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Abstract

Commonly used tests to assess evidence for the absence of autocorrelation
in a univariate time series or serial cross-correlation between time series rely on
procedures whose validity holds for i.i.d. data. When the series are not i.i.d., the
size of correlogram and cumulative Ljung-Box tests can be significantly distorted.
This paper adapts standard correlogram and portmanteau tests to accommodate
hidden dependence and non-stationarities involving heteroskedasticity, thereby
uncoupling these tests from limiting assumptions that reduce their applicability
in empirical work. To enhance the Ljung-Box test for non-i.i.d. data a new
cumulative test is introduced. Asymptotic size of these tests is unaffected by
hidden dependence and heteroskedasticity in the series. Related extensions are
provided for testing cross-correlation at various lags in bivariate time series. Tests
for the i.i.d. property of a time series are also developed. An extensive Monte
Carlo study confirms good performance in both size and power for the new tests.
Applications to real data reveal that standard tests frequently produce spurious
evidence of serial correlation.
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1 Introduction

Temporal dependence is one of the primary characteristics of economic and financial
data that are measured sequentially over time. In studying such data, estimation of
and inference on the serial correlation p, = corr(zy, x;_) is a common first step in the
analysis of time series data {z;} or regression residuals. For a sample z1, ..., z,, esti-
mation of p; by the sample serial correlation pj, for various lags k = 1,2, ... and testing
whether it is significant dates back to the early years of the twentieth century, primar-
ily to Yule (1926) who introduced the terminology serial correlation. Yule highlighted
the need to understand the degree of time persistence in the data prior to applying
correlation /regression analysis and characterized this phenomenon as the ‘time cor-
relation problem’ in his earlier Royal Society address (Yule, 1921). To aid analysis,
Yule introduced the sample serial correlation p, along with the standard confidence
band %2,/2/+/n for testing its significance, Hy : p = 0 under the simplifying assump-
tion that the data are identically and independently distributed (i.i.d.), bringing the

problem into the existing framework of the Pearson correlation coefficient.

Bartlett (1946) provided a major step forward in a more general analysis by de-
riving an asymptotic formula, now known as Bartlett’s formula, for cov(p;, py) for a
stationary linear process {z;} driven by i.i.d. errors. The joint asymptotic distribution
of p = (p1,..., Pm)" was given by Anderson and Walker (1964) and was found to be
normal with variance-covariance matrix n='W where the elements of W are given by
Bartlett’s formula. An important aspect of this formula is that the asymptotic variance
matrix depends only on the autocorrelations p, themselves and not fourth moments,
as is the case for sample autocovariances.! Hannan and Hyde (1972) relaxed the i.i.d.
assumption on the errors and showed that asymptotic normality remains valid under

some additional regularity assumptions on the noise.

Besides testing for significant serial correlation at one lag k, it is common to test
the cumulative hypothesis Hy : py = ... = p,, = 0 using the portmanteau statistics of
Box and Pierce (1970) and Ljung and Box (1978). The Box-Pierce statistic is based
on the observation that the matrix W in the asymptotic distribution of p reduces to

2 on ¢, while the Ljung-Box statistic

the identity matrix under the i.i.d. assumption
entails a slightly better performance in finite samples. They find that for i.i.d and

normally distributed data, the cumulative statistics have a x2, limit distribution when

'The asymptotic variance of py,, for instance, is n™* Z;’il (Phtj+pPh—j —2phpj)27 a simple derivation
of which is given in Phillips and Solo (1992).

In this case var(py) = n~* E?;1(Ph+j + ph—j — 2pnpj)? = n~! as the only non-zero element in
the sum occurs when j = h.



applied to raw data and a X?n_p_q limit distribution when used for residuals of fitted
ARMA (p, q) models. They indicated that the normality assumption is not essential for

these results.

Concern that these standard tests of Hy : pp = 0 and Hy : p1 = ... = p, = 0 are
not suitable under heteroskedasticity or non-independence of uncorrelated noise x; was
highlighted by Granger and Andersen (1978) and by Taylor (1984). The first paper
warned against the use of standard tests in bilinear data and the second raised concerns
for testing in models where the {z;} are heteroskedastic. Taylor (1984) provided a
modified standard error for py, resulting in a robust confidence band and a robust

t-statistic ¢y, given in (4) below, as well as a robust cumulative statistic, given in (12).

Since then, various authors have modified the statistic ¢ = \/npy and/or its cumu-
lative portmanteau versions in similar ways to Taylor (1984) so that they are applicable
for testing uncorrelated non-i.i.d. noise in which the covariance matrix W is diagonal
but not the identity — among others, see Diebold (1986), Lo and MacKinlay (1989),
Robinson (1991), Francq and Zakoian (2009), Kokoszka and Politis (2011).

However, the matrix W is not always diagonal. Practical settings involving eco-
nomic and financial uncorrelated data z; for which a non-diagonal W is relevant appear
in Cumby and Huizinga (1992), Guo and Phillips (2001), Lobato, Nankervis and Savin
(2002) and Francq, Roy and Zakoian (2005). These papers typically assume that {z;}
is stationary and has a martingale difference structure or is strongly mixing. Guo and
Phillips (2001) estimated the covariance matrix W by its empirical counterpart, while
the other papers used nonparametric procedures. Taking a different approach Romano
and Thombs (1996) and Horowitz, Lobato and Savin (2006) used bootstrap methods to
obtain suitable critical values for standard test procedures under the null assumption

that the uncorrelated data {z;} are strongly mixing.

Similar issues arise in testing cross correlation in bivariate time series {z;, v, }, where
interest and early attempts date back over a century, for instance to Hooker (1901).
Unsurprisingly, the original work on estimation and testing for zero cross-correlation
Payk = corr(xy, y_y) relied again on sample cross-correlations based on the theory of
the Pearson correlation coefficient. Later studies such as Haugh (1976) and Haugh and
Box (1977) examined testing for zero cross-correlation at an individual lag and using
cumulative versions of the statistics. For the same reason as in the univariate case,
tests for the absence of cross-correlation may be invalidated when the time series are
not i.i.d. Corrected versions of the statistics have been examined (e.g., Kyriazidou,
1998, that extend to the bivariate case the univariate results of Cumby and Huizinga,

1992). However, the assumptions used are restrictive, imposing additional technical
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conditions and excluding unconditional heteroskedasticity.

Test statistics based on the correlogram either with the standard confidence band
+24/2/+/n suggested by Yule (1926) or that based on Bartlett’s (1946) formula or
the cumulative statistics of Box and Pierce (1970) and Ljung and Box (1978) are all
still in extensive use today and are present in most statistical packages. Despite the
literature addressing the complications of departures from i.i.d. noise, problems with
finite sample performance and complexity of implementation seem to have prevented
replacement of these methods with procedures that extend applicability to more general
settings. Similarly, cross-correlogram tests are usually implemented with standard
confidence bands and the cumulative Haugh-Box test for cross-correlation is rarely

reported in applications.

The goal of the present paper is to develop a formulation and method of implemen-
tation that will enable testing with both univariate and bivariate time series that is
robust to multiple forms of heteroskedastic and dependence departures from i.i.d noise.
Our approach is based on extending the original robust test by Taylor (1984) for the
absence of correlation at an individual lag and a corresponding cumulative portman-
teau test, together with analogous testing procedures for the bivariate case. Taylor’s
test for correlation at a specific lag and our cumulative test are both easy to apply and
demonstrate good size control for a large class of uncorrelated data covering martingale

difference noise of unspecified form with time varying unconditional variance.

The rest of the paper is organized as follows. Section 2 outlines the model, intro-
duces the tests and presents limit theory for the case of univariate time series testing.
Section 3 develops corresponding tests for zero cross-correlation in the bivariate case,
a problem that has attracted much less attention in the literature in spite of its links
to Granger causality testing. Section 4 considers direct testing of the hypothesis that a
time series is i.i.d. Various tests of this hypothesis have been used in the literature and
often relate to testing the random walk hypothesis using variate differences. Standard
tests based on the squared time series have been proposed by McLeod and Li (1983)
and Campbell, Lo and MacKinlay (1997, Chapter 2) provide for a brief summary. We
suggest testing procedures (both cumulative and individual lag tests) that combine the
tests on correlation of the data in levels with absolutes or squared values. Wong and
Ling (2005) and Zhu (2013) used similar methods to test for absence of autocorrelation
in residuals and absolute (squared) residuals in a general linear model, in particular,
of a fitted ARMA-GARCH model. Different from our tests, those tests do not require
demeaning of residuals and their asymptotic distributions depend on the parameters

of a fitted model. An extensive Monte Carlo study was conducted and the results are



presented in Section 5 with recommended guidelines for practical implementation of
the various tests. Section 6 reports an empirical application of the test procedures
to financial data. The paper is accompanied by an Online Supplement (Dalla et al.,
2019) consisting of two documents. The first (I) contains proofs of all the results in

the paper. The second (II) reports the findings of the full Monte Carlo study.
An R package and an EViews add-in (named testcorr) have been created by the

authors and are now available to implement all the testing procedures developed in the

paper.

2 Tests for zero correlation

While stationarity is commonly assumed, it is not necessary for testing absence of
correlation in a time series. Indeed, for a series {x;} of uncorrelated random variables
the condition that the autocorrelation function (ACF) pp = corr(xy, z,—x) = 0 at lag
k=1,2,.... is well defined for all ¢ with or without an assumption of stationarity. Its
empirical version, the sample autocorrelation p at the lag k # 0, based on observed

data x4, ..., x,,

Pk n —
2o (@ — T)?

remains a valid tool for testing for zero correlation at lag k. Such testing does not

o ik (T = )@k — @, T = %th (1)

require assumptions of independence or stationarity of {x;}, thereby enabling a more

general approach to testing for white noise uncorrelatedness in data.

There is, of course, a large literature on estimation of the autocorrelation function
pr by pr for stationary times series {x;}. The asymptotic distribution of the sample
autocorrelations (py, ..., pm)’ for a stationary linear process was given by Anderson and
Walker (1964) and Hannan and Hyde (1972) and has the form

VI(pL = prs e P — pm) —p N(0,W) (2)

where W is a matrix whose elements are given by Bartlett’s formula. If the {z;} are
i.i.d. random variables, the matrix W reverts to the identity matrix ,,, and (2) reduces

to the standard asymptotic result

\/ﬁ(ﬁb wory Pm) = N(0, 1) (3)

used for testing Hy : pr = 0 at lag k, just as in Yule (1926), with the confidence band



+2,/2/+/n for zero correlation at significance level a. Methods based on this procedure
are still heavily used and came into prominence following the influential work of Box
and Jenkins (1970).

When {x,;} is uncorrelated but not i.i.d. the standard method for testing zero serial
correlation based on the asymptotic distribution in (3) generally fails. This was first
noted by Granger and Andersen (1978) and Taylor (1984). Taylor (1984) suggested

correcting the standard error of py, leading to the robust t-statistic

'tvk _ Z::kﬂ €tk
(Z?:kJrl €t2k)1/2>

so that in testing H, the sample autocorrelation py should be corrected for its variance

e = (v — T) (x4 — T), (4)

~ ~ o~ N t
tk:pkck —D N(O,l), Ck:ﬁ—k. (5)
k

This correction leads to a 42,/2/¢; confidence band for zero correlation at lag k.

Taylor showed that ¢, ? is an unbiased estimate of the variance of pj, when x; has
symmetric density but he did not prove the asymptotic normality given in (5). He also

suggested a corrected cumulative test, as given in (12) below.

The t-statistic ¢, takes the form of a self-normalizing sum. Our aim is to establish
asymptotic normality for ¢, as well as corresponding cumulative tests in a general
setting where the observed data sample z, ..., x, is a series of uncorrelated random
variables that may be dependent and non-stationary. We seek an approach that does
not require verification of additional technical assumptions and allows the applied
researcher to be somewhat agnostic about the structure and generating mechanism of

the uncorrelated data x;.

In this paper we assume that x; satisfies
Ty = p+ ey, (6)

where {&;} is a stationary ergodic martingale difference (m.d.) sequence with respect
to some o-field filtration F; that includes the natural filtration with Ele;|F;_1] = 0,
Eef < o0, i = Ex; and a deterministic scaling factor h; = hy, is a sequence of real

numbers for which, as n — oo,

n

max hif = 0(; B, > (he—he)t = 0(; h). (7)

t=2



Then, ¢; allows for conditional heteroskedasticity via E[e?|F;_1] and h; introduces un-

conditional heterogeneity over ¢t. For any k # 0, we have
corr(wy, xy_y) = corr(ey, g4_x) = 0 for all ¢.

Since m.d. variables ¢; are uncorrelated, the variables x; are also uncorrelated. In sim-
ulations involving h; we use the examples hy = (t/n) and hy = 1+ al(m < t/n < 1)
where 0 < 7 < 7 <1, a # 0 and [ is the indicator function. In general, it is easy to
see that the (weak trend) scaling factor h; = v(t/n) satisfies (7) if v(z), 0 <z <1,isa
piecewise bounded differentiable function with a bounded derivative. Our main exam-
ple for an ergodic m.d. sequence {g;} is a stationary GARCH noise. More generally,
if {n;} is an i.i.d. noise and f is a measurable function then e, = n,f(n_1, M2, ...) 18
a stationary ergodic m.d. sequence (e.g. Stout (1974, Th. 3.5.8), an example being
€ = MtMt—1-

The statistics ¢, = /n pr, t and their cumulative versions have been examined by
various authors either for raw data or for residuals from some estimated model. In
either case, it is common to assume that {x;} is as in (6) but stronger assumptions on
(h¢,e¢) are imposed. Most authors assume that h; = 1 and &; is an m.d. noise of a
specific type. A few authors allow h; to be deterministic and to vary with ¢, but require
{&:} to be i.i.d. so that the x; remain independent. An exception is Lo and MacKinlay
(1989) where h; is permitted to be time varying and mixing conditions are imposed on
{e:} but with restrictive moment conditions that exclude, for example, GARCH data

with skewed innovations.

The following result establishes the asymptotic distribution of the t-statistic tr

given in (4).

Theorem 2.1. Suppose that 1, ...,x, is a sample from a sequence given in (6) and
the hy satisfy (7). Then for any fived integer k # 0, as n — oo,

te —p N(0,1). (8)

Moreover, form =1,2, ...,

(t1,....tm) —=p N(0,R) (9)

where R = (rj;) is an m X m matriz with elements

ri = corr(eie1_j,e1€1-k), J,k=1,...,m.



By virtue of (8), ¢xpr —p N(0,1) where

~ S h? Ee?
cr=c(1+0,(1)), cp:= (Z?jl 2?)1/2 EEIE — 00, (10)

which leads to a £z,/2 /¢, confidence band for zero correlation at lag k.

Box and Pierce (1970) and Ljung and Box (1978) suggested the well-known cumu-

lative statistics

m m ~2
BP,, = iy LB, = 2 i 11
w=n Y ph LBa= (20 L (1)
k=1 k=1
for portmanteau testing of the joint null hypothesis Hy : p1 = ... = p,, = 0. These

tests are based on the property (3) of the sample ACF py’s showing that under Hy the
tests are asymptotically x?2 distributed.

When {z,} is uncorrelated but not i.i.d. and (3) fails these cumulative tests produce

size distortions in testing. In turn, Taylor (1984) suggested the corrected-for-variance

Dt (12)

for testing Hy : p1 = ... = p, = 0. This formulation corresponds to the diagonal

cumulative statistic

matrix R = I in (9) which holds only when the variables w; = e1£;_; are uncorrelated.
Setting t = (1, ..., ty,)", result (9) of Theorem 2.1 implies that

;/R_lftv—)p X?n, ?’§_1?—>D X?n, (13)

for any consistent estimate R —, R of R. The matrix R is positive definite and R~*

exists if £1 # 0 a.s., see Lemma 3.1 below.

As discussed in the Introduction, various authors have examined statistics (4) and
(12). However, as noted by Guo and Phillips (2001) (see also Cumby and Huizinga
(1992), Lobato et al. (2002) and Francq et al. (2005)) who arrived at (13) under
different assumptions on the data generating process {x;}, there are sequences {z;}
that are uncorrelated but not independent for which the matrix R is not diagonal
and therefore the cumulative statistic (12) is invalid. Guo and Phillips (2001) use a
similar estimate R of R to our estimate given in (14) below. Cumby and Huizinga
(1992) and Lobato et al. (2002) use kernel nonparametric methods and Francq et al.
(2005) introduce an autoregressive approximation method to estimate W and R. These

authors all assume stationarity of {x;}, thereby excluding unconditional heterogeneity.



We will estimate R by R = (7j5) where 7, are sample cross-correlations of the

variables (e, t = 1,...,n) and (ey, t =1,...,n):

n
Zt:max(j,k)—l—l €tjCtk

P = .
’ (Z?:max(j,k)Jrl egj)1/2<2?:max(j,k)+l e?k)l/Q

(14)

To improve the finite sample performance of the cumulative test, we use the thresholded

version R* = (77, of R where
T = Tl (|Te] > A)  with A = 2.576 (15)
where 7j;, is a self-normalized t-type statistic

n
Zt:max(j,k)—f—l €tjCtk

Tik = .
’ (E?:max(j,k)Jrl e?je?k)l/Z

(16)

Notice that R* is the sample analogue of the variance-covariance matrix of ¢ for which
we threshold the off-diagonal elements by checking at the 1% significance level whether
they are significant. This is a simpler approach to that undertaken by Cumby and
Huizinga (1992), Lobato et al. (2002) or Francq et al. (2005).

The next theorem establishes the asymptotic properties for the cumulative tests

Qum=1R""7 (17)

for the joint hypothesis Hy : py = ... = p, = 0. In the empirical applications and
Monte Carlo study described later in the paper we use the cumulative statistic @m
with the suggested threshold setting A = 2.576.

Theorem 2.2. Under the assumptions of Theorem 2.1, for any m = 1,2, ... and with

any threshold X > 0, as n — 00,

~

R—,R R —,R, (18)
Qm —p X% Qum—p X2 (19)

The assumptions of Theorems 2.1 and 2.2 are minimal and less restrictive than
those used so far in the literature. They allow for both non-stationarity (uncondi-
tional heteroskedasticity) and dependent martingale difference type uncorrelated noise

including GARCH type conditional heteroskedasticity.
The test @Q,, without thresholding based on property R —, I suffers some size

9



distortion in finite samples for moderate and large m and moderate samples sizes n.
We will show that thresholding has no impact on consistency asymptotically, i.e. for
any A > 0, R —, R, but it will improve finite sample performance in many cases
where the off-diagonal elements are either very small or zero, in particular when R is
sparse (see Online Supplement IT). The following simple arguments show consistency
T = Tl (T > A) —p mp. Indeed, 7 —p 7, and (7 > A) —, 1if 7y # 0.
The objective of thresholding is to improve estimation of rj; when taking zero values.
Here A plays the role of a critical level in testing the null hypothesis that 7;; (or
its numerator) is zero. We recommend using it as a preselected tuning parameter A
which does not depend on n. If 75, —p N(0,1), thresholding with A = 2.576 can be
interpreted as testing for 7, = 0 at a 1% significance level. Use of thresholding has

negligible impact on power, which is shown in the Online Supplement II.

As will be apparent in the next section, the assumptions of Theorems 3.1 and
3.2 in the bivariate case render the above methods of analysis valid for a univariate
series in a straightforward way. In particular, since any measurable function y, =
f(zg, 241, ..., 241) of a stationary ergodic process {z;} is also a stationary ergodic
process (e.g., Stout (1974, Cor. 3.5.2)), if E|y| < oo it follows that

E|n*12yt —Eyl‘ — 0, n— oo

t=1
Thus the bivariate series {x, y;} with y; = x; satisfies the conditions of Theorems 3.1

and 3.2 in the following section, which imply the results of Theorems 2.1 and 2.2, and
Corollary 3.1 implies (10) above.

3 Tests for zero cross-correlation

For bivariate time series {z;,y;} we observe data zi,...,z, and yi,...,y, and are in-
terested in testing possible cross-correlation between these time series at various lags.
Denote by pyy , the k-th sample cross-correlation estimate of the k-th cross-correlation

Payk = cOrT(y, ye—y) for k=0,1, ...

~ >t (T = ) Yk — ) I I
Pzyk — n — n — ’ r = — Tgy, Y= — Yt
" (i (e — )2 300 (g — 9)?)? n ; n ;

The asymptotic theory for such sample cross-correlations was given in Hannan
(1970). Haugh and Box (1977) developed a test for cross-correlation under the as-

10



sumption of independent series {z;} and {y;}. But there is little literature on testing
cross-correlation using the sample statistic p,,, when the series are not independent
or when they are heteroskedastic. Although in regression analysis the issue of het-
eroskedasticity has been addressed, graphs of the sample cross-correlations typically

display confidence bands based on +z,/5/1/n, corresponding to the t-statistic

tzy,k = \/ﬁﬁzy,k (20)

for testing Hy : pyyr = 0 under independence conditions. Further, bivariate analogues
of cumulative standard statistics are rarely analyzed and often involve additional tests
for the significance of the univariate autocorrelations of {z;} and {y;}, as in Tsay
(2010) for example. In what follows, we examine the Haugh (1976) and Haugh and

Box (1977) test for cross-correlation

m  ~9
Py k
HBy,,m =n? Y 21
ym =) (21)
k=0
for testing Ho : pzy0 = Pay1 = --- = Pay,m = 0 which assumes independence of the time

series {x;} and {y;}.

Similar arguments to those of the univariate case in Section 2 show that standard
normal and x?, approximations for the statistics in (20) and (21) are not always valid for
bivariate times series {zy,y;} which are not uncorrelated and stationary, independent
noises. To provide a more general framework, we assume in this paper that {x;,y;}
satisfy

Ty = fg + M€, Yr = Hy + G, (22)

where {&;}, {n:} are stationary sequences, Ee; = En;, = 0, Ee} < oo, En} < oo and hy, g;
are real numbers that satisfy conditions made explicit in Assumption A and Theorem
3.1 below.

Notice that pu,, = corr(xe, yi—x) = corr(ee, n,—i). However, when p,,, = 0, the
standard normal approximation for ¢,, , may not hold because of the presence of het-
eroskedasticity in {z;} and {y;} or dependence between the two uncorrelated series.
For that reason, in order to develop a robust test of Hy : pyyr = 0, K > 0, we define
the following robust t-statistic

~ Z?—k-i-l Cay,tk
loyk = 7—=n 7770 Caytk = (Tt — T) Yok — ). (23)
Y (Zt:k+1 e:%:y,tk)l/2 !

11



Our objective is to establish the asymptotic normality

~ PN - Loy,
toyk = Payk Coyke =D N(0,1),  Coyp = ﬁy £ (24)
zy,k

for k > 0 such that corr(e;, ;1) = 0. This correction leads to a %24 /2/Cyy 1 confidence

band for zero cross-correlation p, i at lag k.

As we see below, (24) requires the first series {x;} to be an uncorrelated noise or,
more specifically, an m.d. sequence. In what follows, we first allow the uncorrelated
series {x;} and {y;} to be mutually dependent, and subsequently examine the case

where they are mutually independent. Test consistency is considered last.

Clearly, for (24) to hold, we need additional assumptions on {e¢, 7;}. The conditions

below are formulated in terms of the product series wy := i, k > 0.

Assumption A. For j,k > 0, {wi}, {wijwi} are stationary sequences, Bw? < oo,

and

E|(n™" ) wyjwi) — Elwijwi]] =0, n— oo. (25)
t=1

The weights hy, g, satisfy the following conditions: setting ¢, = > 1, hig7,

n

max by =o(ga), (DB (9~ 9-1)")"? = 0lgn). (26)

t=1,....n
t=2

gt = o(an), (32 g2 he = he 1)) = olan).

n t=2

yeey

These conditions lead to a transparent asymptotic theory. It can be shown that robust
testing procedures remain valid for a large class of non-smooth scaling factors h; and g,

that meet these conditions.

I: The case of mutually dependent series {z;} and {y;}.

First, we assume that x; and the lagged variables y;_; are uncorrelated but not
mutually independent. For example, suppose that in (22) {e;} is an m.d. sequence
with respect to some o-field F;, and n;_j is F;_1 measurable. Then &;1;_, is also an

m.d. sequence so that E[e;n;—|F;—1] = 0, and thus corr(z, y;—x) = 0.

Bivariate series x; and 1;_, can be uncorrelated at some lags, say k = mg,...,m
where 0 < mg < m, and correlated at other lags, say & = 0. The next theo-

rem establishes the multivariate limit distribution of the vector (f1ymg, -, tay.m) When

12



corr(zy, yi—r) = 0 for k = mg,...,m. Subsequently, we use this vector to test the
hypothesis corr(zy, y;—x) = 0, k = myg,...,m. To show asymptotic normality for the
statistic fwk based on the centered variables x; — Z and y; — ¥ we make the following

assumption.

Assumption B. The autocovariance functions cov(et, €1—) = Ve i, COV(Nt, Ni—k) = Yk
of the stationary sequences {e;} and {n;} satisfy the following covariance summability

conditions

Dok Vel <00, Y0 el < oo (27)

These conditions are clearly satisfied by white noise/m.d. sequences {e;} or {n;}.
Theorem 3.1. Suppose that {x;,y:} in (22) satisfy Assumptions A, B and (26).

If {eimi—i}, k = mo,...m (0 < myg < m) are m.d. sequences with respect to the same
o-field Fy, with Ele,n_g|Fi—1] = 0, then, as n — oo,

(taymgs - taym) =0 N (0, Ryy) (28)
where Ryy = (Tay.jk)jk=mo,...m S a matriz with elements

Teyjk = 001"1"(51771—j7 E1N1—k)-

In particular, ty,x —p N(0,1) for k = my, ..., m.

Simulations confirm that the test for zero cross-correlation at individual lag k =
0,1,2,... based on %;%k is well sized in finite samples for numerous lags when {x;} is
serially uncorrelated and {y;} is serially uncorrelated or series of dependent random

variables.

Theorem 3.1 implies that €. xpwyx —p N(0,1) for k = mo, ..., m. The Corollary below
shows that the “standard error” /c;yl &

This implies that the robust non-rejection region 2,/ /¢y 1 of the null hypothesis of a

= Duy /%;yk has a deterministic asymptotic form.

lag k zero correlation at the « significance level can be interpreted as a 1 —a confidence
interval for zero correlation. For this result we employ some additional assumptions on

the scaling factors {hy, g} and the autocovariograms of the stationary sequences {7}
and {n}}:

maxi—1,..n hi = 0(32{_y hi), maxi—1,_n g7 = 0324, 97), (29)

cov(ez, e2) — 0, cov(ni,n2) — 0 as k — oo.
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Corollary 3.1. Let (29) and the assumptions of Theorem 3.1 hold. Then,

v i1 higi  Eleini_y] .

(30)

We next consider cumulative tests. First, note that the matrix R,, in (28) is
positive definite and R;yl exists if £1 # 0 a.s.; see Lemma 3.1 below. The convergence
(28) implies

%;yR;ﬁ;y —D an*moJrl where ?my = (%;yﬁmo, s taym) (31)

For testing the cumulative hypothesis Hy : pzyme = - = Paym = 0, we suggest the

following standardized statistics
Qxyzm = Z;/cy R;; %VUC?J? Qxyam = /{a/:y R;gjl %;Cy? (32>

where Ry = (Tuy,jk)jk=mo,...m and R are consistent estimates of the matrix R,,. We

define

n
Zt:max(j,k)—i—l Cay,tjCay,tk

?nyk N (Z?:max(j,k)—l—l eiy,tj)l/2(2?:max(j,k)+l eiy,tk)1/2’

jok=1,..m. (33)

To improve the finite sample performance of the cumulative test, we suggest the thresh-

A~

olded version E;y = (T i) jk=i,..m Of Emy where
?;y,jk = Ty jkd (|Tuy x| > A)  with A = 2.576 (34)

and 7., ;i 1S a t-statistic constructed as

n
Zt:max(j,k)+l Cay,tjCay,th

Tay,jk = n 2 2 :
> 1/2
(Zt:max(j,k)Jrl exy,tje:vy,tk) /

(35)

Just as in the univariate case, }A%;y is the sample analogue of the variance-covariance
matrix of fxy where we threshold its off-diagonal elements by checking at the 1% level
whether they are significant. In our simulations and applications we set A\ = 2.576, but

in theory other threshold values A > 0 can be used.

The limit theory of these statistics for testing cross-correlation between two serially

uncorrelated time series at cumulative lags is given in the following result.
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Theorem 3.2. Under the assumptions of Theorem 3.1, for any A > 0, as n — o0,

~

Rey —p Ruy, R, =, Ruy, (36)

2 A 2
me,m —D mem0+17 sz,m —D memoJrl' (37>

Simulations show that if both {z;} and {y;} are serially uncorrelated the robust cumu-
lative test mem based on the thresholded estimate ﬁ;y with parameter A = 2.576 in
most cases corrects adequately for size, whereas for large m the cumulative test based
on (zy.m suffers some size distortion. We note that in simulations for large values of m
the statistic vay,m may sometimes be negative since the matrix ﬁ;’;y is not necessarily

positive definite.

Different from the univariate case, Assumption A is employed to avoid assuming
ergodicity of the stationary sequence {e77,_;n:— }, which implies (25), see Stout (1974,
Corollary 3.5.2). In general, ergodicity of the separate sequences {e;} and {n;} does
not necessarily imply ergodicity of {e?n,_;n;,_x} and thus (25). Property (25) alone is
sufficient for the proofs to hold.

