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1 Introduction

Following an unparalleled rise in uncertainty over the Great Recession, the U.S. economy
has been experiencing anaemic productivity growth. This paper offers a quantitative study
on the link between uncertainty and low productivity growth. To this end, firstly I
investigate the relationship between uncertainty and intangible capital investment using
micro-level data. I show that firms reduce intangible investment when uncertainty
increases and, specifically, that uncertainty accounts for half of the drop in intangible
capital stock during the Great Recession. Secondly, to elicit the effects of uncertainty on
productivity dynamics, I develop a novel endogenous growth model with heterogeneous
firms, which undertake intangible capital investment under time-varying uncertainty. The
model brings about endogenous growth and lumpy intangible capital investment, which is
adversely affected by the greater the uncertainty faced by firms. I demonstrate that
temporary shocks to uncertainty lead to persistent slumps in productivity growth, when
accounting for the empirical discrepancy between realised and expected changes to the
second-moment of fundamentals. More precisely, I show that uncertainty decreases
productivity growth by 50 basis points per annum through a 30% fall in intangible capital
investment. Ultimately, the slow recovery in productivity generates a permanent reduction
of 1% in the level of output and productivity. This amounts to a fifth of GDP after the U.S.
Great Recession and around a quarter of Total Factor Productivity (TFP) lost during the
same period1.

Three distinguishing features of the Great Recession in the U.S. motivate this research.
Firstly, from 2007 to 2010 the U.S. economy experienced an unprecedented rise in
uncertainty. Secondly, the economic recovery from the Great Recession has been
uncharacteristically slow and weak. Indeed, as illustrated by Figure 1, following the spike
in uncertainty index constructed by Jurado et al. (2015), the U.S. economy has been plagued
by feeble productivity growth ever since the Great Recession. Thirdly, uncertainty and slow
productivity growth have also been accompanied by a collapse of over 60% of intangible
capital investment, as calculated by McGrattan (2017) using the U.S. National Income and
Products Accounts (NIPA) database. Motivated by these stylised facts, I investigate
whether uncertainty has contributed to the slow recovery and weak productivity growth in
the aftermath of the Great Recession through intangible capital investment.

The idea that uncertainty drives macroeconomic fluctuations is not new. Work by
Bernanke (1983), and subsequently by Bloom (2009) and Bloom et al. (2018), has
highlighted the importance of uncertainty shocks in driving economic fluctuations through
the negative effects of investment. However, the literature has mainly focused on business

1See Ball (2014) and Fernald (2014) for the calculations of the total output and TFP lost by the U.S economy
during the Great Recession.
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Figure 1. Uncertainty and TFP Growth in the United States
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Source: TFP data is taken from Fernald (2012) accessible via https: // www. frbsf. org/ economic-research/

indicators-data/ total-factor-productivity-tfp/ . Uncertainty index is from Jurado et al. (2015) accessible
via https: // www. sydneyludvigson. com/ data-and-appendixes/ . Recession dates are as detailed in the National
Bureau of Economic Research (NBER) at http: // www. nber. org/ cycles/ cyclesmain. html .
Notes: The red line represents a 5-year moving average of the Quarterly, Utilization-Adjusted Series on Total Factor
Productivity. The blue line represents the macro uncertainty index at the yearly horizon. The shadows represent the
periods of recessions, as identified by the NBER.

cycle fluctuations and tangible (physical) capital. It has yet to consider the effects of
uncertainty on lower frequency fluctuations and intangible capital. Importantly, since the
seminal paper by Romer (1986), the endogenous growth literature has placed greater
emphasis on intangible capital as a key determinant for growth and productivity, and
longer-horizon macroeconomic fluctuations. Empirical evidence has shown that in the last
two decades, net investment in intangible capital has overtaken the share of tangible
capital net investment. Moreover, such investment accounts for a third of the productivity
growth in the U.S. from 1973 to 2003 (see Corrado et al. (2009) and Corrado et al. (2016)). By
acknowledging the importance of uncertainty for investment decisions and the role of
intangible capital in driving productivity dynamics, this paper is the first to shed light on
the contribution of uncertainty in the recent U.S. productivity slowdown through its effects
on intangible capital investment.

