 5.30 4.98 5.06 4.80 5.00 5.06 4.70 8.64 4.60 13.78 4.36 10.88 4.84 15.32
4 4.76 4.80 4.66 4.84 4.18 4.54 4.92 8.90 4.70 13.12 4.72 10.20 5.04 13.80
5 5.02 4.72 4.86 4.60 4.48 4.36 4.72 8.08 4.92 12.96 4.76 9.26 4.86 12.72
6 4.74 4.86 4.74 4.64 5.22 5.06 4.74 8.48 4.70 13.02 4.72 8.38 4.28 11.82
7 4.66 4.46 4.42 4.10 4.64 4.28 5.04 8.32 5.18 13.02 4.74 8.14 4.90 11.76
8 4.66 4.40 4.64 4.20 5.08 4.72 4.84 7.94 5.10 12.34 4.40 7.42 4.58 11.40
9 4.78 4.44 4.78 4.28 5.08 4.58 4.52 7.58 4.46 12.12 4.88 7.16 5.12 10.10
10 5.08 4.68 4.90 4.52 4.68 4.32 4.46 8.32 4.86 12.62 4.96 6.68 4.50 9.70
11 4.94 4.56 4.96 4.44 4.92 4.24 4.90 7.98 4.76 11.66 4.82 6.06 4.66 8.58
12 4.62 4.30 4.48 4.00 4.68 4.26 4.50 7.56 4.60 11.64 4.30 5.68 4.52 8.58
13 5.02 4.58 4.90 4.26 4.92 4.38 5.56 8.50 5.80 12.86 4.80 5.74 5.26 9.28
14 5.26 4.62 5.08 4.44 5.46 4.98 5.34 8.06 5.04 11.88 5.24 5.74 5.14 8.86
15 4.80 4.38 4.84 4.36 4.82 4.02 4.92 7.40 4.84 11.28 4.52 4.80 4.38 7.82
16 5.46 4.88 5.58 4.74 4.98 4.24 5.12 7.86 4.72 11.26 5.20 5.40 5.00 8.50
17 4.66 4.14 4.74 3.98 4.40 3.84 4.62 7.54 5.02 11.30 4.76 4.70 5.02 7.80
18 5.00 4.22 4.84 4.26 4.92 3.76 5.08 7.48 4.74 11.48 4.86 4.84 4.76 7.72
19 4.82 4.10 4.80 4.34 4.60 4.04 4.94 7.38 5.52 11.24 4.98 4.68 5.02 7.30
20 5.32 4.44 5.48 4.66 4.76 4.04 5.28 7.96 5.04 11.42 5.18 4.72 5.04 7.58
21 4.56 3.58 4.72 3.94 4.96 4.04 4.72 7.14 5.32 11.24 4.36 4.06 4.76 7.06
22 4.86 4.04 4.78 3.94 4.34 4.16 5.04 7.18 4.94 10.76 4.58 3.94 4.66 6.62
23 5.20 4.42 5.26 4.68 4.20 3.62 5.14 7.76 5.06 10.46 4.98 4.24 4.98 7.12
24 5.04 4.34 5.22 4.66 4.10 3.68 5.32 7.40 4.96 9.96 5.24 4.42 5.16 6.42
25 4.96 4.08 4.92 3.96 4.42 3.92 5.00 7.14 5.48 11.02 5.26 4.50 5.06 6.86
26 5.20 4.12 5.08 4.00 5.02 3.90 4.64 6.56 5.04 10.10 4.88 3.84 4.92 6.40
27 5.14 4.02 5.04 3.82 4.48 3.62 5.00 6.96 4.84 9.78 5.00 3.82 4.86 6.66
28 5.04 3.92 4.90 3.86 4.34 3.70 4.90 6.80 5.00 9.90 4.96 3.74 4.66 6.14
29 5.22 4.16 5.06 4.28 4.60 3.68 5.20 7.26 5.28 9.94 5.50 4.04 5.18 6.52
30 5.12 3.96 5.14 3.82 4.90 3.66 4.84 6.90 4.68 8.98 5.14 3.76 4.94 5.66
31 5.42 3.94 5.44 3.92 4.70 3.34 4.94 6.38 4.96 9.36 5.46 3.94 4.90 5.66
32 4.82 3.44 4.92 3.36 4.62 3.56 5.44 6.60 5.08 9.08 5.24 3.24 5.28 6.08
33 4.62 3.56 4.60 3.36 4.84 3.80 4.80 6.28 4.70 8.96 4.90 3.20 4.70 5.40
34 5.24 3.98 5.16 3.74 4.60 3.34 5.42 7.54 5.50 10.06 5.38 3.76 5.68 6.50
35 5.16 3.66 4.94 3.48 4.30 3.38 5.12 6.20 4.58 8.28 5.10 3.26 4.92 5.46
36 5.00 3.24 4.98 3.38 5.00 3.96 4.96 6.38 5.38 9.42 4.88 3.24 5.18 5.64
37 5.46 4.04 5.16 3.86 4.56 3.30 5.40 6.38 5.10 8.40 5.00 3.14 5.12 5.30
38 5.44 3.76 5.50 3.70 4.52 3.58 5.24 6.18 4.68 8.30 5.14 3.40 5.04 5.42
39 4.94 3.68 5.02 3.64 5.20 3.50 4.94 6.06 4.82 7.84 5.44 3.26 5.08 5.14
40 5.20 3.38 4.96 3.60 5.02 3.24 5.22 5.86 5.02 7.82 5.08 2.90 5.60 5.12

Rejection frequencies (in %) at the 5% significance level, n = 300. In models: εt ∼ i.i.d. N(0,1),
h1t = 1 + I(t/n > 0.5), h2t = t/n, rt ∼ GARCH(1,1), α = 0.2, β = 0.7.
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Table 2: Tests for zero serial correlation at lags 1, ...,m. Size of tests Q̃m and LBm.

xt iid xt iid xt = εtεt−1 xt = h1tεt xt = h2tεt xt = rt xt = h1trt
N(0,1) t(6) εt iid εt iid εt iid rt GARCH rt GARCH

m Q̃m LBm Q̃m LBm Q̃m LBm Q̃m LBm Q̃m LBm Q̃m LBm Q̃m LBm

1 4.60 4.68 4.42 4.52 4.70 23.42 4.28 8.24 4.76 13.56 4.56 12.76 4.22 16.52
2 4.76 4.64 4.84 5.04 3.84 18.94 4.54 10.90 4.54 18.44 4.46 15.88 4.38 22.14
3 4.60 4.62 4.66 4.66 3.98 16.78 4.40 11.42 4.46 21.28 4.40 18.48 4.18 26.08
4 4.68 4.74 4.32 4.90 4.20 15.24 4.38 12.70 4.36 24.92 4.72 18.98 4.08 29.58
5 4.40 4.58 4.30 4.62 4.12 14.20 4.34 13.60 4.86 27.34 4.80 20.02 4.24 30.92
6 4.54 4.88 4.50 4.70 4.14 13.72 4.64 14.34 4.76 29.26 4.84 20.36 4.76 32.34
7 4.64 4.86 4.40 4.62 4.40 13.08 4.98 15.68 4.94 31.52 4.86 20.54 4.88 33.58
8 4.44 4.82 4.20 4.34 4.66 12.82 4.76 16.32 5.22 33.98 4.88 20.80 4.98 34.48
9 4.74 4.78 4.32 4.52 4.28 12.18 4.82 17.14 4.88 35.70 5.10 21.82 4.90 34.84
10 4.64 4.92 4.42 4.66 4.72 12.06 4.70 17.60 4.68 38.02 5.18 21.50 4.94 35.42
11 4.66 5.00 4.22 4.82 4.70 11.54 4.68 18.74 4.82 39.12 4.86 21.54 5.20 36.32
12 4.72 5.18 4.52 4.90 4.96 11.52 4.94 19.26 4.98 40.80 5.28 21.02 4.94 36.20
13 4.66 5.12 4.52 4.82 4.66 11.34 4.96 20.58 5.34 42.08 5.12 20.82 4.84 37.00
14 4.76 5.06 4.48 4.84 4.86 11.10 5.02 21.08 5.58 43.80 5.24 20.98 5.18 37.74
15 5.04 5.54 4.70 4.94 5.02 10.82 5.26 21.06 5.64 45.00 5.42 20.52 5.30 37.46
16 5.22 5.58 4.82 5.36 5.24 10.54 5.34 21.96 5.52 46.58 5.54 20.52 5.30 38.32
17 5.02 5.52 4.80 5.34 5.32 10.32 5.26 22.92 5.52 47.64 5.58 20.64 5.48 38.24
18 5.12 5.52 4.82 5.34 5.08 10.12 5.32 23.38 5.72 48.60 5.44 20.00 5.50 37.90
19 5.26 5.58 4.92 5.12 5.00 9.64 5.34 24.18 5.96 49.76 5.68 19.28 5.46 38.24
20 5.04 5.50 4.90 5.20 5.04 9.62 5.38 25.18 5.92 50.86 5.48 19.42 5.40 38.74
21 5.08 5.62 5.02 5.16 5.32 9.48 5.56 25.62 6.04 52.02 5.56 19.14 5.54 38.88
22 5.32 5.60 4.98 5.32 5.10 9.40 5.64 25.82 6.00 53.60 5.86 18.96 5.82 39.06
23 5.18 5.88 5.20 5.38 5.06 9.36 5.46 26.66 6.04 54.52 5.86 18.72 6.02 38.86
24 5.16 5.76 5.30 5.56 4.94 9.40 5.46 26.84 6.14 55.68 5.72 18.54 5.94 39.48
25 5.64 6.16 5.36 5.74 4.88 9.10 5.54 27.58 6.32 56.74 6.08 18.64 6.02 39.42
26 5.64 6.14 5.18 5.66 5.08 8.86 5.72 27.80 6.42 57.38 5.86 18.14 6.02 39.34
27 5.58 6.10 5.58 5.60 5.04 8.84 6.02 28.48 6.60 58.22 5.92 18.14 6.30 39.58
28 5.56 6.08 5.36 5.72 5.02 8.66 5.80 29.10 6.60 58.98 5.90 18.08 6.16 39.32
29 5.74 6.28 5.64 5.74 5.04 8.60 5.78 29.56 6.80 59.86 5.76 17.96 6.52 39.74
30 5.68 6.58 5.64 5.96 5.06 8.58 5.96 30.22 6.80 60.22 5.94 17.92 6.56 40.14
31 5.68 6.44 5.78 6.12 4.80 8.48 5.88 30.84 6.94 60.44 6.00 17.86 6.64 40.22
32 5.66 6.40 5.86 6.06 4.76 8.40 6.16 31.10 7.12 60.68 5.88 17.74 6.66 40.38
33 5.70 6.52 5.90 6.20 4.68 8.36 6.30 31.90 7.02 61.72 5.90 17.40 6.54 40.22
34 5.88 6.70 5.76 6.32 4.94 8.36 6.30 32.22 7.28 62.48 6.04 17.40 6.76 40.52
35 5.88 6.82 5.80 6.30 4.88 8.58 6.38 32.86 7.26 62.80 6.38 17.14 6.56 40.88
36 5.70 6.72 5.76 6.44 5.24 8.68 6.52 33.38 7.34 63.74 6.40 17.08 6.52 41.04
37 5.74 6.80 5.82 6.44 5.08 8.52 6.60 33.64 7.36 64.06 6.36 16.96 6.42 40.98
38 6.00 6.96 5.80 6.78 5.24 8.44 6.76 33.80 7.30 64.68 6.48 16.96 6.50 41.16
39 6.22 7.04 6.06 6.78 5.30 8.44 6.74 34.42 7.50 65.44 6.60 16.94 6.60 41.12
40 6.06 7.08 6.16 7.02 5.40 8.44 6.90 34.82 7.60 65.60 6.48 16.88 6.68 41.18

Rejection frequencies (in %) at the 5% significance level, n = 300. In models: εt ∼ i.i.d. N(0,1), h1t =
1 + I(t/n > 0.5), h2t = t/n, rt ∼ GARCH(1,1), α = 0.2, β = 0.7.
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Table 3: Tests for zero serial correlation at lag k. Power of tests t̃k and tk.

xt AR(1) xt MA(1) xt = r21t xt = |r1t| xt = r22t xt = |r2t| xt = |εtεt−1|
φ = 0.2 θ = 0.2 r1t ARCH r1t ARCH r2t GARCH r2t GARCH εt iid

k t̃k tk t̃k tk t̃k tk t̃k tk t̃k tk t̃k tk t̃k tk
1 92.28 92.40 91.02 91.12 46.08 73.86 60.18 70.40 60.66 83.34 77.68 84.06 99.94 100
2 10.88 10.52 6.24 6.32 6.14 10.94 6.82 8.68 50.66 75.20 68.56 76.30 12.46 9.56
3 6.08 5.66 5.90 5.60 7.50 5.30 5.72 5.90 42.66 65.58 59.30 67.66 9.94 7.76
4 5.40 5.28 5.28 5.28 7.26 4.74 5.56 5.42 34.14 57.06 50.76 59.04 10.16 7.24
5 5.82 5.74 5.66 5.56 7.50 4.22 5.36 5.24 27.56 48.16 41.98 50.34 8.94 6.96
6 5.92 5.36 5.66 5.34 7.38 4.12 5.32 4.72 21.70 40.28 35.00 41.88 9.64 6.66
7 5.50 5.14 5.40 5.02 8.08 3.98 5.32 4.80 18.24 34.72 30.16 36.76 9.82 6.96
8 5.40 5.04 5.30 4.96 7.78 4.08 5.88 5.44 14.88 28.12 25.42 30.88 10.34 7.30
9 5.84 5.60 5.84 5.48 7.90 4.32 6.14 5.32 12.60 24.10 21.68 26.76 9.96 7.94
10 5.96 5.62 5.88 5.52 7.40 3.62 5.32 4.80 11.18 19.76 18.20 21.86 9.46 6.84
11 6.24 5.90 6.14 5.64 8.26 4.40 6.08 4.86 9.94 18.00 16.26 19.96 9.90 6.62
12 5.66 5.10 5.44 5.02 8.28 4.26 6.10 5.34 9.34 13.96 13.66 16.54 10.52 7.04
13 5.42 5.00 5.46 4.90 8.36 4.00 5.66 5.10 9.24 12.92 13.10 15.28 10.02 7.22
14 5.90 5.24 5.92 5.10 7.44 3.66 5.88 5.02 7.80 9.72 10.90 12.46 10.06 6.56
15 5.54 4.94 5.50 4.90 8.00 3.96 5.84 5.08 8.48 9.74 10.58 12.04 9.90 6.82
16 6.34 5.76 6.22 5.64 7.74 4.30 5.94 4.66 8.90 8.70 9.98 10.66 9.98 7.16
17 5.50 4.84 5.44 4.68 7.96 3.80 6.06 4.72 9.98 7.90 10.30 10.62 9.76 6.82
18 5.66 4.94 5.64 5.00 7.58 3.86 5.64 4.68 8.80 7.72 9.04 9.42 9.76 7.02
19 6.04 5.18 5.84 5.06 8.16 3.80 6.42 5.10 10.16 6.52 10.16 9.48 10.46 7.08
20 6.32 5.46 6.16 5.24 7.78 3.52 6.02 4.48 9.74 5.80 9.18 8.30 10.84 6.92

Rejection frequencies (in %) at the 5% significance level, n = 300. In models: εt ∼ i.i.d. N(0,1), r1t ∼ ARCH(1),
α = 0.2, r2t ∼ GARCH(1,1), α = 0.2, β = 0.7.