Theorem 3.1 assumes {e;7;—x} to be an m.d. sequence. This is a weak assumption
and allows for various types of dependence between the sequences {e;} and {n;}. For
example, if {¢;} is an m.d. sequence with E[e;|F;—1] = 0 and n; = g(et, €41, ...) is a
measurable function of €5, s < t, then {em,_x} is an m.d. sequence with respect to F;
for k£ > 1, so that

E[£tﬁt—k|ft—1] = Ut—kE[€t|ft—1] = 0.

Simulations show that both the modified tests tny,k and ézy,m for zero cross-
correlation (at individual and cumulative lags) manifest good size control when {z;}
and {y;} are series of uncorrelated variables with time varying variances, and when
they are mutually uncorrelated but not necessarily independent. The standard tests
tyyr and HB,,,, require the series {z;} and {y} to be mutually independent sta-
tionary uncorrelated noises. The test %;y,k at individual lags also achieves good size
control when the lagged series is correlated, whereas the standard test t,,; requires

independence of {z;} and {y;} for good performance.

The next result verifies the existence of R,,. For z = (z1,...., zn), m > 1 define

Cov(z) = (cov(zj, z)) and Corr(z) = (corr(z;, 2x)).

Lemma 3.1. Let {n;} be a stationary sequence with En; = 0, 0 < En? < oo, autoco-
variance sequence v, (h) = E(mn,—p), and spectral density f,(x), v € [—m,n]. Then:
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(i) Cov(n) and Corr(n) are positive definite for any n = (n1,...,Mm); and

(i) if zj = exm—j, BEz; = 0, B2} < oo for j > 1 and &1 # 0 a.s. then Cov(z) and

Corr(z) are positive definite for any z = (21, ..., Zm)-

IT: The case of mutually independent series {z;} and {y;}.

If {z;} and {y; } are mutually independent, then corr(z;, y;—x) = 0 and corr(y;, z;—j) =
0 for k& > 0. Properties (28) and (37) of the test statistic £, for an individual lag
and the corresponding cumulative test statistic are preserved if the series {x;} is an

uncorrelated m.d. sequence while {y;} may be sequence of dependent variables.

Theorem 3.3. Assume that {x,y:} in (22) satisfy Assumptions A, B and (26) and
{z:} and {y:} are mutually independent. Suppose {e} in (26) is an m.d. sequence.

Then, for any 0 < mg < m, as n — 00,

(0, Ray), (38)

tl"y (t:Ey,m()) ety tmy,m)

N
t, t, t, N

tyac = (tyar,moa L) tyac,m)

where R,y = Ry, = R, = (1yjx) and ry ji = corr(y;, yi), j, k = mg, ..., m.

In particular, thy,k —p N(0,1) for any lag k = ... — 1,0, 1, ... Moreover,
Qa:y,m —D X72n+17 Q:vy,m —D X72n+1 (39)
ZIR;‘;EM —D X?n—mg—&—l? ’tz/xR;:gjlthy —D in—mo-l—l (40)

where ﬁxy and E;y are defined as above in (33) and (34) with mg = 0.

Consistent estimates Exy and E;y of R,, = R, require the first variable {z,} to be
an uncorrelated m.d. sequence. Notice that ny —p I # Ry, = R,. Hence, applying
the test @W,m instead of tZ/m}A%;; 1?@ in (40) when the lead series {y;} is dependent may

lead to significant size distortions.

Remark 3.1. Testing for cross-correlations, the robust cumulative test @xy,m is well
sized in simulations when both {z;} and {y;} are serially uncorrelated but suffers
size distortions after a few lags when one of the series is serially correlated. Clearly,
thresholding does not improve the estimate of R, ,,, sufficiently in finite samples when
R,y m is not sparse as in Theorem 3.3 and the robust test éwym produces correct size
only for a few low lags (see Figure 3(c)). Size can be distorted for all lags when the lead
series is dependent (see Theorem 3.3). Hence, in applied work we recommend using

the robust cumulative test vak in cases when both series are serially uncorrelated.

16



Finally, if the time series {x;} and {y;} are mutually independent but neither {x;}
nor {y,; } is white noise, the standard normal approximation for ?xy,k does not generally
hold. In such cases, even if

tnyC —D N(O 0’2 )

Y Ty

. 2 00
the variance o7, = >

1= oo COIT (€0, £5)cort (1o, 77;) 18 nOt unity, as shown in the following

result.

Proposition 3.1. Assume that {z;,y;} in (22) satisfy Assumptions A, B and (26).
Suppose that sequences {x;} and {y;} are mutually independent. Then, for any k > 0,

tzy,k = Spk t+ Op(1>7 n — oo, (41)

where Bs,y, = 0, var(syy) — o7, = 372 corr(eg, g5)corr(no, 1;). For the definition of

Snk see (23) in the proof in Online Supplement I.

III: Test consistency.

To conclude this section we show that the test for correlation at lag k based on %;y, ks
is consistent when corr(zy, y;—x) # 0. To do so, we make some further assumptions on

the components wy, = &, and (hy, g;) of {zy, y:} in (22).

Assumption C. {wy} is a stationary sequence whose covariances statisfy the summa-

bility condition

D e oo leov(wig, wik)| < o0, (42)
and (hy, g¢) are such that
Z?:k—&-l \hi(ge — ge—i)| = 0(2?:1 htg:), q;1/2 Z?:l higy — o0, (43)

where g, = Y 1, hig?, as defined earlier.

Condition (42) is a standard weak dependence condition on the covariances of the
sequence {wy}, and condition (43) is satisfied by many weight sequences (h, g;) that

induce unconditional heterogeneity in the series over time, such as linear time trends.

Theorem 3.4. Let {x;,y:} be as in (22) and Assumptions A, B, C and (26) hold.
Suppose that for some k > 0, corr(zy, y;—x) # 0. Then, as n — oo,

e (Z?:lhtgt> cov(er, M) o
ok = (5 Wt @l ) )
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Consistency of the tests follow directly from (44) in view of (43).

Remark 3.2. Our results cover as a special case the test for zero Pearson correlation r
between two variables x and y, which is the cross-correlation p,, ¢ at lag & = 0 between
x and y. When samples of  and y are selected randomly and do not have the same
variance, the test for 7 = 0 based on the standard test statistic ., is susceptible to

size distortions whereas the robust test t,, ¢ remains well-sized.

4 Tests for the i.i.d. property

In this section we examine a simple test for the i.i.d. property of a time series {z;} based
on a sample 1, ..., x,. Campbell et al. (1997, Chapter 2) provide a brief exposition of

this approach for use in financial econometrics. We assume that
Ty = W+ & (45)

where {&;} is a sequence of i.i.d. random variables with Ee; = 0, Ec? < oo. Denote

Pak = corr(zy, ri—y) and define

Pt = cor(fe, — pl, ey — pl),  pap = corr((w — w)%, (wes — p)?)-

Clearly, if {z¢} is i.i.d., then p,r = pjojx = pa2r = 0 for k # 0. With this approach, the
problem of testing the i.i.d. property of the time series {z;} is reduced to testing for
the absence of correlation in {x;} and {|z; — Ex4|} , or alternatively in {z;} and {(z; —
Ez;)?}. Other tests involving nonparametric density estimation (e.g., Gretton and
Gydorfi, 2010) are available but are considerably more complex in their implementation.
The present approach has the benefit of simplicity and makes use of the test machinery

developed earlier.

Our test statistics combine the levels of the data {z;} and either absolute {|z; — Z|}
or squared {(z; — Z)?} deviations from the sample mean z. We denote by pux, Plalk
and p,2 ;. the sample correlation (1) computed using the data @y, |z, — Z| and (2, — Z)?,

respectively. Define

_ n ~ o n ~ B n R
Tk = mpz,m T,k = mpm,k, T2k = mﬂﬁ,k-

Denote 7. .| = corr(ey, |e1]), re 2 = corr(ey, €7), and set

18



2 2
V _ 1 r&,‘&‘ V _ 1 TE,EQ
z,|z| ) x,z2 .
r? 1 r? 1
&,lel €,e2

The next theorem establishes the joint distribution for the statistics (7, T‘M) and
(Ta:,ky Tx2,k)-
Theorem 4.1. Let x1,...,x, be a sample from an i.i.d. sequence (45). If T,2y is

employed, assume in addition that Ee} < oo. Then for m > 1,

(Tx’l, Tla|,1s s Tams T|$|7m) —p N(O, V¢C7|z\72m), (46)
(Tx,la Ta215 s Teom, TmQ,m) —D N(07 ‘/:2,22,2711) (47>

where Vg g 2m = diag(Vajaf, -y Vajz|) and Vi 42 9p = diag(Vy 42, ..., Vi 42) are 2m x 2m

block-diagonal matrices. In particular, for k > 1,
(Tz,ka T|m\,k) —D N(Oa V;E,\x|)7 (Tx,ka TxQ,k’) —D N(07 ‘/I,HCQ)' (48)

Observe that V, ) 2m = I, Vi 422, = I are identity matrices if the {e;} have a sym-
metric distribution, since then 7 | = 7.2 = 0. In general, the non-diagonal elements
7“27|6| and TS’EQ in the matrices V|3 2m and V; 429, are likely to be small. Hence, the
standard normal limit A/(0, I) may be a good approximation in (46) and (47) in finite

samples. This suggests the following approximation

m

Z Tk + T|J:\ k: X%ma Z(Tik + T:i,k) ~ X%m’ (49)

k=1 k=1
which is easy to use in applied work. Good performance of the latter statistics is
confirmed by simulations in the Monte Carlo study.

To verify the i.i.d. property of {z;}, we test at individual lags and cumulatively for the
absence of correlation in levels {z;} and absolute values {|x; — Ex;|} via the following

null hypotheses
Ho: prr =0, ok = 0 at individual lag k& > 1,
Hy: pzr =0, pigj =0 for k=1,...,m for m > 1 (cumulative)

using respectively the statistics

2

n R R m
Jofalh = k(ﬂﬁ,k +o2) Copomn = Jujal- (50)
k=1

Alternatively, we may test for the absence of correlation in levels {z;} and squares
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{(xy — Ex;)?} via the hypotheses
Hy: pgr =0, py2 i = 0 at individual lag & > 1,
Hoy: prr =0, pp2y =0 for k =1,...,m (cumulative)

using respectively the statistics

2

n R R m
Jx,:pQ,k = m(pxz,k + pm227k)7 Cx,m2,m = ; Jx,x{k. (51)

If an i.i.d. time series {x;} has a symmetric distribution, then Theorem 4.1 shows

that, as n — oo,
2 2
Jac,\ac|,k7 Jx,mQ,k —D X2» Ca:7|:c\,m7 Cx,xQ,m —D Xom- (52>

Simulations confirm that the y3,, distribution provides a good approximation also for
i.i.d. time series x; with non-symmetric distributions that do not exhibit severe skew-
ness. Simulations show that these tests have good power in the presence of dependence,

conditional heteroskedasticity or non-stationarity when Ex; or Var(z;) varies with time.

Related to these results, we recall that some standard tests are already in the
literature as mentioned in the Introduction. Notably, convergence for the cumulative

test statistic

S 22, =0 X
based on squares z? of an i.i.d. sequence was established by McLeod and Li (1983).
The present tests involve both levels and absolute values or both levels and squares.
Similar tests for residuals of a fitted ARMA-GARCH model were used by Wong and
Ling (2005) and Zhu (2013). Different from our testing procedures, residual based
tests do not require demeaning and their asymptotic distribution may depend on the

parameters of a fitted model.

5 Monte Carlo experiments

This section presents Monte Carlo findings on the finite sample performance of the
standard and robust tests for zero correlation given in Sections 2 and 3 and the tests for
the i.i.d. property given in Section 4. We use a variety of models for {z;} and {z, y;},
sample sizes n = 100,300, 1000 and the experiments each involve 5,000 replications.
We evaluate the rejection frequency (in %) of the test statistics at significance level

a = 5% using the asymptotic critical values and power is not size corrected. The
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standard test ¢; and the robust ¢, are based on 1.96 critical values, respectively. Figures
1-5 report rejection frequencies (size and power) for a subset of models for n = 300
and k,m = 0,1,2,...,30 lags. The full findings for n = 300 are given in the Online
Supplement II of this paper to which readers are referred for complete details and

results for n = 100, 1000 are available upon request.

Figures 1 and 2 report size and power of the tests for zero correlation based on
the statistics %Vk, tr, @m with A = 2.576 and LB,,. Figure 1 shows that the standard
statistic ¢, and the cumulative LB,, statistic have distorted size when the data are
non-i.i.d., see e.g. models (b)-(d). The accumulation of the ¢-test size distortion in the
LB, test is evident at all lags. On the other hand, the robust statistics %Vk and @m
achieve the nominal size of @ = 5% for all models in Figure 1. For the i.i.d. data in
model (a) the standard and robust methods give similar results as expected. Figure 2
displays test power. The results show some loss in power for the robust test statistics
compared to the standard tests. All tests show spurious power when the data x; is

uncorrelated but has time varying mean, see models (c)-(d).

Figures 3 and 4 report test results for zero cross-correlation for bivariate time
series {x;} and {y;} based on the statistics ﬂ%k, by ks va with A = 2.576 and HB,,.
When series of independent variables {z;} and {y;} are heteroskedastic but jointly
independent, as in Figure 3 model (a), the robust statistics produce correct size whereas
the standard tests are all oversized. When the time series {z; } and {y; } are uncorrelated
but not mutually independent, as in model (b), the robust statistics give correct size
whereas the standard ones over-reject. When {z;} and {y;} are mutually independent,
but one of the two has either autocorrelation or time varying mean, as in models (c) and
(d), then both the standard and robust tests at individual lag give the correct size, but
the cumulative tests tend to become oversized. The latter outcome was unexpected,
as the theory of Section 3 for model (c) would suggest the cumulative tests would be
well-sized. It seems that ﬁ;ym does not estimate well the non-sparse autocorrelation
matrix R, of y; for this moderate sample size, especially for bigger lags m. When the
time series are cross-correlated, as in Figure 4 models (a)-(b), we observe similar power
across the standard and robust statistics, with some loss in power at bigger lags for
the robust cumulative statistic. In Figure 4 models (c)-(d), the time series {z;} and
{y;} are jointly independent but we observe spurious power, when both of them have
autocorrelation, like in (c) and as suggested by theory, or when both of them have time

varying mean, as in (d).

Figure 5 reports the test results for the i.i.d. property using the statistics Jy |o| ks Jz,22 %

and Cy z|m, Cz22,m- The size of the tests at individual lags and the size of the cumu-
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lative tests are satisfactory in model (a), and we observe good power in discriminating
the non-i.i.d. models (b)-(d). In particular, the statistics based on the absolute values

have overall similar or better power properties than those based on the squares.

Some general conclusions from the simulation study are as follows. First, we find
that in testing for correlation or for the i.i.d. property, tests at individual lag k& perform
well at all lags. The cumulative tests with A = 2.576 perform overall well at most lags,
with tiny distortions at the bigger lags. This conclusion is based on the Monte Carlo size
properties of our tests for the models considered in the Online Supplement II. Second,
we note that one needs to test for a constant mean prior to applying the univariate
(both standard and robust) tests for absence of correlation. Third, for bivariate tests
it is useful to check for constant mean (e.g. using the Bai and Perron (1998) test for
multiple structural breaks) as well as for serial correlation in each time series prior to
applying the tests. Fourth, the findings indicate that our tests for the i.i.d. property
based on the Y3 . approximation perform well unless the distributions are extremely

skewed.

Remark 5.1. The theory and Monte Carlo study suggest the following:
(i) In testing for autocorrelation the series needs to have constant mean.

(ii) In testing for cross-correlation each of the series needs to have constant mean and
to be serially uncorrelated when applying the portmanteau type statistics or at least

one when applying the t-type tests.
(iii) The values A = 1.96,2.576 are good candidates for the threshold in the robust

portmanteau statistics, with A = 2.576 performing better at relatively large lags.
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Figure 1: Size. Rejection frequencies (in %) at o = 5% of robust (red line) #; and
standard (grey line) ¢ tests (left) and robust (red line) @, and standard (grey line)
LB,, cumulative tests (right) at lags k,m = 1,2, ...,30. & ~ iid N(0,1).
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Figure 2: Power. Rejection frequencies (in %) at o = 5% of robust (red line) ¢, and
standard (grey line) ¢ tests (left) and robust (red line) @, and standard (grey line)
LB,, cumulative tests (right) at lags k,m = 1,2, ...,30. & ~ iid N(0,1).
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Figure 3: Size. Rejection frequencies (in %) at a = 5% of robust (red line) ¢, and

standard (grey line) ¢,,; tests (left) and robust (red line) @, and standard (grey
line) H B,y cumulative tests (right) at lags k,m = 0,1,...,30. &, ~ iid N(0,1),
{e+}, {m:} independent.
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Figure 4: Power. Rejection frequencies (in %) at a = 5% of robust (red line) ¢,,; and

standard (grey line) ¢,,; tests (left) and robust (red line) Q.. and standard (grey
line) HB,, ., cumulative tests (right) at lags k,m = 0,1,...,30. &, n ~ iid N(0,1),
{et}, {m} independent.
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Figure 5: Size and power. Rejection frequencies (in %) at o = 5% of J, |z (ved
line) and J, .2 (grey line) tests (left) and Cy jgm (red line) and Cy 2., (grey line)
cumulative tests (right) at lags k,m = 1,2, ...,30. & ~ iid N(0,1).
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6 Empirical application

We report an application of these methods to financial market data covering the period
2008-18. Both the standard and robust tests for absence of correlation are used. We
analyze univariate time series of daily returns {x;} of the FTSE100 index and the
bivariate series {x;,1;} of the daily returns of the FTSE100 index and gold price.?
Graphical inspection of the data suggests that the means of both the FTSE100 and

gold returns are likely constant.

The results of the univariate analyses are shown in Figures 6 and 7. Panel (a) of
Figure 6 contains the correlogram py (AC) for lags k = 1,2, ..., 10 along with 95% and
99% confidence bands (CBs) for insignificant correlation, the standard CBs are based
on +z,/5/+/n and the robust on 2z, /2(py /tNk) at significance levels a = 5%, 1%. Panel
(b) reports the values of the standard LB, and robust @m cumulative statistics with
threshold A = 2.576 for lags k = 1,2, ..., 30 along with their asymptotic critical values
at significance levels a = 5%, 1%. The CBs of the standard test for correlation at
individual lags show evidence of serial correlation at lags k = 2,5 at the 1% and at lags
k = 3,4 at the 5%. The latter is magnified in the LB,, cumulative test. However, in
agreement with the robust CBs, the evidence of serial correlation is insignificant at all
individual lags at the 5% level. As such, the cumulative hypothesis of no correlation is
not to be rejected by the cumulative test @m. To test for the i.i.d. property of z;, we
evaluated the statistics Ju o) ks Jo 02k Cajaym and Cy g2, which are shown in Figure
7. Evidently, this hypothesis is strongly rejected. We therefore conclude that the daily
returns of the FTSE100 index during 2008-18 are uncorrelated, but strong evidence

affirms that the series is not i.i.d.

The results of bivariate testing are shown in Figure 8. Just as the FTSE100 returns
were found to be uncorrelated, similar analysis (not reported here) confirms uncorre-
latedness of the gold returns. Panels (a) and (c) contain the cross-correlograms py,, x
and py.r (CC) for lags k = 0,1,...,10 along with the standard 95% and 99% confi-
dence bands, based on %2z,/2/+/n and the robust ones based on %24 /2(Puy,k /%nyk) and
+20/2(Pyer/tyek) at significance levels o = 5%, 1%. In Panels (b) and (d), we re-
port the standard H B,y ,,, H By, . and robust @wm, va%m cumulative statistics with
threshold A = 2.576 for lags £ = 0,1,...,30 and their asymptotic critical values at

3The data are sourced from YahooFinance for the FTSE100 index and from the Federal Reserve
Bank of St.Louis for the London Bullion Market Association (LBMA) gold price. Both prices are
in British pounds. The FTSE100 index is measured at the market closing at 4:30 GMT. The gold
price is at 3:00 GMT. Returns are calculated as first differences of log-prices. Missing observations
are deleted.
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the a = 5%, 1%. Standard inference suggests evidence of significant contemporaneous
cross-correlation p,, o at 1%, as well as cross-correlation p,, ) for lags k = 2,8 at 1%
and py, . for leads k = 5 at 1% and for £ = 8,9 at 5% between FTSE100 and gold
returns x; and ;. The cumulative hypothesis of zero cross-correlation is rejected at
1% for all m by standard tests H By, HBys.m. However, the robust CBs do not
produce as much evidence of significant cross-correlation. We do find evidence from
the robust tests of contemporaneous cross-correlation p,, o for k = 0 at 5%, as well
as cross-correlation p,,r for lags &k = 2 at 5% and k = 8 at 1% and py,; for lead
k =5 at the 5% between FTSE100 and gold returns z; and y;. Subsequently, using
modified test statistics the cumulative hypothesis of zero cross correlation is rejected
when m = 0 at the 5%. Furthermore, when the FTSE100 return x; is leading the
hypothesis of zero cross-correlation is rejected at 5% for some m and when it is lagging
the hypothesis of zero cross-correlation is not rejected at 5% for all m. Overall, these
results indicate evidence that the daily returns of the FTSE100 index and gold during
2008-18 have contemporaneous cross-correlation at k& = 0 but not at different leads and
lags for k& > 1.

Figure 6: FTSE100 daily returns, 2008-2018. Correlogram
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Figure 7: FTSE100 daily returns, 2008-2018. L.i.d. test

— T al =Tz ~-CV(EU) Cv(1%) = Cle) = Cy e =~0V(E%) 0V(1%)
400 - 6000 -
5000
300 -
4000 -
200 - 3000 -
2000 -
100 A
1000 A
on—--" " 0 + v + 7 7 7 7 7 7 7 7 7 7 =
1 2 3 4 5 6 7 8 9 10 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
(a) Jp |2,k (red), Jp 02 1 (grey) tests at lags k = (b) Cyjal,m (red) and C, .2 ., (grey) tests at
1,2,...,10. lags m =1,2,...,30.

Figure 8: FTSE100 (z) and gold (y) daily returns, 2008-2018. Cross-correlogram

--- Standard CB(95%) - Standard CB(99%) —HB — 0 --cv(5%) ~cv(1%)
---Robust CB(95%) - Robust CB(99%) 100 1

mce

0.12 4

0.08 -

0.04

0

-0.04

-0.08 -

0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

-0.12 -
(a) CC pgy,k, standard (grey) and robust (red) (b) Standard (grey) HBgy m and robust (red)
CB for non-significance of cross-correlation at @xy’m cumulative tests at lags m = 0, 1, ..., 30.

lags k=0,1,...,10.

e Standard CB(95%) - Standard CB(99%) —HB — 0 -cv(5%) ~cv(1%)
--- Robust CB(95%) - Robust CB(99%) 100 1
0.12 4
80 4
0.08 -
0.04 - 60 1
0 40 A
-0.04 -
20 +
-0.08 4
0 T T T T T T T T T T T T T T
012 ) 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
(c) CC pys,k, standard (grey) and robust (red) (d) Standard (grey) HByg m and robust (red)
CB for non-significance of cross-correlation at Qyz,m cumulative tests at lags m = 0,1, ..., 30.

lags £k =0,1,...,10.

30



7 Conclusions

The procedures developed in this paper belong to a class of econometric tests that
robustify existing procedures to take account of realistic features of economic and
financial data. Tests for zero autocorrelation and zero cross-correlation are among the
fundamental starting points in analyzing time series and they are methods that have
remained in common use since influential work by Box and Jenkins (1970) and others.
The validity of standard procedures of testing is fragile to latent dependencies and non-
stationarities that are well known to be present in much economic and financial data.
The methods and limit theory in the present paper correct for such fragilities and in
doing so complement and generalize earlier work to accommodate such dependencies.
The Monte Carlo experiments corroborate the validity of the proposed methods and
provide guidelines for practitioners in implementing the new procedures. The empirical
application to financial return data demonstrates the utility of these methods in taking
account of latent dependencies and thereby avoiding potentially spurious inferences
about autocorrelation and cross-correlations in such data. In subsequent work, we
plan to adapt the test procedures developed in this paper to models that involve an
evolving mean function and a stochastic heterogeneity factor h;. We plan to show
that robust testing procedures remain valid for scaling factors h; that do not satisfy
the specific smoothness condition (7). Such results naturally involve a more complex

correlation matrix R which depends on {h;}.

References

Anderson, T.W. and Walker, A.M. (1964) On the asymptotic distribution of the auto-
correlations of a sample from a linear stochastic process. The Annals of Mathematical
Statistics 35, 1296-1303.

Bai, J. and Perron, P. (1998) Estimating and testing linear models with multiple struc-

tural changes. Fconometrica 66, 47-78.

Bartlett, M.S. (1946) On the theoretical specification and sampling properties of au-
tocorrelated time-series. Supplement to the Journal of the Royal Statistical Society 9,
27-41.

Box, G.E.P. and Jenkins, G.M. (1970) Time Series Analysis: Forecasting and Control.

San Francisco: Holden-Day.

Box, G.E.P. and Pierce, D.A. (1970) Distribution of residual autocorrelations in autore-

31



gressive-integrated moving average time series models. Journal of the American Sta-
tistical Association 65, 1509-1526.

Campbell, J.Y., Lo, AW. and MacKinlay, A.C. (1997) The Econometrics of Financial

Markets. Princeton University Press, New Jersey.

Cumby, R.E. and Huizinga, J. (1992) Testing the autocorrelation structure of distur-
bances in ordinary least squares and instrumental variables regressions. Econometrica
60, 185-196.

Dalla, V., Giraitis, L. and Koul, K.L. (2014) Studentizing weighted sums of linear
processes. Journal of Time Series Analysis 35, 151-172.

Diebold, F.X. (1986) Testing for serial correlation in the presence of ARCH. Proceed-
ings of the American Statistical Association, Business and Economic Statistics Section,
323-328.

Francq, C., Roy, R. and Zakoian, J.-M. (2005) Diagnostic checking in ARMA models

with uncorrelated errors. Journal of the American Statistical Association 100, 532-544.

Francq, C. and Zakoian, J.-M. (2009) Bartlett’s formula for a general class of nonlinear

processes. Journal of Time Series Analysis 30, 449-465.
Giraitis, L., Koul, K.L. and Surgailis, D. (2012). Large sample inference for long

memory processes. Imperial College Press.

Granger, C.W.J. and Andersen, A.P. (1978) An introduction to bilinear time series
models. Vandenhoeck and Ruprecht, Gottingen.

Gretton, A. and Gyorfi, L., (2010) Consistent nonparametric tests of independence.
Journal of Machine Learning Research, 11, 1391-1423.

Guo, B. and Phillips, P.C.B. (2001) Testing for autocorrelation and unit roots in the
presence of conditional heteroskedasticity of unknown form. UC Santa Cruz Economics
Working Paper 540, 1-55.

Hall, P. and Heyde, C.C. (1980) Martingale Limit Theory and Applications. Academic
Press, New York.

Hannan, E.J. (1970) Multiple Time Series. John Wiley & Sons.

Hannan, E.J. and Hyde, C.C. (1972) On limit theorems for quadratic functions of
discrete time series. The Annals of Mathematic Statistics 43, 2058-2066.

Haugh, L.D. (1976) Checking the independence of two covariance-stationary time se-
ries: a univariate residual cross-correlation approach. Journal of the American Statis-
tical Association 71, 378-385.

32



Haugh, L.D. and Box, G.E.P. (1977) Identification of dynamic regression (distributed
lag) models connecting two time series. Journal of the American Statistical Association
72, 121-130.

Hooker, R.H. (1901) Correlation of the marriage-rate with trade. Journal of the Royal
Statistical Society 64, 485-492.

Horowitz, J.L., Lobato, I.N. and Savin, N.I. (2006) Bootstrapping the Box-Pierce @
test: A robust test of uncorrelatedness. Journal of Econometrics 133, 841-862.
Kokoszka, P.S. and Politis, D.N. (2011) Nonlinearity of ARCH and stochastic volatility
models and Bartlett’s formula. Probability and Mathematical Statistics 31, 47-59.
Kyriazidou, E. (1998) Testing for serial correlation in multivariate regression models.
Journal of Econometrics 86, 193-220.

Ljung, G.M. and Box, G.E.P. (1978) On a measure of lack of fit in time series models.
Biometrika 65, 297-303.

Lo, A.W. and MacKinlay, A.G. (1989) The size and power of the variance ratio test in
finite samples. A Monte Carlo investigation. Journal of Econometrics 40, 203-238.
Lobato, I.N., Nankervis, J.C. and Savin, N.E. (2002) Testing for zero autocorrelation
in the presence of statistical dependence. Econometric Theory 18, 730-743.

McLeod, A.I. and Li, W.K. (1983) Diagnostic checking ARMA time series models using
squared residual autocorrelations. Journal of Time Series Analysis, 4, 269-273.
Phillips, P.C. and Solo, V. (1992) Asymptotics for linear processes. Annals of Statistics,
20, 971-1001.

Robinson, P.M. (1991) Testing for strong serial correlation and dynamic conditional
heteroskedasticity in multiple regression. Journal of Econometrics 47, 67-84.
Romano, J.P. and Thombs L.R. (1996) Inference for autocorrelations under weak as-
sumptions. Journal of the American Statistical Association, 91, 590-600.

Stout, W. (1974) Almost Sure Convergence. Academic Press, New York.

Taylor, S.J. (1984) Estimating the variances of autocorrelations calculated from finan-
cial time series. Journal of the Royal Statistical Society, Series C. 33, 300-308.