The empirical analysis in this paper investigates the effects of aggregate uncertainty on
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firms’ intangible capital investment, Research and Development (R&D from hereon in)
expenditures and investment intensity. In this effort, I use COMPUSTAT data for publicly
traded firms in the U.S. and the macroeconomic uncertainty index developed by Jurado
et al. (2015). By exploiting firm-level variation in the dependent variables, I establish a
causal link between uncertainty and investment in intangibles, which comprises both of
intangible capital and R&D. The identifying assumption relies on the fact that a single
firm’s investment decisions are unlikely to affect aggregate uncertainty. I document a
statistically and economically significant reduction in intangible capital investment, R&D
expenditures and R&D intensity, following an increase in the aggregate uncertainty. More
precisely, a standard deviation increase in the Jurado et al. (2015) uncertainty index
generates a 1.6% decline in the firm’s intangible capital, a fall of 0.9% in R&D expenditure
and a 1.2% reduction in R&D intensity. It is shown that the increase in uncertainty during
the Great Recession can account for roughly half of the drop in intangible capital stock
experienced by the U.S. economy.

Once I have empirically established the causal link between uncertainty and lower
intangible capital investment, the second contribution of the paper relies on investigating
the effects of uncertainty on productivity dynamics through intangible capital investment.
In this endeavour, I build a general equilibrium model of endogenous growth with
heterogeneous firms. The model is in the same spirit as Comin and Gertler (2006) and
Kung and Schimd (2015), where a real business cycle model is augmented to allow for
endogenous productivity by introducing industrial innovation in the style of Romer (1990).
Productivity growth is generated by the creation of new patented technologies through
investment in R&D. In such a framework, patents parsimoniously embody the endogenous
stock of intangible capital in the economy. Moreover, to give uncertainty a chance to
matter, following Bloom (2009) and Bloom et al. (2018), I model the final good sector of the
economy as comprising of heterogeneous firms characterised by idiosyncratic
productivity2 facing non-convex costs of adjusting intangible capital. As shown in Bloom
(2009), such costs generate an option value of waiting, which leads firms to halt their
investments until uncertainty is resolved.

In this model, uncertainty shocks lead to fluctuations beyond the ordinary business
cycle frequencies. A second-moment shock to fundamentals contracts the firms’ intangible
capital investment through the real-option channel, thus confirming the effect of uncertainty
of intangible investment found in the empirical investigation. The novelty of the model, as
in Comin and Gertler (2006) and Kung and Schimd (2015), focuses on how the initial
downturn in intangible capital investment is propagated because R&D investment is the

2Note that whilst I refer to idiosyncratic productivity shock, the interpretation should is not so strict. The
idiosyncratic productivity shocks are not literally thought as productivity shocks, but rather as shocks to the
firms’ fundamentals, be it for a demand or supply channel.
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main driving force for endogenous fluctuations in aggregate productivity growth. Indeed,
due to the nature of intangible capital, the reduction of investment in intangibles leads to a
fall in the value of patents, which discourages R&D investment in the economy. As R&D
investment is depressed, the growth rate of new patents slows down, resulting in lower
productivity growth.

The longer-run dynamics of the model, however, are dominated by the distributional
effects of uncertainty3. Whilst the real option effects of the model are generated by the
increase in forecast dispersion during a second-moment shock to the fundamentals, the
distributional effects arise as a direct result of the materialisation of the shocks drawn from a
distribution with a higher variance. Due to the convexity of the optimal investment
function with respect to fundamentals, the distributional effects increase intangible capital
investment after the real option channel subsides. Ultimately, such distributional effects come
to dominate and generate a sustained boom following the initial recession. The result is
higher productivity growth in the medium-run, which results in a permanent increase in
the level of output.

As the result relies on the assumption that forecast dispersion of future shocks is exactly
equal to the realised dispersion of such shocks, I empirically test whether during the U.S.
Great Recession forecast dispersion of the fundamentals has increased one-to-one with the
dispersion of the fundamentals. To this end, I use the Institutional Brokers Estimate System
(I—B—E—S) dataset which provides the Earning-Per-Share (EPS) data for each publicly
traded company. The novelty of the dataset is that it also contains the analysts’ forecast of
the EPS for each of these firms. This data is crucial in testing whether the forecast
dispersion increased at the same rate as the dispersion of shocks because it provides one of
the only sources of data where it is possible to obtain a measure of firm-level forecast
dispersion. Empirical evidence suggests that during the U.S. Great Recession within-firm
standard deviation of EPS forecasts increased threefold, whilst the within-firm standard
deviation of EPS increased by just over a third.

