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Abstract

In this note we present an updated algorithm to estimate the VAR with stochastic volatility proposed

in Mumtaz (2018). The model is re-written so that some of the Metropolis Hastings steps are avoided.
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1 Introduction

In this note we present an updated algorithm to estimate the VAR with stochastic volatility proposed in

Mumtaz (2018). The model is re-written so that some of the Metropolis Hastings steps are avoided. This

results in two potential improvements: (1) the algorithm requires less tuning and (2) the algorithm is likely

to converge faster.

The note is organised as follows: Section 2 describes the VAR model and explains the changes relative

to the formulation in Mumtaz (2018). The MCMC algorithm is described in section 3. Simulation evidence

is presented in section 3.3 while section 4 considers an empirical application using a VAR with real and

financial variables.
∗Queen Mary College. Email: h.mumtaz@qmul.ac.uk
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2 The VAR with stochastic volatility

Consider the VAR model

h̃t = α+ θh̃t−1 +

Q∑
j=1

djZt−j + ηt (1)

Zt = c+

P∑
j=1

βjZt−j +

K∑
k=1

bkh̃t−k +H
1/2
t et (2)

where Zt is a matrix of endogenous variables, h̃t = [h1t, h2t, ..hN,t], Ht = diag
(

exp
(
h̃t

))
. The M =

2N disturbances εt =

 ηt

et

 are distributed normally N(0,Σ),Σ =

 Ση Σ′ηe

Σηe Σe

 where the diagonal

elements of Σe are restricted to equal 1. For example for M = 4, N = 2 : Σ =



Σ11 Σ12 Σ13 Σ14

Σ21 Σ22 Σ23 Σ24

Σ31 Σ32 1 Σ34

Σ41 Σ42 Σ43 1


.

Note that this formulation is slightly different from that considered in Mumtaz (2018). In Mumtaz (2018),

diag(Ση) = 1 and the variances of ηt are treated as extra parameters. These are drawn by Mumtaz (2018)

using a Metropolis algorithm. In this note we consider an alternative approach that avoids this step.

3 MCMC Algorithm

The approach is based on re-parameterising the model in equations 1 and 2. The transition equation can be

written as:

h̃t = α+ θh̃t−1 +

Q∑
j=1

djZt−j + b∗′et + η∗t (3)

var (η∗t ) = Σ∗η

b∗ = Σ−1
e Σηe (4)

Σ∗η = Ση − Σ′ηeΣ
−1
e Σηe (5)
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The observation equation of the system is still given by:

Zt = c+

P∑
j=1

βjZt−j +

K∑
k=1

bkh̃t−k +H
1/2
t et

var (et) = Σe

Note that, in this re-paramerised model:

cov (η∗t , et) = 0

Moreover, the coeffi cients b∗ and equations 4 and 5 can be used to reconstruct cov (ηt, et) = Σηe and the

variance Ση.

Σηe = Σeb
∗ (6)

Ση = Σ∗η + Σ′ηeΣ
−1
e Σηe (7)

Thus equations 6 and 7 can be used to back out Σηe and Ση instead of attempting to draw these elements

directly.

We now describe the steps of the MCMC algorithm that can be used to approximate the posterior

distribution in the re-parameterised model.The unknown parameters to be estimated in the transformed

model are: (1) Bh = vec



α

θ

dj

b∗


, (2) Σ∗η, (3) B = vec


c

βj

bk

 , (4) Σe and (5) h̃t.

3.1 Priors

1. Bh,Σ∗η. Following Banbura et al. (2007), we employ a Normal prior for B
h and an inverse Wishart

prior for Σ∗η implemented via dummy observations.

2. B. The prior is set as in 1.
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3. Σe. Chan and Jeliazkov (2009) decompose Σ as Σ = L−1DL−1′ with the diagonal elements of D

denoted by λk and akj denoting the lower triangular elements of L−1. The prior for akj is assumed to

be N(0, 1) while the prior on D is implicit via the restriction that Σ have diagonal elements that equal

1.