Tsay, R.S. (2010) Analysis of Financial Time Series, 3rd edition. Wiley, New Jersey.
Wong, H. and Ling, S. (2005) Mixed portmanteau tests for time-series models. Journal
of Time Series Analysis 26, 569-579.

Yule, G.U. (1921) On the time-correlation problem, with especial reference to the
variate-difference correlation method. Journal of the Royal Statistical Society 84, 497-
537.

33



Yule, G.U. (1926) Why do we sometimes get nonsense-correlations between time-series?
A study in sampling and the nature of time-series. Journal of the Royal Statistical
Society 89, 1-63.

Zhu, K. (2013) A mixed portmanteau test for ARMA-GARCH models by the quasi-

maximum exponential likelihood estimation approach. Journal of Time Series Analysis
34, 230237.

34



Online Supplement to ‘Robust Tests for White Noise

and Cross-Correlation’™

Violetta Dalla!, Liudas Giraitis? and Peter C.B. Phillips?

!National and Kapodistrian University of Athens, 2Queen Mary University of London,

3Yale University, University of Auckland, University of Southampton, Singapore Management University

March 25, 2020

Preface

This Online Supplement comprises two separate documents (I and II). Supplement I
provides proofs of all the results given in the main paper. Supplement II provides
details of the full Monte Carlo experiment reported in the text of the main paper. The

documents are arranged below in sequence.

*Dalla acknowledges financial support from ELKE-EKPA. Phillips acknowledges support from the
Kelly Fund at the University of Auckland, a KL.C Fellowship at Singapore Management University,
and the NSF under Grant No. SES 18-50860.



Online Supplement I to ‘Robust Tests for White

Noise and Cross-Correlation”

Violetta Dalla!, Liudas Giraitis? and Peter C. B. Phillips®

!National and Kapodistrian University of Athens, 2Queen Mary University of London,

3Yale University, University of Auckland, University of Southampton, Singapore Management University

March 25, 2020

1 Introduction

This Supplement I provides proofs of the results given in the text of the main paper.
Equation references to the main paper are denoted with the affix M as (#M) and
references to theorem and proposition numbers in the main paper are signified as
“Theorem #M” and “Proposition #M”. Details of the full Monte Carlo experiment
are provided in Supplementary II. References used here are the same as those given in

the main paper and are not listed.

2 Proofs of Results in the Main Paper

The univariate tests for the absence of autocorrelation for a time series {z;} in Section
2 form a special case of the bivariate tests given in Section 3 for the absence of cross-
correlation between two series {z;} and {y;}. Setting y; = x; simplifies the assumptions
of the bivariate tests. We demonstrate next how the results of Section 3 may be used

to imply those of Section 2.

Proof of Theorem 2.1M. We show that under the assumptions of Theorem 2.1M,

the bivariate series {x;,y;} with y; = x; satisfies the assumptions of Theorem 3.1M.
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and the NSF under Grant No. SES 18-50860.



First, in such a case, (22M) holds with p, = p,, bt = g and &, = n, while ¢, =
S hig? =31, ki and assumption (7M) on h; implies assumption (26M) on (h, g;).
Second, since in Theorem 2.1M, {&;} is a stationary ergodic m.d. sequence with respect
to some o-field filtration F; that includes the natural filtration then for any k£ > 1 the
sequence wy, ‘= £:64_x 18 an m.d. sequence with respect to the same o-field F;. Recall
that Ee} < oo.

Third, we verify that the wy, satisfy Assumption A of Theorem 3.1M. Recall, that if {e;}
is a stationary ergodic sequence and ¢(.) is a measurable function, then the sequence
2z = ¢(&t, €441, -.-) 18 also stationary and ergodic (Stout, 1974, Thm. 3.5.8). In addition,
by Stout (1974, Cor. 3.5.2.), if {z} is stationary and ergodic with E|z;| < co then

Eln~! Z 2z —Ez| — 0, n— oo (1)

t=1

This implies that for any k,j7 > 0, {wy} and {wywy;} are stationary ergodic sequences
with Elwgw| < oo, and 2z, = wywy; = eie,_j&y has property (1). This verifies

Assumption A.

Fourth, {e;} satisfies Assumption B of Theorem 3.1M since the ¢; are uncorrelated

variables.

Thus, all assumptions of Theorem 3.1 are satisfied and (28M) implies that

(;17 ceey tm) - (ta::c,la sy tma:,m) —D N<07 Ra:a:) (2)

where Ry, = (T4zjk, J, k = 14, ...,m) is a matrix with elements r,, jr = corr(e1e1_;, €161-x).
This proves (9M) and completes the proof of Theorem 2.1M. [

Proof of Theorem 2.2M. In the bivariate case {z;, y;} with y, = x; and mg = 1
all test statistics are the same as in the univariate case discussed in Theorem 2.2M.
In addition, we showed above that under the assumptions of Theorem 2.1M the as-
sumptions of Theorem 3.1M are satisfied. Hence Theorem 3.2M implies the results of
Theorem 2.2M. [

To prove the results given in Section 3 we use the following theorem establishing
the asymptotic normality of self-normalized sums of products xy; x, t = 1,...,n with

lag £ > 0 of the random variables

I’t:htéft, Yt = Gt t= ...—1,0,1,... (3)



where {&;} and {n;} are stationary sequences, Ee; = En; = 0, Ee} < oo, En} < co and

hs, g; are positive real numbers. Define

7 Z?:k;—f—l TtYt—k ~ Z?:k+1<$t —Z) Y-k — ¥)

= t = . (4)
zy.k n 120 ek n _ o\ 1/2
(Zt:k—i-l x%th—k) (Zt:k-&-l(xt — )% (Y — y)Q)

Recall Assumption A and B and assumption (26M) on (h¢, g;) from Section 3 which

will be used in what follows.

The theorem below establishes the multivariate limit distribution of the vector
(tN;ymO, ...,tN;;ym) when corr(zy, y4—x) = 0 for k = mqg,...,m (0 < mg < m).

Theorem 2.1. Let {x;, y:} be as in (3), and Assumption A and (26M) hold.

If for some 0 < mog < m, {egmy—r}, k = mo,...,m are m.d. sequences with respect
to the same o-field F;, then, as n — 00,

(t: trm) =0 N0, Ryy) (5)

xy,mo? ***) Vxy,m

where Ryy = (Yay ks J, k = Mo, ...,m) is a matriz with elements

Ty, jk = COTT(E1M1—j, E1M1—k)-
In particular, E;y,k —p N(0,1) for k =my,...,m.

Corollary 2.1. Under the assumptions of Theorem 2.1 and Assumption B, asn — oo,

:Exyak = :E;y,k + Op(l)’ k= iv ey T, (6)

(tayis -oos tay.m) =0 N(0, Ryy). (7)

Proof of Theorem 2.1. Denote

ank = E:L:max(j,k)+1 h?gt*jgtfka ja k 2 0. (8)

Write ;fv;;y’k in (4) as a self-normalized sum

'tv* . Z?:k-yl Gk
zy,k T n 1/2
( zt:k+1 CtQk)

of random variables

Cow = (GBletni i)™ 20yt

3



We will show that

:vyk = Zt k+1 G + Op(l) = Spk + Op(l)v Snk = Z?:k+1 Ck- (10)
The latter follows from
Z?:k+1 G = 1, Z?:k+1 G = Op(1). (11)

The first claim is shown in (42) below. Under the assumptions of the theorem, {(y}
is an m.d. sequence. So, E¢; = 0, E[(;x(s] = 0 for t # s, and

n 2 n
E(Zt:kz-‘rl th) = Zt:k—i—l ]ECtk = qnl Zt k+1 h%gt k= C_Inkk/qn — 1,

by Lemma 2.1. Hence )", (i = Op(1) which proves the second claim in (11) and

completes verification of (10).

Hence, to prove (5), i @;y gt ,t;y m) —p N (0, Ry,), it suffices to show that
(Snmegs -+ Snm) —p N(0, Ryy). (12)

By the Cramér-Wold device, the latter holds if for any real numbers a,,, Gmg+1, ---s Qm,
Z AkSnk — N(O O' Z AiAET ¢y, jk- (13)
k=mg Jrk=mg

Using the definition of s,;, we can write

5, —Zcb Gim S0 02 kot Dan@BER ) e (4)

k=mg

Under the assumptions of the theorem, {Zt} is an m.d. sequence with finite variance
E(? < co. Hence, by Theorem 3.2 of Hall and Heyde (1980), to prove (13) it suffices
to show that

(@) Y —p ot () max [G] =, 0, (c) B[ max (] =0(1). (15)
t:l 77777777
Denote wy, = /M. We have

Z CE = Z ajak(EW%]EW%k)_l/2<q,;1 Z xtot—kyt—J)'

t=k+1 J,k=mo t=max(j,k)+1



Under the assumptions of the theorem, by (42) of Lemma 2.2 below,

-1 n 2
G D mmax(iky 1 TeYe—kYe—j —rp Elwrjwi].

Hence,

n m
2 1
Z ¢ — Z a]ak(Ewlewlk) PR [wjwig) Z QAT 3y ke =

t=k+1 j,k=mo 3,k=mo

which proves (15)(a).
To prove (15)(b), notice that

Gl < o Sty |Gl I(E > K +1), o = maxj—;___m |axl.

To show that P(max;—q,_, |§| > ¢) — 0, it suffices to prove that for k& = my, ..., m and

for any € > 0,
> .
P(t:g&%ﬁn |G| =€) — 0
We have
> < S ) < o2 27002 > 22
P(_max [Cul 2 €) < t_;lmcm >e)<e t_;lEctkmk > %), (16)

Write (2 = w3, where ¢y = (¢, Ew? ) 'h?g? . By (26M),

 nax ey < Cq  nax h2  nax gt =: 0, = o(1).

=L..,n 3oy 7 3]

Therefore, (3 < d,w?. By the assumptions of the theorem, {w?} is a stationary

sequence such that Ew?, < oco. Hence,

P >e) < Ew? I(w? > 61 = Ew? I(w?, > 6712 = o(1
(_max [Cul > <) _Z wipd (Wh > 6,"€%) <Z> wh (Wi 2 6,"%) = o(1)

because Y,y ok = (Bwdy) ™ Guir/qn — (Ewi,) ! by (37), and Ew? I (wi), > 6,'e?) —
0 since Ew?, < oo and &, — 0. This proves (b). (15)(c) can be shown using a similar
argument. This proves (13) and (5) and completes the proof of the theorem. [J



Proof of Corollary 2.1. Denote ¢}, = (¢,Ew?)™"?(x; — Z)(y;—x — 7). Then

Ty = D tier1 Gi _ > gt Gtk T R
T n «2\1/2 n 1/2
(i Gi) (Y1 G + Ru2)

where (i, is defined as in (9) and

Ru= > (Gi—Guw) Bua= Y (G =G
t=k+1 t=k+1

In (43) and (44) we show that
Ro1 =0,(1), Ry =0,(1).
Together with (17) this implies

y = Z?:k—f—l Cer + Op(l) o Z?:k—i—l Gtk
Y n 1/2 n 1/2
( Zt:k+1 CtQk + Op(l)) ( Zt:k+l ka)

This verifies (6) and together with (5) proves (7). O

+0p(1) = %v:cy,k + 0p(1).

(17)

Proof of Theorem 3.1M. The claim of the theorem is shown in Corollary 2.1. [J

Proof of Corollary 3.1M. Set s,, = Y, (2 — T)%, sy = >y (e — §)* By

definition,
~ 1/2 1/2
Pxy.k o Sxn Syn

Coyh = = = )
v Pay.k (Z?:l eiy,tk)l/2

We will show that

son =B (M1 0,(1). 0 = En (3 g2 (1 +0,(1)).

Z eiy,tk = Elein?_iJan(1 + 0p(1))

t=1

which implies (30M):

v > higi Eleint ] :

Proof of (20). We prove the claim for s, (the claim for s, follows using a similar



argument). Without restriction of generality, assume that Ex; = 0. Then, x; = hiey,

= Z:pt nz? = Z hie? — nz®. (22)
t=1

We have > " | Ez? = Ee? > 1 | h?. We will show that

var(Y o) = 0, ((Q_47)%), na® =o0,(Y_hy) (23)

which together with (22) proves (20) for s,,.
Denote v, = cov(e?,e2). Let L > 0. Write

n n n n
2y _ 272 272 272 . :
var( E x;) = g hihjv,_s < g hihi|vi—s|+ E hihi|vi—s| =: i1+
t=1 t,s=1 t,s=1:[t—s|>L t,s=1:|t—s|<L

By assumption of the corollary, v, — 0 as k — oo. Therefore, §;, := maxy >z |vk| — 0

<6L2h2h2—5L Zfﬂ

t,s=1

On the other hand, for any fixed L,

as L — oco. Then

n

ian <Y | < wo(max h) Zh2 > 1):0((Zn:hf)2)
t=1

t,s=1:[t—s|<L s:|t—s|<L

because maxi<s<, h? = o(>_;, h?) by assumption of the corollary. This proves iy, =
o((>"r_, hi)?) which implies the first claim in (23).

To prove the second claim in (23), we use the bound Ez? < Cn~2Y " | h? estab-
lished in (54), which yields nEz? < C' max;—; = o(>_;_, h?) by assumption of the
corollary. Therefore, nz? = 0,(>_;_, hi).

.....

Proof of (21). Recall the notation ¢}, = (¢, E[2n?_.))""?*(x; — %) (ys—x — ¥) and (y =
(@E[e2n?_,])~Y?(2y — Exy)(ys_1, — Ey;) used in (17) and (10). Then

n

E 2 — E
emy,tk - Qn é?1771 k

t=k+1 t=k+1

By (18) and (11), >3 1 G2 = > pin G + 0p(1) = 14 0,(1), which proves (21) and
completes the proof of the corollary. [J



Proof of Theorem 3.2M. Suppose for simplicity that p, = p, = 0. First we show
that ?:ch,jk —p Tzy,jk-

Under the assumptions of the theorem, (42) and (44) of Lemma 2.2 imply that for
.j7 k= mo, ..., M,

n

qrjl Z Cxy,tjCayth 7 ]E[(glnl—j>(51771_k)].
t=max(j,k)+1

This together with definition (33M) implies

E[(e1mi—;)(e1m-1)]
(E(e1mi—;)2)Y2(E(e1m—x)?)'/?

Twy.jk — = corr(elm,j, 517717k) = Tzy,jk

because by assumption {&;7;1} is an m.d. sequence and therefore E[e17;_x] = 0.

Next we show that 777, ., —, 74y i for any A > 0. Since 7y jx —>p 7y jk, then
oyt = Tey gL ([Tey k| > A) = (Tay ik + 0p (D)) I(| Ty i > A). (24)

If 74y j1 = 0, then [Ty ji x| < 7oy k| = [Ty x| = 0.

Let 1y jx # 0. To show 7 51 —p Tay i, in view of (24), it suffices to prove that

I(|Twyjk| > A) =, 1. To prove the latter we will show that
| Tay.j| —p 00. (25)
. 1/2
Write 7k = A,/Brn'~ where

_ -1\ , _ 2N 2 2
An =1, Zt:max(j,k)—‘,-l CaytiCayths  DBn = G, Zt:max(j,k:)-l—l Cay,tiCayth:

We will prove (25) by showing that

A = Eleim-jne—x] = cov(eim—j, evm-y) # 0,  Bn = 0y(1), (26)

The results (42) and (44) of Lemma 2.2 imply the claim about A,, in (26).

To evaluate B, denote e;yytk = x4y;—r. Then

2 2 /2 /2 _ (2 /2 2 12 12 2 /2 12 2 12
6zy,tj exy,tk - eacy,tj ea:y,tk - (ewy,tj _eacy,tj ) (e:cy,tk _ea:y,tk) +€xy,tk (ewy,tj _eacy,tj ) +ea:y,tj (emy,tk _exy,tk) .

3 — n 2 12 ! _ n 12 :
Hence, setting vnk = 3 i_nax(im)+1 |€ay.ik = Copals Gk = Dot—max(jj)+1 Coy.eer W ObtAIN



n
- 2 12 /2
in 1= Z |€:py tjea:y tk e:vy t] Ty, tk’ < U”]Unk + ankvn] + qnj]
t=max(j,k)+1

Since vur = 0,(qn) by (44) of Lemma 2.2, and ¢, = Op(gs) by (59), this implies

in = 0p(q2). To prove B, = 0,(1), it remains to show that

iy, = Z?:ma.x(j,k)—l—l eﬁj,tjeﬁ,,m = O:D(qr%)' (27)
First observe that by (26M),

5k:: max h? <maxh max =0
n bl tgt R ax iy ha 7n9t (Qn)

Therefore, there exists v, — oo such that v, = o(qn)-

2 _ 2.2 2 2
Recall that €} . = 2747, = higi wwi, where wp, = efn? ;. Bound wp, as wp, <

wi (w2 > vy) + v, Setting z = wiI(wh > v,), we obtain, exy 0 < Voo

ht gt_kzntk. Hence,

:/ iy n /2 n 2.2 12
1, < Vn(sn thmax(j k)+1 Cry,tj + Zt*max(j k)+1 ht Itk ntkCoy,
N
< VnlnGrii + (O max (k) +1 hi g7 znte) (31— max(j,k)+1 €y, ta)
_ NI
- yn(sn(Jnjj (Zt:max(j,k)Jrl ht gt—kzntk)qnjj

= 0p(qn) + (Z?:max(j,k)Jrl hZ g7z ) Op(n)-

Notice that

E( Z hi 9k znun) = ( Z W9 ) Bznik = GuikElzn1k] = 0(¢n)
t=max(j,k)+1 t=max(j,k)+1

because ¢upx = O(gn) by Lemma 2.1 and Ez,y;, = Elw} [(w}, > v,)] — 0 because
v — 0o. This implies i, = o,(g;) which proves (27), (26) and 7, ;. —p T4y x and
completes the proof of (36M).

Thus, ﬁxy —p R,y and E;‘Jy —p Ryy. This together with (31M) proves (37M) which

completes the proof of theorem. [

Proof of Lemma 3.1M. Suppose that a’Cov(n)a = 0 for some a = (ay, ..., a,,)" with
lla|| = 1. Since the autocovariance sequence {7,(h) = Cov(n;,7—1)} is non-negative
definite and the spectral density f,(z) exists, Cov(n;,ny) = [" eU=M7f, (z)dx by



Herglotz’s theorem. It follows that

a'Cov(n)a Z ajarCov(n;,ng) = / |Za] 7|2 f, (z)dz = 0.

7,k=1

Therefore |3 7", a;e””|*fy(x) = 0 a.e. with respect to Lebesgue measure. Since
| >°0%, a;je¥** can have at most a finite number of zeroes on [—, 7], this implies
fo(x) = 0 a.e.. So, var(m) f fo(x = 0 which contradicts the assumption
En? > 0. Since 7, is a stationary series, the same argument implies that Corr(n) is

positive definite.

Now let a’Cov(z)a = 0 and [|a|| = 1. By assumption, z; = e;m_;, Ez; = 0 and

Ez7 < co. Thus, Cov(z;, z) = E[z;2] = E[efni—_jm_x], and

a'Cov(2)a E ajarCov(z;, ) E ajarElzj 2] = 51 E ajm—;)°] =

7,k=1 7,k=1

Since by assumption €; # 0 a.s. this implies E( 7", a;jni—;)* = 0. So,

E(Z ajm_j)° = Z ajarCov(n;,nk) = 0.
j=1

jk=1

As shown above, this implies En?- = 0 which leads to a contradiction.

Observe that Ez7 > 0 for any j > 1. Otherwise, the equality Ez} = E[efn ;] =0
and the assumption £; # 0 a.s. would imply En?_ ; = 0 which leads to a contradiction.
Then an argument similar to the above implies that Corr(z) is a positive definite

matrix. [

Proof of Theorem 3.3M. By assumption {¢;} is an m.d. sequence with respect
to some o-field F; and {x;} and {y;} are mutually independent sequences. Therefore
for k = ...,—1,0,1,... {e;m_x} are m.d. sequences with respect to the o-field F, =
FiUons,s =1,...,n), i.e. Elegy_i|F,;, 1] = 0. Moreover, for any negative or positive
integers j, k,

COH(gt??t—ja EM—k) = COH(ﬁja Nk)-

Clearly, Corollary 2.1 implies convergence ’tvxy = (ﬂy,mm...,’t;y’m) —p N(0,R,) in
(38M) and together with Theorem 3.2M proves (39M).
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The same argument as in the proof of (6) and (10) implies that

tNZxk = Syenk T 0p(1),  Syank 1= Z?:kJrl Cyw,nk (28)

where Cyunk = (an[nf6ik])’1/2ytxt_k. Rewriting Sy, ni as

Syz,nk = <Qn 517]1 k —1/2 thyt—i-k = Sn k)

we arrive at the sum as in (10) where y;4) appears with a negative lag. Since for any

integer k, {e;m;1 1} is an m.d. sequence with respect to o-field F,, the same argument as

nt»’
in the proof of Theorem 3.2M implies convergence %Vyx = (%Vyx,mo, ey Zyx,m) —p N (0, Ry)
n (38M), and the same argument as in the proof of Theorem 3.2M implies (40M). O

Proof of Proposition 3.1M. Properties (6) and (10) do not require {e;} or {n;} to be
an m.d. sequence and hold under assumptions of the proposition. They imply (41M),

tx%k = Spk T+ Op(l). (29)

By definition (10), we have s, = 1y G e = (GBI ]) ™ 2 huge—wwin, wie =
EtNt—k-

Clearly, Es,,, = 0 since Ewy, = 0. Moreover,
Vort—s = COV(Wik, Wek) = COV(Et, €5)COV(Me—ty Ns—k) = Ve t—sVn,t—s-
By mutual independence of {x,} and {y:},
r; = %J/E[éf]E[nf] = corr(ey, e1—j)corr(ny, m—;).

Moreover, under Assumption B, >, |r;| < co. Hence,

Esik = ZZSZIH_l E[Ctszk] - qul Zzszk_ﬂ htgt—khsgs—krt—s (30)

= q’r;l ZZS:k+1:|t—s|>L[“‘} + qgl ZZszk+1:|t—s\§L[“'] =:Vna + Un,2

where L > 0 is a fixed large number. Bound

n1 < gy, Z 2gi ) (D i) = ¢ gun( Y 1)) (31)

t=k+1 l4|>L |j|>L
By (37), ¢, ik — 1 as m — oo, while 37\, [rj| — 0 as L — oo. Thus, v,; — 0 as

11



n, L — oo.

Next we will show that for any fixed L, as n — oo,

Let t — s = ¢ where ¢ > 0 is fixed. Then, s =t — ¢, and

qﬁl Z higi—rkhsgs—kri—s = qgl( Z htgtfkhtfegtfefk)?“e — Ty

t,s=k+1 t=k+1

by the first claim in (38) below, which proves (32).

. e’} ) . 2 2
Since Y75 = Doi oo Tj = Oy & L — 0o, this proves Esj) — 07, asn — 00

which completes the proof of the proposition. []

Proof of Theorem 3.4M. Denote v, = > ;" .| hege—rwu.. By (29),

oy = 5o+ 0p(1) = (GEE]) ™20, + 0,(1).
We will show

Ev, = Eleim i) (S0 hig) (1 + o(1)),  var(v,) = O(g,). (33)

This implies g, /*v, = qﬁl/z(zgzl hegt)Ele1m—k](1 + 0,(1)) which proves (44M).
Under assumption (43M), Ev, = (37, 1 "ege—i)Bwir = Bwip (321, huge) (1 + o(1)).

Under (42M), the same argument as in the proof var(s,.) — o7, in Proposition 3.1M

implies that var(v,) = O(g,) which completes the proof of (33) and the theorem. [J

Proof of Theorem 4.1M. We will verify (46M). (Proof of (47M) follows using a
similar argument). Denote & = ek, [l = (led] — Eleg|)(|ee—i| — Eler—x|). By

Lemma 2.4,

~ ~ 1 -
Togk = Tak + OP(1)7 Tak = O'?(TL _ k)l/Z Z §tk

t=k+1
st ol), 7 LSk
Tz|,k = Tjz|,k T O vy Taelk "= 3 7 3170 tk-
ol = Tlale + 0p = G e 2
Hence, to prove (46M), it suffices to show that
(7’\—/:0,17 :7\:|m|,17 ) 7@:(;,77% ﬁm\,m) —D N(O, ‘/:E,|m|,2m)' (34)

12



Observe that for any k > 1, {&}, {|€]w} are m.d. sequences with respect to the o-field
Fi = o(gs,s < t). Moreover, E¢3 = Ele?e? ,] = o2,

El¢[5 = (E[(le] — Elee])?])* = |a|7 Eléllin] = (Eles(le] —Eled))])? = cov?(er, |ed])-
In addition, for k > j > 1, E[§ué&;] = 0, E[|€]w|€]] = 0, E[w|€]:;] = 0. Finally,

n! Z?:k:—l—l & 7 By =02, n! Z:L:k:—i-l €15 — ElS = 0\45\’ (35)
nt= Z?:k+1 5tk|§‘tk — E[ftk’ﬂtk] = COV2(51, \51’)-

Recall that an i.i.d. sequence {g;} is ergodic. Therefore £, [£|% and &€l are
also ergodic sequences since they are measurable functions f(e;,&,_x) of the ergodic
sequence {e;}. The latter implies (35), see Remark 2.1. Hence, (34) follows using the

same argument as in the proof of (12). O

To prove Theorem 2.1 we use the following technical lemma. Recall the definition

of g, and gy given in (26M) and (8). Set

Inijk = Z?:max(i,j,kH-l hihi—iGi—jgi—k, (36)
Anji = Z?:max(j,k)—i—? |1 9e—9e—1 — hi1Ge—1-Ge—1-k]-

Lemma 2.1. Let hy, g, t > 1 satisfy (26M) and k > i,5 > 1 be fivzed. Then, as

n — 00,

Gn — Qnjk = O(Qn)a Qn]k/Qn — ]-7 (37)
Gn — Qnijk = O(Qn)a Anjk: = O(qn>' (38)

Proof of Lemma 2.1. We have

|q - an;| < Zt 1 htgt + Z?:k—i—l h?|gt2 - gt—jgt—k’- (39)

By (26M), S35, h?g? < kmax;—y__, h2max;—;__, g = 0(q,). Next we show that

..........

>otiet Pe192 = Gi—ige—k| = o(aqn). (40)

Assumption (26M) implies that

Zh4 1/2 Z gt — gi— 1 1/2/ thgt
t=

13



We have g7 — gi—jge—k = 9¢(9t — 9—;) + 9¢(9¢ — G1—k) + (9e—j — 9¢)(g¢ — ge—r). Using the
inequalities

19:(9: — gei)| = 6 9:0, 4 (g0 — gii)| < 6207 + 6, %(9r — gi—r)?,
|(gt—j — 9:) (9t — 91—k)| < (ge—j — 9t)2 + (9t — 9#1«)2»

we obtain g7 — g,—jgi—i| < 20,/°g2 + (0" + Dl(gr — 9=5)> + (90 — ge—)?]. So,

> hilgt = geigenl < 2637 Z hig;

t=k+1 t=k+1
0,7 +1) Z 119 = 90-3)* + (96 — 9e-n)?]
t=k+1
< 2002+ (0, P+ DY B (90— 9= )P+ (O (90— g2
t=k+1 t=k+1 t=k+1

Using the inequality (a; + .... + ax)* < k3(a} + .... + a}), we obtain

(9=91-5)" = [(g=9e-1)+(Gr-1—gt—2)+-- A (G—jr1—9-))]* < 3°[(9—ge-1) "+ +(9—j41—9—5)"]-

Hence,
n n

Z (90— 99)" <3* Y (9= ge0)"

t=k+1 t=2

which together with definition of ¢,, implies

Z th|9t2 — gt_jgt_k’ < 25711/2% + (5;1/2 + 1 + k2 Zh4 1/2 gt—1)4)1/2
t=k+1 — =

— 2571/2(% + (5;1/2 + )(] + /{:2) = O(Qn)
since 9, — 0.

This proves (40) and together with (39) proves the claim g, — ¢,,jx = 0(gy) of (37).
The latter implies ¢,jx/gn =1 — (¢ — @uj)/@n — 1.
Next we show the claim ¢u;j5 — ¢, = 0(gn) in (38). We have hihi_igi—jgi—r =

14



_hz%th—j + hfgt—jgt—k + htht—igf—j + hy(he—i — ht)gt—j (ge—r — gt—j)- Hence,

ik = > hihicigijgek = qn+ (@ — Y Bigi )+ (D higiigi-r — ¢n)

t=k+1 t=k+1 t=k+1
+( Z hthtfith—j — qn) + ( Z he(hi—i — he)Gi—j(Ge—k — 9e—j))
t=k+1 t=k+1

= @+ Vp1 + Vna + Vn3 + Vpa = G + 0(qn) + Vna

because v, = 0(gy) for £ =1, 2,3 by relation g, — ¢, = 0(g,) shown above in (37).
By the Holder inequality,

n

[Una| < < Z h} Z (he—i — he)* Z gt{j Z (ge—r — gt—j)4> v

t=k+1 t=k+1 t=k+1 t=k+1
» n A n A 1/4 N n A n y 1/4
< (=g nt Y =) (D Y= he)') = olga)
t=1 t=2 t=1 t=2

by (26M) which proves gnijk — ¢n = 0(gn)-

We complete the proof of lemma by showing the last claim in (38), A, x = o(gn)-

Since hlgi—jGi—k — hi_1Gi-1—jGt—1—k = "3 (G1—jGi—k — 97) — P31 (Gr—1-jGr—1-k — g7—1) +
(h2g? — h? 197 ), we can bound

Anji < Z hilge—jge-k — 971+ Z W ilge1-i91-k—gia |+ Z |higi — g7 iyl
t=k+2 t=k+2 t=k+2
By (40) the first and the second sum is o(g,). We can bound the last sum by
Z |h?9t2 _g?—lh?—1| < Z h?|gt2 _93—1’ + Z 93—1”1? - h§—1|‘
t=h+2 t=k-+2 t=k+2

By (40) and under assumption (26M), the latter is o(g,) which completes the proof. [J

Recall the notation e}, = x4y = htgr—keni—1 used in the proof of Theorem 3.2M
and ey, = (v — T)(y—r — y) in (22M), respectively. We drop the subscript zy in e},

and ey, for simplicity in what follows.