Table 4: Tests for zero serial correlation at lags 1, ...,m. Power of tests Q̃m and LBm.

xt AR(1) xt MA(1) xt = r21t xt = |r1t| xt = r22t xt = |r2t| xt = |εtεt−1|
φ = 0.2 θ = 0.2 r1t ARCH r1t ARCH r2t GARCH r2t GARCH εt iid

m Q̃m LBm Q̃m LBm Q̃m LBm Q̃m LBm Q̃m LBm Q̃m LBm Q̃m LBm

1 92.28 92.50 91.02 91.34 46.08 74.04 60.18 70.64 60.66 83.50 77.68 84.22 99.94 100
2 86.42 87.52 85.60 86.44 33.32 67.72 47.84 62.02 73.28 91.04 84.44 90.22 99.68 100
3 82.16 83.36 80.16 81.58 27.74 63.06 41.04 56.52 77.62 92.94 86.78 91.46 99.30 100
4 77.16 78.58 74.38 76.54 25.42 59.44 35.92 52.52 78.70 93.50 87.10 91.92 98.56 100
5 73.16 74.96 69.58 71.92 23.72 56.82 33.10 49.54 78.66 93.52 86.90 91.92 98.04 100
6 69.72 72.14 66.16 68.42 23.76 54.42 29.96 47.46 77.64 93.44 86.12 91.60 97.38 99.98
7 66.16 68.96 62.34 65.08 23.32 52.08 27.40 44.88 76.74 93.34 85.68 91.26 96.74 100
8 63.90 66.64 59.88 62.72 23.24 50.28 26.30 43.00 75.50 93.02 84.90 91.00 96.10 100
9 61.00 64.42 56.86 60.10 23.08 48.64 25.16 41.70 73.94 92.56 84.38 90.58 95.04 99.96
10 59.06 62.20 54.80 58.10 22.98 47.58 24.08 40.02 73.04 92.26 83.46 90.02 93.94 99.96
11 56.62 60.40 52.88 56.18 23.82 45.92 24.00 39.26 71.76 91.92 82.46 89.60 93.22 99.90
12 54.74 58.74 50.70 54.28 23.48 44.98 23.48 38.46 71.08 91.76 81.84 89.02 92.46 99.88
13 52.52 57.26 49.36 52.28 24.00 44.00 22.68 37.48 70.38 91.12 80.94 88.56 91.60 99.86
14 51.74 56.02 47.56 50.94 24.06 42.70 22.26 37.10 69.64 90.52 80.46 88.52 90.76 99.78
15 50.14 54.70 46.18 49.90 24.18 42.00 21.56 36.30 68.96 90.22 79.76 88.02 90.16 99.70
16 48.96 53.40 45.00 48.92 24.78 41.56 20.94 35.54 68.36 89.78 79.06 87.54 89.22 99.66
17 48.14 52.90 44.20 47.92 24.70 40.88 20.54 34.92 68.28 89.34 78.54 87.20 88.48 99.68
18 47.12 52.12 43.40 47.68 24.82 40.08 20.44 34.02 68.12 88.96 77.94 86.92 87.76 99.58
19 46.32 51.56 42.54 47.10 25.34 39.36 20.18 34.18 68.06 88.60 77.60 86.80 86.78 99.52
20 45.48 51.00 41.92 45.84 25.66 38.52 20.34 33.46 67.80 88.30 77.10 86.46 86.46 99.44

Rejection frequencies (in %) at the 5% significance level, n = 300. In models: εt ∼ i.i.d. N(0,1), r1t ∼ ARCH(1),
α = 0.2, r2t ∼ GARCH(1,1), α = 0.2, β = 0.7.
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Table 5: Tests for zero serial correlation at lag k. Spurious power of tests t̃k and tk.

xt = m1t + εt xt = m2t + εt xt = m3t + εt xt = m2t + h1tεt xt = (h1tεt)
2 xt = |h1tεt| xt = (m1t + εt)

2

εt iid εt iid εt iid εt iid εt iid εt iid εt iid

k t̃k tk t̃k tk t̃k tk t̃k tk t̃k tk t̃k tk t̃k tk
1 91.92 91.22 92.12 91.52 100 100 27.66 34.98 35.36 45.94 62.46 67.36 10.42 18.02
2 91.18 90.44 91.04 90.38 100 100 28.28 35.36 35.30 47.40 62.50 67.28 10.42 18.26
3 92.10 91.24 90.72 89.92 100 100 26.72 33.30 34.74 46.10 62.06 66.90 10.22 16.96
4 90.86 90.24 89.16 88.60 100 100 27.38 34.56 35.26 46.06 62.04 66.40 11.12 17.42
5 90.20 89.58 89.06 87.96 100 100 26.84 33.26 33.52 45.26 60.66 65.60 10.48 17.30
6 90.20 88.96 87.60 86.42 100 100 25.02 31.10 33.02 44.28 59.50 64.60 9.98 16.88
7 89.62 88.94 87.46 86.02 100 100 24.08 29.80 32.00 43.92 59.02 63.80 9.80 16.48
8 89.00 88.06 85.76 84.16 100 100 23.70 29.18 31.88 43.04 59.08 62.78 10.58 16.36
9 88.28 86.92 83.76 82.46 100 100 23.06 28.14 30.66 42.56 57.76 62.16 9.02 15.28
10 87.80 86.18 83.44 81.68 100 100 22.38 27.50 30.30 42.70 56.62 61.52 9.72 15.30
11 87.00 85.46 81.70 80.16 100 100 22.14 27.86 28.64 39.72 54.88 58.48 8.86 14.90
12 87.10 85.02 80.24 78.28 100 100 21.02 26.14 28.66 39.64 54.62 58.52 9.12 15.36
13 85.98 84.28 78.88 76.66 100 100 21.30 25.82 28.76 39.76 53.98 58.42 9.02 15.22
14 85.32 83.04 77.84 75.30 100 100 19.66 24.26 26.98 38.46 53.04 57.54 8.16 14.42
15 85.02 83.10 76.78 74.18 100 100 18.84 23.90 27.34 39.34 53.42 57.42 7.82 14.26
16 83.86 82.02 73.66 71.24 100 100 20.20 24.22 25.62 36.86 51.12 54.90 8.30 13.90
17 83.92 81.54 72.22 69.52 100 100 17.70 21.64 25.52 36.34 51.06 54.44 8.36 13.66
18 81.76 79.38 69.50 66.72 100 100 17.24 20.80 24.50 35.56 49.72 52.92 8.28 13.66
19 82.52 80.08 69.04 65.76 100 100 16.74 20.18 25.54 35.70 48.84 52.24 7.50 12.66
20 81.18 78.22 66.88 63.32 100 100 16.72 20.40 24.28 34.60 48.20 51.82 8.14 13.02

Rejection frequencies (in %) at the 5% significance level, n = 300. In models: εt ∼ i.i.d. N(0,1), m1t = I(t/n > 0.5),
m2t = I(0.25 < t/n ≤ 0.75), m3t = 0.01t, h1t = 1 + I(t/n > 0.5).

Table 6: Tests for zero serial correlation at lags 1, ...,m. Spurious power of tests Q̃m and LBm.

xt = m1t + εt xt = m2t + εt xt = m3t + εt xt = m2t + h1tεt xt = (h1tεt)
2 xt = |h1tεt| xt = (m1t + εt)

2

εt iid εt iid εt iid εt iid εt iid εt iid εt iid

m Q̃m LBm Q̃m LBm Q̃m LBm Q̃m LBm Q̃m LBm Q̃m LBm Q̃m LBm

1 91.92 91.40 92.12 91.60 100 100 27.66 35.26 35.36 46.24 62.46 67.66 10.42 18.32
2 97.88 97.74 97.98 97.70 100 100 37.92 48.62 49.94 65.10 79.20 84.22 13.08 24.18
3 99.30 99.22 98.98 98.92 100 100 44.76 56.64 61.92 76.58 87.02 91.18 14.78 28.70
4 99.68 99.66 99.42 99.42 100 100 50.36 63.04 70.14 83.72 91.34 94.68 17.36 32.90
5 99.72 99.70 99.72 99.76 100 100 54.82 68.48 75.20 88.28 94.28 96.84 19.42 36.74
6 99.84 99.84 99.82 99.84 100 100 57.82 71.58 79.06 91.46 95.56 97.82 20.36 39.78
7 99.90 99.92 99.84 99.86 100 100 60.64 74.90 82.06 93.96 96.68 98.60 22.44 41.64
8 99.88 99.92 99.94 99.94 100 100 63.02 77.40 84.60 95.18 97.20 98.88 24.08 44.78
9 99.86 99.92 99.92 99.96 100 100 64.68 79.30 86.36 96.16 97.88 99.20 25.58 46.82
10 99.86 99.94 99.92 99.98 100 100 66.14 80.88 87.88 97.16 98.20 99.38 27.02 48.98
11 99.84 99.96 99.84 99.98 100 100 68.12 82.12 88.88 97.50 98.58 99.56 28.00 50.56
12 99.60 99.98 99.64 99.98 100 100 68.98 82.90 90.10 97.98 98.64 99.62 28.96 51.36
13 99.40 99.98 99.50 99.98 100 100 70.26 84.08 90.84 98.36 98.92 99.66 29.44 52.70
14 98.96 100 99.06 99.98 99.70 100 70.92 84.90 91.44 98.66 99.00 99.74 30.76 54.02
15 98.46 100 98.56 99.98 99.70 100 70.90 85.70 92.36 98.88 99.10 99.74 31.14 55.36
16 98.34 100 98.20 100 99.58 100 71.92 86.16 92.90 98.96 99.18 99.78 31.48 56.52
17 97.56 100 98.02 100 99.36 100 72.30 86.88 93.24 99.02 99.20 99.80 32.06 57.28
18 96.64 100 97.72 100 99.24 100 72.20 87.08 93.70 99.02 99.28 99.84 32.96 58.02
19 96.54 100 96.90 99.98 99.14 100 72.78 87.60 93.86 99.12 99.34 99.86 33.50 58.76
20 95.98 100 96.26 100 99.00 100 72.92 87.98 94.20 99.30 99.36 99.86 33.98 59.40

Rejection frequencies (in %) at the 5% significance level, n = 300. In models: εt ∼ i.i.d. N(0,1), m1t = I(t/n > 0.5),
m2t = I(0.25 < t/n ≤< 0.75), m3t = 0.01t, h1t = 1 + I(t/n > 0.5).
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Table 7: Tests for zero cross-correlation at lag k. {xt} and {yt} independent. Size
of tests t̃xy,k, t̃yx,k, txy,k and tyx,k.