4. h̃t.Following Cogley and Sargent (2005) we use a training sample (of 20 pre-sample observations) to set

the prior for the elements of the transition equation of the model. Let v̂ols denote the OLS estimate of

the VAR covariance matrix estimated on the pre-sample data. The initial value h̃0 is set to µ0 where

µ0 denotes the diagonal elements of the Cholesky decomposition of v̂
ols.

3.2 Simulating the posterior distributions

The MCMC algorithm samples from the following conditional posterior distributions:

1. H
(
Bh|Σ∗η, B,Σe, h̃t

)
. Given h̃t and the residual et, equation 3 is VAR model. Denote the dummy

observations implementing the prior by yD and xD and let y∗ =

 yt

yD

 , x∗ =

 xt

xD

 where

yt = h̃t and xt denotes all the regressors. The conditional posterior for the coeffi cients of VAR is

normal with mean and variance given by:

m = (x∗′x∗)
−1

(x∗′y∗)

v = Σ∗η ⊗ (x∗′x∗)
−1

2. H
(

Σ∗η|Bh, B,Σe, h̃t
)
. The conditional posterior is inverse wishart with scale matrix

(
y∗ − x∗B̃h

)′ (
y∗ − x∗B̃h

)
and degrees of freedom T + Td − K where B̃h denotes the vectorised coeffi cients Bh reshaped to be

conformable with x∗, TD is the number of dummy observations and k is the number of regressors in

each equation.

4



3. H
(
B|Bh,Σ∗η,Σe, h̃t

)
. Conditional on h̃t,

 h̃t

Zt

 has a multi-variate normal distribution

 h̃t

Zt

 ˜N

 α+ θh̃t−1 +
∑Q
j=1 djZt−j

c+
∑P
j=1 βjZt−j +

∑K
k=1 bkh̃t−k

 ,

 Ση∗ + b∗Σeb
∗′ b∗ΣeH

1/2′
t

H
1/2
t Σeb

∗′ H
1/2
t ΣeH

1/2′
t


︸ ︷︷ ︸

Σ

Defining h̄t = h̃t−
(
α+ θh̃t−1 +

∑Q
j=1 djZt−j

)
and

 s11,t s′21,t

s21,t s22,t

 =

 Ση∗ + b∗Σeb
∗′ b∗ΣeH

1/2′
t

H
1/2
t Σeb

∗′ H
1/2
t ΣeH

1/2′
t


the conditional distribution Zt|h̃t is also normal with mean and variance:

mt = h̄ts
−1
11,ts

′
21,t

vt = s22,t − s′21,ts
−1
11,ts21,t

The VAR model in equation 2 can be written as

Z∗t = c+

P∑
j=1

βjZt−j +

K∑
k=1

bkh̃t−k + e∗t

where Z∗t = Zt − mt and var (e∗t ) = vt. This is a VAR with heteroscedastic disturbances. The

conditional posterior for the coeffi cients of this heteroscedastic VAR is normal with mean and variance

given by:

m̄ = v̄

(
vec

(
T∑
t=1

(
xt (Z∗t )

′
(vt)

−1
))

+
(
Sj0

)−1

Bj′0

)

v̄ =

(
T∑
t=1

(
(vt)

−1 ⊗ xtx′t
)

+
(
Sj0

)−1
)−1

where the prior mean and variance is denoted by B0 and S0, respectively and xt denotes the regressors on

the RHS of each equation of the VAR. See Clark (2011) for details on BVARs with stochastic volatility.

4. H
(

Σe|B,Bh,Σ∗η, h̃t
)
. Chan and Jeliazkov (2009) describe how to sample covariance matrices with
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restrictions on some of the elements and we follow their method in implementing the draw from this

conditional posterior. Chan and Jeliazkov (2009) decompose Σe as Σe = L−1DL−1′. They show that

when the diagonal elements of Σ are restricted to equal 1, then the diagonal elements of D (denoted

by λk) satisfy:

λ1 = 1 (8)

λk = 1−
k−1∑
j=1

(
akj
)2
λj , k = 2, 3, ..N

where akj are lower diagonal elements of L−1. They propose an independence Metropolis step to

sample akj with a proposal density of the form:

f
(
akj |et

)
= N (µk, τVk)

where V =
(
A−1

0 +
∑T
t=1 UtD̂

−1Ut

)
and µ = V

(
A−1

0 a0 +
∑T
t=1 UtD̂

−1et

)
. Here Ut is defined as the

matrix:

Ut = −



0 . . . 0

et,1 0 . . .