Lemma 2.2. Let hy, g, t > 1 satisfy (26M). Assume that for some k > j > 0,

{e2m_im—r} is a stationary sequence, E|eim_;m_i| < 0o, and as n — oo,
E|(n™! X &ime-me-x) = EleTmjm-4]| = 0. (41)

15



Then,
Gt Do €t —rp Eleim_ms]- (42)

In addition, if Assumption B holds, then

—1/2 n —1/2 n
dn / Zt=k+1 €tk — qn / Zt:kJrl e —p 0, (43)

qrjl Z?:kﬂ ‘etjetk - egje;k] —p 0. (44)
In particular, (41) holds if {e7n—m—x} is an ergodic sequence.

To prove Lemma 2.2, we shall use the following result.

Lemma 2.3. (Dalla, Giraitis and Koul (2014), Lemma 10). Let T,, = Y 1, catVi,

where {V;} is a stationary ergodic sequence, E|Vi| < 0o, and ¢, are real numbers such

that for some 0 < a, < 00, n > 1,

Z |Cnt| = O(@n>7 |Cn1| + Z |Cnt - Cn,tfl‘ = O<an)~ (45>
t=1

t=2
Then E|T,, — ET,| = o(a,).

Remark 2.1. The proof of Lemma 2.3 in Dalla, Giraitis and Koul (2014) uses the

property
E|(n 31, Vi) —EVi| =0, (46)

of ergodic sequence {V;}, see Stout (1974, Cor. 3.5.2). Lemma 2.3 remains valid if the
assumption of ergodicity of {V;} is replaced by assumption (46).

Proof of Lemma 2.2. The proof is based on Lemma 2.3 and Remark 2.1. Denote the
left hand side of (42) by T,,. Write

n

Tn - Z Cnt‘/ta <47)

t=k+1

where stationary series V; = 2, satisfies (46) and ¢, = ¢, "h?gi—jgi—r. Next we
show that ¢, satisfies (45) with a,, =1

In particular, we show that as n — oo,

Z?:k-i—l Cnt — 1, Cnk+1 1 Z?:k-m Cnt — Cn—1| = o(1). (48)

16



By (37), > i ji1 Cnt = @, "Gnjr — 1 which proves the first claim in (48). By defini-
tion (36) of A, and (38),

Z?:k-i-z |Cnt = Cng—1] < q;lAnjk =o(1).

By definition of ¢,; and (26M),

77777777

This proves the second claim in (48).

Thus, by Lemma 2.3, E|T,, — ET,,| — 0. Observe that
ET, = Z BV, = Eleim—jm-r]a, " Z higi— 391 = Eleim—jm k], Gnjn
t=k+1 t=k+1

where ¢, 'qnx — 1 by (37). Hence, T,, = ET,, + 0,(1) = E[e?n_jm_k] + 0,(1) which
proves (42).

Proof of (43). It suffices to show that

n 1/2
Tnl = Zt:kJrl (e — €)= Op(qn/ )- (49)
We have
etk — €y = TY — YTt — TYp—k, (50)
n k n
rai= Y (T — Gt — Tyer) = (n—K)IG—2IGHGY_we+T Y U
t=k+1 t=1 t=n—k+1
Hence,
_ _ k _ n
| < 3nlZyl + |71 [ D0 wel + 121 22 wel- (51)

We will show below that for any fixed £ > 1, as n — oo,

_ _ 1/4 k 1/4 n 1/2
7 =o0,(n2q/Y), S a = oy(al), i a? = op(ngy'?) (52)

1/4) 1/4 /2>

— — n n 1
y=op(n Y247, Zt:nkarl yr = op(an’ ), iy yi = 0p(ngn

17



Together with (51) this implies r,; = op(qu/ ?) which verifies (49). Observe that

Ez? < Cn~2 Z?:l hf, Ey? < Cn~2 Z?Zl th, (53)
k k n n

E|> | <Eles] >y ], E| Zt:n—k—i—l yi| < Elmi| thn—kﬂ |9:|.

E Z?:l 37? < Eg% Z?:l hf, E 21;1 ?Jt2 < EU% Z?:l 9752-

Indeed, by Assumption B, the stationary sequences {e;} and {m} have absolutely

summable autocovariance functions 7. and v, . Hence,

Ez® = n7? 225:1 hihscov(er, es) < 2n 2 3 0 Wi D000 leov(er, eri)|  (54)
= Cn2y L b7, C=2370 x| < oo,

which proves the first claim in (53). The claim for Eg? follows using similar arguments,

and the remaining bounds in (53) are obvious.

,,,,, w92 = o(qy/?). Hence from (53) we obtain Ez2 = O(n~'¢)%), E| 5, 2| =
o(qqll/ Y and E S ai= o(nqu/ ?) which implies the claimed orders for the sums involv-
ing the x;’s in (52). The claimed orders for the sums involving the y;’s follow using the

same argument.

Proof of (44). It suffices to show that

Tn2 1= D gy e — €€l = op(an). (55)

We have, egjeq, — ej ey, = (€5 — i) (e — eiy) + e (e — i) + e (ew — €i). So, setting

Dy, = Z?:k-s—l(etk - e:fk)27
1/2 1/2 1/2 n 1/2 n
2] < DAEDYE + DYy ) + Dyt (S eV, (56)

We will show that

(a) Dax = 0plqn), (b)Y it = Oplan); (57)

t=k+1

which together with (56) implies 7,5 = 0,(¢,) proving (55).
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First we show (a). By (50),

(e — €)? = (TY — Yz — Tyi)® < 3(TY)* + 3(F7x7) + 3(F°y; ),

D= Y (e —€)> <3n(zy)” + 357 Y a7 +32° Yyl y.  (58)
t=k+1 t=k+1 t=k+1
In view of (52), & = op(n" 2", § = o0y(n "), Tiepra? = op(ngl/?), and
Sk Vi = op(nq}l/ ?). These orders in conjunction with (58) prove (a):
Dy, = 0p(qn) + Op(QJL/z)n_lop(anll/Q) = 0p(qn)-
(b) follows noting that by the definition of €},
E[ Z el = Z higi (Elefn ) < (Eﬁi‘Enf)”Q Z " 97— < Cupe = O(gn) (59)
t=k+1 t=k+1 t=k+1

by (37) of Lemma 2.1. This completes the proof of (57) and of the lemma. O

Lemma 2.4. Let vy = p + &, where {&;} is an i.i.d. sequence with Ee, = 0 and

Ee? < 0o. Assume that Ee} < 0o when py2y, is considered. Then for k > 1,

n N 1 n
—(n k)2 Pk = —02(n R Z €1k + 0p(1), (60)
€ t=k+1
n N 1 n
mp\xm = m Z (lee] — Eled]) (Jet—r| — Elet—k|) + 0p(1),(61)
le] t=k+1
n N 1 n
=R 27 = i )i > (e —Eel)(ef —Eei ) + 0p(1), (62)
e? t=k+1

where 02 = var(e1), of = var(|e1|) and o2, = var(e}).

Proof of Lemma 2.4. Without loss of generality, assume that = 0. We prove (61).

(The proof of (60) and (62) is simpler and follows using similar arguments).
Denote z; = |z, — | — E|xy|, ¢ = |x¢| — E|xy|. Then, by (1M),
n ~ (n— k)_1/2 Z?:kﬂ(zt — Z)(2t-k — 2)
(n—Ry7Rih = T (o= 2
(n — k)2 Ytk + Qua)
nHCim YE + Qn2)
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where

Qui =D ppir (2t = 2) (e = 2) — my—r), Qua = dopy (20 — 2)2 — ).

We will show that
(CL) in = Op<n1/2)7 (b) Qn2 = Op(n>7 (C) nil ny — Var(|5l‘)' (64>
t=1

Together with (63) this implies (61):

n R B B n
(n — k)1/2p|x|,k = var(|e; )~ (n — k)72 Z YeYe—r + 0p(1). (65)
t=k+1

Proof of (64)(a). To prove Qn1 = 0,(n'/?), we write Q,1 = gn1 + gn2 With

Gn1 = Z ((zt — 2)(zt_k — 2) — ztzt_k), Gn2 = Z (tht—k - ytyt—k)- (66)
t=k+1 t=k+1

We will show that

dn1 = Op(n1/2)> Gn2 = 0p<n1/2)- (67)
As in (50), we have
(Zt — 5) (thk — 2) — Ztlt—k — 22 —Zz — Ezt,k, (68)
n k n
G = Z (22 — 22, — Zzyp) = (n — k)Z* — 2n2* + EZZt +Z Z 2.
t=k+1 t=1 t=n—k-+1
Hence,
_ _ k — n
|gn1| < 30l 22| + |2 | 202 2] + 2] | 200y el (69)
Write
b n n
2 =n D al <0 D (w2 =) 407D (e —Elal)| < [2+g] = Op(n?)
t=1 t=1 t=1

because ||z, — Z| — |z|| < |z| and [Z] = O,(n~"2), |g| = Op(n~/?). The latter
holds because {x;} and {y;} are i.i.d random variables, Ex, = Ey, = 0, Ex? < oo,
Ey? < oco. Since, EX ) 2| + EX\, o1y |2e] < 2kE|z], this together with (69)
implies ¢,; = O,(1) = 0,(n'/?) which proves the first claim in (67).
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To evaluate q,,2, write

22—k = Y-k = (|20 — T = Elwe])(Jor—n — Z| = Elwei]) — (|| — El2e]) (|ar-i| — Elz—x])
= (lor — 2 = lwe)(|ek = 2| = |wri]) + (20 — 2 = [wel)yes + (|21 — 7] = [20-£[)11.(70)
Hence,
2 = Dy (2 = Z[ = e} |20k — T = |wei]) + D24 (l2e — 2] = | )yer
+ Z?:k-i—l(’xt—k — Z| — |T—k]) U = Gna1 + @22 + Gna3-
Since ||z; — Z| — |x4|| < |Z|, we have

|Gn21| < n|Z> = O,(1).

Next we show gnao = 0,(n'/?). (gnas = 0,(n'/?) follows using a similar argument).

_ o1 n - _ 1 n .
Denote Z_p) =n ijlzj#_k Tjy T(t—kys—k) =N ijl:j#_kﬁ_k z;. Hence

oo = > (o =2 = |o = Zen)Dver+ Y (2= Zan| = |[2))yes = va + v,
t=k+1 t=k+1

We will show that
Elv,| = 0(n1/2), Evf = o(n) (71)

which proves gua9 = 0,(n'/?).

Since ||z — Z| — |2p — T || < |2 — Zeiy| = n~24—s|, we have

n
Eloa| < Y 0 'Blow iyl < C
t=k+1

which implies v, = O,(1). On the other hand,

Bl =B Y (Jo— Za-p| — |2:)yer(2s = Zomi) — |[2s)yas

t,s=k+1
=E ) [JJ+2E D> []=:8u1+25
t,s=k+1:|t—s|<2k t,s=k+1:t>s+2k
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To bound S,,1, notice that

E|(lze — Za—i)| — @) ye—r (|25 — T(smpy| — 25 ])ys—i]
< E|Zg-ryYenToi¥s—r| < (BIEG_ 07 4JEZ_ys )"
= (E[j?tfk)]E[ythk]E[j%sfk)]E[ygfk])1/2 <Cn”!

where C' does not depend on ¢,s. Hence, [Si| < Cn™' 370 401, o 1 < C=0(1).
To bound 5,2, write

Ty — Zp—iy| = |2e] = (Jor — T—iy| = |26 — Z—r,s—r)|) + (|T¢ — Zt—,s—1)| — [2¢]). Then,

(lze = Za—ny| — |ze)ye—n(lzs — Zs—m| — [2s])Ys—r
= (lze = Z-w| — 20 = Ze—rs—r) Y- (|25 — Z(smiy| — |20 = Z—r 51| )Yk
(2t = Z-rs—n)| — [2e)ye—r(|2s — Z—rs—r)| — [2s])Ys—r
+(lze = Zemy| = |20 — Z—rs—i) DYer (|25 — Ta—rs—m) | — |25])Ys—n
+(ze = Z-rs—n)| — [2e)v—r(|2s — Zsr)| — [T — Z(t—t,5-1) ) Ys—t

=!G+ G2 + 913 + Gua-

Observe that

|ge1| < |Z i) =Z(—tes—i) || T (s—t) =T 1=ty | [Ye—r¥s—r] < (WM @s—ie]) (07 o)) | Yem Y-

Hence,
n n
E g lgn| < Cn~? E 1<C.
t,s=k+1:t>s+2k t,s=k+1:t>s+2k

Recall that by assumption {z;} are i.i.d. random variables. Then for ¢t > s+ 2k in
g2 and gy3 only vy, = |z_i| — E|x;_x| depends on z;_j. Since Ey,_ = 0, this implies
Egix = 0 and Egi3 = 0. In gy only ys—x = |2s—k| — E|zs_k| depends on z,_;. Hence,
Egis = 0.

This proves S,2 = O(1) which completes the proof of (71) and proves (64)(a) for Q.

Proof of (64)(b). Write

Qna =2y ((ze =2 = 28) + 200y (2 — ui)-
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By the first claim of (67), Y1, ((z — 2)* — 27) = 0,(n). By (70)
o =y = (o — 2 = @) + 2(]z — 2] = |2y
Hence, |27 — y?| < 7% + 2|zy;|. Then,

E[ 30, (27 —v2)| < X0, (E2® + 2(E2°)/*(Ey7)'/?)
= nEz? + 2(E32)V2 S0 (By2) /2 < Cn'/? = o(n).

This proves that Q2 = 0,(n).

Proof of (64)(c). Since an ii.d. sequence {e;} is also an ergodice sequence, then
v? = (|z] — Elze|)? = (|e¢] — Eleg])? is a stationary ergodic sequence with Ey? < oo.
Thus, by Stout (1974, Cor. 3.5.2),

n’lzyf — Ey? = var(|e1]). O

t=1

23



Online Supplement IT to ‘Robust Tests for White Noise and

Cross-Correlation™

Violetta Dallal, Liudas Giraitis? and Peter C. B. Phillips®

!National and Kapodistrian University of Athens, ?Queen Mary University of London,

3Yale University, University of Auckland, University of Southampton, Singapore Management University

March 25, 2020

1 Introduction

This Supplement II provides details of the full Monte Carlo experiment reported in the text of the
main paper. Equation references to the main paper are denoted with the affix M as (#M) and
references to theorem and proposition numbers in the main paper are signified as “Theorem #M”
and “Proposition #M”. Proofs of the theorems and propositions in the main paper are provided in

Supplementary I. References used here are the same as those given in the main paper.

2 Monte Carlo study

We present here the full set of results for the Monte Carlo study on the finite sample performance
of the standard and robust tests for zero serial correlation, cross-correlation and tests for the i.i.d.
property. We evaluate the rejection frequency (in %) of the tests statistics using 5,000 replications
for sample sizes n = 100,300, 1000. Here we present tables for n = 300. Results for the other
sample sizes are available upon request. We set the significance level at o = 5%. For the univariate
standard test tg, LB,, and the robust tests tNk, @m for absence of serial correlation, results on size
are reported for lags k,m = 1,2, ...,40 and on power for lags k,m = 1,2, ...,20 when n = 100, 300,
while for n = 1000 on size for lags k,m = 1,4,...,118 and on power for lags k,m = 1,4, ...,58.

Same lags are used for the bivariate standard tests tgy i, tyz k) H By m, H Bys.m and the robust tests

*Dalla acknowledges financial support from ELKE-EKPA. Phillips acknowledges support from the Kelly Fund at
the University of Auckland, a KL.C Fellowship at Singapore Management University, and the NSF under Grant No.
SES 18-50860.



txyk, ya k> me, nym, including the lag k,m = 0, and tests for the i.i.d. property J, oo S22 ks
Cajzl;m> Cra2,m- We set the threshold A = 2.576 in the robust cumulative statistics Qm, Qxy,m; ny m-
The models used in the univariate case for {z;} and in the bivariate case for {z;,y;} are listed later

on. First, we summarize our main findings.

1  The standard tests for testing zero serial correlation perform well when the data are i.i.d.,
but may over-reject when the data are non-i.i.d. and this over-rejection increases with sample
size. The robust tests achieve the right size. The power of the tests are similar and in few

cases the robust tests show some loss in power.

2 All the tests for zero serial correlation, standard and robust, produce spurious power when
the data do not have constant mean. This spurious power increases with sample size. It is
therefore advisable to examine whether the data have constant mean prior to applying the

tests.

3 The robust tests for testing zero cross-correlation (at individual and cumulative lags) achieve
correct size when both series are uncorrelated with constant mean and either constant or
time-varying variance. The robust test at individual lag preserves the correct size when the
leading series is uncorrelated and the lagged series is serially correlated, but the size of the

cumulative test may become distorted.

The standard tests for testing zero cross-correlation (at individual and cumulative lags) per-
form well when both series are serially uncorrelated, stationary and mutually independent.
But these tests over-reject when the series are mutually dependent or when both of them have

time varying variance.

The powers of the standard and robust tests are similar and in few cases the robust tests have

some loss in power.

4  All the tests for zero cross-correlation, standard and robust, produce spurious power when
the two series do not have constant mean or both series have serial correlation. This spurious
power increases with sample size for the first case and remains approximately constant in the
second case. It is again advisable to examine whether each series has constant mean and no

serial correlation prior to applying the tests.

5  Intesting for zero serial correlation or cross-correlation at a fixed lag m using robust cumulative
statistics, the need for thresholding increases when the sample size decreases. Thresholding is
required even in the i.i.d. case at moderate lags m. The sensitivity of the robust test to the
thresholding level depends on the nature of the departure for data from the i.i.d. assumption.
The values A = 1.96,2.576 are good candidates for the threshold, with A\ = 2.576 performing
better at big lags.



6  The tests for the i.i.d. property show satisfactory size and power.

7 At individual lag the robust statistics for testing zero correlation or cross-correlation and the

tests for the i.i.d. property have satisfactory size performance for all lags k£ examined here.

Tests for zero serial correlation

Tables 1-6 present testing results for zero serial correlation at individual lag k based on the statistics
t, and tr, and at cumulative lags 1, ..., m based on the statistics va and LB,,. The results for the

size are given in Tables 1-2, for the power in Tables 3-4 and for the spurious power in Tables 5-6.

Tables 1 and 2. Models:
(a) zp = g, g, ~ 1.1.d. N(0,1),
(b) @y = &4, g¢ ~ 1.i.d. t(6),
(c) mp = 4841, &4 ~ 1.i.d. N(0,1),
(d) & = huey, hig = 14+ 1(t/n > 0.5), & ~ i.i.d. N(0,1),
(
(
(

f
g) hlt’r‘t, hlt—1+l(t/n>05) = Ot&y¢, Ut 1+02Tt 1+O7Ut I,Et"\-’lld N(O 1)

e) Tt = 2t8t, hgt t/n Er ~ 1.1.d. N(O 1)
) Ty =1, Ty = 04y, 0F = 1+ 0.2r7 | +0.702 ,, & ~ i.i.d. N(0,1),

In models (a) and (b), the data are i.i.d. Both the standard and robust tests, ¢y, LB,, and th Qm
have good size, however, the size of the standard test t; slightly drops when the lag k increases
because of standardization y/n in t; instead of n/ Vn —k as it is done in the cumulative LB,,

test. In model (c), the series is uncorrelated, but not independent. In models (d)-(g), the data
have unconditional and/or conditional heteroskedasticity. In models (c)-(g) the robust tests £, Qm
produce the appropriate size. On the other hand, the standard test t; overrejects at lag k = 1 in
model (c¢) and at several lags in models (d)-(g), which is magnified in the cumulative test LB,,.

Size performance is satisfactory at all k for ¢, and in the worst case up to m ~ 31 for va

Tables 3 and 4. Models:

= 0201 + &y,

_ 2
Ty = rlt, Tt = O14Et, 014 = 1+027’1t 1

)

(a)

(b) z¢ = & + 0.26;_1,
(

(d)

(
(
(

8

t = |7’1t| Tlt—01t5t»‘71t—1+027“1t 1

e

8

) Ty =T34, Tog = Oy, 05, = 14+0.2r5, | +0.703, |,
) T =
g)xt ’5t€t 1|

g ~ ii.d. N(0,1).

f U2t—1+027"2t1+0702t 15




The tables below report the power of the tests for dependent stationary time series models (a)-(g).
In (a)-(b), the data follow the AR(1) and MA(1) models. The standard t;, LB, and robust t, Qn,
tests show similar power. In (c)-(f), the data are squared and absolute transformations of ARCH
and GARCH series and we observe some loss in power for the robust statistics. In the last model
(g), the series is correlated only at lag 1 and the standard and robust statistics have similar power

properties.

Tables 5 and 6. Models:
(a) 2, = my + &, myy = I(t/n > 0.5),

(b) y = maoy + &4, moy = 1(0.25 < t/n < 0.75),
()

(d)

(
(
(

Msy + €, M3y = 001t,

8

t
Ty = Mo + hiey, moy = 1(0.25 < t/n < 0.75), hyy =1+ I(t/n > 0.5),
¢+ = (huey)?, hyy =1+ I(t/n > 0.5),
) 2 = |huee], hie = 1+ 1(t/n > 0.5),
g) zp = (my +¢&)%, my = I(t/n > 0.5),

e, ~ iid. N(0,1).

e

8

)
)

In models (a)-(g), the data are independent over time but have non-constant mean. All tests over-
reject and show spurious power. This is especially so in models (a)-(c) where data have either
breaking or trending mean and constant variance. The effect is such that the cumulative tests reach
100% rejection frequency at some lags. The changes in variance seems to dampen this effect, as seen
in model (d). Absolute values of a series with breaking variance produce higher rejection frequency
compared to squared series, see models (e)-(f). When independent data with breaking mean are

squared, as in model (g), the distortions of the size are not as severe.

Tests for zero cross-correlation

Tables 7-16 present testing results for zero serial cross-correlation at individual lag k based on
the statistics ﬂy,k,tNyI,k and tyy k. tysk, and at cumulative lags 0,1,...,m based on the statistics
vam, vam and HBgy m, HByy . The results for the size are given in Tables 7-12, for the power
in Tables 13-14 and for the spurious power in Tables 15-16.

Tables 7 and 8. Models:
(a) ¢ = hyer, Yo = hyne, by = 14+ 1(t/n > 0.5),
(b) &y = hyer, yp = hyene, by = 1+ I(t/n > 0.5), hyy = 1 + 31(t/n > 0.5),
(¢) &p = T1e, Y = Tar, T1e = OuEy, 04, = 1+0.2r7 |, 7oy = ogyiy, 05, =14+ 0.2r5, | +0.703,_,,

er,mp ~ 1.i.d. N(0,1), {e;} and {n;} mutually independent.



In models (a)-(c), series are independent and thus with zero cross-correlation. In (a)-(b), both series
have breaks in the variance. All the robust tests %ny,k, %Vywk have the right size for all lags k, and so
do the robust cumulative tests éwm, @W,m for all lags m. On the other hand, the standard tests
oy ks tyz, e Show distortions in size at several lags, with the effect accumulating in the standard tests
HByym, HBy, m. In (c), when the series follow stationary ARCH(1) and GARCH(1,1) models that
are uncorrelated and independent, all tests for cross-correlation, standard and modified, achieve the
correct size. However, the standard tests ¢, i, t,, 1 become slightly undersized when the individual
lag k increases. This size distortion occurs because of the use of normalization /n in tuy k, tye k
instead of n/ V/n — k as it is done in the cumulative H Baym, HBy, m tests.

Tables 9 and 10. Models:
(a) zp = €4, Yy = mag + hun, myy = 1(t/n > 0.5), hyy = 1+ 1(t/n > 0.5),
(b) xy = huer, y¢ = ma + 1, myy = I(t/n > 0.5), hyy = 1+ I(t/n > 0.5), &, ~ ii.d. N(0,1),
() @ = et yo = 0.7ye—1 + 1y,
e, e ~ 1.i.d. N(0,1), {&:} and {n:} mutually independent.

In models (a)-(c), the two series are independent of each other. One of the two series, x;, has no
serial correlation, while the second series, y;, has either a break in the mean or is autocorrelated.
In all models, the standard ¢, ,t,,» and robust tests %ny,k,%;@k for the individual lag k perform
well at all lags. However, the cumulative versions of tests, standard H By ,,, H By, and robust
vam, @%m’ show distortions in size which increase in magnitude as the lag m increases. In the

simulation study, the statistics @xy,m, vaxvm use respectively the matrices ﬁ;ym, fi;xvm, rather than

*

using in both cases Rj, ,,

as theory would suggest for model (¢). Moreover, the correlation matrix
Ryym = (O.7|j_k|)j7k:1wm is not sparse and so poor performance of the @ynm test is expected in

this case.
Tables 11 and 12. Models:
(a) zt = €r, Y = |ed|mi,
(b) ¢ = &4, yp = 1641,
(¢) & = e, yr = exp(ze)my, 2 = 0.7201 + &4,
er,mp ~ 1i.d. N(0,1), {e;} and {n;} mutually independent.

In models (a)-(c), series z; and y, are series of uncorrelated random variables. They are not cross-

correlated at any lag but they are not independent of each other. The size of the robust tests
%;y’k,%vy%k is satisfactory for all lags k£ and for all lags m for the cumulative tests @xy’m, @W,m albeit
being a bit under-sized in model (c). The standard tests t,, k, tyo x substantially over-reject at k = 0
in all models and also t,, over-rejects at k = 1 in model (b) and £ = 1,2 in model (c). As a

consequence their cumulative versions H B,y ,, H By, », show size distortions at several lags m.



Tables 13 and 14. Models:
(&) T = T1g, Yo = Top, Tt = O1Er, O = 1+ 0.27“3,571, Tot = O9Et, O = 1 + O.2r§,t71 + 0.703#1,
(b) & = huer, Yo = ¢ + 41 + 242 + hyyny, hyy = 1+ 1(t/n > 0.5),
(¢) m = hyey, Yo = My + x4 + 41 + 242 + hygny, myy = I(t/n > 0.5), hyy =1+ I(t/n > 0.5),
e,y ~ 1.i.d. N(0,1), {e;} and {n;} mutually independent.

In models (a)-(c), series x; is serially uncorrelated, and the two series are cross-correlated. In (a),
both z; and y; are series of uncorrelated variables (ARCH and GARCH). When the two series are
only contemporaneously cross-correlated, as in model (a), we observe strong power for both standard
tayhos Lya e and TObUSt tests tuy 1, Lyex at lag k = 0, which is transmitted in all the cumulative tests.
In models (b)-(c), series y; is autocorrelated with lag, and y; depends also on z; ; and z; 5. For
individual lags £ = 0, 1,2, both ?,, ; and tNyx,k exhibit strong power, which is further amplified by
the cumulative tests H B, ,, and @W,m. For k such that x; and y;_ (or y, and z;_;) are not cross-
correlated, the robust tests %Vwk, %Vyxk have correct size, while the standard tests t,, i, tye 1 sShow size
distortions, in model (a), because the two series are not independent at those lags, and in models

(b)-(c), because both series have breaks in unconditional variance.

Tables 15 and 16. Models:

(a) zy = may + &, Yo = My + ny, myy = I(t/n > 0.5),

(b) @y = mas + &1, Yy = mag + 1, may = L(t/n > 0.5), my = 1(t/n > 0.25),

(€) 2 = 0.7Tw¢—1 + €4, Ye = 0.7Yy—1 + 1,

ee,myp ~ 1id. N(0,1), {e;} and {n;} mutually independent.

In models (a)-(c), the two series are mutually independent. They either both have a break in the
mean or both are dependent AR(1) series. In spite of zero cross-correlation, all the tests, standard
and robust, over-reject. When both series have break in the mean, as in models (a)-(b), the over-

rejection is stronger when the break is common. The spurious power is even more evident in the

cumulative tests.

Tests for i.i.d. property

Tables 17-20 report testing results for the i.i.d. property at individual lag k& based on the statistics
Jo ok and Jy 21, and at cumulative lags 1,...,m based on the statistics Cy |ym and Cy 42 ,. The

results for the size are given in Tables 17-18 and for the power in Tables 19-20.
Tables 17 and 18. Models:

(a) zy = &, & ~ 1.1.d. N(0,1),

(b) Ty = &, Et 7~ ii.d. t<6),



(c) &y = &, & ~ 1.1.d. x?(3),

(d) x; = exp(2ey), ¢ ~ 1.i.d. N(0,1).
In models (a)-(d) the data are i.i.d. with different distributions. Both tests J, o/ » and J, ;25 have
good size for all individual lags k. When the data are highly skewed, as in model (d), the tests
under-reject which is in line with theory. The cumulative tests Cy |4 and C; 42 ., perform well
for lags up to m =~ 38, observing though some distortions when the skewness is high. The size
performance is overall better for the tests based on levels and absolute deviations from the sample

mean? l'e'7 J$7|$|7k and Cx,\:v|,m'

Tables 19 and 20. Models:
a) Ty = 0.21‘15_1 + &,
b) Ty =T, Tt = O, 0t2 =1 + 0.2T§_1,

C) xy =1y, 1y =06y, 02 =1+ 02r2 | +0.702_,,

e) Ty = My + &, My = I(t/n > 05),
f) Ty = h1t5t7 hlt =1+ I(t/?’b > 05),
8) T = higye, hie = 1+ 1(t/n > 0.5), yr = 0.2y,-1 + &4,

(

(

(

(d) & = e84,
(

(

(

(h

)
) Ty = My + h1t€t7 miy = [(t/n > 05), hlt =1+ [(t/n > 05),
ey ~ iid. N(0,1).