xt = h1tεt, εt iid xt = h1tεt, εt iid xt = r1t, r1t ARCH
yt = h1tηt, ηt iid yt = h3tηt, ηt iid yt = r2t, r2t GARCH

k t̃xy,k t̃yx,k txy,k tyx,k t̃xy,k t̃yx,k txy,k tyx,k t̃xy,k t̃yx,k txy,k tyx,k
0 4.50 4.50 9.22 9.22 4.64 4.64 11.00 11.00 5.08 5.08 5.26 5.26
1 4.48 5.46 8.42 10.18 4.38 5.54 10.08 12.02 5.04 5.20 4.88 5.18
2 5.30 5.02 10.10 8.96 5.26 4.96 11.88 11.12 5.30 5.06 5.02 5.02
3 5.30 5.00 9.34 9.68 5.30 5.20 11.04 12.18 4.52 5.02 4.56 4.98
4 5.10 5.34 8.90 9.50 5.00 5.30 10.68 11.20 4.52 5.20 4.36 5.10
5 5.26 5.12 9.20 9.22 5.24 5.28 11.42 11.10 4.70 4.84 4.76 4.70
6 5.26 4.60 8.98 8.00 5.30 4.70 10.66 9.82 5.32 4.64 4.98 4.66
7 4.86 4.78 8.48 8.34 4.92 4.96 10.24 10.44 4.92 5.34 4.70 4.90
8 4.52 4.68 8.14 8.22 4.58 4.46 10.04 10.04 4.96 5.24 4.64 5.02
9 4.40 5.04 7.98 8.44 4.64 4.76 9.80 9.96 4.82 5.02 4.58 4.66
10 5.10 4.74 8.36 7.96 5.12 4.60 10.04 9.70 4.80 4.50 4.66 4.56
11 4.62 5.12 8.38 8.80 4.68 5.44 9.96 10.84 4.50 5.08 4.02 4.72
12 4.84 4.80 8.24 8.18 4.74 4.66 9.74 9.98 4.80 4.90 4.54 4.54
13 5.04 4.62 7.88 8.38 4.86 4.64 9.66 10.44 4.98 5.10 4.72 4.44
14 4.82 5.12 7.60 8.24 4.88 5.04 9.40 10.64 5.22 5.18 4.36 4.36
15 4.36 4.70 7.58 8.16 4.38 4.60 9.40 10.16 4.56 5.06 4.16 4.88
16 5.42 4.84 8.26 7.82 5.44 4.70 9.64 9.94 5.54 4.86 5.02 4.24
17 5.04 5.00 8.12 8.08 4.96 5.14 9.08 10.06 5.02 4.56 4.36 3.96
18 4.86 4.80 7.86 7.86 5.00 4.92 9.40 9.76 4.54 5.26 4.20 4.54
19 5.06 5.00 7.68 7.74 4.80 4.94 8.84 9.62 5.10 4.78 4.54 4.24
20 4.76 5.30 7.38 7.78 4.54 5.08 8.42 9.90 5.08 5.18 4.46 4.42
21 5.02 4.66 7.70 7.60 5.00 4.96 8.86 9.62 4.74 4.80 4.22 3.88
22 5.02 5.30 7.68 8.12 5.16 5.28 9.42 9.72 4.76 4.88 4.14 4.18
23 4.88 5.48 7.26 8.34 4.68 5.54 8.84 10.20 4.80 5.40 4.38 4.50
24 4.64 5.50 7.10 8.16 4.84 5.46 8.30 9.98 4.38 5.34 3.74 4.28
25 4.98 5.08 6.78 7.40 4.94 5.10 8.04 9.44 4.86 4.60 3.80 3.78
26 5.42 5.78 7.86 8.18 5.36 5.82 8.96 9.84 4.66 5.10 3.92 4.18
27 5.16 4.90 7.08 7.02 4.94 5.10 8.12 8.96 4.96 4.56 4.02 3.54
28 5.08 5.20 6.80 6.64 4.70 5.18 7.90 8.34 4.84 5.64 4.06 4.36
29 5.52 5.28 7.30 7.24 5.30 5.06 8.30 9.32 5.62 5.36 4.50 4.20
30 4.54 4.56 6.46 6.28 4.58 4.50 7.36 8.50 4.66 4.80 3.82 3.72
31 4.20 5.06 6.20 7.00 4.40 4.90 7.12 8.60 4.38 4.90 3.22 3.80
32 4.82 5.04 6.42 6.80 4.72 4.76 7.48 8.34 5.20 5.22 3.92 4.30
33 4.52 4.46 6.56 5.98 4.64 4.64 7.44 7.52 4.52 4.74 3.32 3.76
34 4.92 5.04 6.44 6.92 4.68 5.28 7.32 8.76 5.12 5.04 3.92 4.00
35 4.60 4.72 6.24 6.08 4.68 4.66 7.16 7.62 4.74 5.02 3.90 3.78
36 4.80 4.68 6.20 6.08 4.94 4.72 7.18 8.08 5.14 5.10 3.92 3.72
37 5.50 5.06 6.44 6.20 5.38 5.08 7.22 8.16 4.70 4.72 3.46 3.52
38 4.80 4.46 6.02 5.38 4.70 4.64 6.70 7.00 4.92 4.62 3.44 3.42
39 5.18 4.60 6.06 5.74 5.12 4.60 6.66 7.42 5.42 5.04 3.84 3.64
40 5.04 4.98 5.92 5.88 5.06 5.06 6.70 7.80 4.42 5.30 3.22 3.92

Rejection frequencies (in %) at the 5% significance level, n = 300. In models: h1t = 1+ I(t/n >
0.5), h3t = 1+3I(t/n > 0.5), {εt} and {ηt} mutually independent i.i.d. N(0,1), r1t ∼ ARCH(1),
α = 0.2, r2t ∼ GARCH(1,1), α = 0.2, β = 0.7, {r1t} and {r2t} mutually independent.
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Table 8: Tests for zero cross-correlation at lags 0, 1, ...,m. {xt} and {yt} independent. Size of tests Q̃xy,m,

Q̃yx,m, HBxy,m and HByx,m.

xt = h1tεt, εt iid xt = h1tεt, εt iid xt = r1t, r1t ARCH
yt = h1tηt, ηt iid yt = h3tηt, ηt iid yt = r2t, r2t GARCH

m Q̃xy,m Q̃yx,m HBxy,m HByx,m Q̃xy,m Q̃yx,m HBxy,m HByx,m Q̃xy,m Q̃yx,m HBxy,m HByx,m

0 4.50 4.50 9.22 9.22 4.64 4.64 11.00 11.00 5.08 5.08 5.26 5.26
1 4.40 4.72 10.40 11.16 4.56 4.46 13.12 14.38 5.10 4.90 5.32 4.96
2 4.72 4.54 12.22 12.78 4.46 4.52 16.30 16.46 5.10 4.80 5.30 4.92
3 4.82 4.88 14.02 13.86 4.84 4.74 18.28 18.34 5.30 5.00 5.40 5.16
4 4.62 4.92 14.92 14.88 4.50 4.76 20.16 20.58 4.58 5.12 4.86 5.30
5 4.44 4.78 15.94 15.72 4.58 4.66 21.62 22.50 4.84 5.20 5.16 5.12
6 4.78 4.30 17.04 16.38 4.82 4.38 23.84 23.96 4.74 5.16 5.14 5.10
7 4.92 4.44 17.70 17.80 5.00 4.54 25.12 25.62 4.78 4.84 4.90 5.10
8 4.82 4.54 18.74 19.04 4.78 4.60 26.96 26.74 4.64 4.96 5.02 5.14
9 5.00 4.72 19.22 19.72 4.80 4.58 27.54 28.88 4.66 4.80 4.88 5.32
10 5.10 4.28 19.90 19.68 4.84 4.40 29.10 29.82 4.70 4.86 4.76 5.14
11 4.82 4.42 20.84 20.98 4.70 4.70 30.30 31.08 4.42 4.90 4.48 5.26
12 4.76 4.50 21.10 21.72 4.88 4.38 31.28 32.18 4.32 4.60 4.88 5.16
13 4.80 4.46 21.90 22.70 4.94 4.22 31.98 33.80 4.40 4.48 4.98 5.14
14 4.68 4.28 22.70 23.08 4.62 4.40 33.06 35.22 4.56 4.46 4.96 5.14
15 4.68 4.44 23.30 23.98 4.44 4.22 34.02 35.86 4.62 4.52 4.92 5.14
16 4.70 4.56 25.10 24.90 4.48 4.48 34.84 38.02 4.66 4.36 5.28 5.26
17 4.42 4.56 24.98 25.64 4.38 4.38 36.46 39.36 4.74 4.56 5.20 4.94
18 4.66 4.46 25.56 26.24 4.40 4.58 37.20 40.12 4.72 4.62 5.36 5.08
19 4.56 4.42 26.22 26.92 4.34 4.42 38.26 40.90 4.86 4.48 5.50 5.20
20 4.40 4.14 26.78 27.58 4.26 4.44 38.72 41.90 4.78 4.56 5.58 5.46
21 4.32 4.38 27.28 28.26 4.12 4.38 40.12 42.50 4.80 4.54 5.56 5.32
22 4.06 4.48 27.64 28.60 3.92 4.42 41.24 44.32 4.62 4.82 5.40 5.20
23 4.06 4.38 28.68 29.62 3.86 4.28 41.82 45.40 4.66 4.92 5.26 5.52
24 4.20 4.20 29.40 30.10 4.08 4.22 42.86 46.80 4.68 4.70 5.36 5.48
25 4.10 4.00 30.02 30.68 4.08 4.28 43.30 47.84 4.76 4.94 5.36 5.52
26 4.16 4.18 30.66 31.66 4.08 4.06 44.72 49.04 4.28 4.70 5.20 5.32
27 4.08 4.34 31.28 32.50 4.02 4.44 44.78 49.88 4.22 4.54 5.18 5.44
28 4.08 4.36 31.68 32.78 4.18 4.48 45.86 50.20 4.50 4.70 5.46 5.44
29 3.92 4.52 32.04 32.86 4.12 4.48 46.86 51.24 4.58 4.58 5.42 5.72
30 3.98 4.82 32.32 34.18 4.24 4.52 47.42 51.86 4.34 4.58 5.32 5.84
31 3.96 4.48 32.56 34.58 4.08 4.34 47.78 52.56 4.28 4.60 4.90 5.70
32 4.18 4.54 32.90 34.88 4.22 4.44 48.12 53.08 4.54 4.42 5.14 5.80
33 4.24 4.34 33.00 34.96 4.08 4.10 48.84 53.82 4.34 4.46 5.20 5.74
34 4.20 4.52 33.44 35.70 4.08 4.48 49.56 54.74 4.44 4.34 4.98 5.70
35 4.32 4.62 34.08 36.24 4.26 4.58 49.66 55.60 4.64 4.68 5.12 5.78
36 4.52 4.52 34.32 36.20 4.32 4.50 50.34 56.54 4.76 4.82 5.30 5.68
37 4.48 4.58 34.62 36.42 4.30 4.48 50.62 56.76 4.60 4.56 5.18 5.80
38 4.42 4.56 35.12 36.94 4.40 4.58 51.22 57.52 4.56 4.48 5.30 5.78
39 4.50 4.48 35.80 37.32 4.70 4.50 51.24 57.82 4.64 4.72 5.20 5.74
40 4.36 4.54 35.80 37.88 4.64 4.68 51.88 58.48 4.38 4.80 5.48 5.90

Rejection frequencies (in %) at the 5% significance level, n = 300. In models: h1t = 1+I(t/n > 0.5), h3t = 1+3I(t/n > 0.5),
{εt} and {ηt} mutually independent i.i.d. N(0,1), r1t ∼ ARCH(1), α = 0.2, r2t ∼ GARCH(1,1), α = 0.2, β = 0.7, {r1t} and
{r2t} mutually independent.

15



Table 9: Tests for zero cross-correlation at lag k. {xt} and {yt} independent.
Size of tests t̃xy,k, t̃yx,k, txy,k and tyx,k.

xt = εt, εt iid xt = h1tεt, εt iid xt = εt, εt iid
yt = m1t + h1tηt, ηt iid yt = m1t + ηt, ηt iid yt AR(1), φ = 0.7

k t̃xy,k t̃yx,k txy,k tyx,k t̃xy,k t̃yx,k txy,k tyx,k t̃xy,k t̃yx,k txy,k tyx,k
0 4.84 4.84 4.96 4.96 4.86 4.86 4.86 4.86 5.06 5.06 4.92 4.92
1 4.94 4.88 4.84 5.16 4.74 5.10 4.84 5.12 4.84 4.88 5.06 4.72
2 5.42 5.62 5.46 5.74 5.32 5.40 5.32 5.50 5.10 5.10 4.96 4.92
3 5.04 5.30 4.66 5.54 4.84 5.34 4.86 5.12 4.42 5.28 4.30 5.16
4 4.72 5.40 4.78 5.42 4.92 4.86 5.06 4.80 4.64 5.06 4.20 5.12
5 5.22 4.98 4.72 5.00 5.06 5.14 5.00 4.62 5.32 5.12 5.30 4.84
6 5.48 4.32 5.24 4.12 5.46 4.44 5.54 3.92 4.80 4.72 4.54 4.40
7 4.90 5.40 4.54 5.30 4.52 5.24 4.54 4.76 5.06 4.94 4.86 4.70
8 4.74 4.76 4.38 4.62 4.96 4.82 5.14 4.48 4.82 4.74 4.54 4.38
9 4.42 5.68 4.10 5.16 4.58 5.42 4.62 5.14 4.92 5.44 4.54 5.36
10 4.98 4.98 4.64 4.88 5.18 4.62 5.28 4.32 4.92 4.72 4.66 4.50
11 4.60 5.04 3.80 4.72 4.90 4.78 4.86 4.10 5.02 4.62 4.80 4.20
12 5.04 4.96 4.14 4.64 5.16 4.70 5.06 4.10 5.10 5.02 4.68 4.44
13 5.20 5.04 4.38 4.72 5.12 5.04 4.82 4.34 4.96 4.94 4.26 4.48
14 5.24 5.16 4.54 4.80 5.28 4.80 5.18 4.04 4.76 4.98 4.30 4.58
15 4.98 5.18 4.34 4.94 5.02 4.82 4.86 4.08 5.26 5.12 4.90 4.68
16 6.04 4.90 5.02 4.50 6.14 5.04 5.80 4.06 5.08 4.58 4.34 4.02
17 5.10 5.16 4.38 4.84 5.44 5.06 5.14 4.20 5.18 4.86 4.32 4.12
18 4.90 4.92 3.76 4.66 4.90 4.52 4.92 3.58 5.08 4.88 4.54 4.28
19 5.18 4.50 4.16 4.38 5.08 4.36 5.06 3.40 5.00 4.64 4.20 4.00
20 4.98 5.58 4.14 5.26 5.18 5.48 4.94 4.34 4.40 5.40 3.86 4.58
21 4.92 4.54 3.62 4.28 5.42 4.72 4.92 3.50 4.26 5.22 3.66 4.28
22 5.02 5.16 3.94 5.28 5.06 4.84 4.86 4.08 4.64 5.32 3.84 4.46
23 4.56 5.42 3.44 5.20 5.04 5.34 4.58 3.60 4.68 5.44 4.14 4.66
24 4.62 5.36 3.54 5.00 5.10 5.04 5.00 3.72 4.54 5.08 3.54 4.02
25 5.06 4.98 3.70 4.90 5.36 4.84 5.14 3.50 4.96 4.90 4.16 4.06
26 5.06 5.40 3.68 5.12 5.20 5.16 4.84 3.50 5.30 4.82 4.38 3.98
27 4.92 4.94 3.64 4.58 5.34 4.94 4.88 3.42 4.72 4.36 3.80 3.68
28 4.80 5.06 3.48 4.60 5.30 5.12 5.20 3.52 5.12 4.96 3.80 3.92
29 5.18 5.24 3.44 4.54 5.18 5.40 4.94 3.54 5.26 4.94 4.26 3.90
30 5.38 4.50 3.56 4.16 5.64 4.10 5.22 2.68 4.78 4.74 3.76 3.82
31 4.36 5.10 2.84 4.68 4.72 4.66 4.32 2.84 5.82 4.94 4.24 3.62
32 4.48 4.96 3.02 4.54 5.06 4.78 4.40 3.12 5.12 4.98 3.66 3.68
33 4.66 4.40 3.10 3.88 4.88 4.32 4.64 2.58 4.98 5.04 3.86 3.74
34 4.84 4.96 3.04 4.66 4.98 4.60 4.50 2.96 5.22 4.96 4.02 3.58
35 4.96 5.00 3.32 4.68 5.16 4.56 4.76 2.58 5.28 5.02 3.84 3.94
36 5.18 4.46 2.94 4.04 5.36 4.22 4.62 2.50 5.02 4.96 3.72 3.58
37 4.68 4.76 2.92 4.24 5.06 4.38 4.58 2.26 5.18 4.42 3.90 3.22
38 4.70 4.72 2.68 4.10 5.44 4.64 4.72 2.64 4.90 4.54 3.72 2.96
39 5.38 4.86 3.02 3.98 5.84 4.46 5.40 2.56 5.04 4.38 3.72 3.34
40 4.72 5.14 3.04 4.52 4.66 4.66 4.28 2.48 4.46 4.72 3.06 3.46