In light of this novel evidence, I modify the modelling of uncertainty shocks to take into
account the fact that during the Great Recession forecast dispersion increased ten times
more than the fundamental’s dispersion. Firms’ expectations about uncertainty are
decoupled from the shocks’ realisations. It is assumed that when an uncertainty shock hits
the economy, firms expect the variance of fundamentals to increase by three-fold, however
and crucially, the realised dispersion of the fundamental’s shocks only increases by a third.
Under this new specification of uncertainty shocks, model simulations yield that in the
short-term intangible capital investment falls by 30%. More importantly, as the increase in

3Bloom (2009) has also called the distributional effect which arise from a second-moment shock to
fundamentals, the “volatility effect”.
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forecast dispersion far outweighs the increase in the dispersion of the shocks’ realisation,
the distributional effects are muted and the real option channel generates a slow recovery of
intangible capital. Without the investment overshoot, productivity growth rates falls by 50
basis points per annum and result in a permanent fall in the level of output and
productivity of 1.0%. This accounts for a fifth of the GDP lost and a quarter of the TFP lost
as a result of the U.S. Great Recession.

Literature Review — First and foremost, the paper contributes to the literature on
uncertainty, which finds its roots in the early work of Bernanke (1983) and subsequently by
Bloom (2009) and Bloom et al. (2018). These studies focus on the response of investment in
physical capital following an increase in aggregate and idiosyncratic uncertainty. The
interaction between a second-moment shock and non-convex physical capital costs
generate the canonical real-option channel, whereby firms halt investment and cause a sharp
drop in investment and output. However, unlike this paper, this strand of literature focuses
only on the effect of uncertainty on physical capital. As a result, these models are unable to
generate the productivity dynamics beyond the business-cycle frequencies and explain the
productivity slowdown following the Great Recession.

Furthermore, by focusing on medium-run frequencies, this paper highlights the
potency of the distributional effects of an uncertainty shock. Indeed, such effects are
capable of generating prolonged expansions after the initial recession. Therefore, unlike
previous literature, I provide empirical evidence about the relative contribution of
distributional effects and the real option effects and study a case whereby forecast
dispersion increases more than the actual dispersion of realised shocks. In this manner, the
paper is able to calibrated the nature of the distributional effects and finds that they are
dominated by the real option channel.

Secondly, this study also relates to the literature on medium-run business cycles
pioneered by Comin and Gertler (2006), which aims to understand medium-frequency
fluctuations in economic aggregates by studying business cycle shocks in an endogenous
growth model. Building on the seminal paper by Comin and Gertler (2006), Kung and
Schimd (2015) explore the effects of business cycle fluctuation and the deriving long-run
growth fluctuations on asset prices. In such investigations, the roles of uncertainty as a
business-cycle shock and firm heterogeneity are ignored, as only first-moment shocks are
considered. Seen as this literature analyses business cycle shocks in a representative agent
setting, it is unable to study the response of the economy to an uncertainty shock.

Thirdly, this paper speaks to the literature on firms’ investment heterogeneity and
investment costs. Research by Cooper and Haltiwanger (2006), and then by Khan and
Thomas (2008), have shown the importance of non-convex capital adjustment costs in the
explaining the lumpy distribution of investment rates in the data. Specifically, they show
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how non-convex costs in firm heterogeneous models can generate aggregate dynamics akin
to representative agent models with convex capital costs. Again, such papers only focus on
physical capital investment, and as such the role for medium-run productivity dynamics is
absent. This paper presents a novel calibration of the non-convex costs faced by firms using
COMPUSTAT data on intangible capital investment shares.

Fourthly, this investigation contributes to the literature which aims to explain the slow
recovery of the U.S. economy following the Great Recession in a heterogeneous firm
setting. Such literature (see Garcia-Macia (2017) and Queralto (2019)) investigates how
financial crises can provoke slow recoveries though the interaction of higher financial costs,
worsening collateral constraints and investment in R&D. Although the role for financial
intermediaries is absent, this paper offers a complementary contribution by analysing the
effects of uncertainty, embodied by second-order moment shocks, which can generate slow
recoveries. In such literature, only open-economies are considered, meaning the effects of
general equilibrium are limited as prices are exogenous and as such, they are unable to
represent the full dynamics of economies like the United States.