In models (a)-(h), the data are not i.i.d. They either have correlation, or non-constant mean or
non-constant variance or both. The tests .J, 5 and J, ;2 for i.i.d. property at individual lag have
satisfactory power and there is a boost in power, when the data have combined non-i.i.d features, as
in models (g)-(h). The power of the cumulative tests Cy |5 and C, ;2 ,, is magnified with increasing
lag m. The power performance is overall better for the tests based on levels and absolute deviations

from the sample mean, that is, J; |, and Cy 2| m-

Effect of the threshold )\

Tables 21-22 are for the statistics @, and @m for testing zero serial correlation at lags 1,...,m.
Tables 23-24 are for the statistics (g, and vay,m for testing zero cross-correlation at lags 1, ..., m.
Here, we write @m = @m()\) and @zy’m = @zy’m()\) and check the size of the tests for thresholds
A = 1.645,1.96,2.576 at different significance levels o = 10%, 5%, 1%. Recall that Q,, = @m(O)

Tables 21 and 24. Models:



(C) Ty = &ty Yt = T,
(d) Ty = hltgta Y = h3tnt7 hlt =1 + I(t/n > 05), h3t =1 + 3[(t/n > 05),
ee,y ~ 1i.d. N(0,1), {;} and {n;} mutually independent.

In models (a)-(d), the data are i.i.d. or independent with time varying variance. In all these cases,
the univariate @),, and bivariate (g, cumulative tests with no thresholding suffer size distortions
that increase with increasing lag m. Size distortion is observed even for ideal i.i.d. normally
distributed data, in models (a) and (c). It is more evident for heteroskedastic data, in models (b)
and (d). On the other hand, when thresholding is applied, the size of the tests @m and @zy,m is
satisfactory and not as sensitive to the value of the threshold X for all lags m for i.i.d. data and up
to m = 30 for heteroskedastic data. Overall, the thresholds A = 1.96,2.576 are good choices at all
significance levels a = 10%, 5%, 1%, with A = 2.576 giving better performance at big lags.

Effect of the sample size n
Tests for zero serial correlation

Here we summarize size and power properties of the standard test ¢, and robust test ¢, at individual
lag k and cumulative Ljung-Box test LB,, and robust cumulative test @m at lag m for sample sizes
n = 100, 300, 1000.

The robust 75 test is well sized for all models, samples sizes and lags k, while the size distortions
of the standard t; test increase with sample size. The robust @m test is well sized for all models,
samples sizes at moderate lags m and shows distortions after some lag that depends on the degree of
the departure from i.i.d. (in the worst case, distortions start after lag m ~ 17 for n = 100, m ~ 31
for n = 300 and m =~ 76 for n = 1000). The size distortions of the standard LB,, test increase
with sample size. The power of all tests increases when lags k, m are fixed and the sample size n
increases. When the departure from the null is weak, the power of all the tests is not as satisfactory

for n = 100. At fixed lags k, m spurious power increases with the sample size for all tests.

Tests for zero cross-correlation

We now summarize size and power features of the standard tests t,, i, ¢y, and robust tests %;%k,

tyz,k at individual lag k and standard cumulative tests H B, ,,, H B, ,, and robust cumulative tests
vam, @yxm at lag m for sample sizes n = 100, 300, 1000.

We first focus on the ideal case when the series z; and y, have constant mean, are serially uncorre-
lated and mutually independent. If x; and y; are stationary, then both standard and robust tests
are well-sized at all lags k, m and for all sample sizes. If z; and y; are non-stationarity, e.g. their
unconditional variance is changing, the robust tests remain well-sized whereas the size of the stan-

dard tests may be severely distorted with the size distortion increasing slightly with sample size.



When one series has autocorrelation or non-constant mean, both standard and robust cumulative
tests can be badly-sized even at low lags. Then,for fixed lag m, when n increases the size of the
standard tests H B .,, HB,; » tends to improve, while the size of the robust vam,@yx’m tests
may improve or deteriorate depending on the specific model. Nevertheless, in this case the robust

tests %;y,k, %;xk perform well at all lags k.

Next, we consider models of series x; and ¥, that are serially uncorrelated and have constant mean.
In addition, x; and y; are uncorrelated but dependent on each other. Then the robust tests %ny,k, %Vym
are well-sized for all samples sizes at all lags k for all models. The robust C}mm, @y%m tests are
well sized for samples sizes n = 300, 1000 at all lags m for all models; when n = 100 tests show
size distortions after some lag that depends the nature of the departure from i.i.d. (in the worst
case, distortions start after lag m = 20 for n = 100). The size of the standard tests is distorted and

remains approximately the same across sample sizes.

The power of all tests increases with sample size when lags k, m is fixed. When the departure from
the null is weak, the power of all tests is not as satisfactory for n = 100. Spurious power increases
with sample size for all tests for fixed k, m except the case when both series x; and y; are serially

correlated: then spurious power remains approximately constant over n.

Tests for the i.i.d. property

The J, |4, and J; 52, tests are well-sized for all sample sizes and at all lags & for all models. The
small distortions due to skewness remain constant with increases in sample size. The C, ;| and
Cya2.m tests are well-sized for all sample sizes at moderate lags m for all models and distortions
due to skewness increase when sample size increases. Size performance is satisfactory for up to lag
m = 21 for n = 100, m = 38 for n = 300 and m =~ 67 for n = 1000 (when considering the Cj |5 m
test) in the cases where the data are symmetric distributed or not heavily skewed. For fixed lags
k, m power increases with sample size for all tests. When the departure from the null is weak, the

power of all tests is not as satisfactory for n = 100.

Effect of the threshold )\

For fixed lag m, the need for thresholding in the univariate @m and bivariate vay,m robust tests
decreases with increases in sample size. For small (relative to sample size) lags m thresholding is
hardly needed, but is essential for large (relative to sample size) lags. The values A = 1.96,2.576
are good candidates for the threshold, with A = 2.576 performing better at relative big lags m.



Table 1: Tests for zero serial correlation at lag k. Size of tests t, and t.

Tt iid Tt iid Tt = Et€t—1 Ty = hltgt Ty = thEt Tt =Tt T = hltTt
N(O,l) t(6) Et iid Et iid Et iid Tt GARCH Tt GARCH
k %Vk tr %Vk tr Ek (7 %vk tr Zk tr ,tvk tr %v;g tr
1 | 460 4.48 | 4.42 4.46 | 4.70 23.04 | 4.28 8.02 | 4.76 13.40 | 4.56 12.58 | 4.22 16.36
2 | 514 4.96 | 5.24 492 | 434 432 | 546 9.22 | 5.12 14.22 | 4.70 12.34 | 5.10 16.20
3 1530 498 | 5.06 4.80 | 5.00 5.06 | 4.70 8.64 | 4.60 13.78 | 4.36 10.88 | 4.84 15.32
4 | 476 4.80 | 4.66 4.84 | 4.18 4.54 | 4.92 8.90 | 4.70 13.12 | 4.72 10.20 | 5.04 13.80
5 |1 5.02 472 | 486 4.60 | 448 4.36 | 4.72 8.08 | 4.92 1296 | 4.76 9.26 | 4.86 12.72
6 | 4.74 486 | 4.74 4.64 | 522 5.06 | 4.74 848 | 4.70 13.02 | 4.72 838 | 4.28 11.82
7 | 4.66 4.46 | 442 4.10 | 464 4.28 | 5.04 8.32 | 5.18 13.02 | 4.74 8.14 | 4.90 11.76
8 | 4.66 4.40 | 4.64 4.20 | 5.08 4.72 | 4.84 7.94 | 5.10 12.34 | 440 7.42 | 4.58 11.40
9 | 4.78 444 | 478 428 | 5.08 4.58 | 4.52 T7.58 | 4.46 12.12 | 488 7.16 | 5.12 10.10
10 | 5.08 4.68 | 4.90 4.52 | 4.68 4.32 | 446 832 | 486 12.62 | 4.96 6.68 | 4.50 9.70
11 | 4.94 456 | 4.96 4.44 | 492 424 | 490 7.98 | 4.76 11.66 | 4.82 6.06 | 4.66 8.58
12 1 4.62 4.30 | 4.48 4.00 | 4.68 4.26 | 450 7.56 | 4.60 11.64 | 4.30 5.68 | 4.52 8.58
13 | 5.02 4.58 | 4.90 4.26 | 4.92 438 | 556 8.50 | 5.80 12.86 | 4.80 5.74 | 5.26 9.28
14 | 5.26 4.62 | 5.08 4.44 | 5.46 498 | 5.34 8.06 | 5.04 11.88 | 5.24 5.74 | 5.14 8.86
15 | 480 4.38 | 4.84 4.36 | 4.82 4.02 | 492 7.40 | 4.84 11.28 | 4.52 4.80 | 4.38 7.82
16 | 546 4.88 | 5.58 4.74 | 4.98 424 | 512 7.86 | 4.72 11.26 | 5.20 5.40 | 5.00 8.50
17 | 4.66 4.14 | 4.74 3.98 | 4.40 3.84 | 462 7.54 | 5.02 11.30 | 4.76 4.70 | 5.02 7.80
18 | 5.00 4.22 | 4.84 4.26 | 4.92 3.76 | 5.08 7.48 | 4.74 11.48 | 4.86 4.84 | 4.76 7.72
19 | 482 4.10 | 4.80 4.34 | 4.60 4.04 | 494 738 | 5.52 11.24 | 498 4.68 | 5.02 7.30
20 | 5.32 4.44 | 548 4.66 | 4.76 4.04 | 528 7.96 | 5.04 11.42 | 5.18 4.72 | 5.04 7.58
21 | 456 3.58 | 4.72 3.94 | 496 4.04 | 4.72 7.14 | 532 11.24 | 4.36 4.06 | 4.76 7.06
22 | 486 4.04 | 478 394 | 434 416 | 5.04 T7.18 | 494 10.76 | 4.58 3.94 | 4.66 6.62
23 | 520 4.42 | 526 4.68 | 4.20 3.62 | 5.14 7.76 | 5.06 10.46 | 4.98 4.24 | 498 7.12
24 | 5.04 4.34 | 522 4.66 | 4.10 3.68 | 532 7.40 | 496 9.96 | 5.24 4.42 | 5.16 6.42
251496 4.08 | 492 396 | 442 3.92 | 5.00 7.14 | 548 11.02 | 5.26 4.50 | 5.06 6.86
26 | 5.20 4.12 | 5.08 4.00 | 5.02 3.90 | 4.64 6.56 | 5.04 10.10 | 4.88 3.84 | 4.92 6.40
27 | 5.14 4.02 | 5.04 3.82 | 448 3.62 | 5.00 6.96 | 4.84 9.78 | 5.00 3.82 | 4.86 6.66
28 | 5.04 392|490 386 | 434 3.70 | 490 6.80 | 5.00 990 | 496 3.74 | 4.66 6.14
29 | 5.22 4.16 | 5.06 4.28 | 4.60 3.68 | 520 7.26 | 5.28 9.94 | 550 4.04 | 5.18 6.52
30 | 5.12 396 | 5.14 3.82 | 490 3.66 | 4.84 6.90 | 4.68 898 | 5.14 3.76 | 4.94 5.66
31| 542 394|544 392|470 334 | 494 638|496 936 | 546 3.94 | 490 5.66
32| 482 344|492 3.36 | 462 3.56 | 544 6.60 | 5.08 9.08 | 5.24 3.24 | 5.28 6.08
33 | 462 3.56 | 460 3.36 | 4.84 3.80 | 4.80 6.28 | 4.70 896 | 490 3.20 | 4.70 540
34 | 524 398 | 516 3.74 | 460 3.34 | 542 7.54 | 5.50 10.06 | 5.38 3.76 | 5.68 6.50
35| 5.16 3.66 | 494 348 | 430 3.38 | 5.12 6.20 | 4.58 828 | 5.10 3.26 | 4.92 546
36 | 5.00 3.24 | 498 3.38 | 5.00 396 | 496 6.38 | 538 942 | 488 3.24 | 518 5.64
37| 546 4.04 | 516 3.86 | 456 3.30 | 5.40 6.38 | 5.10 840 | 5.00 3.14 | 5.12 5.30
38 | 544 3.76 | 5,50 3.70 | 452 3.58 | 5.24 6.18 | 4.68 830 | 5.14 3.40 | 5.04 5.42
39| 494 3.68 | 502 3.64| 520 350 |494 6.06 | 482 784 | 544 3.26 | 5.08 5.14
40 | 520 3.38 | 496 3.60 | 5.02 3.24 | 5.22 5.86 | 5.02 7.82 | 5.08 2.90 | 5.60 5.12
Rejection frequencies (in %) at the 5% significance level, n = 300. In models: ¢ ~ iid. N(0,1),

hit =1+ I(t/n > 0.5), hoy =t/n, r ~ GARCH(1,1), & = 0.2, 8 = 0.7.
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Table 2: Tests for zero serial correlation at lags 1,...,m. Size of tests @m and LB,,.

Tt iid Tt iid Tt = Et€t—1 T = hltEt Ty = h2t€t Tt =Tt Tt = hltrt
N(071) t(6) Et iid Et iid Et iid Tt GARCH Tt GARCH
m Qm LB, Qm LBm QnL LBm Qm LB, Qm LBm Q77L LBm Qm LBnL
1 | 460 4.68 | 442 452 | 470 2342 | 428 824 | 476 13.56 | 4.56 12.76 | 4.22 16.52
2 1476 4.64 | 484 504 | 3.84 1894 | 454 1090 | 4.54 1844 | 446 15.88 | 4.38 22.14
3 | 460 462 | 466 466 |3.98 16.78 | 440 1142 | 446 21.28 | 440 1848 | 4.18 26.08
4 | 468 474 | 432 490 | 420 1524 | 4.38 12.70 | 4.36 24.92 | 4.72 1898 | 4.08 29.58
5 | 440 458 | 430 4.62 | 412 1420 | 4.34 13.60 | 4.86 27.34 | 480 20.02 | 4.24 30.92
6 | 454 488 | 450 4.70 | 414 13.72 | 464 14.34 | 476 29.26 | 4.84 20.36 | 4.76 32.34
7 | 464 486 | 440 4.62 | 440 13.08 | 498 15.68 | 4.94 3152 | 4.86 20.54 | 4.88 33.58
8 | 444 482 | 420 434 | 466 12.82 | 476 16.32 | 5.22 33.98 | 4.88 20.80 | 4.98 34.48
9 | 474 478 | 432 452 | 428 12.18 | 4.82 17.14 | 4.88 35.70 | 5.10 21.82 | 4.90 34.84
10 | 4.64 492 | 442 4.66 | 4.72 12.06 | 4.70 17.60 | 4.68 38.02 | 5.18 21.50 | 4.94 35.42
11 | 4.66 5.00 | 422 4.82 | 4.70 11.54 | 4.68 18.74 | 4.82 39.12 | 4.86 21.54 | 5.20 36.32
12 | 472 518 | 452 490 | 496 11.52 | 494 19.26 | 4.98 40.80 | 5.28 21.02 | 4.94 36.20
13 | 466 5.12 | 452 4.82 | 466 11.34 | 496 20.58 | 5.34 42.08 | 5.12 20.82 | 4.84 37.00
14 | 476 506 | 448 4.84 | 486 11.10 | 5.02 21.08 | 5.58 43.80 | 5.24 20.98 | 5.18 37.74
15 | 5.04 554 | 470 494 | 5.02 10.82 | 5.26 21.06 | 5.64 45.00 | 5.42 20.52 | 5.30 37.46
16 | 5.22 558 | 482 536 | 524 1054 | 5.34 21.96 | 552 46.58 | 5.54 20.52 | 5.30 38.32
17 | 5.02 552 | 480 5.34 | 532 10.32 | 5.26 2292 | 5.52 47.64 | 5.58 20.64 | 5.48 38.24
18 | 5.12 552 | 4.82 534 | 5.08 10.12 | 5.32 23.38 | 5.72 48.60 | 5.44 20.00 | 5.50 37.90
19 | 5.26 5.58 | 492 512 | 5.00 9.64 | 534 24.18 | 596 49.76 | 5.68 19.28 | 5.46 38.24
20 | 5.04 550 | 490 520 | 504 9.62 | 538 2518|592 50.86 | 548 19.42 | 540 38.74
21 | 5.08 5.62 | 5.02 5.16 | 5.32 9.48 | 5.56 25.62 | 6.04 52.02 | 5.56 19.14 | 5.54 38.88
22 | 5.32 560 | 498 5.32 | 5.10 9.40 | 5.64 25.82 | 6.00 53.60 | 5.86 18.96 | 5.82 39.06
23 | 518 588 | 520 538 | 506 936 | 546 26.66 | 6.04 54.52 | 5.86 18.72 | 6.02 38.86
24 | 516 576 | 530 5.56 | 494 9.40 | 546 26.84 | 6.14 55.68 | 5.72 18.54 | 5.94 39.48
25 | 5.64 6.16 | 5.36 5.74 | 4.88 9.10 | 5.64 27.58 | 6.32 56.74 | 6.08 18.64 | 6.02 39.42
26 | 5.64 6.14 | 5.18 5.66 | 5.08 886 | 5.72 27.80 | 6.42 57.38 | 5.86 18.14 | 6.02 39.34
27 | 5.58 6.10 | 5.58 5.60 | 5.04 8.84 | 6.02 28.48 | 6.60 58.22 | 5.92 18.14 | 6.30 39.58
28 | 5.56 6.08 | 5.36 5.72 | 5.02 8.66 | 5.80 29.10 | 6.60 58.98 | 5.90 18.08 | 6.16 39.32
29 | 5.74 6.28 | 5.64 574 | 5.04 860 | 5.78 29.56 | 6.80 59.86 | 5.76 17.96 | 6.52 39.74
30 | 5.68 6.58 | 5.64 596 | 5.06 858 | 596 30.22 | 6.80 60.22 | 5.94 17.92 | 6.56 40.14
31 | 5.68 6.44 | 5.78 6.12 | 4.80 848 | 5.88 30.84 | 6.94 60.44 | 6.00 17.86 | 6.64 40.22
32 | 566 640 | 586 6.06 |4.76 840 | 6.16 31.10 | 7.12 60.68 | 5.88 17.74 | 6.66 40.38
33 | 5.70 6.52 | 590 6.20 | 468 836 | 6.30 31.90 | 7.02 61.72 | 5.90 17.40 | 6.54 40.22
34 | 5.88 6.70 | 5.76 6.32 | 494 836 | 6.30 32.22 | 7.28 6248 | 6.04 1740 | 6.76 40.52
35| 588 682 | 580 630 | 488 858 | 6.38 32.86 | 7.26 62.80 | 6.38 17.14 | 6.56 40.88
36 | 5.70 6.72 | 5.76 6.44 | 524 868 | 6.52 33.38 | 7.34 63.74 | 640 17.08 | 6.52 41.04
37 | 5.74 680 | 582 644 | 508 852 | 6.60 33.64 | 7.36 64.06 | 6.36 16.96 | 6.42 40.98
38 | 6.00 696 | 5.80 6.78 | 5.24 8.44 | 6.76 33.80 | 7.30 64.68 | 6.48 16.96 | 6.50 41.16
39 | 6.22 704 | 6.06 6.78 | 5.30 8.44 | 6.74 3442 | 750 6544 | 6.60 16.94 | 6.60 41.12
40 | 6.06 7.08 | 6.16 7.02 | 540 844 | 6.90 34.82 | 7.60 65.60 | 6.48 16.88 | 6.68 41.18
Rejection frequencies (in %) at the 5% significance level, n = 300. In models: & ~ iid. N(0,1), hyy =

1+ I(t/n > 0.5), hoy = t/n, r+ ~ GARCH(1,1), « = 0.2, 3 = 0.7.
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Table 3: Tests for zero serial correlation at lag k. Power of tests t. and tg.

x: AR(1) xy MA(1) xp =1 Xy = |r1¢] Xy =13, xp = |rot] Ty = |erer_1|

¢ =0.2 0 =0.2 T1t ARCH T1¢ ARCH T2t GARCH T2t GARCH Et iid
k ?k tr Ek tr gk tr tNk tr gk tr tNk tr Ek tr
1 19228 9240 | 91.02 91.12 | 46.08 73.86 | 60.18 70.40 | 60.66 83.34 | 77.68 84.06 | 99.94 100
2 | 10.88 10.52 | 6.24 6.32 6.14 10.94 | 6.82 8.68 | 50.66 75.20 | 68.56 76.30 | 12.46 9.56
3 6.08 5.66 5.90 5.60 7.50 5.30 5.72 5.90 | 42.66 65.58 | 59.30 67.66 | 9.94 7.76
4 5.40 5.28 5.28 5.28 7.26 4.74 5.56 5.42 | 34.14 57.06 | 50.76 59.04 | 10.16 7.24
5 5.82 5.74 5.66 5.96 7.50 4.22 5.36 5.24 | 27.56 48.16 | 41.98 50.34 | 894 6.96
6 5.92 5.36 5.66 5.34 7.38 4.12 5.32 4.72 | 21.70 40.28 | 35.00 41.88 | 9.64 6.66
7 5.50 5.14 5.40 5.02 8.08 3.98 5.32 4.80 | 18.24 34.72 | 30.16 36.76 | 9.82 6.96
8 5.40 5.04 5.30 4.96 7.78 4.08 5.88 5.44 | 14.88 28.12 | 25.42 30.88 | 10.34 7.30
9 5.84 5.60 5.84 5.48 7.90 4.32 6.14 5.32 | 12.60 24.10 | 21.68 26.76 | 9.96 7.94
10 | 5.96 5.62 5.88 5.52 7.40 3.62 5.32 480 | 11.18 19.76 | 18.20 21.86 | 946 6.84
11 | 6.24 5.90 6.14 5.64 8.26 4.40 6.08 4.86 994 18.00 | 16.26 19.96 | 9.90 6.62
12 | 5.66 5.10 5.44 5.02 8.28 4.26 6.10 5.34 9.34 1396 | 13.66 16.54 | 10.52 7.04
13 | 5.42 5.00 5.46 4.90 8.36 4.00 5.66 5.10 9.24 1292 | 13.10 15.28 | 10.02 7.22
14 | 5.90 5.24 5.92 5.10 7.44 3.66 5.88 5.02 7.80 9.72 | 10.90 12.46 | 10.06 6.56
15 | 5.54 4.94 5.90 4.90 8.00 3.96 5.84 5.08 8.48 9.74 | 10.58 12.04 | 9.90 6.82
16 | 6.34 5.76 6.22 5.64 7.74 4.30 5.94 4.66 8.90 8.70 9.98 10.66 | 998 7.16
17 | 5.50 4.84 5.44 4.68 7.96 3.80 6.06 4.72 9.98 7.90 | 10.30 10.62 | 9.76  6.82
18 | 5.66 4.94 5.64 5.00 7.58 3.86 5.64 4.68 8.80 7.72 9.04 9.42 9.76  7.02
19 | 6.04 5.18 5.84 5.06 8.16 3.80 6.42 5.10 | 10.16 6.52 | 10.16 9.48 | 10.46 7.08
20 | 6.32 5.46 6.16 5.24 7.78 3.52 6.02 4.48 9.74 5.80 9.18 8.30 | 10.84 6.92

Rejection frequencies (in %) at the 5% significance level, n = 300.
a=0.2, roy ~ GARCH(1,1), « = 0.2, 3 =0.7.

Table 4: Tests for zero serial correlation at lags 1,

In models: ¢; ~ iid. N(0,1), r1; ~ ARCH(1),

..., m. Power of tests @m and LB,,.

¢ =0.2

0=02

— 2
Ty = Tt

1t ARCH

Tt = |7’1t|

T1t ARCH

)
Ty = Ty

ror GARCH

Tt = \T2t|

ror GARCH

Ty = ‘5t5t—1‘
Et iid

Qm LB,

Qm LB,

@m  LBnm

Qm  LBnm

Qm LBy,

@m  LBn

Qm LB,

© 00U WS

10
11
12
13
14
15
16
17
18
19
20

92.28 92.50
86.42 87.52
82.16  83.36
77.16  78.58
73.16  74.96
69.72 72.14
66.16 68.96
63.90 66.64
61.00 64.42
59.06  62.20
96.62  60.40
54.74  58.74
52.52  57.26
51.74  56.02
50.14  54.70
48.96 53.40
48.14  52.90
4712 52.12
46.32 51.56
45.48 51.00

91.02 91.34
85.60 86.44
80.16  81.58
74.38 76.54
69.58 71.92
66.16 68.42
62.34 65.08
59.88  62.72
56.86 60.10
54.80 58.10
52.88 56.18
50.70  54.28
49.36  52.28
47.56 50.94
46.18  49.90
45.00 48.92
44.20 47.92
43.40 47.68
42.54 47.10
41.92 45.84

46.08 74.04
33.32  67.72
27.74  63.06
25.42  59.44
23.72  56.82
23.76 54.42
23.32  52.08
23.24 50.28
23.08 48.64
22.98 47.58
23.82  45.92
23.48 44.98
24.00 44.00
24.06 42.70
24.18 42.00
24.78 41.56
24.70  40.88
24.82  40.08
25.34 39.36
25.66 38.52

60.18 70.64
47.84 62.02
41.04 56.52
35.92  52.52
33.10 49.54
29.96 47.46
27.40 44.88
26.30 43.00
25.16 41.70
24.08 40.02
24.00 39.26
23.48 38.46
22.68 37.48
22.26 37.10
21.56  36.30
20.94 35.54
20.54 34.92
20.44 34.02
20.18 34.18
20.34 33.46

60.66 83.50
73.28 91.04
77.62  92.94
78.70  93.50
78.66  93.52
77.64 93.44
76.74  93.34
75.50  93.02
73.94  92.56
73.04 92.26
71.76  91.92
71.08 91.76
70.38 91.12
69.64 90.52
68.96 90.22
68.36  89.78
68.28 89.34
68.12 88.96
68.06 88.60
67.80 88.30

77.68 84.22
84.44 90.22
86.78  91.46
87.10 91.92
86.90 91.92
86.12  91.60
85.68 91.26
84.90 91.00
84.38  90.58
83.46  90.02
82.46  89.60
81.84 89.02
80.94 88.56
80.46  88.52
79.76  88.02
79.06 87.54
78.54 87.20
77.94  86.92
77.60 86.80
77.10 86.46

99.94 100
99.68 100
99.30 100
98.56 100
98.04 100
97.38  99.98
96.74 100
96.10 100
95.04  99.96
93.94 99.96
93.22  99.90
92.46  99.88
91.60 99.86
90.76  99.78
90.16 99.70
89.22  99.66
88.48  99.68
87.76  99.58
86.78  99.52
86.46 99.44

Rejection frequencies (in %) at the 5% significance level, n = 300.
a = 0.2, 7oy ~ GARCH(L,1), & = 0.2, B = 0.7.
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In models: &; ~ iid. N(0,1), r14+ ~ ARCH(1),




Table 5: Tests for zero serial correlation at lag k. Spurious power of tests ¢, and t.

Tr=mat e | Te=mor e | xe=mar+er | v =mo +huer | 1= (hiee)? | 1 = |hue] | 2 = (mar +&0)?
Et iid Et iid Et iid Et iid Et iid Et iid Et iid

k tNk tr Zk tr ?k tr fk tr fk tr ?k tr gk tr

1 ]91.92 91.22 | 92.12 91.52 | 100 100 27.66 34.98 35.36 4594 | 62.46 67.36 | 10.42 18.02
2 | 91.18 90.44 | 91.04 90.38 | 100 100 28.28 35.36 35.30 47.40 | 62.50 67.28 | 10.42 18.26
3 19210 91.24 | 90.72 89.92 | 100 100 26.72 33.30 34.74 46.10 | 62.06 66.90 | 10.22 16.96
4 190.86 90.24 | 89.16 88.60 | 100 100 27.38 34.56 35.26 46.06 | 62.04 66.40 | 11.12 17.42
5 190.20 89.58 | 89.06 87.96 | 100 100 26.84 33.26 33.52  45.26 | 60.66 65.60 | 10.48 17.30
6 | 90.20 88.96 | 87.60 86.42 | 100 100 25.02 31.10 33.02  44.28 | 59.50 64.60 | 9.98 16.88
7 | 89.62 88.94 | 87.46 86.02 | 100 100 24.08 29.80 32.00 43.92 | 59.02 63.80 | 9.80 16.48
8 | 89.00 88.06 | 85.76 84.16 | 100 100 23.70 29.18 31.88 43.04 | 59.08 62.78 | 10.58 16.36
9 | 88.28 86.92 | 83.76 82.46 | 100 100 23.06 28.14 30.66 42.56 | 57.76 62.16 | 9.02 15.28

10 | 87.80 86.18 | 83.44 81.68 | 100 100 22.38 27.50 30.30 42.70 | 56.62 61.52 | 9.72 15.30
11 | 87.00 85.46 | 81.70 80.16 | 100 100 22.14 27.86 28.64 39.72 | 54.88 58.48 | 8.86 14.90
12 | 87.10 85.02 | 80.24 78.28 | 100 100 21.02 26.14 28.66 39.64 | 54.62 58.52 | 9.12 15.36
13 | 85.98 84.28 | 78.88 76.66 | 100 100 21.30 25.82 28.76  39.76 | 53.98 58.42 | 9.02 15.22
14 | 85.32 83.04 | 77.84 75.30 | 100 100 19.66 24.26 26.98 38.46 | 53.04 57.54 | 8.16 14.42
15 | 85.02 83.10 | 76.78 74.18 | 100 100 18.84 23.90 27.34 39.34 | 53.42 57.42 | 7.82 14.26
16 | 83.86 82.02 | 73.66 71.24 | 100 100 20.20 24.22 25.62 36.86 | 51.12 54.90 | 8.30 13.90
17 | 83.92 81.54 | 72.22 69.52 | 100 100 17.70 21.64 25.52 36.34 | 51.06 54.44 | 8.36 13.66
18 | 81.76  79.38 | 69.50 66.72 | 100 100 17.24 20.80 24.50 35.56 | 49.72 52.92 | 8.28 13.66
19 | 82.52 80.08 | 69.04 65.76 | 100 100 16.74 20.18 25.54 35.70 | 48.84 52.24 | 7.50 12.66
20 | 81.18 78.22 | 66.88 63.32 | 100 100 16.72 20.40 24.28 34.60 | 48.20 51.82 | 8.14 13.02

Rejection frequencies (in %) at the 5% significance level, n = 300. In models: &; ~ iid. N(0,1), my; = I(¢/n > 0.5),
mar = 1(0.25 < t/n < 0.75), ms; = 0.01¢, hyy = 1+ I(¢/n > 0.5).