Rejection frequencies (in %) at the 5% significance level, n = 300. In models: {εt} and {ηt}
mutually independent i.i.d. N(0,1), m1t = I(t/n > 0.5), h1t = 1 + I(t/n > 0.5).
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Table 10: Tests for zero cross-correlation at lags 0, 1, ...,m. {xt} and {yt} independent. Size of tests Q̃xy,m,

Q̃yx,m, HBxy,m and HByx,m.

xt = εt, εt iid xt = h1tεt, εt iid xt = εt, εt iid
yt = m1t + h1tηt, ηt iid yt = m1t + ηt, ηt iid yt AR(1), φ = 0.7

m Q̃xy,m Q̃yx,m HBxy,m HByx,m Q̃xy,m Q̃yx,m HBxy,m HByx,m Q̃xy,m Q̃yx,m HBxy,m HByx,m

0 4.84 4.84 4.96 4.96 4.86 4.86 4.86 4.86 5.06 5.06 4.92 4.92
1 4.84 4.98 5.16 4.86 5.20 4.74 5.28 5.04 4.84 6.34 6.76 6.48
2 5.24 5.04 5.20 5.14 5.50 5.54 5.74 5.44 4.96 7.50 8.36 7.74
3 5.32 4.98 5.72 5.30 5.80 5.54 6.14 5.74 6.50 8.82 8.80 9.04
4 5.14 5.20 5.14 5.34 6.08 5.88 6.12 5.98 8.40 9.66 8.84 9.78
5 5.14 5.74 5.22 5.68 6.52 6.50 6.58 6.36 11.80 10.16 9.46 10.38
6 4.94 5.50 5.18 5.50 6.62 6.34 6.84 6.50 14.90 10.52 9.78 10.58
7 5.22 5.14 5.26 5.76 7.28 6.18 7.30 6.40 18.70 10.78 10.04 10.82
8 5.08 5.16 5.10 5.74 8.14 6.40 7.30 6.58 21.54 11.46 9.90 11.44
9 4.82 5.48 5.28 5.90 8.66 6.64 7.60 6.72 23.30 11.12 9.88 11.18
10 4.92 5.12 5.54 5.74 10.12 6.94 7.98 6.74 23.38 11.32 10.36 11.58
11 5.22 5.34 5.24 6.00 11.22 7.18 8.22 6.96 22.68 11.64 10.92 11.68
12 5.04 5.52 5.06 6.40 12.04 7.30 8.48 7.48 22.52 11.66 11.02 11.90
13 5.20 5.58 5.40 6.16 13.40 7.54 8.54 7.64 23.06 11.78 11.18 11.90
14 5.24 5.30 5.24 6.22 14.84 7.44 8.62 7.90 22.36 11.62 11.50 11.80
15 5.40 5.56 4.98 6.64 16.02 7.64 8.68 7.72 22.34 11.98 11.80 12.18
16 5.42 5.56 5.40 6.60 16.50 7.80 9.56 8.00 22.60 12.00 11.86 12.12
17 5.48 5.72 5.34 6.64 17.10 7.96 9.40 7.88 23.14 12.26 12.02 12.24
18 5.72 5.70 5.30 6.78 17.24 8.18 9.46 8.14 23.22 12.58 12.40 12.62
19 5.76 5.58 5.16 6.92 18.44 8.28 9.74 8.10 23.70 12.54 12.24 12.82
20 5.82 5.74 5.26 7.14 19.12 8.60 9.88 7.90 23.70 12.58 11.98 12.76
21 6.28 5.94 5.06 7.26 20.08 8.60 10.02 8.16 23.46 12.44 12.08 12.80
22 6.32 6.08 5.08 7.48 19.58 8.64 10.10 8.34 24.10 12.82 12.34 12.96
23 6.34 5.84 5.00 7.38 19.68 8.90 10.26 8.36 23.58 13.08 12.08 13.34
24 6.10 5.98 5.26 7.44 19.38 8.82 10.68 8.28 24.40 13.38 12.12 13.34
25 6.40 6.30 5.26 7.74 19.22 8.76 10.92 8.12 24.42 13.24 12.44 13.50
26 6.56 6.22 5.20 7.80 20.50 8.84 10.96 8.22 24.90 13.16 12.60 13.72
27 6.74 6.10 5.18 7.76 20.56 9.02 10.86 8.20 25.22 13.20 12.70 13.78
28 6.76 6.40 5.00 8.18 20.56 8.88 11.18 8.20 24.10 12.86 12.74 13.50
29 6.96 6.46 4.96 8.22 20.00 8.96 11.56 8.44 23.76 13.12 12.64 13.74
30 7.36 6.54 5.00 8.24 20.22 9.04 11.90 8.22 23.48 13.10 12.60 13.36
31 7.82 6.30 5.04 8.22 20.32 9.04 11.66 8.32 23.64 13.04 13.08 13.34
32 7.90 6.44 5.28 8.44 20.64 9.42 12.06 8.12 23.66 13.52 13.16 13.36
33 7.84 6.58 5.12 8.70 21.24 9.48 12.22 8.34 23.62 13.54 13.30 13.68
34 8.14 6.70 5.02 9.00 21.38 9.66 12.34 8.42 23.74 13.68 13.60 13.76
35 8.22 6.96 5.18 9.12 20.98 9.76 12.50 8.38 23.62 13.78 13.80 13.70
36 8.40 6.92 5.42 9.34 21.16 9.64 12.74 8.46 23.12 13.54 13.72 13.74
37 8.84 6.94 5.26 9.34 20.96 9.50 12.88 8.40 23.34 13.46 13.70 13.64
38 8.88 6.82 5.08 9.24 20.98 9.64 13.32 8.28 22.98 13.22 13.62 13.74
39 8.82 6.76 5.04 9.72 21.22 9.54 13.54 8.34 22.42 13.24 13.80 13.50
40 8.88 6.92 4.98 9.94 21.90 9.76 13.54 8.24 22.52 12.90 13.96 13.34

Rejection frequencies (in %) at the 5% significance level, n = 300. In models: {εt} and {ηt} mutually independent i.i.d.
N(0,1), m1t = I(t/n > 0.5), h1t = 1 + I(t/n > 0.5).
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Table 11: Tests for zero cross-correlation at lag k. {xt} and {yt} uncorrelated (not
independent). Size of tests t̃xy,k, t̃yx,k, txy,k and tyx,k.

xt = εt, εt iid xt = εt, εt iid xt = εt, εt iid
yt = |εt|ηt, ηt iid yt = εtεt−1 yt = exp(zt)ηt, zt = 0.7zt−1 + εt

k t̃xy,k t̃yx,k txy,k tyx,k t̃xy,k t̃yx,k txy,k tyx,k t̃xy,k t̃yx,k txy,k tyx,k
0 5.14 5.14 24.68 24.68 4.62 4.62 24.36 24.36 3.38 3.38 29.92 29.92
1 4.88 4.92 4.90 5.02 4.84 5.02 4.60 25.74 3.88 3.86 4.56 16.44
2 4.90 4.96 5.02 5.08 4.72 4.84 4.64 4.66 4.02 4.04 4.26 9.80
3 4.28 5.34 4.24 5.22 5.14 5.30 5.10 4.92 3.68 3.50 4.80 6.14
4 4.42 5.12 4.54 5.06 5.28 4.80 5.12 4.68 4.10 3.38 4.86 5.50
5 4.82 4.72 4.82 4.94 5.22 4.88 5.10 4.58 3.66 3.92 5.06 5.16
6 4.36 4.70 4.50 4.62 5.18 5.04 4.66 4.74 3.60 3.34 4.50 4.88
7 4.68 5.48 4.36 4.90 5.34 4.80 4.88 4.62 4.04 3.66 4.94 4.42
8 5.00 4.80 4.24 4.56 4.58 4.90 4.40 4.62 4.04 4.00 4.84 4.82
9 4.70 5.48 4.38 4.88 4.56 5.12 4.18 4.80 3.84 4.08 4.38 4.34
10 4.92 4.94 4.72 4.76 4.60 4.84 4.34 4.58 3.78 4.18 4.56 4.98
11 4.86 5.08 4.20 4.52 4.96 4.86 4.90 4.50 3.80 4.34 4.20 4.58
12 4.86 5.46 4.58 5.14 5.04 4.78 4.80 4.32 4.04 3.52 4.64 4.56
13 4.42 5.12 3.96 4.84 4.88 5.10 4.30 4.48 3.50 4.36 3.74 4.70
14 4.90 4.90 4.76 4.60 4.52 4.60 4.10 4.58 3.42 3.66 4.00 4.54
15 4.96 4.98 4.30 4.52 4.88 4.52 4.46 4.10 3.66 4.06 3.76 4.54
16 5.34 4.92 4.76 4.62 5.34 5.00 4.44 4.72 3.86 3.86 4.44 4.62
17 5.32 4.74 4.96 4.26 4.70 4.54 4.30 4.02 4.32 3.60 5.14 4.10
18 4.80 4.40 4.16 3.98 4.60 5.04 3.98 4.24 4.10 3.80 4.38 4.00
19 5.08 5.22 4.46 4.48 5.22 5.00 4.28 4.44 4.06 4.00 4.44 4.08
20 4.96 4.90 4.36 4.54 5.40 5.20 4.56 4.14 4.02 4.20 4.44 4.26
21 5.02 4.82 4.30 4.36 4.38 5.24 3.74 3.84 3.88 3.72 4.30 4.32
22 4.46 5.08 3.76 4.46 4.78 4.90 4.00 3.88 3.34 4.08 3.70 4.00
23 4.60 5.06 3.94 4.38 5.42 4.66 4.28 4.00 4.06 4.28 4.44 4.62
24 4.76 4.92 4.02 4.28 4.94 4.74 3.84 3.76 3.86 4.22 3.94 4.50
25 5.28 5.00 4.40 4.30 5.24 4.82 4.08 4.02 3.92 3.90 4.38 3.76
26 4.96 5.10 4.28 4.10 4.62 4.58 3.70 3.66 3.80 4.14 3.98 3.72
27 5.04 4.60 4.10 3.76 4.96 5.02 3.84 3.82 3.56 3.86 3.86 3.98
28 5.02 4.90 4.00 3.90 5.30 4.96 3.88 3.94 3.30 4.20 3.44 3.70
29 5.36 5.18 4.08 4.02 4.52 4.78 3.64 3.88 4.02 3.58 3.66 3.96
30 4.48 4.30 3.48 3.54 5.04 4.64 3.94 3.52 4.00 3.62 4.16 3.98
31 4.34 5.14 3.44 3.80 5.00 4.70 3.72 3.56 3.80 3.66 3.84 3.60
32 5.44 5.34 3.80 3.88 4.86 4.68 3.66 3.44 4.40 3.84 3.80 4.16
33 4.44 4.96 3.42 4.06 4.84 4.82 3.26 3.42 3.90 3.48 3.80 4.06
34 5.18 5.38 4.20 4.04 4.68 4.74 3.48 3.66 3.62 3.70 3.56 4.00
35 3.98 4.82 3.36 3.84 4.92 4.66 3.96 3.84 4.14 3.98 3.90 3.80
36 5.06 4.48 3.64 3.30 4.62 4.80 3.52 3.70 3.94 4.22 4.04 4.02
37 5.04 4.40 3.76 3.46 4.78 4.50 3.34 3.12 3.62 3.18 3.54 3.16
38 5.36 4.92 3.72 3.76 4.96 5.06 3.50 3.54 3.22 3.66 3.84 4.10
39 5.30 4.70 3.84 3.54 4.76 4.70 3.44 3.40 4.14 3.52 3.98 3.84
40 4.58 4.76 3.24 3.56 4.62 5.18 3.30 3.94 4.16 4.30 3.90 3.76

Rejection frequencies (in %) at the 5% significance level, n = 300. In models: {εt} and {ηt} mutually
independent i.i.d. N(0,1).
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Table 12: Tests for zero cross-correlation at lags 0, 1, ...,m. {xt} and {yt} uncorrelated (not independent).