Finally, in this paper I present a general equilibrium with endogenous growth and firm
heterogeneity where prices are endogenous and therefore I also follow the strand of
literature using the Krusell and Smith (1998) algorithms which help solve such models. The
innovation in this paper is that such forward-looking algorithms are applied to models of
endogenous growth. Endogenous growth models feature a system of first-order difference
equations which are usually solved using Rational Expectations. However, given that the
solution to heterogeneous firms’ problem rely on Bounded Rationality algorithm similar to
Krusell and Smith (1998), I propose a solution algorithm which applies Bounded
Rationality also to the system of first-order difference equations. Indeed, the computational
challenge tackled in this paper may help subsequent research analyse the effects of firm
heterogeneity and uncertainty shock in more complicated settings.

The paper proceeds in the following manner. In Section 2 I provide empirical evidence
of the effect of uncertainty on R&D investment. Section 3 describes the model. The model’s
solution is laid out in Section 4, whilst the model’s calibration is explained in Section 5. In
Section 6, I elucidate on the effects of uncertainty on productivity dynamics through
intangible capital investment using model simulations. Lastly, in Section 7 I conclude the
paper summarising its aims and findings, whilst also proposing scope for future research
on the matter.
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2 Empirical Evidence

In this section, I bring empirical evidence using firm-level data of how higher aggregate
uncertainty reduces firms’ investment in intangible capital and R&D investment. More
precisely, I use data on publicly traded firms in the U.S. provided by COMPUSTAT from
1990 until 2017 for such investigation. In order to proxy uncertainty, I use an aggregate
measure of uncertainty constructed by Jurado et al. (2015) for the U.S. economy. I exploit
the firm-level variation in intangible capital investment to establish causality.

2.1 Data

For firm-level data on intangible investment and expenditure on R&D, I rely on quarterly
COMPUSTAT data of U.S. publicly listed firms from 1990:Q1 until 2017:Q3, accessed via
the Wharton Research Data Services. The sample starts in 1990 as before this year only a
limited number of companies reported values for R&D expenditure and firms only start
reporting intangible capital assets after the year 2000. This panel dataset contains the
following variables: global company key (GVKEY), observation date, calendar quarter
date, company name, total sales, net income, total assets, total liabilities, common shares
outstanding, stock price at quarter close, ISO Country code of incorporation character
(FIC), and most importantly the firm’s total net value of intangible assets4 as well as their
R&D expenses. Whereas for the price deflator data, in absence of a measure for intangible
capital prices, I use the GDP implicit deflator (GDPDEF) for the U.S. obtained via the
National Income and Product Accounts of the United States (NIPA) of the U.S. Bureau of
Economic Analysis.

In the COMPUSTAT database, intangible capital represents the assets owned by the
firm regarding the development of new products or services. Similarly, R&D expenses
represent all costs that relate to the development of new products or services. Specifically,
R&D expenditure reflects the company’s contribution to R&D, whereas intangibles are
assets that have no physical existence in themselves but represent rights to enjoy some
privilege. Nonetheless, due to U.S. accounting rules, some discrepancies emerge.
Specifically, when the firm invests in creating its intangible assets, such cost is expensed on
the income statement but it is seldom capitalised on the balance sheet, meaning that such
expenditure only shows up as R&D investment. However, if the firm purchases some
intangible assets from a third party, like a patent, then the purchase is capitalised on the

4The COMPUSTAT database separates the stock of intangible assets into intangible capital (intanq) and other
intangible capital (intanoq). The separate classification of such stock is due to the diverse nature of intangible
capital. For the avoidance of doubt, I add these variables together to create the firm’s total net value of intangible
assets. All regressions are robust even if the dependent variable only contains intanq.
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balance sheet as intangible assets. To overcome such discrepancies, I analyse the effect of
uncertainty on both of these measures for robustness.