0 et,1 et,2 . . .

0 . . et,1 et,2 et,3 0 .

. . . .

. . . .

. . . 0

0 . . . 0 0 et,1 . et,N


and the diagonal elements of D̂ can be obtained by iterating between the equation for µ and equation

8. The draw is accepted with probability:

α =
g (et|Σnew) f (aold|et)
g (et|Σold) f (anew|et)
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with λk restricted to be greater than zero to ensure that Σe is positive definite. The expression for

the likelihood function used to construct the posterior g (et|Σ) is given in equation 2.7 in Chan and

Jeliazkov (2009).

5. H
(
h̃t|Σe, B,Bh,Σ∗η

)
Conditional on the VAR coeffi cients and the parameters of the transition equa-

tion, the model has a multivariate non-linear state-space representation. It is convenient to express

the state-space as:

Ft = C + ΨFt−1 +Nt (9)

Zt −H1/2
t µet|ηt = c+

P∑
j=1

βjZt−j +

K∑
k=1

bkh̃t−k + ẽt

var (ẽt) = Ωt = H
1/2
t Σet|ηtH

1/2′
t

where:

Ft =



ηt+1

ηt

h̃t

.

h̃t−k


(10)

C =



0

0

α+
∑Q
j=1 djZt−j

.

0


(11)
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Ψ =



0 0 . . 0

1 0 . . .

1 0 θ . 0

0 1 . . 0

. . 1 . 0


(12)

Nt =



ηt+1

0

0

0

0


µet|ηt denotes the conditional mean of et while Σet|ηt is the conditional variance. These can be easily

calculated using results for multi-variate normal distributions. Partitioning Σ as:

Σ =

 Ση Σ′ηe

Σηe Σe


the conditional mean and variance are given by:

µet|ηt = ηtΣ
−1
η Σ′ηe

Σet|ηt = Σe − ΣηeΣ
−1
η Σ′ηe

Moreover:

var (Nt) = Q̃ =



Ση . . . 0

0 . . .

0 . . .

0 . .

0 . 0 0


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Following recent developments in the seminal paper by Andrieu et al. (2010), we employ a particle

Gibbs step to sample from the conditional posterior of Ft. Andrieu et al. (2010) show how a version of

the particle filter, conditioned on a fixed trajectory for one of the particles can be used to produce draws

that result in a Markov Kernel with a target distribution that is invariant. However, the usual problem

of path degeneracy in the particle filter can result in poor mixing in the original version of particle Gibbs.

Recent development, however, suggest that small modifications of this algorithm can largely alleviate this

problem. In particular, Lindsten et al. (2014) propose the addition of a step that involves sampling the

‘ancestors’or indices associated with the particle that is being conditioned on. They show that this results

in a substantial improvement in the mixing of the algorithm even with a few particles.1As explained in

Lindsten et al. (2014), ancestor sampling breaks the reference path into pieces and this causes the particle

system to collapse towards something different than the reference path. In the absence of this step, the

particle system tends to collapse to the conditioning path. We employ particle Gibbs with ancestor sampling

in this step.

Let F (i−1)
t denote the fixed the fixed trajectory, for t = 1, 2, ..T obtained in the previous draw of the

Gibbs algorithm. We denote all the parameters of the model by Ξ, and j = 1, 2, ..M̃ indexes the particles.