Size of tests Q̃xy,m, Q̃yx,m, HBxy,m and HByx,m.

xt = εt, εt iid xt = εt, εt iid xt = εt, εt iid
yt = |εt|ηt, ηt iid yt = εtεt−1 yt = exp(zt)ηt, zt = 0.7zt−1 + εt

m Q̃xy,m Q̃yx,m HBxy,m HByx,m Q̃xy,m Q̃yx,m HBxy,m HByx,m Q̃xy,m Q̃yx,m HBxy,m HByx,m

0 5.14 5.14 24.68 24.68 4.62 4.62 24.36 24.36 3.38 3.38 29.92 29.92
1 4.58 5.10 20.46 20.68 4.42 4.90 19.74 34.50 3.62 5.22 23.98 30.74
2 4.86 4.62 19.30 18.94 4.76 4.92 17.54 30.44 3.30 5.22 20.92 29.74
3 4.58 4.84 17.78 17.08 4.42 4.96 16.16 27.80 2.94 5.10 18.34 28.26
4 4.32 4.64 16.16 15.76 4.68 5.02 15.44 25.92 3.00 5.14 17.04 27.38
5 4.48 4.76 14.98 15.06 4.94 4.82 15.06 24.48 2.88 5.02 16.64 26.48
6 4.50 4.82 13.98 14.74 4.54 4.90 14.00 22.88 2.84 4.60 15.94 24.98
7 4.70 4.54 13.68 13.98 4.74 4.78 13.46 21.88 2.90 4.64 15.12 24.34
8 4.28 4.60 12.78 13.26 4.56 4.80 13.14 20.72 2.76 4.40 14.80 22.96
9 4.38 4.62 12.68 13.20 4.46 4.86 12.54 20.44 2.76 4.04 14.08 22.28
10 4.04 4.48 12.00 12.80 4.50 4.68 11.86 19.30 2.76 4.16 13.46 21.78
11 4.38 4.42 11.60 12.48 4.36 4.92 11.30 19.36 2.78 4.28 13.14 21.06
12 4.26 4.58 11.58 12.44 4.60 4.94 11.28 19.14 2.74 4.30 13.06 20.10
13 4.34 4.32 10.96 11.32 4.60 5.06 11.24 18.14 2.94 4.32 12.30 19.68
14 4.30 4.36 10.90 11.32 4.34 4.94 10.56 17.60 2.86 4.26 12.02 19.82
15 4.46 4.32 10.86 11.20 3.96 4.94 10.38 17.02 2.84 4.38 11.72 19.44
16 4.72 4.22 10.84 10.82 4.12 5.02 10.32 16.90 2.82 4.48 11.48 19.36
17 4.80 4.34 10.62 10.54 3.98 4.82 9.90 16.78 2.76 4.18 11.60 18.80
18 5.02 4.56 10.40 10.44 4.08 4.68 9.58 16.52 2.86 4.08 11.18 18.10
19 4.74 4.62 10.42 10.20 4.14 4.64 9.44 16.40 3.02 4.08 11.08 17.74
20 4.84 4.62 10.42 10.20 4.22 4.68 9.10 16.00 3.22 4.00 10.90 17.32
21 4.94 4.62 10.24 10.26 4.24 4.88 9.28 15.90 3.14 3.82 10.44 17.18
22 4.70 4.48 9.98 9.98 4.26 5.02 9.08 15.62 3.10 3.96 10.52 16.80
23 4.66 4.40 9.52 9.84 4.12 4.92 8.56 15.30 3.22 3.98 10.56 16.64
24 4.78 4.86 9.54 9.64 4.16 4.84 8.54 14.98 3.24 4.00 10.46 16.50
25 4.80 4.76 9.06 9.66 4.30 4.92 8.66 14.48 3.44 3.80 10.34 16.28
26 4.42 4.62 9.14 9.60 4.26 4.98 8.48 14.28 3.02 3.78 9.78 16.24
27 4.64 4.82 9.60 9.52 4.22 4.90 8.46 13.96 3.12 3.62 9.74 16.24
28 4.80 4.72 9.24 9.48 4.32 5.20 8.42 13.94 3.06 3.62 9.52 16.36
29 4.74 4.72 9.28 9.06 4.46 5.18 8.28 13.78 3.04 3.76 9.46 16.02
30 4.70 4.58 9.26 9.12 4.26 5.16 8.52 13.62 2.94 3.58 9.74 15.52
31 4.76 4.82 8.76 9.28 4.38 5.06 8.52 13.10 2.90 3.64 9.44 15.68
32 4.68 4.68 8.86 9.26 4.34 4.92 8.26 13.14 2.98 3.58 9.52 15.56
33 4.34 4.62 8.60 8.76 4.42 4.68 8.36 12.82 2.96 3.58 9.56 15.34
34 4.40 4.64 8.58 9.00 4.46 5.02 8.08 12.50 2.96 3.66 9.54 15.18
35 4.42 4.64 8.42 8.62 4.44 4.96 8.12 12.78 2.76 3.96 9.80 15.34
36 4.48 4.62 8.60 8.66 4.34 5.00 7.94 12.62 2.92 3.98 9.54 15.16
37 4.34 4.50 8.52 8.50 4.48 5.00 8.18 12.44 3.04 3.78 9.78 15.28
38 4.40 4.36 8.34 8.48 4.40 5.00 8.06 12.36 3.24 3.66 9.66 15.00
39 4.38 4.52 8.24 8.42 4.38 5.14 7.98 12.22 3.22 3.70 9.98 15.06
40 4.46 4.62 8.02 8.38 4.60 5.20 7.66 12.06 3.02 3.78 9.84 14.98

Rejection frequencies (in %) at the 5% significance level, n = 300. In models: {εt} and {ηt} mutually independent i.i.d.
N(0,1).
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Table 13: Tests for zero cross-correlation at lag k. Power of tests t̃xy,k, t̃yx,k, txy,k and tyx,k.

xt = r1t, r1t = σ1tεt ARCH xt = h1tεt xt = h1tεt
yt = r2t, r2t = σ2tεt GARCH yt = xt + xt−1 + xt−2 + h1tηt yt = m1t + xt + xt−1 + xt−2 + h1tηt

k t̃xy,k t̃yx,k txy,k tyx,k t̃xy,k t̃yx,k txy,k tyx,k t̃xy,k t̃yx,k txy,k tyx,k
0 100 100 100 100 100 100 100 100 100 100 100 100
1 4.46 4.48 9.06 9.74 4.98 100 6.74 100 4.84 100 6.42 100
2 4.92 4.82 5.50 9.58 4.92 100 6.94 100 5.00 100 6.80 100
3 4.94 4.82 4.46 8.86 4.90 5.02 6.60 6.80 4.78 4.66 6.70 6.30
4 4.88 4.66 4.72 8.40 4.52 5.34 6.48 6.98 4.80 4.86 6.18 6.76
5 5.10 4.86 4.56 7.66 4.74 4.88 6.24 6.32 4.78 5.10 6.52 6.60
6 4.66 4.76 4.36 7.44 4.58 4.88 5.68 6.54 4.64 5.16 6.00 6.38
7 4.62 4.76 4.34 7.08 5.08 5.12 6.58 6.44 5.18 4.90 6.46 6.28
8 4.74 4.32 4.12 6.20 4.70 5.16 6.22 6.36 4.64 4.98 6.22 6.56
9 5.00 4.82 4.38 6.72 4.98 5.10 6.58 6.44 5.14 4.96 6.48 6.08
10 5.20 5.04 4.28 6.28 4.56 4.84 5.98 6.34 4.74 4.98 5.98 6.26
11 4.64 4.70 4.06 5.76 4.66 4.98 6.06 5.96 4.60 5.14 6.02 6.16
12 4.72 4.72 3.64 5.34 5.10 4.72 7.00 5.64 5.24 4.66 6.84 5.46
13 5.28 5.02 4.42 5.50 5.02 4.70 6.28 5.68 5.08 4.70 6.22 5.52
14 5.42 5.36 4.56 5.60 5.10 5.40 6.34 6.00 5.38 4.86 6.68 5.64
15 4.80 4.82 3.86 4.88 5.28 5.10 6.58 5.90 5.30 4.98 6.40 5.86
16 5.08 5.48 4.34 5.78 4.82 5.02 5.72 5.90 5.12 4.94 6.10 5.54
17 4.84 4.58 3.88 4.60 5.18 5.18 6.12 6.06 5.06 5.20 6.38 5.86
18 5.04 4.86 4.18 4.74 5.02 4.50 6.00 5.20 5.12 4.48 6.14 4.94
19 4.96 4.92 3.84 4.66 5.12 4.74 6.20 5.44 5.28 4.86 6.04 5.50
20 5.50 5.26 4.40 4.84 4.58 4.82 5.50 5.52 4.50 4.70 5.62 5.28

Rejection frequencies (in %) at the 5% significance level, n = 300. In models: {εt} and {ηt} mutually
independent i.i.d. N(0,1), r1t ∼ ARCH(1), α = 0.2, r2t ∼ GARCH(1,1), α = 0.2, β = 0.7, m1t = I(t/n >
0.5), h1t = 1 + I(t/n > 0.5).

Table 14: Tests for zero cross-correlation at lags 0, 1, ...,m. Power of tests Q̃xy,m, Q̃yx,m, HBxy,m and
HByx,m.

xt = r1t, r1t = σ1tεt ARCH xt = h1tεt xt = h1tεt
yt = r2t, r2t = σ2tεt GARCH yt = xt + xt−1 + xt−2 + h1tηt yt = m1t + xt + xt−1 + xt−2 + h1tηt

m Q̃xy,m Q̃yx,m HBxy,m HByx,m Q̃xy,m Q̃yx,m HBxy,m HByx,m Q̃xy,m Q̃yx,m HBxy,m HByx,m

0 100 100 100 100 100 100 100 100 100 100 100 100
1 100 100 100 100 100 100 100 100 100 100 100 100
2 100 100 100 100 100 100 100 100 100 100 100 100
3 100 100 100 100 100 100 100 100 100 100 100 100
4 100 100 100 100 100 100 100 100 99.94 100 100 100
5 100 100 100 100 99.98 100 99.98 100 99.90 100 99.98 100
6 100 100 100 100 99.92 100 99.96 100 99.88 100 99.96 100
7 100 100 100 100 99.90 100 99.94 100 99.82 100 99.94 100
8 100 100 100 100 99.86 100 99.94 100 99.84 100 99.94 100
9 100 100 100 100 99.74 100 99.94 100 99.62 100 99.94 100
10 100 100 100 100 99.68 100 99.94 100 99.50 100 99.94 100
11 100 100 100 100 99.64 100 99.94 100 99.38 100 99.94 100
12 100 100 100 100 99.60 100 99.94 100 99.20 100 99.94 100
13 100 100 100 100 99.52 100 99.90 100 99.22 100 99.90 100
14 100 100 100 100 99.44 100 99.92 100 98.98 100 99.90 100
15 100 100 100 100 99.32 100 99.92 100 98.68 100 99.90 100
16 100 100 100 100 99.20 100 99.92 100 98.64 100 99.90 100
17 100 100 100 100 99.10 100 99.92 100 98.44 100 99.86 100
18 100 100 100 100 98.92 100 99.88 100 98.08 100 99.84 100
19 100 100 100 100 98.62 100 99.88 100 97.82 100 99.80 100
20 100 100 100 100 98.28 100 99.88 100 97.30 100 99.78 100

Rejection frequencies (in %) at the 5% significance level, n = 300. In models: {εt} and {ηt} mutually independent i.i.d.
N(0,1), r1t ∼ ARCH(1), α = 0.2, r2t ∼ GARCH(1,1), α = 0.2, β = 0.7, m1t = I(t/n > 0.5), h1t = 1 + I(t/n > 0.5).
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Table 15: Tests for zero cross-correlation at lag k. Spurious power of tests t̃xy,k, t̃yx,k,
txy,k and tyx,k.

xt = m1t + εt, εt iid xt = m1t + εt, εt iid xt = 0.7xt−1 + εt, εt iid
yt = m1t + ηt, ηt iid yt = m4t + ηt, ηt iid yt = 0.7yt−1 + ηt, ηt iid

k t̃xy,k t̃yx,k txy,k tyx,k t̃xy,k t̃yx,k txy,k tyx,k t̃xy,k t̃yx,k txy,k tyx,k
0 94.94 94.94 94.40 94.40 43.16 43.16 43.18 43.18 24.98 24.98 24.80 24.80
1 94.56 94.20 94.06 93.92 43.20 42.48 42.88 41.80 25.44 24.94 25.12 24.68
2 93.34 93.76 92.60 93.22 42.76 41.14 42.26 40.66 25.56 25.56 25.22 25.36
3 94.04 93.86 93.36 93.06 43.82 40.52 43.08 39.78 25.08 25.50 24.48 25.34
4 93.28 93.84 92.72 93.16 43.46 39.78 42.94 38.74 24.32 25.48 23.98 24.84
5 92.70 93.36 91.94 92.18 44.58 39.32 43.92 38.28 25.12 24.28 24.64 23.80
6 92.30 93.36 91.60 92.62 45.30 36.52 44.24 35.54 25.06 24.50 24.30 23.78
7 91.78 92.72 90.84 91.86 44.68 37.28 42.92 35.96 24.76 25.22 24.24 24.62
8 91.58 92.14 90.34 91.46 45.88 36.52 44.40 35.22 25.00 25.16 24.26 24.76
9 91.02 90.76 89.90 89.72 45.92 34.64 44.38 33.06 24.06 25.80 23.56 25.02
10 90.42 91.34 89.04 90.22 46.56 32.72 44.96 30.90 24.72 25.62 23.78 24.24
11 90.20 90.64 89.06 89.50 46.94 34.04 45.54 32.20 25.12 24.56 23.86 23.56
12 88.98 89.90 87.48 88.28 47.00 31.56 45.42 29.68 25.40 25.08 24.54 24.30
13 88.16 89.16 86.52 87.54 47.88 30.18 46.04 28.50 25.28 25.30 24.16 24.10
14 87.84 88.98 86.24 87.54 48.78 29.34 46.04 27.16 25.00 24.78 23.46 23.64
15 86.84 87.44 85.20 85.60 47.54 27.52 45.02 25.34 25.18 25.18 23.58 24.10
16 86.00 86.50 84.16 84.78 49.18 27.50 46.82 25.30 25.40 24.56 23.92 23.60
17 85.12 86.90 83.22 84.54 48.58 25.78 45.98 23.16 25.14 24.20 23.58 23.00
18 84.14 85.94 82.26 83.60 50.38 24.84 47.80 22.56 24.86 24.54 23.18 23.14
19 83.90 85.22 81.54 82.48 49.02 25.90 46.34 22.96 24.44 25.66 22.86 23.78
20 82.54 84.26 80.46 81.34 49.04 24.90 46.16 21.70 24.54 25.68 22.76 23.86

Rejection frequencies (in %) at the 5% significance level, n = 300. In models: {εt} and {ηt} mutually
independent i.i.d. N(0,1), m1t = I(t/n > 0.5), m4t = I(t/n > 0.25).