To measure uncertainty, I use the macroeconomic uncertainty index constructed by
Jurado et al. (2015). In the literature, it is commonplace to use market indexes such as the
CBOE Volatility Indexes (VIX or VXO) which track market expectation of near-term
volatility conveyed by stock index option prices, a proxy for uncertainty. However, such
indexes have been criticised as a significant amount of variations in these market
uncertainty indices are forecastable by agents and, as such, cannot be considered as true
uncertainty. To avoid this problem, Jurado et al. (2015) construct a measure of
macroeconomic uncertainty based on the dispersion of the unforecastable components of a
series of macro-variables 5. Section 2.2 provides a fuller explanation of the reasons for
choosing the Jurado et al. (2015) uncertainty index and its construction. In this exercise, the
uncertainty index has three different measures which vary according to h, the months of
the forecast horizon: 1 for a monthly forecast, 3 for a quarterly forecast and 12 for a yearly
forecast.

In the estimation, I will also control for the aggregate economy’s activity at quarterly
frequency using the U.S. Real Gross Domestic Product, taken from National Income and
Product Accounts of the United States (NIPA)6. Lastly, I use the excess bond premium
introduced by Gilchrist and Zakrajšek (2012) as a control for financial shocks. The measure
consists of the average credit spread on senior unsecured bonds issued by non-financial
firms. Therefore, any increase in the excess bond premium reflects the deterioration in
financial conditions of the economy.

The resulting dataset is composed of an unbalanced panel of 6, 551 firms spanning
between 1990 to 2017, where a firm has 26 observations on average. The data cleaning and
construction process are detailed in Appendix A. It is possible to summarise the variables
of interest in Table 1. Note that for the firm’s net value of intangible capital there are fewer
observations than other panel variables, since in the COMPUSTAT dataset firms only
started to report this variable after the year 2000. However for the uncertainty index, real
GDP and the excess bond premium, I only report the time series values.

2.2 Measuring Uncertainty

Since Bloom (2009), a growing body of literature has tried to measure economic uncertainty
in the past decade. The most obvious problem with measuring uncertainty is the fact that it
is inherently unobservable, and therefore one has to rely on proxies for the latent stochastic

5For more details on the construction of the uncertainty measure, please refer to Jurado et al. (2015)
6Access can be found at http://www.bea.gov/national/pdf/nipaguid.pdf
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Table 1. Summary Statistics

Variable Observations Mean Standard Deviation Minimum Maximum

R&D Expenses 170,756 22.15 106.5 0.001 2040
R&D Intensity 170,756 0.050 0.366 4e-06 81
Intangible Capital Net Value 88,276 590.4 3622 0 195791
Total Assets 170,756 1387 6987 0.001 283149
Total Liabilities 170,756 766.6 4316 0.001 162266
Market Capitalisation 170,756 2461 14838 1e-05 750387
Net Income (Loss) 170,756 18.16 247.2 -41847 18024
Sales Growth 170,756 0.022 0.540 -10.0 10.35
Uncertainty Index (h=1) 112 0.647 0.083 0.546 1.052
Uncertainty Index (h=3) 112 0.784 0.087 0.677 1.209
Uncertainty Index (h=12) 112 0.912 0.050 0.847 1.149
Real GDP 112 12991 2232 8865 16851
Excess Bond Premium 112 2.170 0.995 1.140 7.417

Source: COMPUSTAT database accessed via Wharton Research Data Services. Jurado et al. (2015) data on uncertainty
measures. National Income and Product Accounts of the United States (NIPA) of the U.S. Bureau of Economic Analysis
for the macroeconomic variables. Gilchrist and Zakrajšek (2012) for the data on excess bond premium.
Notes: The table describes all of the variables used in the regression in Section 2. Note the sample starts in 1990:Q1 and
ends in 2017:Q3. All monetary variables are deflated using the GDP implicit deflator. Note that there are fewer observations
for firm’s net value intangible capital since firms only started reporting after the year 2000. For the uncertainty index,
the real GDP and the excess bond premium I only report the number of unique values since they do not have a panel
dimension. The h in the Jurado et al. (2015) uncertainty index represents the forecast horizon in terms of months used for
the calculation: 1 for a monthly forecast, 3 for a quarterly forecast and 12 for a yearly forecast.

process. As pointed out by Jurado et al. (2015), one approach in measuring uncertainty
has been to use common volatility-based proxies such as the implied or realised variance
of stock market returns, cross-sectional dispersion of firm profits, sales and productivity,
the cross-sectional of subjective forecast, or even amount of times uncertainty related terms
appeared in the news.