Table 6: Tests for zero serial correlation at lags 1,...,m. Spurious power of tests @m and LB,,.

Ty=mite | we=moy+e | xp=ma+e | Ty =mo + hue |z = (hug)? xy = |hiey] zy = (mag +e¢)?
g 1id g 1id g 1id g 1id g 1id g 1id g 1id
Qn LBwm | Qm LBy | Qu LBwm | Qm  LBm | Qm LBw | Qu LBwm | Qm LBy
91.92 9140 | 92.12 91.60 100 100 27.66 35.26 35.36 46.24 | 62.46 67.66 | 10.42 18.32
97.88 97.74 | 97.98 97.70 100 100 | 37.92 48.62 49.94 65.10 | 79.20 84.22 | 13.08 24.18
99.30 99.22 | 98.98 98.92 100 100 44.76 56.64 61.92 76.58 | 87.02 91.18 | 14.78 28.70
99.68 99.66 | 99.42 99.42 100 100 50.36 63.04 70.14 83.72 | 91.34 94.68 | 17.36 32.90
99.72 99.70 | 99.72 99.76 100 100 | 54.82 68.48 75.20 88.28 | 94.28 96.84 | 19.42 36.74
99.84 99.84 | 99.82 99.84 100 100 | 57.82 71.58 79.06 91.46 | 95.56 97.82 | 20.36 39.78
99.90 99.92 | 99.84 99.86 100 100 60.64 74.90 82.06 93.96 | 96.68 98.60 | 22.44 41.64
99.88 99.92 | 99.94 99.94 100 100 | 63.02 77.40 84.60 95.18 | 97.20 98.88 | 24.08 44.78
99.86 99.92 | 99.92 99.96 100 100 | 64.68 79.30 86.36 96.16 | 97.88 99.20 | 25.58 46.82
10 | 99.86 99.94 | 99.92 99.98 100 100 66.14 80.88 87.88 97.16 | 98.20 99.38 | 27.02 48.98
11 | 99.84 99.96 | 99.84 99.98 100 100 | 68.12 82.12 88.88 97.50 | 98.58 99.56 | 28.00 50.56
12 | 99.60 99.98 | 99.64 99.98 100 100 | 68.98 82.90 90.10 97.98 | 98.64 99.62 | 28.96 51.36
13 | 99.40 99.98 | 99.50 99.98 100 100 70.26 84.08 90.84 98.36 | 98.92 99.66 | 29.44 52.70
14 | 98.96 100 | 99.06 99.98 | 99.70 100 | 70.92 84.90 91.44 98.66 | 99.00 99.74 | 30.76 54.02
15 | 98.46 100 | 98.56 99.98 | 99.70 100 | 70.90 85.70 92.36 98.88 | 99.10 99.74 | 31.14 55.36
16 | 98.34 100 98.20 100 99.58 100 71.92 86.16 92.90 98.96 | 99.18 99.78 | 31.48 56.52
17 | 97.56 100 | 98.02 100 | 99.36 100 | 72.30 86.88 93.24 99.02 | 99.20 99.80 | 32.06 57.28
18 | 96.64 100 | 97.72 100 | 99.24 100 | 72.20 87.08 93.70  99.02 | 99.28 99.84 | 32.96 58.02
19 | 96.54 100 96.90 99.98 | 99.14 100 72.78 87.60 93.86 99.12 | 99.34 99.86 | 33.50 58.76
20 | 95.98 100 96.26 100 99.00 100 72.92 87.98 94.20 99.30 | 99.36 99.86 | 33.98 59.40

Rejection frequencies (in %) at the 5% significance level, n = 300. In models: g; ~ iid. N(0,1), my; = I(t/n > 0.5),
may = I(0.25 < t/n << 0.75), ma; = 0.01¢, hyy = 1 + I(t/n > 0.5).
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Table 7: Tests for zero cross-correlation at lag k. {z:} and {y;} independent. Size
of tests oy, tyw ks tayr a0d tyg k.

Tt = h1t€t, Et iid T = h1t€t, Et iid Tt = T1ty T1¢ ARCH
Ye = haen, n iid Yyr = haeny, n iid Yt = r2t, 12t GARCH

k tzy,k tyz,k tzy,k tyac,k ta:y,k tyz,k tmy,k tyac,k ta:y,k tyz,k t:cy,k tym,k
0 | 450 450 9.22 9.22 | 464 464 11.00 11.00 | 5.08 5.08 526 5.26
1 | 448 546 842 10.18 | 438 5.54 10.08 12.02 | 5.04 520 4.88 5.18
2 | 530 5.02 10.10 896 | 526 4.96 11.88 11.12 | 530 5.06 5.02 5.02
3 1530 5.00 934 9.68 | 530 5.20 11.04 12.18 | 452 5.02 456 4.98
4 ] 510 534 890 950 | 5.00 5.30 10.68 11.20 | 452 520 4.36 5.10
5 | 5.26 5.12  9.20 9.22 | 524 528 11.42 11.10 | 4.70 4.84 476 4.70
6 | 526 4.60 898 800 | 530 4.70 10.66 9.82 | 532 4.64 498 4.66
7 | 486 4.78 848 834 | 492 496 10.24 1044 | 492 534 470 4.90
8 | 452 4.68 8.14 8.22 | 458 446 10.04 10.04 | 496 524 4.64 5.02
9 | 440 5.04 7.98 8.44 | 464 476 9.80 9.96 | 482 5.02 4.58 4.66

10 | 510 4.74 836 796 | 512 4.60 10.04 9.70 | 480 450 4.66 4.56
11 | 462 512 838 880 | 468 544 996 10.84 | 450 5.08 4.02 4.72
12 | 484 480 824 818 | 474 466 974 998 | 480 490 454 454
13 | 5.04 462 7.88 838 | 486 464 9.66 1044 | 498 510 472 444
14 | 482 512 7.60 824 | 488 504 940 10.64 | 522 5.18 436 4.36
15 | 436 470 758 816 | 438 4.60 940 10.16 | 456 5.06 4.16 4.88
16 | 542 484 826 782 | 544 470 964 994 | 554 486 5.02 424
17 | 5.04 5.00 812 808 | 496 514 9.08 10.06 | 5.02 4.56 4.36 3.96
18 | 486 480 7.8 7.8 | 5.00 492 940 9.76 | 454 526 420 4.54
19 | 5.06 5.00 768 774 | 480 494 884 9.62 | 510 4.78 454 4.24
20 | 476 530 738 7.78 | 454 508 842 990 | 5.08 5.18 446 4.42
21| 502 466 770 7.60 | 5.00 496 886 9.62 | 474 480 422 3.88
22 | 502 530 768 812 | 516 528 942 9.72 | 476 488 4.14 4.18
23 | 488 548 726 834 | 468 554 884 1020 | 480 5.40 4.38 4.50
241464 550 710 816 | 484 546 830 998 | 438 534 3.74 4.28
25| 498 5.08 678 740 | 494 510 8.04 944 | 486 4.60 380 3.78
26 | 542 578 786 818 | 536 582 896 984 | 466 5.10 392 4.18
27| 516 490 708 7.02 | 494 510 812 896 | 496 456 4.02 3.54
28 | 5.08 520 680 6.64 | 470 518 790 834 | 484 564 4.06 4.36
29 | 552 528 730 724 | 530 506 830 932 | 562 536 450 4.20
30 | 454 456 646 628 | 458 450 736 850 | 466 4.80 3.82 3.72
31 | 420 5.06 620 7.00 | 440 490 712 860 | 438 490 3.22 3.80
32 | 482 5.04 642 680 | 472 476 748 834 | 520 5.22 392 430
33 | 452 446 656 598 | 464 464 744 752 | 452 474 332 3.76
341492 504 644 692 | 468 528 732 876 | 512 5.04 392 4.00
35| 460 472 624 608 | 468 466 716 762 | 474 5.02 390 3.78
36 | 480 4.68 620 608 | 494 472 718 808 | 5.14 510 392 3.72
371 550 5.06 644 620 | 538 5.08 722 816 | 470 4.72 346 3.52
38 | 480 446 6.02 538 | 470 464 6.70 7.00 | 492 4.62 344 342
39 | 518 4.60 6.06 574 | 512 460 6.66 742 | 542 5.04 384 3.64
40 | 5.04 498 592 588 | 5.06 5.06 6.70 7.80 | 442 530 3.22 3.92

Rejection frequencies (in %) at the 5% significance level, n = 300. In models: hy = 1+1(t/n >
0.5), hg = 1+3I(t/n > 0.5), {e;} and {n;} mutually independent i.i.d. N(0,1), r1; ~ ARCH(1),
a=0.2, 19y ~ GARCH(1,1), & = 0.2, 5 =0.7, {r1:} and {ro:} mutually independent.
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Table 8: Tests for zero cross-correlation at lags 0,1, ...,m. {z;} and {y;} independent. Size of tests @wm,

Quom, HByym and HByg .

It = hltgta Et iid Ty = h1t€t> Et iid Tt = T1ty T1t ARCH
Yt = hagne, e 1id Yt = haene, m 1id Yt = r2t, 72t GARCH
m me,m Qym,m HBwy,m HByw,m Qa:y,m Qyw,m HBxy,m HByw,m wam Qym,m HBwym HBy;Em
0 4.50 4.50 9.22 9.22 4.64 4.64 11.00 11.00 5.08 5.08 5.26 5.26
1 4.40 4.72 10.40 11.16 4.56 4.46 13.12 14.38 5.10 4.90 5.32 4.96
2 4.72 4.54 12.22 12.78 4.46 4.52 16.30 16.46 5.10 4.80 5.30 4.92
3 4.82 4.88 14.02 13.86 4.84 4.74 18.28 18.34 5.30 5.00 5.40 5.16
4 4.62 4.92 14.92 14.88 4.50 4.76 20.16 20.58 4.58 5.12 4.86 5.30
5 4.44 4.78 15.94 15.72 4.58 4.66 21.62 22.50 4.84 5.20 5.16 5.12
6 4.78 4.30 17.04 16.38 4.82 4.38 23.84 23.96 4.74 5.16 5.14 5.10
7 4.92 4.44 17.70 17.80 5.00 4.54 25.12 25.62 4.78 4.84 4.90 5.10
8 4.82 4.54 18.74 19.04 4.78 4.60 26.96 26.74 4.64 4.96 5.02 5.14
9 5.00 4.72 19.22 19.72 4.80 4.58 27.54 28.88 4.66 4.80 4.88 5.32
10 5.10 4.28 19.90 19.68 4.84 4.40 29.10 29.82 4.70 4.86 4.76 5.14
11 4.82 4.42 20.84 20.98 4.70 4.70 30.30 31.08 4.42 4.90 4.48 5.26
12 | 4.76 4.50 21.10 21.72 4.88 4.38 31.28 32.18 4.32 4.60 4.88 5.16
13 4.80 4.46 21.90 22.70 4.94 4.22 31.98 33.80 4.40 4.48 4.98 5.14
14 | 4.68 4.28 22.70 23.08 4.62 4.40 33.06 35.22 4.56 4.46 4.96 5.14
15 | 4.68 4.44 23.30 23.98 4.44 4.22 34.02 35.86 4.62 4.52 4.92 5.14
16 4.70 4.56 25.10 24.90 4.48 4.48 34.84 38.02 4.66 4.36 5.28 5.26
17 | 4.42 4.56 24.98 25.64 4.38 4.38 36.46 39.36 4.74 4.56 5.20 4.94
18 | 4.66 4.46 25.56 26.24 4.40 4.58 37.20 40.12 4.72 4.62 5.36 5.08
19 | 4.56 4.42 26.22 26.92 4.34 4.42 38.26 40.90 4.86 4.48 5.50 5.20
20 | 4.40 4.14 26.78 27.58 4.26 4.44 38.72 41.90 4.78 4.56 5.58 5.46
21 4.32 4.38 27.28 28.26 4.12 4.38 40.12 42.50 4.80 4.54 5.56 5.32
22 | 4.06 4.48 27.64 28.60 3.92 4.42 41.24 44.32 4.62 4.82 5.40 5.20
23 4.06 4.38 28.68 29.62 3.86 4.28 41.82 45.40 4.66 4.92 5.26 5.52
24 | 4.20 4.20 29.40 30.10 4.08 4.22 42.86 46.80 4.68 4.70 5.36 5.48
25 | 4.10 4.00 30.02 30.68 4.08 4.28 43.30 47.84 4.76 4.94 5.36 5.52
26 4.16 4.18 30.66 31.66 4.08 4.06 44.72 49.04 4.28 4.70 5.20 5.32
27 | 4.08 4.34 31.28 32.50 4.02 4.44 44.78 49.88 4.22 4.54 5.18 5.44
28 | 4.08 4.36 31.68 32.78 4.18 4.48 45.86 50.20 4.50 4.70 5.46 5.44
29 3.92 4.52 32.04 32.86 4.12 4.48 46.86 51.24 4.58 4.58 5.42 5.72
30 | 3.98 4.82 32.32 34.18 4.24 4.52 47.42 51.86 4.34 4.58 5.32 5.84
31 | 3.96 4.48 32.56 34.58 4.08 4.34 47.78 52.56 4.28 4.60 4.90 5.70
32 | 4.18 4.54 32.90 34.88 4.22 4.44 48.12 53.08 4.54 4.42 5.14 5.80
33 | 4.24 4.34 33.00 34.96 4.08 4.10 48.84 53.82 4.34 4.46 5.20 5.74
34 | 4.20 4.52 33.44 35.70 4.08 4.48 49.56 04.74 4.44 4.34 4.98 5.70
35 | 4.32 4.62 34.08 36.24 4.26 4.58 49.66 55.60 4.64 4.68 5.12 5.78
36 | 4.52 4.52 34.32 36.20 4.32 4.50 50.34 56.54 4.76 4.82 5.30 5.68
37 | 4.48 4.58 34.62 36.42 4.30 4.48 50.62 56.76 4.60 4.56 5.18 5.80
38 | 4.42 4.56 35.12 36.94 4.40 4.58 51.22 57.52 4.56 4.48 5.30 5.78
39 | 4.50 4.48 35.80 37.32 4.70 4.50 51.24 57.82 4.64 4.72 5.20 5.74
40 | 4.36 4.54 35.80 37.88 4.64 4.68 51.88 58.48 4.38 4.80 5.48 5.90

Rejection frequencies (in %) at the 5% significance level, n = 300. In models: hyy = 1+1(¢/n > 0.5), hgy = 14+3I(t/n > 0.5),
{e:} and {n:} mutually independent i.i.d. N(0,1), r; ~ ARCH(1), @ = 0.2, 9t ~ GARCH(1,1), « = 0.2, 8 =0.7, {r1:} and
{ro:} mutually independent.
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Table 9: Tests for zero cross-correlation at lag k. {z;} and {y:} independent.
Size of tests tuy i, tyak, Loy, and tyq k.

Ty = E¢, Et iid

Ty = h1t€t7 Et iid

Tt = €ty Et iid

Yt = mat + hagne, e 1id Ye = may + e, me lid yt AR(1), ¢ =0.7
k tmy,k tyr,k tzy,k tym,k tmy,k tyx,k t:cy,k tyac,k tzy,k tyz,k tmy,k tya:,k
0 | 484 484 496 496 | 48 4.8 486 486 | 5.06 5.06 492 492
1 1494 488 484 516 | 4.74 510 4.84 512 | 4.84 488 5.06 4.72
2 | 542 562 546 574 | 532 540 532 550 | 5.10 5.10 496 4.92
3 | 5.04 530 466 554 | 484 534 486 512 | 442 528 430 5.16
4 | 472 540 478 542 | 492 486 506 480 | 4.64 506 420 5.12
5 | 522 498 472 500 | 5.06 5.14 500 462 | 532 5.12 530 4.84
6 | 548 4.32 524 412 | 546 4.44 554 392 | 480 4.72 454 440
7 | 490 540 454 530 | 452 524 454 476 | 5.06 494 486 4.70
8 | 474 476 438 462 | 496 482 514 448 | 4.82 474 454 438
9 | 442 568 4.10 5.16 | 458 542 462 514 | 492 544 454 5.36
10 | 498 498 464 488 | 518 4.62 528 432 | 492 472 4.66 4.50
11 | 460 5.04 380 4.72 | 490 478 486 4.10 | 5.02 4.62 4.80 4.20
12 | 5.04 496 4.14 4.64 | 5.16 4.70 5.06 4.10 | 5.10 5.02 4.68 4.44
13| 520 5.04 438 4.72 | 512 504 482 434 | 496 494 426 4.48
14 | 524 516 454 480 | 528 480 5.18 4.04 | 476 498 430 4.58
15| 498 518 434 494 | 5.02 482 486 4.08 | 526 512 4.90 4.68
16 | 6.04 490 5.02 450 | 6.14 5.04 580 4.06 | 5.08 4.58 434 4.02
17 | 510 5.16 438 4.84 | 544 506 5.14 420 | 5.18 486 4.32 4.12
18 | 490 492 3.76 4.66 | 490 452 492 358 | 5.08 4.88 4.54 4.28
19 | 518 450 4.16 4.38 | 5.08 436 5.06 3.40 | 5.00 4.64 4.20 4.00
20 | 498 558 4.14 526 | 5.18 548 494 434 | 440 540 3.86 4.58
21 | 4.92 454 3.62 428 | 542 4.72 492 350 | 426 5.22 3.66 4.28
22 | 5.02 516 394 528 | 5.06 484 4.8 4.08 | 4.64 532 3.84 4.46
23 | 456 542 344 520 | 5.04 534 458 3.60 | 4.68 5.44 4.14 4.66
24 | 462 536 354 5.00 | 5.10 5.04 5.00 3.72 | 454 5.08 354 4.02
25 | 5.06 498 3.70 490 | 5.36 484 514 350 | 496 490 4.16 4.06
26 | 5.06 540 3.68 5.12 | 520 516 4.8 350 | 530 482 438 3.98
27 | 492 494 3.64 458 | 534 494 488 342 | 4.72 436 3.80 3.68
28 | 4.80 5.06 3.48 4.60 | 5.30 5.12 520 3.52 | 5.12 496 3.80 3.92
29 | 5.18 5.24 344 454 | 5.18 540 494 354 | 526 494 426 3.90
30 | 5.38 450 356 4.16 | 5.64 4.10 522 268 | 4.78 474 3.76 3.82
31 | 436 5.10 2.84 468 | 4.72 4.66 432 284 | 5.82 4.94 424 3.62
32 | 448 496 3.02 454 | 5.06 4.78 440 3.12 | 5.12 498 3.66 3.68
33 | 466 440 3.10 3.88 | 4.88 432 4.64 258 | 498 504 386 3.74
34 | 4.84 496 3.04 466 | 498 4.60 450 296 | 5.22 4.96 4.02 3.58
35| 496 5.00 332 468 | 516 456 4.76 258 | 528 5.02 3.84 394
36 | 5.18 4.46 294 4.04 | 536 4.22 4.62 250 | 5.02 496 3.72 3.58
37 | 4.68 4.76 292 424 | 5.06 4.38 458 226 | 5.18 4.42 3.90 3.22
38 | 470 4.72 2,68 4.10 | 5.44 464 4.72 264 | 490 454 3.72 2.96
39 | 538 486 3.02 398 | 5.84 446 540 256 | 5.04 438 3.72 3.34
40 | 4.72 514 3.04 452 | 4.66 466 428 248 | 446 4.72 3.06 3.46

Rejection frequencies (in %) at the 5% significance level, n = 300. In models: {&;} and {n;}
mutually independent i.i.d. N(0,1), my; = I(¢/n > 0.5), hyy = 1+ I(¢/n > 0.5).
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Table 10: Tests for zero cross-correlation at lags 0,1, ...,m. {x;} and {y;} independent. Size of tests vam,
Qyz,ma HBxy,m and HBya:,m~

Ty = €y, & did Ty = hygee, & did Ty = &¢, & did
Ye = Mg + higne, 1 iid Y¢ = Mg + 0y, M iid yr AR(1), ¢ =0.7
m wa,m Qyw,nL HBwy,m HByl,m wa,’rn an;,m HBwy,'rn HBya;,?n Ql‘y,m Qyw,m HBly,m HByI,'m
0 4.84 4.84 4.96 4.96 4.86 4.86 4.86 4.86 5.06 5.06 4.92 4.92
1 4.84 4.98 5.16 4.86 5.20 4.74 5.28 5.04 4.84 6.34 6.76 6.48
2 5.24 5.04 5.20 5.14 5.50 5.54 5.74 5.44 4.96 7.50 8.36 7.74
3 5.32 4.98 5.72 5.30 5.80 5.54 6.14 5.74 6.50 8.82 8.80 9.04
4 5.14 5.20 5.14 5.34 6.08 5.88 6.12 5.98 8.40 9.66 8.84 9.78
5 5.14 5.74 5.22 5.68 6.52 6.50 6.58 6.36 11.80  10.16 9.46 10.38
6 4.94 5.50 5.18 5.50 6.62 6.34 6.84 6.50 14.90  10.52 9.78 10.58
7 5.22 5.14 5.26 5.76 7.28 6.18 7.30 6.40 18.70  10.78 10.04 10.82
8 5.08 5.16 5.10 5.74 8.14 6.40 7.30 6.58 21.54 11.46 9.90 11.44
9 4.82 5.48 5.28 5.90 8.66 6.64 7.60 6.72 23.30 11.12 9.88 11.18
10 4.92 5.12 5.54 5.74 10.12 6.94 7.98 6.74 23.38 11.32 10.36 11.58
11 5.22 5.34 5.24 6.00 11.22 7.18 8.22 6.96 22.68 11.64 10.92 11.68
12 5.04 5.52 5.06 6.40 12.04 7.30 8.48 7.48 22.52 11.66 11.02 11.90
13 | 5.20 5.58 5.40 6.16 13.40 7.54 8.54 7.64 23.06 11.78 11.18 11.90
14 | 5.24 5.30 5.24 6.22 14.84 7.44 8.62 7.90 22.36  11.62 11.50 11.80
15 5.40 5.56 4.98 6.64 16.02 7.64 8.68 7.72 22.34 11.98 11.80 12.18
16 | 5.42 5.56 5.40 6.60 16.50 7.80 9.56 8.00 22.60  12.00 11.86 12.12
17 5.48 5.72 5.34 6.64 17.10 7.96 9.40 7.88 23.14 12.26 12.02 12.24
18 | 5.72 5.70 5.30 6.78 17.24 8.18 9.46 8.14 23.22  12.58 12.40 12.62
19 | 5.76 5.58 5.16 6.92 18.44 8.28 9.74 8.10 23.70 12.54 12.24 12.82
20 5.82 5.74 5.26 7.14 19.12 8.60 9.88 7.90 23.70 12.58 11.98 12.76
21 6.28 5.94 5.06 7.26 20.08 8.60 10.02 8.16 23.46  12.44 12.08 12.80
22 6.32 6.08 5.08 7.48 19.58 8.64 10.10 8.34 2410 12.82 12.34 12.96
23 | 6.34 5.84 5.00 7.38 19.68 8.90 10.26 8.36 23.58  13.08 12.08 13.34
24 | 6.10 5.98 5.26 7.44 19.38 8.82 10.68 8.28 24.40 13.38 12.12 13.34
25 6.40 6.30 5.26 7.74 19.22 8.76 10.92 8.12 24.42  13.24 12.44 13.50
26 6.56 6.22 5.20 7.80 20.50 8.84 10.96 8.22 24.90 13.16 12.60 13.72
27 | 6.74 6.10 5.18 7.76 20.56 9.02 10.86 8.20 25.22  13.20 12.70 13.78
28 | 6.76 6.40 5.00 8.18 20.56 8.88 11.18 8.20 24.10 12.86 12.74 13.50
29 | 6.96 6.46 4.96 8.22 20.00 8.96 11.56 8.44 23.76  13.12 12.64 13.74
30 7.36 6.54 5.00 8.24 20.22 9.04 11.90 8.22 23.48 13.10 12.60 13.36
31 7.82 6.30 5.04 8.22 20.32 9.04 11.66 8.32 23.64  13.04 13.08 13.34
32 7.90 6.44 5.28 8.44 20.64 9.42 12.06 8.12 23.66  13.52 13.16 13.36
33 7.84 6.58 5.12 8.70 21.24 9.48 12.22 8.34 23.62 13.54 13.30 13.68
34 | 8.14 6.70 5.02 9.00 21.38 9.66 12.34 8.42 23.74  13.68 13.60 13.76
35 8.22 6.96 5.18 9.12 20.98 9.76 12.50 8.38 23.62  13.78 13.80 13.70
36 8.40 6.92 5.42 9.34 21.16 9.64 12.74 8.46 23.12 13.54 13.72 13.74
37 | 8.84 6.94 5.26 9.34 20.96 9.50 12.88 8.40 23.34  13.46 13.70 13.64
38 | 8.88 6.82 5.08 9.24 20.98 9.64 13.32 8.28 22.98  13.22 13.62 13.74
39 8.82 6.76 5.04 9.72 21.22 9.54 13.54 8.34 22.42 13.24 13.80 13.50
40 | 8.88 6.92 4.98 9.94 21.90 9.76 13.54 8.24 22.52  12.90 13.96 13.34

Rejection frequencies (in %) at the 5% significance level, n = 300. In models: {e;} and {7} mutually independent i.i.d.
N(0,1), myy = I(t/n > 0.5), hyy =1+ I(t/n > 0.5).
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Table 11: Tests for zero cross-correlation at lag k. {x;} and {y;} uncorrelated (not
independent). Size of tests tuy k, tyw ks Loy and Ty k.

Ty = E¢, Et iid Ty = E¢, Et iid Ty = E¢, Et iid
ye = led|ne, e did Yt = EtEt—1 yr = exp(ze)ne, 20 = 0.Tz-1 + &
k tzy,k tym,k t:cy,k tyr,k t:cy,k tym,k tzy,k tyz,k t:cy,k tyx,k tzy,k ty:c,k
0 | 514 514 2468 24.68 | 4.62 4.62 2436 2436 | 3.38 3.38 29.92 29.92
1 | 488 492 490 5.02 | 484 502 460 2574 | 3.88 3.86 4.56 16.44
2 | 490 496 5.02 5.08 | 4.72 484 4.64 4.66 | 4.02 4.04 4.26 9.80
3 | 428 534 4.24 5.22 | 514 530 510 492 | 3.68 3.50 4.80 6.14
4 | 442 512 454 5.06 | 5.28 4.80 5.12 4.68 | 410 3.38 4.86 5.50
5 | 4.82 472  4.82 494 | 522 488 510 458 | 3.66 3.92 5.06 5.16
6 | 436 4.70 450 462 | 518 5.04 4.66 4.74 | 3.60 3.34 4.50 4.88
7 | 468 548 436 490 | 534 480 4.88 4.62 | 404 366 494 4.42
8 | 5.00 4.80 424 456 | 458 490 440 4.62 | 4.04 4.00 4.84 4.82
9 | 470 548 438 488 | 456 5.12 4.18 4.80 | 3.84 4.08 4.38 4.34

10 | 492 494 472 476 | 460 484 434 458 | 3.78 4.18 4.56 4.98
11 | 486 5.08 420 452 | 496 486 490 450 | 3.80 4.34 4.20 4.58
12 | 486 546 458 514 | 5.04 4.78 480 432 | 4.04 3.52 4.64 4.56
13 | 442 512 396 484 | 488 510 430 448 | 3.50 436 3.74 4.70
14 | 490 490 476 4.60 | 452 4.60 410 4.58 | 3.42 3.66 4.00 4.54
15| 496 498 430 452 | 488 452 446 4.10 | 3.66 4.06 3.76 4.54
16 | 534 492 476 462 | 534 500 444 472 | 3.86 3.86 4.44 4.62
17 | 532 474 496 426 | 470 454 430 4.02 | 432 3.60 5.14 4.10
18 | 480 440 416 398 | 460 5.04 398 424 | 410 3.80 4.38 4.00
19 | 5.08 5.22 446 448 | 522 5.00 428 444 | 4.06 4.00 4.44 4.08
20| 496 490 436 454 | 540 520 456 414 | 4.02 420 4.44 4.26
21 | 5.02 482 430 436 | 438 524 374 384 | 3.88 3.72 430 4.32
22 | 446 5.08 3.76 446 | 478 490 4.00 388 | 3.34 4.08 3.70 4.00
23| 460 5.06 394 438 | 542 466 428 4.00 | 4.06 4.28 4.44 4.62
24 | 476 492 402 428 | 494 474 384 376 | 3.86 422 3.94 4.50
25| 528 5.00 440 430 | 524 482 4.08 4.02 | 3.92 390 4.38 3.76
26 | 496 510 428 4.10 | 462 458 3.70 3.66 | 3.80 4.14 3.98 3.72
27 | 504 460 410 3.76 | 496 502 384 382 | 3.56 3.86 3.86 3.98
28 1 5.02 490 400 390 | 530 496 388 394 | 3.30 420 3.44 3.70
29 | 536 5.18 4.08 4.02 | 452 478 3.64 388 | 402 3.58 3.66 3.96
30 | 448 430 348 354 | 5.04 464 394 352 | 400 3.62 4.16 3.98
31| 434 514 344 380 | 5.00 470 3.72 356 | 3.80 3.66 3.84 3.60
32| 544 534 380 3.88 | 486 4.68 3.66 344 | 440 3.84 3.80 4.16
33 | 444 496 342 4.06 | 4.84 482 326 342 | 390 348 3.80 4.06
34| 518 538 420 4.04 | 468 474 348 3.66 | 3.62 3.70 3.56 4.00
35| 398 482 336 384 | 492 466 396 3.84 | 414 398 3.90 3.80
36 | 5.06 448 364 330 | 462 480 352 3.70 | 3.94 422 4.04 4.02
37| 504 440 376 346 | 478 450 334 312 | 3.62 3.18 3.54 3.16
38 | 536 492 372 3.7 | 496 506 350 354 | 3.22 3.66 3.84 4.10
39 | 530 470 384 354 | 476 470 344 3.40 | 414 352 3.98 3.84
40 | 4.58 476 324 356 | 462 518 330 394 | 416 430 3.90 3.76

Rejection frequencies (in %) at the 5% significance level, n = 300. In models: {e;} and {7} mutually
independent i.i.d. N(0,1).
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Table 12: Tests for zero cross-correlation at lags 0, 1,...,m. {z;} and {y:} uncorrelated (not independent).
Size of tests Quym, Quam: HByym and HBy, .