Table 16: Tests for zero cross-correlation at lags 0, 1, ...,m. Spurious power of tests Q̃xy,m, Q̃yx,m, HBxy,m

and HByx,m.

xt = m1t + εt, εt iid xt = m1t + εt, εt iid xt = 0.7xt−1 + εt, εt iid
yt = m1t + ηt, ηt iid yt = m4t + ηt, ηt iid yt = 0.7yt−1 + ηt, ηt iid

m Q̃xy,m Q̃yx,m HBxy,m HByx,m Q̃xy,m Q̃yx,m HBxy,m HByx,m Q̃xy,m Q̃yx,m HBxy,m HByx,m

0 94.94 94.94 94.40 94.40 43.16 43.16 43.18 43.18 24.98 24.98 24.80 24.80
1 99.04 99.04 99.08 99.02 56.80 54.76 58.18 57.44 20.62 20.60 30.90 31.08
2 99.70 99.78 99.72 99.82 64.60 61.50 66.62 65.98 19.16 19.56 34.56 34.88
3 99.88 99.92 99.86 99.90 70.72 65.28 73.52 71.30 18.76 19.50 37.78 38.26
4 99.92 99.96 99.92 99.98 74.82 67.86 77.58 75.42 19.50 20.28 40.88 40.98
5 99.98 99.98 100 100 78.20 69.54 81.04 77.90 20.70 21.34 43.60 43.52
6 100 99.98 100 100 80.80 71.00 83.70 80.10 21.74 22.42 46.00 46.34
7 100 99.98 100 100 82.64 71.62 85.86 81.60 23.18 23.82 48.70 48.56
8 99.98 99.98 100 100 84.22 72.52 87.48 82.76 23.82 24.82 50.98 51.12
9 99.94 99.96 100 100 85.72 73.62 88.68 83.58 24.56 25.26 53.30 53.14
10 99.72 99.78 100 100 86.50 74.34 89.54 84.38 24.96 25.40 55.28 55.06
11 99.62 99.66 100 100 87.44 75.10 90.26 85.14 24.66 25.66 57.12 57.16
12 99.44 99.24 100 100 87.88 74.68 91.36 85.56 25.06 25.18 58.64 59.04
13 98.88 98.70 100 100 88.40 74.68 92.20 85.92 25.14 25.32 60.50 61.12
14 98.46 98.24 100 100 89.10 74.50 92.84 85.90 24.86 24.64 61.76 62.98
15 97.78 98.04 100 100 89.32 72.62 93.60 86.06 24.80 24.70 63.56 64.08
16 97.22 97.20 100 100 89.84 72.20 94.12 86.32 24.44 24.20 65.14 65.46
17 96.62 96.28 100 100 90.46 70.62 94.60 86.58 24.30 24.78 66.36 66.76
18 96.04 95.72 100 100 90.58 69.60 95.22 86.60 24.94 24.28 67.56 67.96
19 95.34 94.68 100 100 90.88 68.78 95.62 86.78 24.82 24.50 68.78 69.38
20 94.80 94.74 100 100 91.06 68.16 95.92 86.60 24.30 25.32 70.10 70.74

Rejection frequencies (in %) at the 5% significance level, n = 300. In models: {εt} and {ηt} mutually independent i.i.d.
N(0,1), m1t = I(t/n > 0.5), m4t = I(t/n > 0.25).
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Table 17: Tests for i.i.d. property at lag k. Size of tests Jx,|x|,k,
Jx,x2,k.

xt iid xt iid xt iid xt = exp(2εt)
N(0,1) t(6) χ2(3) εt iid N(0,1)

k Jx,|x|,k Jx,x2,k Jx,|x|,k Jx,x2,k Jx,|x|,k Jx,x2,k Jx,|x|,k Jx,x2,k

1 4.54 4.30 4.74 3.98 5.06 4.70 3.58 2.64
2 4.86 4.76 4.82 4.64 4.54 4.68 3.28 2.24
3 4.50 4.14 4.46 4.32 4.90 4.80 3.58 2.60
4 4.78 4.94 4.82 4.68 4.60 4.48 3.58 2.62
5 4.46 4.24 4.20 4.24 4.42 4.50 3.82 2.86
6 4.50 4.46 4.12 4.44 4.60 4.68 3.46 2.56
7 4.48 4.12 4.28 3.94 4.34 4.30 4.00 2.92
8 4.32 4.16 4.20 3.94 4.24 4.46 3.62 2.46
9 4.60 4.48 4.40 4.46 5.00 4.74 3.40 2.54
10 4.60 4.36 4.74 4.44 4.58 4.76 3.64 2.48
11 5.30 4.82 5.02 4.46 4.90 5.00 3.50 2.38
12 4.50 4.14 4.46 4.18 4.94 4.72 3.48 2.48
13 5.04 4.66 4.56 3.98 5.40 4.78 3.26 2.26
14 4.64 4.32 4.30 4.16 4.68 4.80 3.34 2.22
15 4.64 4.22 4.58 4.14 4.70 4.76 4.04 2.92
16 5.04 4.68 4.96 4.36 5.02 5.12 4.06 2.90
17 5.00 4.56 4.58 3.92 4.52 4.24 3.54 2.64
18 4.84 4.50 4.70 4.30 4.76 5.20 3.50 2.52
19 5.12 4.72 4.74 4.60 4.70 4.88 3.94 3.04
20 4.86 4.50 4.70 4.50 5.08 4.92 3.70 2.56
21 5.02 4.14 4.70 4.38 4.80 4.60 3.52 2.64
22 5.08 4.78 4.80 4.46 5.22 5.08 3.46 2.60
23 4.86 5.08 4.72 4.88 5.02 4.68 3.40 2.42
24 5.04 4.88 5.08 4.78 4.74 4.60 3.68 2.74
25 5.18 5.22 5.30 5.06 4.56 4.36 3.60 2.62
26 4.92 4.94 4.76 4.16 5.26 5.56 3.68 2.46
27 4.68 4.20 4.38 4.54 4.66 4.80 3.32 2.62
28 4.58 4.84 4.64 4.32 4.84 4.72 3.26 2.26
29 4.96 4.78 4.90 4.92 5.00 4.92 3.60 2.60
30 4.60 4.68 4.46 4.32 4.34 4.34 3.64 2.70
31 4.86 4.98 4.90 4.84 4.60 4.54 3.48 2.40
32 4.68 4.48 4.60 4.32 5.50 5.28 3.16 2.48
33 4.40 4.12 4.36 4.16 4.78 4.48 3.30 2.28
34 5.06 4.76 4.56 4.54 5.54 5.58 3.30 2.34
35 4.92 4.54 4.80 4.26 4.64 4.90 3.22 2.32
36 4.86 4.50 4.48 3.98 4.76 5.18 3.50 2.60
37 5.02 4.86 4.68 4.46 5.32 4.88 3.40 2.44
38 4.84 4.58 4.62 4.68 4.90 4.64 3.28 2.66
39 4.86 4.78 4.92 4.84 4.82 5.06 3.94 2.92
40 5.10 4.80 4.98 4.66 4.56 4.44 3.46 2.54

Rejection frequencies (in %) at the 5% significance level, n = 300.

22



Table 18: Tests for i.i.d. property at lags 1, ...,m. Size of tests Cx,|x|,m,
Cx,x2,m.

xt iid xt iid xt iid xt = exp(2εt)
N(0,1) t(6) χ2(3) εt iid N(0,1)

m Cx,|x|,m Cx,x2,m Cx,|x|,m Cx,x2,m Cx,|x|,m Cx,x2,m Cx,|x|,m Cx,x2,m

1 4.54 4.30 4.74 3.98 5.06 4.70 3.58 2.64
2 4.88 4.48 4.66 4.52 4.96 5.30 4.72 3.42
3 4.66 4.66 4.76 4.90 5.30 5.98 6.18 4.52
4 4.84 4.76 4.56 5.38 5.22 6.44 6.82 5.08
5 5.02 4.68 4.50 5.56 5.42 6.74 7.76 5.96
6 4.78 4.84 4.50 5.66 5.82 7.10 8.18 6.12
7 4.88 4.52 4.50 5.64 5.66 6.96 8.60 6.44
8 4.94 4.66 4.56 5.78 5.62 7.12 8.86 6.86
9 4.68 4.78 4.46 5.70 5.68 7.16 9.08 7.08
10 5.04 4.90 4.76 5.70 5.86 7.46 9.10 7.06
11 5.40 4.92 4.86 5.48 5.56 7.46 9.40 7.34
12 5.54 4.90 4.94 5.44 5.46 7.38 9.74 7.52
13 5.62 4.94 4.98 5.32 5.52 7.46 9.70 7.48
14 5.36 4.78 4.80 5.24 5.46 7.14 9.64 7.50
15 5.44 4.72 4.94 5.22 5.54 6.94 9.82 7.88
16 5.48 4.78 4.74 5.10 5.38 7.16 9.96 7.80
17 5.54 4.62 4.86 5.08 5.68 6.92 9.96 7.84
18 5.50 4.82 4.76 4.82 5.76 6.76 9.84 7.84
19 5.74 4.70 5.00 4.88 5.76 6.82 9.88 7.76
20 5.70 4.86 5.04 4.92 5.56 7.02 9.78 7.82
21 5.86 4.86 5.06 4.82 5.84 6.74 9.70 7.96
22 5.30 4.80 4.86 4.80 5.70 6.76 9.50 7.98
23 5.58 4.98 4.78 4.78 6.06 6.86 9.68 7.84
24 5.82 5.18 5.12 4.96 6.08 7.02 9.76 7.90
25 5.88 5.24 5.08 4.92 6.28 6.82 9.76 7.72
26 5.82 5.54 5.16 4.86 6.32 6.84 9.46 7.60
27 6.06 5.26 5.30 4.86 6.20 6.80 9.46 7.62
28 6.10 5.28 5.48 5.16 6.34 7.00 9.32 7.32
29 6.28 5.50 5.66 5.28 6.60 6.96 9.30 7.20
30 6.02 5.38 5.58 5.20 6.62 6.88 9.26 7.14
31 6.36 5.56 5.84 5.32 6.74 6.62 9.28 7.08
32 6.64 5.80 5.90 5.48 6.60 6.60 9.20 7.14
33 6.28 5.72 5.78 5.20 6.60 6.72 9.10 7.10
34 6.42 5.88 5.72 5.28 6.64 6.62 8.88 6.98
35 6.44 5.72 5.72 5.08 6.92 6.56 8.84 7.18
36 6.34 5.62 5.90 5.22 6.64 6.66 8.50 7.08
37 6.58 5.64 5.86 5.04 6.70 6.54 8.58 6.88
38 6.74 5.66 6.02 4.94 6.90 6.56 8.70 6.94
39 6.92 6.04 6.12 5.12 7.16 6.62 8.72 6.76
40 6.98 6.00 6.28 5.10 7.08 6.64 8.60 6.82

Rejection frequencies (in %) at the 5% significance level, n = 300.
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Table 19: Tests for i.i.d. property at lag k. Power of tests Jx,|x|,k,
Jx,x2,k.

xt AR(1) xt ARCH(1) xt GARCH(1,1) xt = εtεt−1
φ = 0.2 α = 0.2 α = 0.2, β = 0.7 εt iid N(0,1)

k Jx,|x|,k Jx,x2,k Jx,|x|,k Jx,x2,k Jx,|x|,k Jx,x2,k Jx,|x|,k Jx,x2,k

1 86.50 86.52 63.42 68.64 80.12 79.48 99.98 89.64
2 8.58 8.20 8.68 10.36 71.84 70.50 7.44 4.50
3 5.10 4.84 5.54 5.22 61.84 60.64 6.34 4.72
4 5.54 5.46 5.12 4.98 53.90 52.44 6.06 4.84
5 5.28 5.46 4.80 4.54 45.84 44.00 6.04 5.12
6 4.96 4.92 4.58 4.46 38.30 36.94 6.24 4.84
7 5.08 4.80 4.62 4.38 33.06 31.48 6.18 4.42
8 5.32 4.60 5.14 4.00 27.66 26.02 6.94 5.12
9 5.22 5.12 5.04 4.72 24.14 22.22 7.18 5.16

10 4.80 5.10 4.94 4.90 20.76 19.34 6.32 4.98
11 5.74 5.48 5.30 4.80 18.30 16.74 6.06 4.54
12 5.30 4.76 5.26 4.72 15.48 13.64 6.40 4.66
13 5.64 5.28 5.22 4.78 14.58 12.92 6.48 4.70
14 5.42 4.92 4.84 3.86 12.16 10.40 6.38 4.94
15 4.94 5.32 5.04 4.68 11.36 9.86 6.28 4.90
16 5.66 5.28 5.66 4.94 10.74 9.18 6.56 5.22
17 5.62 4.86 5.10 4.40 10.30 8.12 6.30 4.60
18 5.16 4.74 5.14 4.66 9.34 7.92 6.02 4.44
19 5.60 5.54 5.50 4.72 9.42 7.34 6.20 4.74
20 5.14 5.40 5.28 4.66 8.06 6.56 6.44 4.80

xt = m1t + εt xt = h1tεt xt = h1tyt xt = m1t + h1tεt
εt iid N(0,1) εt iid N(0,1) yt AR(1), φ = 0.2 εt iid N(0,1)

k Jx,|x|,k Jx,x2,k Jx,|x|,k Jx,x2,k Jx,|x|,k Jx,x2,k Jx,|x|,k Jx,x2,k

1 86.06 85.64 59.22 41.00 95.58 91.86 61.22 51.08
2 85.70 85.40 58.84 41.74 61.34 45.30 61.00 51.94
3 85.32 85.06 59.44 41.02 59.00 40.98 58.68 49.18
4 85.26 85.04 58.88 41.72 58.20 42.20 60.12 51.20
5 83.98 83.80 57.74 40.08 58.02 41.04 58.80 49.32
6 83.36 83.12 55.76 39.34 56.96 40.30 57.42 48.56
7 82.64 82.26 55.78 39.82 55.28 39.14 56.38 46.40
8 82.76 82.32 55.64 38.64 56.96 39.88 55.22 46.22
9 80.96 80.58 55.24 37.58 54.54 38.74 53.74 44.80