Nonetheless, the measures, albeit observable, may not only capture uncertainty. Indeed,
most of these measures imply a tight link between volatility and uncertainty, when in
reality the two concepts are quite distinct. Whilst the notion of volatility is quite
straight-forward - the statistical measure of dispersion - the concept of uncertainty is more
complex. Uncertainty is typically defined in a juxtaposed manner as the lack of certainty,
that is, the inability to forecast the future. However, volatility-based measures may increase
in relatively certain times because they capture the dispersion of fundamentals, rather than
estimate the latent stochastic process of uncertainty.

This key difference is at the basis of the construction of the macroeconomic index of
uncertainty by Jurado et al. (2015). Recalling from Jurado et al. (2015), the uncertainty index
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is constructed as the expected squared error in forecasting tomorrow’s fundamentals. Let h
denote the forecast horizon in the variable yit ∈ Yt, and U

y
jt(h) as the conditional volatility

in the unforecastable component of the future value of the series. The uncertainty over each
series can be expressed as

U
y
jt(h) =

√
E
[(

yjt+h −E
[
yjt+h|It

])2 |It

]
, (1)

where expectations are taken with respect to the information set It available at time t. A
measure of aggregate or macroeconomic uncertainty is constructed as a weighted average
of the uncertainty over individual series

U
y
t (h) = Ew

[
U

y
jt(h)

]
, (2)

where w are the weights attached to the respective series.
The index has two key characteristics which enable it to capture uncertainty better than

other common proxies. Firstly, the index only measures the conditional variance of the
unforecastable competent of the observed series, be it GDP or stock market returns, etc. By
removing the forecastable component, the measure aims to capture uncertainty rather than
volatility. This is an essential difference because uncertainty is defined as the
unforecastability of the economy. Secondly, the index measures the common variation in
uncertainty across numerous series of data. This has the advantage of capturing the
common aggregate element of uncertainty to which the whole economy is subjected. Only
using a single series to represent macroeconomic uncertainty is problematic as the series
may capture idiosyncratic variation in uncertainty that does not affect the whole economy.

The differences between proxies based on the notion of volatility, be it related to stock
market returns or cross-sectional dispersion of firms’ observables, and the aggregate
uncertainty index constructed by Jurado et al. (2015) seems to be reflected in the data.
Volatility-based proxies appear to vary independently from the aggregate uncertainty
measure, as reflected by the correlation between the VXO, the most commonly used
volatility based proxy, and the aggregate uncertainty index which is only around 0.45. If
one uses a volatility-based measure computed using the stock returns of the firms in the
COMPUSTAT database, then the correlation is nearing zero. This is due to two reasons: i)
volatility-based proxies overestimate the number of uncertainty episodes; ii) the aggregate
uncertainty index has far more persistence than its counterpart.

The fundamental problem of volatility-based measures is that they pick up changes in
the actual dispersion of the distribution of fundamentals, rather than the uncertainty
surrounding such dispersion. More specifically, volatility measures also capture the
forecastable change in the dispersion of the distribution. This points to the conclusion that
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volatility-based measures of uncertainty may not be well-suited to measure uncertainty
because much of the variation seems to be driven by factors other than uncertainty. It is for
these reasons that in this empirical investigation I rely on the macroeconomic uncertainty
index of Jurado et al. (2015) rather than the common proxies, like the VIX or VXO typically
used in the literature.

2.3 Empirical Strategy

The objective of this exercise is to quantify the effect of uncertainty on firms’ intangible
investment. It could be argued that the analysis suffers from an endogeneity issue,
rendering a causal interpretation of the phenomena difficult. However, the firm-level
dimension of the dataset allows for a straight-forward identification of uncertainty shocks.
Exploiting the firm-level variation in R&D and intangible capital investment, it is possible
to impose an identifying restriction without much controversy that the firm’s R&D
investment, observed at firm-level, does not influence the aggregate measure of
uncertainty. In doing so, I am plausibly assuming that the investment decision of a single
firm does not cause any variation in aggregate uncertainty.

It is possible to characterise the regression which aims to quantify the effect of
uncertainty on firms’ intangible capital and R&D investment in the following manner:

yi,t = ρyi,t−1 + βσt + δmt + γxi,t + fi,sic,q,y,age + εi,t. (3)

The dependent variable yi,t is one of three different measures of the firm’s investment in
intangibles: the log of the firm’s intangible capital, the log of the firm’s R&D expenses, or
the firm’s R&D intensity calculated as R&D expenditures over total assets. The dependent
variable is then regressed on its lagged value to capture the dynamics of intangible capital
investment. Investment in R&D and intangibles are subject to high adjustment costs and
are highly forward-looking since such investments will not pay-off immediately, hence it is
vital to capture such dynamics using the lagged value of the dependent variable. This also
may help the estimation if errors are auto-correlated, which in this empirical investigation
may well be the case.