Tt = €ty €t iid Tt = E¢, &t iid Tt = E¢, &t iid

ye = |ee|ne, e lid Yt = E€4—1 Yo = exp(z)m, 2 = 0.721 + &
m wa,m Qyw,m HBwy,m HByw,m Qxy,m Qyw,m HB:Ey,m HByw,m Qa:y,m Qyw,m HBa:y,m HBy:E,m
0 5.14 5.14 24.68 24.68 4.62 4.62 24.36 24.36 3.38 3.38 29.92 29.92
1 4.58 5.10 20.46 20.68 4.42 4.90 19.74 34.50 3.62 5.22 23.98 30.74
2 4.86 4.62 19.30 18.94 4.76 4.92 17.54 30.44 3.30 5.22 20.92 29.74
3 4.58 4.84 17.78 17.08 4.42 4.96 16.16 27.80 2.94 5.10 18.34 28.26
4 4.32 4.64 16.16 15.76 4.68 5.02 15.44 25.92 3.00 5.14 17.04 27.38
5 4.48 4.76 14.98 15.06 4.94 4.82 15.06 24.48 2.88 5.02 16.64 26.48
6 4.50 4.82 13.98 14.74 4.54 4.90 14.00 22.88 2.84 4.60 15.94 24.98
7 4.70 4.54 13.68 13.98 4.74 4.78 13.46 21.88 2.90 4.64 15.12 24.34
8 4.28 4.60 12.78 13.26 4.56 4.80 13.14 20.72 2.76 4.40 14.80 22.96
9 4.38 4.62 12.68 13.20 4.46 4.86 12.54 20.44 2.76 4.04 14.08 22.28
10 4.04 4.48 12.00 12.80 4.50 4.68 11.86 19.30 2.76 4.16 13.46 21.78
11 4.38 4.42 11.60 12.48 4.36 4.92 11.30 19.36 2.78 4.28 13.14 21.06
12 | 4.26 4.58 11.58 12.44 4.60 4.94 11.28 19.14 2.74 4.30 13.06 20.10
13 4.34 4.32 10.96 11.32 4.60 5.06 11.24 18.14 2.94 4.32 12.30 19.68
14 | 4.30 4.36 10.90 11.32 4.34 4.94 10.56 17.60 2.86 4.26 12.02 19.82
15 | 4.46 4.32 10.86 11.20 3.96 4.94 10.38 17.02 2.84 4.38 11.72 19.44
16 | 4.72 4.22 10.84 10.82 4.12 5.02 10.32 16.90 2.82 4.48 11.48 19.36
17| 4.80 4.34 10.62 10.54 3.98 4.82 9.90 16.78 2.76 4.18 11.60 18.80
18 | 5.02 4.56 10.40 10.44 4.08 4.68 9.58 16.52 2.86 4.08 11.18 18.10
19 | 4.74 4.62 10.42 10.20 4.14 4.64 9.44 16.40 3.02 4.08 11.08 17.74
20 4.84 4.62 10.42 10.20 4.22 4.68 9.10 16.00 3.22 4.00 10.90 17.32
21 4.94 4.62 10.24 10.26 4.24 4.88 9.28 15.90 3.14 3.82 10.44 17.18
22 | 4.70 4.48 9.98 9.98 4.26 5.02 9.08 15.62 3.10 3.96 10.52 16.80
23 4.66 4.40 9.52 9.84 4.12 4.92 8.56 15.30 3.22 3.98 10.56 16.64
24 | 4.78 4.86 9.54 9.64 4.16 4.84 8.54 14.98 3.24 4.00 10.46 16.50
25 | 4.80 4.76 9.06 9.66 4.30 4.92 8.66 14.48 3.44 3.80 10.34 16.28
26 4.42 4.62 9.14 9.60 4.26 4.98 8.48 14.28 3.02 3.78 9.78 16.24
27 | 4.64 4.82 9.60 9.52 4.22 4.90 8.46 13.96 3.12 3.62 9.74 16.24
28 | 4.80 4.72 9.24 9.48 4.32 5.20 8.42 13.94 3.06 3.62 9.52 16.36
29 | 4.74 4.72 9.28 9.06 4.46 5.18 8.28 13.78 3.04 3.76 9.46 16.02
30 | 4.70 4.58 9.26 9.12 4.26 5.16 8.52 13.62 2.94 3.58 9.74 15.52
31 | 4.76 4.82 8.76 9.28 4.38 5.06 8.52 13.10 2.90 3.64 9.44 15.68
32 | 4.68 4.68 8.86 9.26 4.34 4.92 8.26 13.14 2.98 3.58 9.52 15.56
33 | 4.34 4.62 8.60 8.76 4.42 4.68 8.36 12.82 2.96 3.58 9.56 15.34
34 | 4.40 4.64 8.58 9.00 4.46 5.02 8.08 12.50 2.96 3.66 9.54 15.18
35 | 4.42 4.64 8.42 8.62 4.44 4.96 8.12 12.78 2.76 3.96 9.80 15.34
36 4.48 4.62 8.60 8.66 4.34 5.00 7.94 12.62 2.92 3.98 9.54 15.16
37 | 4.34 4.50 8.52 8.50 4.48 5.00 8.18 12.44 3.04 3.78 9.78 15.28
38 | 4.40 4.36 8.34 8.48 4.40 5.00 8.06 12.36 3.24 3.66 9.66 15.00
39 4.38 4.52 8.24 8.42 4.38 5.14 7.98 12.22 3.22 3.70 9.98 15.06
40 | 4.46 4.62 8.02 8.38 4.60 5.20 7.66 12.06 3.02 3.78 9.84 14.98

Rejection frequencies (in %) at the 5% significance level, n = 300. In models: {e;} and {7} mutually independent i.i.d.
N(0,1).
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Table 13: Tests for zero cross-correlation at lag k. Power of tests tny,k, tNyx,k, Loy and Ly, g

Ty =11, ¢ = 0.6 ARCH xy = higg xy = hyey
Ye =1ot, ror = 0oper GARCH | yy = xp + @1+ Te—o + Ry | Y = My + @ + 21 + T2 + hyny
k tmy,k ty:z:,k tmy,k tyx,k: try,k tym,k tmy,k tyr,k txy,k: tyr,k tzy,k ty:z:,k
0 100 100 100 100 100 100 100 100 100 100 100 100
1 4.46 448 9.06 9.74 4.98 100 6.74 100 4.84 100 6.42 100
2 492 482 5.50 9.58 4.92 100 6.94 100 5.00 100 6.80 100
3 494 482 4.46 8.86 490 5.02 6.60 6.80 4.78 4.66 6.70 6.30
4 4.88 4.66 4.72 8.40 452 534 6.48 6.98 480 486 6.18 6.76
5 5.10 4.86 4.56 7.66 474 488 6.24 6.32 4.78 5.10 6.52 6.60
6 4.66 4.76 4.36 7.44 4.58 4.88 5.68 6.54 4.64 5.16 6.00 6.38
7 4.62 4.76 4.34 7.08 5.08 5.12 6.58 6.44 5.18 4.90 6.46 6.28
8 4.74 432 4.12 6.20 4.70 5.16 6.22 6.36 4.64 498 6.22 6.56
9 5.00 4.82 4.38 6.72 498 5.10 6.58 6.44 5.14 4.96 6.48 6.08
10 | 5.20 5.04 4.28 6.28 456 4.84 5.98 6.34 4.74 498 5.98 6.26
11 | 4.64 4.70 4.06 5.76 466 498 6.06 5.96 4.60 5.14 6.02 6.16
12 | 4.72 4.72 3.64 5.34 5.10 4.72 7.00 5.64 524 4.66 6.84 5.46
13 | 5.28 5.02 4.42 5.50 5.02 4.70 6.28 5.68 5.08 4.70 6.22 5.52
14 | 542 5.36 4.56 5.60 5.10 540 6.34 6.00 5.38 4.86 6.68 5.64
15 | 4.80 4.82 3.86 4.88 528 5.10 6.58 5.90 5.30 4.98 6.40 5.86
16 | 5.08 5.48 4.34 5.78 4.82 5.02 5.72 5.90 5.12  4.94 6.10 5.54
17 | 4.84 458 3.88 4.60 5.18 5.18 6.12 6.06 5.06 5.20 6.38 5.86
18 | 5.04 4.86 4.18 4.74 5.02 4.50 6.00 5.20 512 4.48 6.14 4.94
19 | 496 492 3.84 4.66 5.12 4.74 6.20 5.44 528 4.86 6.04 5.50
20 | 550 5.26 4.40 4.84 458 4.82 5.50 5.52 450 4.70 5.62 5.28

Rejection frequencies (in %) at the 5% significance level, n = 300. In models: {e;} and {1} mutually
independent i.i.d. N(0,1), 1y ~ ARCH(1), @« = 0.2, ro; ~ GARCH(1,1), « = 0.2, 8 = 0.7, my; = I(t/n >
0.5), hiy = 1+ I(t/n > 0.5).

Table 14: Tests for zero cross-correlation at lags 0,1,...,m. Power of tests @my,m, @yx,m, HB,y,, and
HBy; .

Ty = T1t, T1¢ = 01:6¢ ARCH Ty = hyigey Ty = hygey
Yi = Tat, ot = 02;6; GARCH Y¢ =Ty + Ty 1+ Ty_2 + Ry Yr =map + ¢+ Te1 + Tp—o + hyme
m Q.’cy,m an:,m HB:cy,m HBy.’c,m Qa:y,m anrm HBa:y,m HByac,m me,m Qym,m HBacy,m HBygc,m
0 100 100 100 100 100 100 100 100 100 100 100 100
1 100 100 100 100 100 100 100 100 100 100 100 100
2 100 100 100 100 100 100 100 100 100 100 100 100
3 100 100 100 100 100 100 100 100 100 100 100 100
4 100 100 100 100 100 100 100 100 99.94 100 100 100
5 100 100 100 100 99.98 100 99.98 100 99.90 100 99.98 100
6 100 100 100 100 99.92 100 99.96 100 99.88 100 99.96 100
7 100 100 100 100 99.90 100 99.94 100 99.82 100 99.94 100
8 100 100 100 100 99.86 100 99.94 100 99.84 100 99.94 100
9 100 100 100 100 99.74 100 99.94 100 99.62 100 99.94 100
10 100 100 100 100 99.68 100 99.94 100 99.50 100 99.94 100
11 100 100 100 100 99.64 100 99.94 100 99.38 100 99.94 100
12 100 100 100 100 99.60 100 99.94 100 99.20 100 99.94 100
13 100 100 100 100 99.52 100 99.90 100 99.22 100 99.90 100
14 100 100 100 100 99.44 100 99.92 100 98.98 100 99.90 100
15 100 100 100 100 99.32 100 99.92 100 98.68 100 99.90 100
16 100 100 100 100 99.20 100 99.92 100 98.64 100 99.90 100
17 100 100 100 100 99.10 100 99.92 100 98.44 100 99.86 100
18 100 100 100 100 98.92 100 99.88 100 98.08 100 99.84 100
19 100 100 100 100 98.62 100 99.88 100 97.82 100 99.80 100
20 100 100 100 100 98.28 100 99.88 100 97.30 100 99.78 100

Rejection frequencies (in %) at the 5% significance level, n = 300. In models: {e;} and {7} mutually independent i.i.d.
N(0,1), 11t ~ ARCH(1), « = 0.2, 79 ~ GARCH(1,1), « = 0.2, = 0.7, my: = I(t/n > 0.5), hys = 1+ I(t/n > 0.5).
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Table 15: Tests for zero cross-correlation at lag k. Spurious power of tests %;y,k, %Vym’k,
txy,k and ty%k.

Ty = My + &, € 1id Ty = My + &, €4 1id xy = 0.7z 1 + &4, €4 iid
Yr = mag + ne, e did Yt = Mgy + 0y, M iid yr = 0.7y, _1 + ¢, e iid
twy,k tyx,k‘ tacy,k tyw,k txy,k tyw,k twy,k tyx,k twy,k tyx,k twy,k tyx,k‘
94.94 94.94 94.40 94.40 | 43.16 43.16 43.18 43.18 | 24.98 24.98 24.80 24.80
94.56 94.20 94.06 93.92 | 43.20 42.48 42.88 41.80 | 25.44 24.94 25.12 24.68
93.34 93.76 92.60 93.22 | 42.76 41.14 42.26 40.66 | 25.56 25.56 25.22 25.36
94.04 93.86 93.36 93.06 | 43.82 40.52 43.08 39.78 | 25.08 25.50 24.48 25.34
93.28 93.84 92.72 93.16 | 43.46 39.78 4294 38.74 | 24.32 25.48 23.98 24.84
92.70 93.36 91.94 92.18 | 44.58 39.32 43.92 38.28 | 25.12 24.28 24.64 23.80
92.30 93.36 91.60 92.62 | 45.30 36.52 44.24 35.54 | 25.06 24.50 24.30 23.78
91.78 92.72 90.84 91.86 | 44.68 37.28 42.92 35.96 | 24.76 25.22 24.24 24.62
91.58 92.14 90.34 91.46 | 45.88 36.52 44.40 35.22 | 25.00 25.16 24.26 24.76
91.02 90.76 89.90 89.72 | 45.92 34.64 44.38 33.06 | 24.06 25.80 23.56 25.02
10 | 90.42 91.34 89.04 90.22 | 46.56 32.72 44.96 30.90 | 24.72 25.62 23.78 24.24
11 ] 90.20 90.64 89.06 89.50 | 46.94 34.04 45.54 32.20 | 25.12 24.56 23.86 23.56
12 | 88.98 89.90 87.48 88.28 | 47.00 31.56 45.42 29.68 | 25.40 25.08 24.54 24.30
13 | 88.16 89.16 86.52 87.54 | 47.88 30.18 46.04 28.50 | 25.28 25.30 24.16 24.10
14 | 87.84 88.98 86.24 87.54 | 48.78 29.34 46.04 27.16 | 25.00 24.78 23.46 23.64
15 | 86.84 87.44 85.20 85.60 | 47.54 27.52 45.02 25.34 | 25.18 25.18 23.58 24.10
16 | 86.00 86.50 84.16 84.78 | 49.18 27.50 46.82 25.30 | 25.40 24.56 23.92 23.60
17 | 85.12 86.90 83.22 84.54 | 48.58 25.78 45.98 23.16 | 25.14 24.20 23.58 23.00
18 | 84.14 85.94 82.26 83.60 | 50.38 24.84 47.80 22.56 | 24.86 24.54 23.18 23.14
19 | 83.90 85.22 81.54 8248 | 49.02 2590 46.34 22.96 | 24.44 25.66 22.86 23.78
20 | 82.54 84.26 80.46 81.34 | 49.04 24.90 46.16 21.70 | 24.54 25.68 22.76 23.86

Rejection frequencies (in %) at the 5% significance level, n = 300. In models: {e;} and {n:} mutually
independent i.i.d. N(0,1), my; = I(t/n > 0.5), ma = I(t/n > 0.25).
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Table 16: Tests for zero cross-correlation at lags 0, 1, ..., m. Spurious power of tests @xy,m, vaxm, HB.ym
and HDBy; ,,.

Ty = M1 + E¢, Et iid Ty = My + Ety Et iid Ty = 0.7xt_1 + Ety Et iid
Yt = mag + e, e did Yt = Mag + ¢, 1y iid yt = 0.Tys—1 + me, ¢ iid
m sz,m Qyz,m HBzy,m HBy:L’m me,m Qym,m HB:ry,m HByz,m me,m Qyz,m HB:z:y,m HByx,m
0 94.94 94.94 94.40 94.40 43.16  43.16 43.18 43.18 24.98  24.98 24.80 24.80
1 | 99.04 99.04 99.08 99.02 56.80  54.76 58.18 07.44 20.62  20.60 30.90 31.08
2 ] 99.70  99.78 99.72 99.82 64.60 61.50 66.62 65.98 19.16  19.56 34.56 34.88
3 99.88  99.92 99.86 99.90 70.72  65.28 73.52 71.30 18.76  19.50 37.78 38.26
4 1 9992  99.96 99.92 99.98 74.82  67.86 77.58 75.42 19.50  20.28 40.88 40.98
5 | 99.98  99.98 100 100 78.20  69.54 81.04 77.90 20.70 21.34 43.60 43.52
6 100 99.98 100 100 80.80  71.00 83.70 80.10 21.74 2242 46.00 46.34
7 100 99.98 100 100 82.64 71.62 85.86 81.60 23.18  23.82 48.70 48.56
8 |1 99.98  99.98 100 100 84.22  72.52 87.48 82.76 23.82 24.82 50.98 51.12
9 99.94  99.96 100 100 85.72  73.62 88.68 83.58 24.56  25.26 53.30 53.14
10 | 99.72  99.78 100 100 86.50  74.34 89.54 84.38 2496  25.40 55.28 55.06
11 | 99.62  99.66 100 100 87.44  75.10 90.26 85.14 24.66  25.66 57.12 57.16
12 | 99.44  99.24 100 100 87.88  74.68 91.36 85.56 25.06  25.18 58.64 59.04
13 | 98.88  98.70 100 100 88.40  74.68 92.20 85.92 25.14  25.32 60.50 61.12
14 | 98.46  98.24 100 100 89.10  74.50 92.84 85.90 24.86 24.64 61.76 62.98
15 | 97.78  98.04 100 100 89.32  72.62 93.60 86.06 24.80  24.70 63.56 64.08
16 | 97.22  97.20 100 100 89.84  72.20 94.12 86.32 24.44  24.20 65.14 65.46
17 | 96.62  96.28 100 100 90.46  70.62 94.60 86.58 24.30  24.78 66.36 66.76
18 | 96.04  95.72 100 100 90.58  69.60 95.22 86.60 2494  24.28 67.56 67.96
19 | 95.34  94.68 100 100 90.88  68.78 95.62 86.78 24.82  24.50 68.78 69.38
20 | 9480 94.74 100 100 91.06 68.16 95.92 86.60 24.30  25.32 70.10 70.74

Rejection frequencies (in %) at the 5% significance level, n = 300. In models: {e;} and {7} mutually independent i.i.d.
N(0,1), myz = I(t/n > 0.5), mys = I(t/n > 0.25).
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Table 17: Tests for i.i.d. property at lag k. Size of tests Jy |z,

Jz,:pQ,k‘

T, iid T, 1id x; 1id xy = exp(2ey)

N(0,1) £(6) 2(3) e, iid N(0,1)
k Jx,|w|,k Jx,x2,k J:c,|9c|,k Jz,mQ,k Jw,|x\,k‘, Jx,mz,k Jx,\x\,k Jac,mz,k
1 4.54 4.30 4.74 3.98 5.06 4.70 3.58 2.64
2 4.86 4.76 4.82 4.64 4.54 4.68 3.28 2.24
3 4.50 4.14 4.46 4.32 4.90 4.80 3.58 2.60
4 4.78 4.94 4.82 4.68 4.60 4.48 3.58 2.62
5 4.46 4.24 4.20 4.24 4.42 4.50 3.82 2.86
6 4.50 4.46 4.12 4.44 4.60 4.68 3.46 2.56
7 4.48 4.12 4.28 3.94 4.34 4.30 4.00 2.92
8 4.32 4.16 4.20 3.94 4.24 4.46 3.62 2.46

9 4.60 4.48 4.40 4.46 5.00 4.74 3.40 2.54
10 4.60 4.36 4.74 4.44 4.58 4.76 3.64 2.48
11 5.30 4.82 5.02 4.46 4.90 5.00 3.50 2.38
12 4.50 4.14 4.46 4.18 4.94 4.72 3.48 2.48
13 5.04 4.66 4.56 3.98 5.40 4.78 3.26 2.26
14 4.64 4.32 4.30 4.16 4.68 4.80 3.34 2.22
15 4.64 4.22 4.58 4.14 4.70 4.76 4.04 2.92
16 5.04 4.68 4.96 4.36 5.02 5.12 4.06 2.90
17 5.00 4.56 4.58 3.92 4.52 4.24 3.54 2.64
18 4.84 4.50 4.70 4.30 4.76 5.20 3.50 2.52
19 5.12 4.72 4.74 4.60 4.70 4.88 3.94 3.04
20 4.86 4.50 4.70 4.50 5.08 4.92 3.70 2.56
21 5.02 4.14 4.70 4.38 4.80 4.60 3.52 2.64
22 5.08 4.78 4.80 4.46 5.22 5.08 3.46 2.60
23 4.86 5.08 4.72 4.88 5.02 4.68 3.40 2.42
24 5.04 4.88 5.08 4.78 4.74 4.60 3.68 2.74
25 5.18 5.22 5.30 5.06 4.56 4.36 3.60 2.62
26 4.92 4.94 4.76 4.16 5.26 5.56 3.68 2.46
27 4.68 4.20 4.38 4.54 4.66 4.80 3.32 2.62
28 4.58 4.84 4.64 4.32 4.84 4.72 3.26 2.26
29 4.96 4.78 4.90 4.92 5.00 4.92 3.60 2.60
30 4.60 4.68 4.46 4.32 4.34 4.34 3.64 2.70
31 4.86 4.98 4.90 4.84 4.60 4.54 3.48 2.40
32 4.68 4.48 4.60 4.32 5.50 5.28 3.16 2.48
33 4.40 4.12 4.36 4.16 4.78 4.48 3.30 2.28
34 5.06 4.76 4.56 4.54 5.54 5.58 3.30 2.34

35 4.92 4.54 4.80 4.26 4.64 4.90 3.22 2.32
36 4.86 4.50 4.48 3.98 4.76 5.18 3.50 2.60
37 5.02 4.86 4.68 4.46 5.32 4.88 3.40 2.44
38 4.84 4.58 4.62 4.68 4.90 4.64 3.28 2.66
39 4.86 4.78 4.92 4.84 4.82 5.06 3.94 2.92
40 5.10 4.80 4.98 4.66 4.56 4.44 3.46 2.54

Rejection frequencies (in %) at the 5% significance level, n = 300.
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Table 18: Tests for i.i.d. property at lags 1,...,m. Size of tests Cy q|,m,
Cx x2m-

x; iid x; iid x; iid xy = exp(2ey)

N(0,1) £(6) 2(3) e, iid N(0,1)
m Cx,|x\,m C.'E,ft:z,m C;c,|a:|,m Cr,:zc2,m Cx,\x|,m, Cr,x2,m, Cx,|x\,m Cm,mz,m
1 4.54 4.30 4.74 3.98 5.06 4.70 3.58 2.64
2 4.88 4.48 4.66 4.52 4.96 5.30 4.72 3.42
3 4.66 4.66 4.76 4.90 5.30 5.98 6.18 4.52
4 4.84 4.76 4.56 5.38 5.22 6.44 6.82 5.08
5 5.02 4.68 4.50 5.56 5.42 6.74 7.76 5.96
6 4.78 4.84 4.50 5.66 5.82 7.10 8.18 6.12
7 4.88 4.52 4.50 5.64 5.66 6.96 8.60 6.44
8 4.94 4.66 4.56 5.78 5.62 7.12 8.86 6.86
9 4.68 4.78 4.46 5.70 5.68 7.16 9.08 7.08
10 5.04 4.90 4.76 5.70 5.86 7.46 9.10 7.06
11 5.40 4.92 4.86 5.48 5.56 7.46 9.40 7.34
12 5.54 4.90 4.94 5.44 5.46 7.38 9.74 7.52
13 5.62 4.94 4.98 5.32 5.52 7.46 9.70 7.48
14 5.36 4.78 4.80 5.24 5.46 7.14 9.64 7.50
15 5.44 4.72 4.94 5.22 5.54 6.94 9.82 7.88
16 5.48 4.78 4.74 5.10 5.38 7.16 9.96 7.80
17 5.54 4.62 4.86 5.08 5.68 6.92 9.96 7.84
18 5.50 4.82 4.76 4.82 5.76 6.76 9.84 7.84
19 5.74 4.70 5.00 4.88 5.76 6.82 9.88 7.76
20 5.70 4.86 5.04 4.92 5.56 7.02 9.78 7.82
21 5.86 4.86 5.06 4.82 5.84 6.74 9.70 7.96
22 5.30 4.80 4.86 4.80 5.70 6.76 9.50 7.98
23 5.58 4.98 4.78 4.78 6.06 6.86 9.68 7.84
24 5.82 5.18 5.12 4.96 6.08 7.02 9.76 7.90
25 5.88 5.24 5.08 4.92 6.28 6.82 9.76 7.72
26 5.82 5.54 5.16 4.86 6.32 6.84 9.46 7.60
27 6.06 5.26 5.30 4.86 6.20 6.80 9.46 7.62
28 6.10 5.28 5.48 5.16 6.34 7.00 9.32 7.32
29 6.28 5.50 5.66 5.28 6.60 6.96 9.30 7.20
30 6.02 5.38 5.58 5.20 6.62 6.88 9.26 7.14
31 6.36 5.56 5.84 5.32 6.74 6.62 9.28 7.08
32 6.64 5.80 5.90 5.48 6.60 6.60 9.20 7.14
33 6.28 5.72 5.78 5.20 6.60 6.72 9.10 7.10
34 6.42 5.88 5.72 5.28 6.64 6.62 8.88 6.98
35 6.44 5.72 5.72 5.08 6.92 6.56 8.84 7.18
36 6.34 5.62 5.90 5.22 6.64 6.66 8.50 7.08
37 6.58 5.64 5.86 5.04 6.70 6.54 8.58 6.88
38 6.74 5.66 6.02 4.94 6.90 6.56 8.70 6.94
39 6.92 6.04 6.12 5.12 7.16 6.62 8.72 6.76
40 6.98 6.00 6.28 5.10 7.08 6.64 8.60 6.82