10 79.80 79.96 53.76 36.80 53.82 37.84 52.32 44.00
11 79.54 79.10 52.28 36.22 53.24 36.66 51.00 43.42
12 79.42 79.12 51.38 35.86 51.72 36.34 49.86 41.44
13 77.94 78.02 52.36 36.12 52.58 36.98 49.40 41.94
14 76.78 76.54 50.58 35.10 50.56 36.26 48.90 40.48
15 76.44 76.30 50.92 35.58 51.16 35.52 49.12 41.08
16 75.12 74.72 49.00 34.44 49.86 35.38 47.58 40.06
17 74.92 74.30 48.08 33.82 47.98 34.22 45.24 38.06
18 72.94 72.70 47.36 33.28 47.98 33.84 45.08 37.40
19 72.88 72.88 46.98 32.70 47.68 33.28 44.50 36.58
20 71.44 71.00 46.76 33.06 46.96 34.10 43.48 35.70

Rejection frequencies (in %) at the 5% significance level, n = 300. In models:
m1t = I(t/n > 0.5), h1t = 1 + I(t/n > 0.5).
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Table 20: Tests for i.i.d. property at lag k. Power of tests Cx,|x|,m, Cx,x2,m.

xt AR(1) xt ARCH(1) xt GARCH(1,1) xt = εtεt−1
φ = 0.2 α = 0.2 α = 0.2, β = 0.7 εt iid N(0,1)

m Cx,|x|,m Cx,x2,m Cx,|x|,m Cx,x2,m Cx,|x|,m Cx,x2,m Cx,|x|,m Cx,x2,m

1 86.50 86.52 63.42 68.64 80.12 79.48 99.98 89.64
2 78.48 78.64 54.30 61.02 86.70 87.96 99.98 83.66
3 72.32 72.16 48.50 56.10 88.46 90.08 99.96 79.46
4 66.48 66.14 43.88 51.98 88.96 90.86 99.98 76.32
5 62.18 61.34 41.34 48.42 89.46 91.28 99.94 73.82
6 57.90 57.10 38.54 46.18 89.24 91.46 99.88 71.12
7 54.76 54.70 36.22 43.46 88.68 91.04 99.74 67.80
8 52.04 51.68 34.28 41.44 88.24 90.52 99.62 66.02
9 50.42 49.94 33.04 40.06 87.68 90.14 99.42 64.50
10 48.22 47.92 31.96 38.70 87.04 89.42 99.16 62.50
11 46.30 45.74 31.12 37.88 86.42 88.96 98.94 60.98
12 44.64 43.92 30.48 36.90 85.64 88.74 98.68 59.48
13 43.58 42.34 29.34 36.22 84.90 87.92 98.62 58.06
14 42.20 41.14 28.72 35.48 84.56 87.22 98.22 57.02
15 41.64 40.24 27.62 34.40 84.32 86.94 98.02 55.68
16 40.50 38.90 26.86 33.76 83.80 86.26 97.88 54.50
17 39.78 38.12 26.14 33.28 83.12 85.64 97.68 53.42
18 39.06 37.74 25.52 32.04 82.82 84.92 97.10 52.16
19 38.20 36.58 25.46 31.68 82.04 84.72 96.74 50.90
20 37.58 36.20 25.30 31.00 81.84 84.12 96.20 50.30

xt = m1t + εt xt = h1tεt xt = h1tyt xt = m1t + h1tεt
εt iid N(0,1) εt iid N(0,1) yt AR(1), φ = 0.2 εt iid N(0,1)

m Cx,|x|,m Cx,x2,m Cx,|x|,m Cx,x2,m Cx,|x|,m Cx,x2,m Cx,|x|,m Cx,x2,m

1 86.06 85.64 59.22 41.00 95.58 91.86 61.22 51.08
2 95.58 95.26 77.86 58.76 96.90 93.28 79.38 70.78
3 98.36 98.14 86.76 70.20 97.84 95.00 88.30 81.36
4 99.10 98.82 91.16 77.86 98.44 96.18 93.36 87.88
5 99.44 99.28 94.56 83.82 99.02 96.90 96.14 91.94
6 99.64 99.58 96.02 87.32 99.34 97.44 97.32 94.08
7 99.76 99.76 97.34 90.52 99.48 98.04 98.00 96.02
8 99.78 99.78 97.62 92.40 99.52 98.44 98.56 96.86
9 99.86 99.84 98.22 93.64 99.62 98.44 98.92 97.64
10 99.86 99.86 98.78 94.78 99.66 98.88 99.16 98.22
11 99.92 99.88 99.02 95.74 99.64 98.82 99.36 98.62
12 99.94 99.90 99.18 96.24 99.74 99.04 99.40 98.92
13 99.94 99.90 99.38 96.70 99.76 99.12 99.50 99.14
14 99.94 99.92 99.48 97.34 99.80 99.34 99.70 99.28
15 99.96 99.94 99.52 97.78 99.84 99.54 99.72 99.44
16 99.94 99.94 99.58 98.08 99.84 99.66 99.76 99.52
17 99.94 99.92 99.56 98.30 99.82 99.56 99.78 99.62
18 99.94 99.92 99.62 98.42 99.86 99.66 99.78 99.62
19 99.92 99.94 99.68 98.60 99.82 99.58 99.76 99.66
20 99.94 99.92 99.68 98.66 99.84 99.62 99.82 99.76

Rejection frequencies (in %) at the 5% significance level, n = 300. In models: m1t =
I(t/n > 0.5), h1t = 1 + I(t/n > 0.5).
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Table 21: Tests for zero serial correlation at lags 1, ...,m. Size of tests Qm and Q̃m with different
thresholds λ.

α = 10% α = 5% α = 1%

Q̃m = Q̃m(λ) Q̃m = Q̃m(λ) Q̃m = Q̃m(λ)
m Qm λ = 1.645 λ = 1.96 λ = 2.576 Qm λ = 1.645 λ = 1.96 λ = 2.576 Qm λ = 1.645 λ = 1.96 λ = 2.576

1 9.74 9.74 9.74 9.74 4.60 4.60 4.60 4.60 0.80 0.80 0.80 0.80
2 9.92 9.68 9.72 9.76 4.84 4.84 4.78 4.76 0.76 0.70 0.66 0.68
3 9.82 9.64 9.72 9.78 4.28 4.52 4.66 4.60 0.88 0.82 0.80 0.86
4 9.80 9.44 9.56 9.36 4.38 4.52 4.58 4.68 0.82 0.86 0.80 0.94
5 9.28 9.46 9.44 9.50 4.58 4.26 4.34 4.40 1.00 1.06 1.02 1.06
6 9.32 9.18 9.52 9.50 4.36 4.34 4.40 4.54 0.90 0.94 1.04 1.16
7 8.76 8.82 9.16 9.48 4.12 4.42 4.52 4.64 0.76 0.86 0.82 1.08
8 8.10 8.82 8.94 9.26 4.12 4.20 4.26 4.44 0.72 0.72 0.76 0.86
9 8.42 8.60 8.82 9.06 3.72 4.22 4.26 4.74 0.72 0.84 0.84 0.96
10 8.28 8.68 8.86 9.24 3.80 4.24 4.28 4.64 0.82 0.94 0.90 1.10
11 8.10 8.90 8.92 9.08 3.72 4.10 4.30 4.66 0.64 0.90 0.98 1.10
12 8.08 9.00 8.90 9.40 3.88 4.06 4.28 4.72 0.66 0.90 1.02 1.12
13 7.90 8.72 9.14 9.48 3.92 4.14 4.20 4.66 0.56 0.86 0.94 1.04
14 8.04 8.72 9.24 9.76 3.88 4.40 4.60 4.76 0.50 0.84 1.00 1.22
15 8.08 8.76 9.26 9.54 3.86 4.40 4.60 5.04 0.50 0.76 0.88 1.14
16 8.22 9.28 9.56 9.88 3.48 4.44 4.66 5.22 0.44 0.76 0.90 1.14
17 7.68 8.74 9.12 9.84 3.32 4.40 4.60 5.02 0.46 0.80 0.94 1.22
18 7.18 8.60 8.68 9.70 3.18 4.24 4.64 5.12 0.42 0.76 0.88 1.24
19 7.18 8.46 8.70 9.70 3.24 4.42 4.72 5.26 0.44 0.94 0.98 1.30
20 7.24 8.30 8.68 9.50 2.90 4.38 4.50 5.04 0.38 0.86 1.00 1.28
21 7.08 8.52 8.80 9.66 2.92 4.40 4.76 5.08 0.44 0.80 0.96 1.26
22 6.82 8.60 9.02 9.72 2.94 4.14 4.68 5.32 0.36 0.80 0.92 1.20
23 7.06 8.58 9.24 9.98 2.88 4.64 4.44 5.18 0.30 0.98 0.96 1.24
24 7.00 8.86 9.42 10.24 2.92 4.52 4.76 5.16 0.28 0.84 1.02 1.46
25 6.84 9.08 9.32 10.28 2.74 4.66 4.96 5.64 0.16 0.86 1.02 1.40
26 6.52 9.06 8.98 10.22 2.54 4.60 4.74 5.64 0.18 0.82 1.04 1.46
27 6.16 8.96 9.16 9.96 2.62 4.64 4.72 5.58 0.24 0.86 1.10 1.36
28 6.12 8.96 9.22 9.88 2.28 4.68 4.76 5.56 0.20 0.80 1.12 1.46
29 5.92 9.32 9.22 10.36 2.44 4.74 4.66 5.74 0.16 0.84 1.20 1.52
30 5.68 9.36 9.88 10.50 2.40 4.92 4.62 5.68 0.20 0.98 1.10 1.46
31 5.84 9.56 9.62 10.68 2.28 5.02 4.78 5.68 0.20 1.10 1.16 1.52
32 5.74 9.54 9.56 10.88 2.08 5.04 4.62 5.66 0.16 1.16 1.16 1.48
33 5.66 9.86 9.52 10.72 1.84 5.04 4.60 5.70 0.18 1.14 1.20 1.52
34 5.60 10.02 9.72 11.14 2.00 5.16 5.00 5.88 0.16 1.24 1.16 1.54
35 5.46 9.90 9.56 11.10 1.98 5.24 4.86 5.88 0.14 1.20 1.06 1.56
36 5.08 10.06 9.62 10.96 2.08 5.46 5.06 5.70 0.20 1.42 1.20 1.46
37 5.12 10.22 9.36 11.02 2.10 5.60 5.06 5.74 0.18 1.42 1.22 1.58
38 5.24 10.62 9.52 10.96 2.00 5.72 5.20 6.00 0.10 1.50 1.22 1.68
39 4.90 10.70 9.70 11.00 1.88 5.82 5.10 6.22 0.10 1.44 1.40 1.56
40 5.20 11.34 9.94 10.88 1.82 6.06 5.04 6.06 0.08 1.84 1.30 1.66

Rejection frequencies (in %) at the 10%, 5% and 1% significance level, n = 300. Model: xt = εt, εt ∼ i.i.d. N(0,1).
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Table 22: Tests for zero serial correlation at lags 1, ...,m. Size of tests Qm and Q̃m with different
thresholds λ.

α = 10% α = 5% α = 1%

Q̃m = Q̃m(λ) Q̃m = Q̃m(λ) Q̃m = Q̃m(λ)
m Qm λ = 1.645 λ = 1.96 λ = 2.576 Qm λ = 1.645 λ = 1.96 λ = 2.576 Qm λ = 1.645 λ = 1.96 λ = 2.576

1 9.66 9.66 9.66 9.66 4.76 4.76 4.76 4.76 0.76 0.76 0.76 0.76
2 9.66 9.78 9.74 9.80 4.44 4.44 4.46 4.54 0.64 0.72 0.76 0.90
3 9.52 9.42 9.36 9.60 4.38 4.52 4.46 4.46 0.64 0.64 0.70 0.80
4 9.26 9.34 9.64 9.54 3.88 4.12 4.26 4.36 0.48 0.62 0.64 0.76
5 8.38 9.18 9.34 9.60 3.82 4.04 4.40 4.86 0.48 0.64 0.76 0.80
6 7.90 8.46 8.76 9.26 3.64 3.88 4.36 4.76 0.54 0.70 0.96 1.08
7 7.84 8.30 9.04 9.48 3.36 4.04 4.36 4.94 0.50 0.64 0.90 1.14
8 7.54 8.62 9.08 9.58 3.30 4.28 4.52 5.22 0.52 0.76 0.98 1.18
9 6.90 8.56 9.00 9.58 3.06 4.08 4.34 4.88 0.46 0.86 0.98 1.16
10 6.72 8.78 9.06 9.62 2.72 3.80 4.10 4.68 0.36 0.64 1.00 1.16
11 6.16 8.56 8.94 9.64 2.58 3.70 4.32 4.82 0.28 0.74 0.96 1.14
12 5.84 8.34 8.54 9.56 2.48 3.78 4.20 4.98 0.18 0.64 0.90 1.18
13 5.88 8.40 8.92 9.90 2.58 3.94 4.52 5.34 0.18 0.72 1.04 1.28
14 5.82 9.26 8.96 10.06 2.28 4.42 4.68 5.58 0.26 0.94 1.16 1.56
15 5.50 9.22 9.14 10.34 2.02 4.22 4.58 5.64 0.28 1.04 1.02 1.50
16 5.54 9.38 9.32 10.68 1.84 4.36 4.76 5.52 0.20 1.12 1.02 1.54
17 5.06 9.38 9.14 10.52 1.68 4.84 4.90 5.52 0.14 1.28 1.10 1.62
18 4.74 9.26 9.54 10.60 1.70 4.76 4.64 5.72 0.12 1.38 1.22 1.50
19 4.48 9.60 9.58 10.38 1.56 5.06 4.96 5.96 0.20 1.58 1.14 1.68
20 4.36 10.02 9.72 10.38 1.58 5.04 4.94 5.92 0.18 1.76 1.14 1.68
21 3.96 10.36 9.74 10.52 1.38 5.74 5.02 6.04 0.12 2.02 1.26 1.78
22 3.78 10.54 10.20 10.80 1.32 5.94 5.26 6.00 0.10 2.38 1.30 1.88
23 3.58 10.96 10.06 10.98 1.22 6.84 5.20 6.04 0.10 2.66 1.26 2.00
24 3.70 11.66 10.26 11.42 1.04 7.22 5.58 6.14 0.12 3.16 1.50 2.04
25 3.44 12.66 10.62 11.62 1.08 7.94 5.74 6.32 0.02 3.64 1.68 2.12
26 3.28 13.16 10.70 11.42 1.06 8.30 5.86 6.42 0.02 3.98 1.80 2.10
27 3.08 13.84 11.00 11.52 0.92 8.86 6.00 6.60 0.04 4.30 1.80 2.00
28 2.90 14.82 11.04 11.78 0.90 9.64 6.06 6.60 0.04 4.80 1.98 2.16
29 2.80 15.52 11.42 11.58 0.94 10.44 6.52 6.80 0.02 5.36 2.10 2.24
30 2.70 15.82 11.24 11.38 0.92 11.02 6.34 6.80 0.02 6.00 2.18 2.20
31 2.42 16.64 11.32 11.60 0.80 11.84 6.52 6.94 0.04 6.36 2.40 2.40
32 2.46 17.52 11.70 11.72 0.74 12.36 6.96 7.12 0.04 6.80 2.60 2.28
33 2.32 17.76 11.68 11.86 0.76 12.50 7.28 7.02 0.06 6.66 2.52 2.46
34 2.36 18.94 12.34 11.90 0.62 13.52 7.62 7.28 0.04 7.38 2.68 2.38
35 2.22 19.14 12.36 11.78 0.58 14.18 7.48 7.26 0.06 8.12 2.70 2.40
36 2.02 19.66 12.70 12.16 0.56 14.66 7.48 7.34 0.02 8.80 2.82 2.46
37 2.10 20.54 13.22 12.08 0.50 15.70 7.96 7.36 0.02 9.64 3.22 2.62
38 1.94 21.38 13.60 12.08 0.50 16.44 8.12 7.30 0.04 10.10 3.18 2.58
39 1.78 22.74 13.72 12.32 0.44 17.10 8.56 7.50 0.04 10.94 3.78 2.54
40 1.62 23.46 14.02 12.48 0.46 17.96 8.96 7.60 0.04 11.48 4.12 2.50