Further, the dependent variable is regressed on σt, the aggregate Jurado et al. (2015)
uncertainty index U

y
t (h), which is the object of interest in this regression. In the baseline

regression, the monthly uncertainty index with a horizon forecast (h = 1) will be
employed, but I will also show how using different forecast horizons for the regression will
not qualitatively alter the results.

The regression also includes two sets of controls: a set of aggregate controls, mt, which
contains the log real GDP and the excess bond premium index developed by Gilchrist and
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Zakrajšek (2012); as well as, a set of firm-level controls, xi,t, that include the log of the firm’s
total assets, the log of the firm’s total liabilities, the log of market capitalisation, the firm’s
net income, and the firm’s sales growth.

In this estimation, it is vital to include aggregate controls so to avoid running into
problems of omitted variable bias. Since the independent variable of interest, uncertainty
σt−1, does not vary at the firms-level, time fixed effects cannot be applied. Instead, by
controlling for the aggregate economic activity, it is possible to capture macroeconomic
shocks which may confound the effect of uncertainty on intangible capital and R&D. For
this reason, GDP is included as a control in the regression. Similarly, it is a well-established
fact in the macroeconomic literature that is extremely difficult to separately identify
uncertainty shock from financial shocks, especially in VAR models, due to the similarity
they exhibit in the contemporaneous responses of macroeconomic variables (see for
example see Caldara et al. (2016)). However, using a regression approach it is possible to
disentangle the effects of uncertainty from the financial shocks simply by controlling for
the excess bond premium measure build by Gilchrist and Zakrajšek (2012), which in this
case is used as a proxy for macroeconomic financial conditions7.

The specification includes firm (i), industry (sic), quarter (q), year (y), and age (age)
fixed effects, all represented by fi,sic,q,y,age. For the industry fixed effects, the 4-digit SIC code
is used. Quarter fixed effects are also needed due to the nature of intangible capital
investments since companies can exploit tax deductions and tax credits on such
investments, which means that data may feature some seasonality. I include the firm’s age
fixed effects to control for age dynamics that may be present in the investment in
intangibles. The regression does not feature a constant due to the inclusion of the fixed
effects.

As the levels of fixed effects included in the regression are notable, for the estimation I
rely on the method developed by Correia (2016) that proposes a feasible and
computationally efficient estimator of linear models with multiple levels of fixed effects.
Ultimately, to avoid heteroskedasticity, the standard errors will be computed by clustering
at the firm-level.

Finally, a common problem with dynamic panel regressions with firm fixed effects is
the Nickell (1981) bias. That is, since one has to control for the lagged dependent variable
and firm-level fixed effects, the errors in the regression may potentially be correlated with
the lagged dependent variable. This induces a downward bias in the estimation, which
according to Nickell (1981) is approximately equal to −(1+β)

(T−1) . This would be a severe
limitation to the empirical strategy if the time dimension of the panel is short, however, the

7In this specification, I also avoid the problem of having to take a stance on the contemporaneous effect of
uncertainty shocks on financial shocks and vice versa, unlike empirical studies using Vector Auto-Regressive
models.
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bias equation states that as T → ∞ the bias goes to zero, meaning that for a sufficiently long
time dimension, the bias is negligible. Indeed, the data employed in this estimation covers
the periods from 2000 to 2017 (T = 72 quarters) for the specification using intangible capital
investment and from 2000 to 2017 (T = 112 quarters) for the specification using R&D.

2.4 Empirical Results

Table 2 displays the results from the regression of the firms’ investment in intangible
capital on uncertainty, as specified in Equation 3. Column (1) reports a preliminary
regression using an OLS estimator with no fixed effects, and no correction for
heteroskedasticity. In such an exercise I note the negative relationship between the
uncertainty measure at the monthly horizon (h=1) and firms’ intangible capital, however,
no causal interpretation can be deduced. Column (2) shows the same regression with the
fixed effects and the negative relationship still holds. In column (3), I illustrate the results
of the regression using the aforementioned empirical strategy. This highlights the negative
and highly statistically significant effect of macroeconomic uncertainty at the monthly
horizon (h=1) on the firm’s intangible capital.