Rejection frequencies (in %) at the 5% significance level, n = 300.
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Table 19: Tests for ii.d. property at lag k. Power of tests Jg )k,
Jo 22 k-

i AR(1) 2, ARCH(1) | z; GARCH(L,1) e
=02 a=02 a=028=07 | & iidN(0,1)
k Jac,|r\,k Jz,z2,k Jx,|’r\,k Jz,mz,k Jx,\ac\,k Jz,z2,k J’L,|ar|,k Ja:,z2,k
1] 86.50 86.52 63.42 68.64 80.12 79.48 99.98 89.64
2 8.58 8.20 8.68 10.36 71.84 70.50 7.44 4.50
3 5.10 4.84 5.54 5.22 61.84 60.64 6.34 4.72
4 5.54 5.46 5.12 4.98 53.90 52.44 6.06 4.84
5 5.28 5.46 4.80 4.54 45.84 44.00 6.04 5.12
6 4.96 4.92 4.58 4.46 38.30 36.94 6.24 4.84
7 5.08 4.80 4.62 4.38 33.06 31.48 6.18 4.42
8 5.32 4.60 5.14 4.00 27.66 26.02 6.94 5.12
9 5.22 5.12 5.04 4.72 24.14 22.22 7.18 5.16
10 4.80 5.10 4.94 4.90 20.76 19.34 6.32 4.98
11 5.74 5.48 5.30 4.80 18.30 16.74 6.06 4.54
12 5.30 4.76 5.26 4.72 15.48 13.64 6.40 4.66
13 5.64 5.28 5.22 4.78 14.58 12.92 6.48 4.70
14 5.42 4.92 4.84 3.86 12.16 10.40 6.38 4.94
15 4.94 5.32 5.04 4.68 11.36 9.86 6.28 4.90
16 5.66 5.28 5.66 4.94 10.74 9.18 6.56 5.22
17 5.62 4.86 5.10 4.40 10.30 8.12 6.30 4.60
18 5.16 4.74 5.14 4.66 9.34 7.92 6.02 4.44
19 5.60 5.54 5.50 4.72 9.42 7.34 6.20 4.74
20 5.14 5.40 5.28 4.66 8.06 6.56 6.44 4.80
Ty =My + & Ty = 1y xzy = h1ys Ty = myg + hies
e iid N(0,1) | e iid N(01) |y AR(1), ¢ =0.2 | & iid N(0,1)
k Jz,|m\,k Jw@Q,k: Jz,|:r:\,k Jw,a:2,k: Jx,\x\,k Jw@Q,k: Jx,|a:|,k Jw@r",k
1| 86.06 85.64 59.22 41.00 95.58 91.86 61.22 51.08
2| 85.70 85.40 58.84 41.74 61.34 45.30 61.00 51.94
3| 85.32 85.06 59.44 41.02 59.00 40.98 58.68 49.18
4 | 85.26 85.04 58.88 41.72 58.20 42.20 60.12 51.20
5 | 83.98 83.80 57.74 40.08 58.02 41.04 58.80 49.32
6 | 83.36 83.12 55.76 39.34 56.96 40.30 57.42 48.56
7| 82.64 82.26 55.78 39.82 55.28 39.14 56.38 46.40
8 | 82.76 82.32 55.64 38.64 56.96 39.88 55.22 46.22
9| 80.96 80.58 55.24 37.58 54.54 38.74 53.74 44.80
10 | 79.80 79.96 53.76 36.80 53.82 37.84 52.32 44.00
11 79.54 79.10 52.28 36.22 53.24 36.66 51.00 43.42
12 | 79.42 79.12 51.38 35.86 51.72 36.34 49.86 41.44
13| 77.94 78.02 52.36 36.12 52.58 36.98 49.40 41.94
14 | 76.78 76.54 50.58 35.10 50.56 36.26 48.90 40.48
15 | 76.44 76.30 50.92 35.58 51.16 35.52 49.12 41.08
16 | 75.12 74.72 49.00 34.44 49.86 35.38 47.58 40.06
17 | 74.92 74.30 48.08 33.82 47.98 34.22 45.24 38.06
18 | 72.94 72.70 47.36 33.28 47.98 33.84 45.08 37.40
19 | 72.88 72.88 46.98 32.70 47.68 33.28 44.50 36.58
20 | 71.44 71.00 46.76 33.06 46.96 34.10 43.48 35.70

Rejection frequencies (in %) at the 5% significance level, n = 300. In models:
my = I(t/n > 0.5), hyy =1+ 1(t/n > 0.5).
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Table 20: Tests for i.i.d. property at lag k. Power of tests Cy zm: Cr22.m-

Tt AR(l) Tt ARCH(l) Tt GARCH(I,l) Ty = Et€¢—1
b =02 a=02 a=028=07 &, iid N(0,1)
m Cm,|x\,m C:c,xz,m Cm,|x|,m Cr,zz,m Cx,\z|,m Cx,mz,m Cm,|:c\,m Cz,xz,m
1 86.50 86.52 63.42 68.64 80.12 79.48 99.98 89.64
2 78.48 78.64 54.30 61.02 86.70 87.96 99.98 83.66
3 72.32 72.16 48.50 56.10 88.46 90.08 99.96 79.46
4 66.48 66.14 43.88 51.98 88.96 90.86 99.98 76.32
5 62.18 61.34 41.34 48.42 89.46 91.28 99.94 73.82
6 57.90 57.10 38.54 46.18 89.24 91.46 99.88 71.12
7 54.76 54.70 36.22 43.46 88.68 91.04 99.74 67.80
8 52.04 51.68 34.28 41.44 88.24 90.52 99.62 66.02
9 50.42 49.94 33.04 40.06 87.68 90.14 99.42 64.50
10 48.22 47.92 31.96 38.70 87.04 89.42 99.16 62.50
11 46.30 45.74 31.12 37.88 86.42 88.96 98.94 60.98
12 44.64 43.92 30.48 36.90 85.64 88.74 98.68 59.48
13 43.58 42.34 29.34 36.22 84.90 87.92 98.62 58.06
14 42.20 41.14 28.72 35.48 84.56 87.22 98.22 57.02
15 41.64 40.24 27.62 34.40 84.32 86.94 98.02 55.68
16 40.50 38.90 26.86 33.76 83.80 86.26 97.88 54.50
17 39.78 38.12 26.14 33.28 83.12 85.64 97.68 53.42
18 39.06 37.74 25.52 32.04 82.82 84.92 97.10 52.16
19 38.20 36.58 25.46 31.68 82.04 84.72 96.74 50.90
20 37.58 36.20 25.30 31.00 81.84 84.12 96.20 50.30
Ty =My + & x¢ = hyes s = hiys Ty = myg + hiey
e, iid N(0,1) e iid N(0,1) | y, AR(1), 6 =02 | &, iid N(0,1)
m C$,|:v\,m Ca:,w2,m C’av,|a:|,7ﬂ Cw,w2,m Cx,\w|,m CwﬁwQ,m C$,|:v\,m Ca:,x2,m
1 86.06 85.64 59.22 41.00 95.58 91.86 61.22 51.08
2 95.58 95.26 77.86 58.76 96.90 93.28 79.38 70.78
3 98.36 98.14 86.76 70.20 97.84 95.00 88.30 81.36
4 99.10 98.82 91.16 77.86 98.44 96.18 93.36 87.88
) 99.44 99.28 94.56 83.82 99.02 96.90 96.14 91.94
6 99.64 99.58 96.02 87.32 99.34 97.44 97.32 94.08
7 99.76 99.76 97.34 90.52 99.48 98.04 98.00 96.02
8 99.78 99.78 97.62 92.40 99.52 98.44 98.56 96.86
9 99.86 99.84 98.22 93.64 99.62 98.44 98.92 97.64
10 99.86 99.86 98.78 94.78 99.66 98.88 99.16 98.22
11 99.92 99.88 99.02 95.74 99.64 98.82 99.36 98.62
12 99.94 99.90 99.18 96.24 99.74 99.04 99.40 98.92
13 99.94 99.90 99.38 96.70 99.76 99.12 99.50 99.14
14 99.94 99.92 99.48 97.34 99.80 99.34 99.70 99.28
15 99.96 99.94 99.52 97.78 99.84 99.54 99.72 99.44
16 99.94 99.94 99.58 98.08 99.84 99.66 99.76 99.52
17 99.94 99.92 99.56 98.30 99.82 99.56 99.78 99.62
18 99.94 99.92 99.62 98.42 99.86 99.66 99.78 99.62
19 99.92 99.94 99.68 98.60 99.82 99.58 99.76 99.66
20 99.94 99.92 99.68 98.66 99.84 99.62 99.82 99.76

Rejection frequencies (in %) at the 5% significance level, n = 300. In models: my; =
I(t/n > 0.5), b1y =1+ 1(t/n > 0.5).
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Table 21: Tests for zero serial correlation at lags 1,...,m. Size of tests @),, and @m with different
thresholds A.

o = 10% a=5% a=1%
Qm = Qm(A) Qm = Qm(A) Qm = Qm(A)
m | Qm A=1645 A=196 A=2576 | Qm A=1645 A=196 A=2576 | Qm A=1645 A=1.96 A=2.576
1| 9.74 9.74 9.74 9.74 4.60 4.60 4.60 4.60 0.80 0.80 0.80 0.80
2 | 9.92 9.68 9.72 9.76 4.84 4.84 4.78 4.76 0.76 0.70 0.66 0.68
3 | 9.82 9.64 9.72 9.78 4.28 4.52 4.66 4.60 0.88 0.82 0.80 0.86
4 | 9.80 9.44 9.56 9.36 4.38 4.52 4.58 4.68 0.82 0.86 0.80 0.94
5 9.28 9.46 9.44 9.50 4.58 4.26 4.34 4.40 1.00 1.06 1.02 1.06
6 | 9.32 9.18 9.52 9.50 4.36 4.34 4.40 4.54 0.90 0.94 1.04 1.16
7 | 876 8.82 9.16 9.48 4.12 4.42 4.52 4.64 0.76 0.86 0.82 1.08
8 | 8.10 8.82 8.94 9.26 4.12 4.20 4.26 4.44 0.72 0.72 0.76 0.86
9 | 842 8.60 8.82 9.06 3.72 4.22 4.26 4.74 0.72 0.84 0.84 0.96
10 | 8.28 8.68 8.86 9.24 3.80 4.24 4.28 4.64 0.82 0.94 0.90 1.10
11 | 8.10 8.90 8.92 9.08 3.72 4.10 4.30 4.66 0.64 0.90 0.98 1.10
12 | 8.08 9.00 8.90 9.40 3.88 4.06 4.28 4.72 0.66 0.90 1.02 1.12
13 | 7.90 8.72 9.14 9.48 3.92 4.14 4.20 4.66 0.56 0.86 0.94 1.04
14 | 8.04 8.72 9.24 9.76 3.88 4.40 4.60 4.76 0.50 0.84 1.00 1.22
15 | 8.08 8.76 9.26 9.54 3.86 4.40 4.60 5.04 0.50 0.76 0.88 1.14
16 | 8.22 9.28 9.56 9.88 3.48 4.44 4.66 5.22 0.44 0.76 0.90 1.14
17 | 7.68 8.74 9.12 9.84 3.32 4.40 4.60 5.02 0.46 0.80 0.94 1.22
18 | 7.18 8.60 8.68 9.70 3.18 4.24 4.64 5.12 0.42 0.76 0.88 1.24
19 | 7.18 8.46 8.70 9.70 3.24 4.42 4.72 5.26 0.44 0.94 0.98 1.30
20 | 7.24 8.30 8.68 9.50 2.90 4.38 4.50 5.04 0.38 0.86 1.00 1.28
21 | 7.08 8.52 8.80 9.66 2.92 4.40 4.76 5.08 0.44 0.80 0.96 1.26
22 | 6.82 8.60 9.02 9.72 2.94 4.14 4.68 5.32 0.36 0.80 0.92 1.20
23 | 7.06 8.58 9.24 9.98 2.88 4.64 4.44 5.18 0.30 0.98 0.96 1.24
24 | 7.00 8.86 9.42 10.24 2.92 4.52 4.76 5.16 0.28 0.84 1.02 1.46
25 | 6.84 9.08 9.32 10.28 2.74 4.66 4.96 5.64 0.16 0.86 1.02 1.40
26 | 6.52 9.06 8.98 10.22 2.54 4.60 4.74 5.64 0.18 0.82 1.04 1.46
27 | 6.16 8.96 9.16 9.96 2.62 4.64 4.72 5.58 0.24 0.86 1.10 1.36
28 | 6.12 8.96 9.22 9.88 2.28 4.68 4.76 5.56 0.20 0.80 1.12 1.46
29 | 5.92 9.32 9.22 10.36 2.44 4.74 4.66 5.74 0.16 0.84 1.20 1.52
30 | 5.68 9.36 9.88 10.50 2.40 4.92 4.62 5.68 0.20 0.98 1.10 1.46
31 | 5.84 9.56 9.62 10.68 2.28 5.02 4.78 5.68 0.20 1.10 1.16 1.52
32 | 5.74 9.54 9.56 10.88 2.08 5.04 4.62 5.66 0.16 1.16 1.16 1.48
33 | 5.66 9.86 9.52 10.72 1.84 5.04 4.60 5.70 0.18 1.14 1.20 1.52
34 | 5.60 10.02 9.72 11.14 2.00 5.16 5.00 5.88 0.16 1.24 1.16 1.54
35 | 5.46 9.90 9.56 11.10 1.98 5.24 4.86 5.88 0.14 1.20 1.06 1.56
36 | 5.08 10.06 9.62 10.96 2.08 5.46 5.06 5.70 0.20 1.42 1.20 1.46
37 | 5.12 10.22 9.36 11.02 2.10 5.60 5.06 5.74 0.18 1.42 1.22 1.58
38 | 5.24 10.62 9.52 10.96 2.00 5.72 5.20 6.00 0.10 1.50 1.22 1.68
39 | 4.90 10.70 9.70 11.00 1.88 5.82 5.10 6.22 0.10 1.44 1.40 1.56
40 | 5.20 11.34 9.94 10.88 1.82 6.06 5.04 6.06 0.08 1.84 1.30 1.66

Rejection frequencies (in %) at the 10%, 5% and 1% significance level, n = 300. Model: z; = &, e; ~ i.1.d. N(0,1).
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Table 22: Tests for zero serial correlation at lags 1,...,m. Size of tests @,, and @m with different
thresholds A.

a = 10% a = 5% a=1%
Qm = Qnm ()‘) Qm = Qm ()‘) Qm = Qm()‘)
m | Qm A=1645 X=196 AX=2576 | (Q;, A=1645 X=196 X=2576 | QQ;, A=1645 X=196 \=2.576
1 | 9.66 9.66 9.66 9.66 4.76 4.76 4.76 4.76 0.76 0.76 0.76 0.76
2 | 9.66 9.78 9.74 9.80 4.44 4.44 4.46 4.54 0.64 0.72 0.76 0.90
3 | 9.52 9.42 9.36 9.60 4.38 4.52 4.46 4.46 0.64 0.64 0.70 0.80
4 1 9.26 9.34 9.64 9.54 3.88 4.12 4.26 4.36 0.48 0.62 0.64 0.76
5 | 8.38 9.18 9.34 9.60 3.82 4.04 4.40 4.86 0.48 0.64 0.76 0.80
6 | 7.90 8.46 8.76 9.26 3.64 3.88 4.36 4.76 0.54 0.70 0.96 1.08
7 | 7.84 8.30 9.04 9.48 3.36 4.04 4.36 4.94 0.50 0.64 0.90 1.14
8 | 7.54 8.62 9.08 9.58 3.30 4.28 4.52 5.22 0.52 0.76 0.98 1.18
9 | 6.90 8.56 9.00 9.58 3.06 4.08 4.34 4.88 0.46 0.86 0.98 1.16
10 | 6.72 8.78 9.06 9.62 2.72 3.80 4.10 4.68 0.36 0.64 1.00 1.16
11 | 6.16 8.56 8.94 9.64 2.58 3.70 4.32 4.82 0.28 0.74 0.96 1.14
12 | 5.84 8.34 8.54 9.56 2.48 3.78 4.20 4.98 0.18 0.64 0.90 1.18
13 | 5.88 8.40 8.92 9.90 2.58 3.94 4.52 5.34 0.18 0.72 1.04 1.28
14 | 5.82 9.26 8.96 10.06 2.28 4.42 4.68 5.58 0.26 0.94 1.16 1.56
15 | 5.50 9.22 9.14 10.34 2.02 4.22 4.58 5.64 0.28 1.04 1.02 1.50
16 | 5.54 9.38 9.32 10.68 1.84 4.36 4.76 5.52 0.20 1.12 1.02 1.54
17 | 5.06 9.38 9.14 10.52 1.68 4.84 4.90 5.52 0.14 1.28 1.10 1.62
18 | 4.74 9.26 9.54 10.60 1.70 4.76 4.64 5.72 0.12 1.38 1.22 1.50
19 | 4.48 9.60 9.58 10.38 1.56 5.06 4.96 5.96 0.20 1.58 1.14 1.68
20 | 4.36 10.02 9.72 10.38 1.58 5.04 4.94 5.92 0.18 1.76 1.14 1.68
21 | 3.96 10.36 9.74 10.52 1.38 5.74 5.02 6.04 0.12 2.02 1.26 1.78
22 | 3.78 10.54 10.20 10.80 1.32 5.94 5.26 6.00 0.10 2.38 1.30 1.88
23 | 3.58 10.96 10.06 10.98 1.22 6.84 5.20 6.04 0.10 2.66 1.26 2.00
24 | 3.70 11.66 10.26 11.42 1.04 7.22 5.58 6.14 0.12 3.16 1.50 2.04
25 | 3.44 12.66 10.62 11.62 1.08 7.94 5.74 6.32 0.02 3.64 1.68 2.12
26 | 3.28 13.16 10.70 11.42 1.06 8.30 5.86 6.42 0.02 3.98 1.80 2.10
27 | 3.08 13.84 11.00 11.52 0.92 8.86 6.00 6.60 0.04 4.30 1.80 2.00
28 | 2.90 14.82 11.04 11.78 0.90 9.64 6.06 6.60 0.04 4.80 1.98 2.16
29 | 2.80 15.52 11.42 11.58 0.94 10.44 6.52 6.80 0.02 5.36 2.10 2.24
30 | 2.70 15.82 11.24 11.38 0.92 11.02 6.34 6.80 0.02 6.00 2.18 2.20
31 | 2.42 16.64 11.32 11.60 0.80 11.84 6.52 6.94 0.04 6.36 2.40 2.40
32 | 2.46 17.52 11.70 11.72 0.74 12.36 6.96 7.12 0.04 6.80 2.60 2.28
33 | 2.32 17.76 11.68 11.86 0.76 12.50 7.28 7.02 0.06 6.66 2.52 2.46
34 | 2.36 18.94 12.34 11.90 0.62 13.52 7.62 7.28 0.04 7.38 2.68 2.38
35 | 2.22 19.14 12.36 11.78 0.58 14.18 7.48 7.26 0.06 8.12 2.70 2.40
36 | 2.02 19.66 12.70 12.16 0.56 14.66 7.48 7.34 0.02 8.80 2.82 2.46
37 | 2.10 20.54 13.22 12.08 0.50 15.70 7.96 7.36 0.02 9.64 3.22 2.62
38 | 1.94 21.38 13.60 12.08 0.50 16.44 8.12 7.30 0.04 10.10 3.18 2.58
39 | 1.78 22.74 13.72 12.32 0.44 17.10 8.56 7.50 0.04 10.94 3.78 2.54
40 | 1.62 23.46 14.02 12.48 0.46 17.96 8.96 7.60 0.04 11.48 4.12 2.50

Rejection frequencies (in %) at the 10%, 5% and 1% significance level, n = 300. Model: z; = haiey, hoy = t/n, g, ~ i.1.d.
N(0,1).
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Table 23: Tests for zero cross-correlation at lags 1, ..., m. Size of tests Qzym, @xy,m with different thresholds \.

a=10% a=5% a=1%
sz,m = sz,m(A) sz,m = me,m()\) Qxy,m = mem()\)
m | Qeym A=1645 A=196 A=2576 | Quym A=1645 AX=196 A=2576 | Quym A=1645 X=196 X=2576
0 | 10.06 10.06 10.06 10.06 4.92 4.92 4.92 4.92 0.84 0.84 0.84 0.84
1 9.80 9.96 9.88 9.90 4.98 5.14 5.16 5.22 1.00 1.08 1.08 1.08
2 | 10.24 10.00 10.00 10.08 5.38 5.52 5.44 5.48 1.18 1.08 1.10 1.12
3 | 10.20 10.22 10.18 10.26 5.50 5.44 5.34 5.40 0.94 0.94 0.94 0.94
4 | 9.86 9.64 9.62 9.90 5.08 5.08 5.12 5.12 0.72 0.70 0.76 0.70
5 | 9.86 9.92 10.02 10.38 4.62 4.96 4.94 5.06 0.78 0.76 0.82 0.88
6 | 10.04 10.30 10.22 10.40 4.88 5.08 4.86 5.02 0.78 0.86 0.90 0.82
7 | 10.08 9.98 10.16 10.18 4.72 4.96 4.76 4.72 0.58 0.84 0.90 0.90
8 | 9.44 9.74 9.98 10.08 4.48 4.64 4.52 4.70 0.54 0.82 0.86 0.92
9 | 932 9.52 9.42 9.38 4.10 4.44 4.80 4.78 0.56 0.78 0.78 0.78
10 | 9.12 9.58 9.34 9.44 4.06 4.48 4.38 4.48 0.64 0.84 0.90 0.92
11| 8.80 9.08 9.04 9.24 3.76 4.20 4.40 4.32 0.54 0.78 0.90 0.92
12 | 8.62 9.14 9.22 9.40 3.66 4.24 4.28 4.66 0.48 0.72 0.80 0.84
13| 8.60 9.22 9.34 9.32 3.70 4.36 4.48 4.62 0.42 0.58 0.64 0.82
14 | 854 9.28 9.24 9.28 3.56 4.46 4.40 4.62 0.42 0.58 0.62 0.80
15| 8.36 8.92 9.22 9.42 3.44 4.40 4.38 4.56 0.42 0.72 0.70 0.78
16 | 8.56 9.22 9.38 9.66 3.68 4.40 4.38 4.60 0.36 0.68 0.78 0.88
17| 838 9.36 9.12 9.30 3.56 4.46 4.60 4.92 0.46 0.68 0.64 0.88
18 | 8.36 9.56 9.16 9.42 3.68 4.78 4.90 5.00 0.52 0.78 0.74 0.86
19 | 848 9.92 9.76 9.70 3.42 4.64 4.80 5.08 0.44 0.82 0.72 0.92
20 | 8.54 10.28 9.82 10.30 3.46 4.90 4.94 5.16 0.40 0.76 0.62 0.80
21 | 8.22 10.24 9.92 10.26 3.56 4.86 5.00 5.02 0.50 0.82 0.64 0.98
22 | 7.88 10.36 9.78 10.10 3.50 4.90 4.82 4.88 0.48 0.78 0.72 0.94
23 | 7.86 9.92 9.78 9.84 3.48 4.90 4.68 4.78 0.38 0.82 0.82 0.90
24 | 7.90 10.12 9.42 9.52 3.36 4.84 4.38 4.60 0.36 0.94 0.76 0.96
25 | 7.52 9.76 9.34 9.34 3.30 4.72 4.54 4.74 0.38 1.00 0.76 0.90
26 | 7.32 9.90 9.34 9.34 3.02 4.84 4.16 4.80 0.32 0.96 0.88 0.94
27 | 7.28 9.74 9.24 9.22 2.90 4.80 4.38 4.74 0.30 0.92 0.88 1.04
28 | 7.56 10.44 9.50 9.50 2.90 5.00 4.36 4.68 0.20 0.92 0.82 0.82
29 | 7.54 10.48 9.64 9.62 2.88 5.16 4.56 4.58 0.36 0.90 0.72 0.82
30 | 7.30 10.52 9.22 9.22 2.74 5.28 4.46 4.32 0.38 0.84 0.76 0.82
31| 7.30 10.84 9.38 9.44 2.72 5.40 4.34 4.54 0.36 0.86 0.72 0.82
32| 7.36 10.98 9.68 9.54 2.70 5.56 4.30 4.42 0.34 0.88 0.80 0.76
33 | 7.28 11.16 9.46 9.72 2.72 5.86 4.40 4.44 0.30 1.00 0.82 0.74
34 | 7.28 11.60 9.72 9.36 2.58 5.90 4.42 4.58 0.32 0.98 0.94 0.80
35| 7.10 11.70 9.68 9.20 2.64 5.98 4.42 4.72 0.28 1.12 0.86 0.84
36 | 7.10 11.76 9.98 9.46 2.72 5.98 4.48 4.86 0.26 0.98 0.88 0.80
37| 7.06 12.66 9.84 9.38 2.78 6.16 4.50 4.84 0.30 1.06 0.82 0.84
38 | 7.18 13.00 9.92 9.70 2.86 6.56 4.58 4.84 0.30 1.26 0.80 0.76
39| 7.14 13.42 10.24 9.62 2.84 6.90 4.72 4.74 0.30 1.38 0.78 0.84
40 | 7.08 13.96 10.14 9.38 2.78 6.88 4.86 4.62 0.28 1.48 0.82 0.74

Rejection frequencies (in %) at the 10%, 5% and 1% significance level, n = 300. Model: z; = 4, ys = ¢, {&:} and {7;} mutually
independent i.i.d. N(0,1).
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Table 24: Tests for zero cross-correlation at lags 1, ..., m. Size of tests Qzym, @xy,m with different thresholds \.

a=10% a=5% a=1%
sz,m = sz,m(A) sz,m = me,m()\) wa,m = me,m()\)
m | Qeym A=1645 A=196 A=2576 | Quym A=1645 AX=196 A=2576 | Quym A=1645 X=196 X=2576
0 | 9.56 9.56 9.56 9.56 4.64 4.64 4.64 4.64 0.70 0.70 0.70 0.70
1 9.22 9.44 9.52 9.52 4.40 4.56 4.58 4.56 0.72 0.76 0.76 0.72
2 | 9.82 9.94 9.94 9.90 4.32 4.38 4.38 4.46 0.54 0.70 0.72 0.74
3 | 9.86 10.14 10.16 10.24 4.54 5.02 4.82 4.84 0.60 0.72 0.78 0.78
4 | 9.80 10.14 10.14 10.30 4.10 4.54 4.54 4.50 0.58 0.62 0.70 0.68
5 | 8.96 9.96 9.80 9.80 3.86 4.36 4.40 4.58 0.60 0.60 0.68 0.74
6 | 8.84 9.62 9.72 9.84 4.02 4.54 4.54 4.82 0.54 0.62 0.64 0.72
7| 892 9.74 9.48 9.64 3.96 4.70 4.88 5.00 0.34 0.52 0.64 0.74
8 | 888 9.86 9.90 9.82 3.82 4.52 4.70 4.78 0.34 0.64 0.64 0.64
9 | 830 9.68 9.64 9.92 3.82 4.76 4.90 4.80 0.32 0.66 0.68 0.70
10 | 8.46 9.80 9.74 9.68 3.60 4.54 4.70 4.84 0.36 0.60 0.66 0.60
11| 8.18 9.74 9.72 9.70 3.30 4.48 4.66 4.70 0.26 0.60 0.52 0.56
12| 7.82 9.14 9.04 9.32 3.00 4.44 4.68 4.88 0.28 0.52 0.50 0.62
13| 7.76 9.70 9.62 9.54 2.98 4.48 4.52 4.94 0.36 0.58 0.64 0.64
14| 744 9.28 9.66 9.74 2.78 4.30 4.24 4.62 0.30 0.70 0.80 0.68
15| 7.32 9.56 9.12 9.54 2.72 4.26 4.16 4.44 0.20 0.78 0.82 0.76
16 | 6.82 9.92 9.56 9.84 2.74 4.26 4.46 4.48 0.16 0.82 0.74 0.80
17| 7.14 9.90 9.56 9.96 2.76 4.44 4.34 4.38 0.20 0.76 0.74 0.82
18| 7.18 10.28 9.48 9.76 2.54 4.56 4.26 4.40 0.16 0.74 0.64 0.72
19 | 7.16 10.22 9.68 9.44 2.36 4.86 4.20 4.34 0.14 0.84 0.80 0.84
20 | 6.94 10.62 9.78 9.50 2.34 4.94 4.32 4.26 0.14 0.92 0.90 0.82
21 | 6.62 10.66 9.64 9.54 2.32 5.40 4.32 4.12 0.14 1.14 0.94 0.80
22 | 6.58 11.08 10.08 9.26 2.28 5.68 4.38 3.92 0.04 1.16 0.96 0.72
23 | 6.24 11.48 10.10 9.46 2.18 5.72 4.26 3.86 0.10 1.24 1.00 0.72
24 | 5.94 11.76 10.02 9.08 2.08 6.40 4.58 4.08 0.06 1.52 0.96 0.72
25 | 6.00 12.70 10.08 9.22 1.86 6.78 4.28 4.08 0.02 1.64 0.94 0.72
26 | 5.70 13.44 9.88 9.02 1.92 7.42 4.46 4.08 0.02 2.28 0.96 0.62
27 | 5.58 14.30 10.04 9.10 1.78 7.84 4.48 4.02 0.04 2.50 0.94 0.56
28 | 5.34 14.66 10.02 9.38 1.68 8.70 4.70 4.18 0.02 2.90 0.94 0.58
29 | 5.22 15.74 10.30 9.16 1.46 9.26 4.74 4.12 0.00 3.44 1.14 0.68
30 | 5.16 16.72 10.94 9.04 1.58 9.92 5.02 4.24 0.04 3.96 1.20 0.70
31| 4.94 17.88 10.80 9.06 1.62 10.68 5.24 4.08 0.04 4.40 1.36 0.78
32| 5.12 18.94 10.96 9.42 1.48 12.14 5.70 4.22 0.02 5.12 1.36 0.72
33 | 4.86 19.98 11.26 9.18 1.26 13.10 5.78 4.08 0.02 5.84 1.46 0.76
34 | 4.90 21.04 11.80 9.26 1.32 14.04 6.12 4.08 0.00 6.34 1.74 0.82
35 | 4.66 22.32 12.28 9.44 1.22 15.30 6.34 4.26 0.00 7.12 1.80 0.80
36 | 4.52 23.76 12.80 9.26 1.36 16.40 6.58 4.32 0.00 8.08 1.92 0.80
37 | 4.30 24.62 13.02 9.04 1.42 16.96 7.04 4.30 0.02 8.82 2.14 0.82
38 | 4.24 26.12 13.34 8.80 1.12 18.58 7.36 4.40 0.02 10.16 2.26 0.68
39 | 4.24 26.78 13.94 9.22 1.16 19.16 7.58 4.70 0.04 10.70 2.38 0.72
40 | 4.16 27.14 14.38 9.02 1.08 20.06 8.14 4.64 0.04 11.80 2.70 0.76

Rejection frequencies (in %) at the 10%, 5% and 1% significance level, n = 300. Model: x; = hyet, yr = haene, h1e = 1+1(t/n >
0.5), hgy = 1+ 3I(¢t/n > 0.5), {e;} and {n;} mutually independent i.i.d. N(0,1).
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