The conditional particle filter with ancestor sampling proceeds in the following steps:

1. For t = 1

(a) Draw F
(j)
1 \F

(j)
0 ,Ξ for j = 1, 2, ..M̃ − 1. Fix F (M̃)

1 = F
(i−1)
1

(b) Compute the normalised weights p(j)
1 =

w
(j)
1∑M̃

j=1 w
(j)
1

where w(j)
1 denotes the conditional likelihood:∣∣∣Ω(j)

1

∣∣∣−0.5

−0.5 exp

(
ẽ1

(
Ω

(j)
1

)−1

ẽ′1

)
where Ω

(j)
1 = H

(j)
1 Σet|ηtH

(j)′
1 withH(j)

1 = diag
(

exp
(
h̃

(j)
1,[0]

))
and ẽ1 = Z1 − (H

(j)1/2
1 µet|ηt + c+

∑P
j=1 βjZt−j +

∑K
k=1 bkh̃

(j)
1,[−k]) The subscript [0] denotes the

contemporaneous value in the state vector while [−k] denote the k lagged states.

2. For t = 2 to T

(a) Resample F (j)
t−1 for j = 1, 2, ..M̃ − 1 using indices a(j)

t with Pr
(
a

(j)
t = j

)
∝ p

(j)
t−1

1See Nonejad (2015) for a recent application of this algorithm.
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(b) Draw F
(j)
t \F

(a
(j)
t )

t−1 ,Ξ for j = 1, 2, ..M̃ − 1 using the transition equation of the model. Note that

F
(a
(j)
t )

t−1 denotes the resampled particles in step (a) above.

(c) Fix F (M̃)
t = F

(i−1)
t

(d) Sample a(M̃)
t with Pr

(
a

(M̃)
t = j

)
∝ p(j)

t−1 Pr
(
F

(i−1)
t \F (j)

t−1, C,Ψ, Q̃
)
where the density Pr

(
F

(i−1)
t \F (j)

t−1, C,Ψ, Q̃
)

is computed as
∣∣∣Q̃∣∣∣−0.5

−0.5 exp

(
N

(j)
t

(
Q̃
)−1

N
(j)
t

)
. This constitutes the ancestor sampling step.

If a(M̃)
t = M̃ then the algorithm collapses to the simple particle Gibbs.

(e) Update the weights p(j)
t =

w
(j)
t∑M̃

j=1 w
(j)
t

where w(j)
1 denotes the conditional likelihood:

∣∣∣Ω(j)
t

∣∣∣−0.5

−

0.5 exp

(
ẽt

(
Ω

(j)
t

)−1

ẽ′t

)

3. End

4. Sample F (i)
t with Pr

(
F

(i)
t = F

(j)
t

)
∝ p

(j)
T to obtain a draw from the conditional posterior distribution

We use M̃ = 20 particles in our application. The initial values µ0 defined above are used to initialise

step 1 of the filter.

3.3 A Monte-Carlo experiment

We conduct a small Monte-Carlo experiment to evaluate the performance of the algorithm. We generate

data from the following DGP

 lnh1t

lnh2t

 =

 0.85 −0.1

0.1 0.85


 lnh1t−1

lnh2t−1

+

 −0.05 0.01

−0.05 0.01


 Yt−1

Xt−1

+

 η1t

η2t


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 Yt

Xt

 =

 0.3

−0.3

+

 0.5 −0.1

0.1 0.5


 Yt−1

Xt−1

+

 −0.05 0.01

−0.05 0.01


 lnh1t−1

lnh2t−1

+

 h
1/2
1t e1t

h
1/2
2t e2t




η1t

η2t

e1t

e2t


˜N





0

0

0

0


,



1 0.2 0.3 −0.4

0.2 1 0.6 0.2

0.3 0.6 1 −0.2

−0.4 0.2 −0.2 1




We generate 600 observations and discard the first 100 to remove the effect of initial conditions. The

experiment is repeated 100 times. At each iteration, we estimate the model using an MCMC run of 10000

iterations, with a burn-in of 5000 iterations. The particle Gibbs step employs 20 particles.
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Figure 1: Monte-Carlo estimates of the elements of the covariance matrix. The posterior distribution of estimates is shown by the blue line, the
median and 95% error band by the solid and dotted red lines, respectively. The black line is the true value
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Figure 2: Monte-Carlo estimates of the VAR coeffi cients. See notes to Figure 1.
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Figure 3: Stochastic volatility
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Figure 4: Correlation of the VAR residuals
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Figure 5: Impulse responses
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Figure 1 plots the posterior distribution of Σ averaged over the Monte Carlo draws along with the true

values. The posterior estimates are reasonably close to the true values for most elements, with the distribution

covering the true values. Figure 2 shows the estimates of the VAR coeffi cients (i.e. the coeffi cients of the

transition equation and the observation equation including intercepts). The estimates of these parameters

are close to the true values.