Rejection frequencies (in %) at the 10%, 5% and 1% significance level, n = 300. Model: xt = h2tεt, h2t = t/n, εt ∼ i.i.d.
N(0,1).
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Table 23: Tests for zero cross-correlation at lags 1, ...,m. Size of tests Qxy,m, Q̃xy,m with different thresholds λ.

α = 10% α = 5% α = 1%

Q̃xy,m = Q̃xy,m(λ) Q̃xy,m = Q̃xy,m(λ) Q̃xy,m = Q̃xy,m(λ)
m Qxy,m λ = 1.645 λ = 1.96 λ = 2.576 Qxy,m λ = 1.645 λ = 1.96 λ = 2.576 Qxy,m λ = 1.645 λ = 1.96 λ = 2.576

0 10.06 10.06 10.06 10.06 4.92 4.92 4.92 4.92 0.84 0.84 0.84 0.84
1 9.80 9.96 9.88 9.90 4.98 5.14 5.16 5.22 1.00 1.08 1.08 1.08
2 10.24 10.00 10.00 10.08 5.38 5.52 5.44 5.48 1.18 1.08 1.10 1.12
3 10.20 10.22 10.18 10.26 5.50 5.44 5.34 5.40 0.94 0.94 0.94 0.94
4 9.86 9.64 9.62 9.90 5.08 5.08 5.12 5.12 0.72 0.70 0.76 0.70
5 9.86 9.92 10.02 10.38 4.62 4.96 4.94 5.06 0.78 0.76 0.82 0.88
6 10.04 10.30 10.22 10.40 4.88 5.08 4.86 5.02 0.78 0.86 0.90 0.82
7 10.08 9.98 10.16 10.18 4.72 4.96 4.76 4.72 0.58 0.84 0.90 0.90
8 9.44 9.74 9.98 10.08 4.48 4.64 4.52 4.70 0.54 0.82 0.86 0.92
9 9.32 9.52 9.42 9.38 4.10 4.44 4.80 4.78 0.56 0.78 0.78 0.78
10 9.12 9.58 9.34 9.44 4.06 4.48 4.38 4.48 0.64 0.84 0.90 0.92
11 8.80 9.08 9.04 9.24 3.76 4.20 4.40 4.32 0.54 0.78 0.90 0.92
12 8.62 9.14 9.22 9.40 3.66 4.24 4.28 4.66 0.48 0.72 0.80 0.84
13 8.60 9.22 9.34 9.32 3.70 4.36 4.48 4.62 0.42 0.58 0.64 0.82
14 8.54 9.28 9.24 9.28 3.56 4.46 4.40 4.62 0.42 0.58 0.62 0.80
15 8.36 8.92 9.22 9.42 3.44 4.40 4.38 4.56 0.42 0.72 0.70 0.78
16 8.56 9.22 9.38 9.66 3.68 4.40 4.38 4.60 0.36 0.68 0.78 0.88
17 8.38 9.36 9.12 9.30 3.56 4.46 4.60 4.92 0.46 0.68 0.64 0.88
18 8.36 9.56 9.16 9.42 3.68 4.78 4.90 5.00 0.52 0.78 0.74 0.86
19 8.48 9.92 9.76 9.70 3.42 4.64 4.80 5.08 0.44 0.82 0.72 0.92
20 8.54 10.28 9.82 10.30 3.46 4.90 4.94 5.16 0.40 0.76 0.62 0.80
21 8.22 10.24 9.92 10.26 3.56 4.86 5.00 5.02 0.50 0.82 0.64 0.98
22 7.88 10.36 9.78 10.10 3.50 4.90 4.82 4.88 0.48 0.78 0.72 0.94
23 7.86 9.92 9.78 9.84 3.48 4.90 4.68 4.78 0.38 0.82 0.82 0.90
24 7.90 10.12 9.42 9.52 3.36 4.84 4.38 4.60 0.36 0.94 0.76 0.96
25 7.52 9.76 9.34 9.34 3.30 4.72 4.54 4.74 0.38 1.00 0.76 0.90
26 7.32 9.90 9.34 9.34 3.02 4.84 4.16 4.80 0.32 0.96 0.88 0.94
27 7.28 9.74 9.24 9.22 2.90 4.80 4.38 4.74 0.30 0.92 0.88 1.04
28 7.56 10.44 9.50 9.50 2.90 5.00 4.36 4.68 0.20 0.92 0.82 0.82
29 7.54 10.48 9.64 9.62 2.88 5.16 4.56 4.58 0.36 0.90 0.72 0.82
30 7.30 10.52 9.22 9.22 2.74 5.28 4.46 4.32 0.38 0.84 0.76 0.82
31 7.30 10.84 9.38 9.44 2.72 5.40 4.34 4.54 0.36 0.86 0.72 0.82
32 7.36 10.98 9.68 9.54 2.70 5.56 4.30 4.42 0.34 0.88 0.80 0.76
33 7.28 11.16 9.46 9.72 2.72 5.86 4.40 4.44 0.30 1.00 0.82 0.74
34 7.28 11.60 9.72 9.36 2.58 5.90 4.42 4.58 0.32 0.98 0.94 0.80
35 7.10 11.70 9.68 9.20 2.64 5.98 4.42 4.72 0.28 1.12 0.86 0.84
36 7.10 11.76 9.98 9.46 2.72 5.98 4.48 4.86 0.26 0.98 0.88 0.80
37 7.06 12.66 9.84 9.38 2.78 6.16 4.50 4.84 0.30 1.06 0.82 0.84
38 7.18 13.00 9.92 9.70 2.86 6.56 4.58 4.84 0.30 1.26 0.80 0.76
39 7.14 13.42 10.24 9.62 2.84 6.90 4.72 4.74 0.30 1.38 0.78 0.84
40 7.08 13.96 10.14 9.38 2.78 6.88 4.86 4.62 0.28 1.48 0.82 0.74

Rejection frequencies (in %) at the 10%, 5% and 1% significance level, n = 300. Model: xt = εt, yt = ηt, {εt} and {ηt} mutually
independent i.i.d. N(0,1).
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Table 24: Tests for zero cross-correlation at lags 1, ...,m. Size of tests Qxy,m, Q̃xy,m with different thresholds λ.

α = 10% α = 5% α = 1%

Q̃xy,m = Q̃xy,m(λ) Q̃xy,m = Q̃xy,m(λ) Q̃xy,m = Q̃xy,m(λ)
m Qxy,m λ = 1.645 λ = 1.96 λ = 2.576 Qxy,m λ = 1.645 λ = 1.96 λ = 2.576 Qxy,m λ = 1.645 λ = 1.96 λ = 2.576

0 9.56 9.56 9.56 9.56 4.64 4.64 4.64 4.64 0.70 0.70 0.70 0.70
1 9.22 9.44 9.52 9.52 4.40 4.56 4.58 4.56 0.72 0.76 0.76 0.72
2 9.82 9.94 9.94 9.90 4.32 4.38 4.38 4.46 0.54 0.70 0.72 0.74
3 9.86 10.14 10.16 10.24 4.54 5.02 4.82 4.84 0.60 0.72 0.78 0.78
4 9.80 10.14 10.14 10.30 4.10 4.54 4.54 4.50 0.58 0.62 0.70 0.68
5 8.96 9.96 9.80 9.80 3.86 4.36 4.40 4.58 0.60 0.60 0.68 0.74
6 8.84 9.62 9.72 9.84 4.02 4.54 4.54 4.82 0.54 0.62 0.64 0.72
7 8.92 9.74 9.48 9.64 3.96 4.70 4.88 5.00 0.34 0.52 0.64 0.74
8 8.88 9.86 9.90 9.82 3.82 4.52 4.70 4.78 0.34 0.64 0.64 0.64
9 8.30 9.68 9.64 9.92 3.82 4.76 4.90 4.80 0.32 0.66 0.68 0.70
10 8.46 9.80 9.74 9.68 3.60 4.54 4.70 4.84 0.36 0.60 0.66 0.60
11 8.18 9.74 9.72 9.70 3.30 4.48 4.66 4.70 0.26 0.60 0.52 0.56
12 7.82 9.14 9.04 9.32 3.00 4.44 4.68 4.88 0.28 0.52 0.50 0.62
13 7.76 9.70 9.62 9.54 2.98 4.48 4.52 4.94 0.36 0.58 0.64 0.64
14 7.44 9.28 9.66 9.74 2.78 4.30 4.24 4.62 0.30 0.70 0.80 0.68
15 7.32 9.56 9.12 9.54 2.72 4.26 4.16 4.44 0.20 0.78 0.82 0.76
16 6.82 9.92 9.56 9.84 2.74 4.26 4.46 4.48 0.16 0.82 0.74 0.80
17 7.14 9.90 9.56 9.96 2.76 4.44 4.34 4.38 0.20 0.76 0.74 0.82
18 7.18 10.28 9.48 9.76 2.54 4.56 4.26 4.40 0.16 0.74 0.64 0.72
19 7.16 10.22 9.68 9.44 2.36 4.86 4.20 4.34 0.14 0.84 0.80 0.84
20 6.94 10.62 9.78 9.50 2.34 4.94 4.32 4.26 0.14 0.92 0.90 0.82
21 6.62 10.66 9.64 9.54 2.32 5.40 4.32 4.12 0.14 1.14 0.94 0.80
22 6.58 11.08 10.08 9.26 2.28 5.68 4.38 3.92 0.04 1.16 0.96 0.72
23 6.24 11.48 10.10 9.46 2.18 5.72 4.26 3.86 0.10 1.24 1.00 0.72
24 5.94 11.76 10.02 9.08 2.08 6.40 4.58 4.08 0.06 1.52 0.96 0.72
25 6.00 12.70 10.08 9.22 1.86 6.78 4.28 4.08 0.02 1.64 0.94 0.72
26 5.70 13.44 9.88 9.02 1.92 7.42 4.46 4.08 0.02 2.28 0.96 0.62
27 5.58 14.30 10.04 9.10 1.78 7.84 4.48 4.02 0.04 2.50 0.94 0.56
28 5.34 14.66 10.02 9.38 1.68 8.70 4.70 4.18 0.02 2.90 0.94 0.58
29 5.22 15.74 10.30 9.16 1.46 9.26 4.74 4.12 0.00 3.44 1.14 0.68
30 5.16 16.72 10.94 9.04 1.58 9.92 5.02 4.24 0.04 3.96 1.20 0.70
31 4.94 17.88 10.80 9.06 1.62 10.68 5.24 4.08 0.04 4.40 1.36 0.78
32 5.12 18.94 10.96 9.42 1.48 12.14 5.70 4.22 0.02 5.12 1.36 0.72
33 4.86 19.98 11.26 9.18 1.26 13.10 5.78 4.08 0.02 5.84 1.46 0.76
34 4.90 21.04 11.80 9.26 1.32 14.04 6.12 4.08 0.00 6.34 1.74 0.82
35 4.66 22.32 12.28 9.44 1.22 15.30 6.34 4.26 0.00 7.12 1.80 0.80
36 4.52 23.76 12.80 9.26 1.36 16.40 6.58 4.32 0.00 8.08 1.92 0.80
37 4.30 24.62 13.02 9.04 1.42 16.96 7.04 4.30 0.02 8.82 2.14 0.82
38 4.24 26.12 13.34 8.80 1.12 18.58 7.36 4.40 0.02 10.16 2.26 0.68
39 4.24 26.78 13.94 9.22 1.16 19.16 7.58 4.70 0.04 10.70 2.38 0.72
40 4.16 27.14 14.38 9.02 1.08 20.06 8.14 4.64 0.04 11.80 2.70 0.76

Rejection frequencies (in %) at the 10%, 5% and 1% significance level, n = 300. Model: xt = h1tεt, yt = h3tηt, h1t = 1+I(t/n >
0.5), h3t = 1 + 3I(t/n > 0.5), {εt} and {ηt} mutually independent i.i.d. N(0,1).
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