3.4 A simpler specification of the model

The Metropolis steps in the algorithm can be eliminated completely if certain simplifying assumptions are

made. Consider a model where it assumed that the stochastic volatility is common across disturbances (see

Carriero et al. (2012)). This version of the model is defined as:

λt = α+ θλt−1 +

Q∑
j=1

djZt−j + ηt (13)

Zt = c+

P∑
j=1

βjZt−j +

K∑
k=1

bkh̃t−k +H
1/2
t et (14)

where Zt is a matrix of endogenous variables, Ht = diag (exp (λt) · 11×N ), where λt is a scalar process.

The M = 1 + N disturbances εt =

 ηt

et

 are distributed normally N(0,Σ),Σ =

 Ση Σ′ηe

Σηe Σe

 where

the first diagonal element of Σe is restricted to equal 1 for normalisation. For example for M = 3, N =

2 : Σ =


Σ11 Σ12 Σ13

Σ21 1 Σ23

Σ31 Σ32 Σ33

 . The reduced form disturbances H1/2
t et have a variance covariance ma-

trix given by H1/2
t ΣeH

1/2′
t . In the N = 2 example this is:

 exp (λt)
0.5

0

0 exp (λt)
0.5


 1 Σ23

Σ32 Σ33


 exp (λt)

0.5
0

0 exp (λt)
0.5

. The main advantage of this formulation is the fact that step 4 of the algo-
rithm, the draw from H

(
Σe|B,Bh,Σ∗η, h̃t

)
can be carried out directly without resorting to a Metropolis

step. This is because Σe can be written as A−1DA−1′ where A is lower triangular with ones on the main

diagonal and D is a diagonal matrix with the first diagonal element fixed to 1. As discussed in Chan and
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Jeliazkov (2009), the conditional posterior is available in closed form for the elements of A and D.

Related to this specification is a version of the benchmark model where only one shock has stochastic

volatility. This model is defined as:

h1t = α+ θh1t−1 +

Q∑
j=1

djZt−j + ηt (15)

Zt = c+

P∑
j=1

βjZt−j +

K∑
k=1

bkh1t−k +H
1/2
t et (16)

where Ht = diag ([exp (h1t) , 11×N−1]) and Σ =

 Ση Σ′ηe

Σηe Σe

. As in the example above, only the first
diagonal element of Σe is restricted to 1 enabling the use of a Gibbs step to draw Σe.

4 Empirical application

We estimate a monthly VAR model for the US using the spread of BAA corporate bond yield over the 10

year rate (BAA) and log of industrial production (IP). The sample is monthly and runs from 1919M1 to

2020M5. The lag lengths P,K,Q are set to 12, 6, 6 respectively.

Figure 3 shows the posterior estimates of the stochastic volatilities. While both volatilties rise during

NBER recessions, the volatility of the shocks to IP has become smaller over time. It is interesting to note

that volatility has risen sharply during the last month of the sample, reflecting uncertainty associated with

the pandemic. Figure 4 plots the posterior median of the correlation matrix of the residuals. The shock to

the volatility of BAA is positively correlated with the shock to BAA and negatively correlated with the shock

to IP. A similar pattern can be seen in the correlations between the shock to the volatility of IP and the level

disturbances. Figure 5 shows the estimated (linear) impulse responses based on a Cholesky decomposition.

Using this identification the shock to the volatility of BAA is recessionary while a shock to the volatility of

IP acts in the opposite manner as it pushes down BAA volatility and the BAA spread. The responses to

the level financial shock are similar to the responses to BAA volatility shock. Finally a positive shock to IP

reduces both volatilties.
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5 Conclusions

This note presents an alternative algorithm to estimate the VAR with stochastic volatility proposed in

Mumtaz (2018). The main advantage of the new approach is that a Metropolis step is no longer required to

sample the variance of the shocks to the stochastic volatilities.
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