A unitary increase in the Jurado et al. (2015) index results in a 19% fall in firms’
intangible capital. More precisely, a standard deviation increase (0.083) of the uncertainty
index would result in a decrease in the firm’s intangible capital by 1.6%. To put this result
into perspective, during the last financial crisis the uncertainty index at the monthly
horizon increased by 40 basis points, which with a rough calculation translates into a 7.6%
fall in the firms’ intangible capital. This result would explain roughly half of the drop in
aggregate intangible capital during the Great Recession. Moreover, the explanatory
variables included in the regression account for 98% of the variation in the firms’
investment in intangible capital, showing how well the regression captures the firms’
investment behaviour.

These results hold even when I explore the effects of aggregate uncertainty on R&D
investment shown in Table 3. Specifically, a unitary increase in the uncertainty index leads
to an 11% contraction in R&D expenditure and a 14% decline in R&D intensity. Or
equivalently, an increase on one standard deviation (0.083) in the uncertainty index would
result in a decrease in the firm’s R&D expenditure by 0.9% and a 1.2% fall in R&D intensity.
Such a result seems to confirm previous findings by Bloom (2007), who uses
volatility-based measures.

Interestingly, if the forecast horizon of the uncertainty measure is extended to a yearly
frequency, it is possible to notice that the effect of uncertainty on the firms’ investment in
intangible strengthens. As in Tables 2 and 3, a unitary increase in the uncertainty measure
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Table 2. The Effect of Uncertainty on Firms’ Intangible Capital

(1) (2) (3) (4) (5)
Int.Cap. Int.Cap. Int.Cap. Int.Cap. Int.Cap.

Uncertainty (h=1) 0.103∗∗∗ -0.204∗∗∗ -0.190∗∗∗

(0.028) (0.059) (0.056)

Uncertainty (h=3) -0.189∗∗∗

(0.057)

Uncertainty (h=12) -0.326∗∗

(0.107)

Int. Cap. (t-1) 0.995∗∗∗ 0.910∗∗∗ 0.842∗∗∗ 0.842∗∗∗ 0.842∗∗∗

(0.001) (0.004) (0.007) (0.007) (0.007)

GZ Spread -0.0310∗∗∗ -0.0150∗∗∗ -0.0105∗ -0.00950∗ -0.00943∗

(0.003) (0.004) (0.004) (0.004) (0.005)

Real GDP 0.103∗∗∗ 0.475 0.233 0.275 0.425
(0.025) (0.393) (0.377) (0.376) (0.375)

Market Cap 0.00527 0.00526 0.00519
(0.006) (0.006) (0.006)

Assets 0.217∗∗∗ 0.217∗∗∗ 0.218∗∗∗

(0.016) (0.016) (0.016)

Liabilities 0.0399∗∗∗ 0.0399∗∗∗ 0.0399∗∗∗

(0.007) (0.007) (0.007)

Sales Growth 0.0359∗∗∗ 0.0359∗∗∗ 0.0359∗∗∗

(0.005) (0.005) (0.005)

Net Income (Loss) 3e-05 3e-05 3e-05
(0.000) (0.000) (0.000)

Constant -0.953∗∗∗

(0.237)

Fixed Effects X X X X

Observations 62767 62629 62629 62629 62629
Adjusted R2 0.976 0.978 0.979 0.979 0.979

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
Notes: The table shows the result of the regressions for uncertainty on firms’ intangible capital. Standard errors are
presented in parentheses. The reported standard errors in columns (2),(3),(4), and (5) are clustered within-firm. Int. Cap.
is the abbreviation for intangible capital. The h in the Jurado et al. (2015) uncertainty index represents the forecast horizon
in terms of months used for the calculation: 1 for a monthly forecast, 3 for a quarterly forecast and 12 for a yearly forecast.
The number of observations in the last four columns is lower since the estimator developed Correia (2016) drops singleton
observations to compute the fixed effects. Fixed effects include firm, industry, quarter, year and the firm’s age.
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Table 3. The Effect of Uncertainty on Firms’ R&D Investment

(1) (2) (3) (4) (5) (6)
R&D R&D R&D R&D Int. R&D Int. R&D Int.

Uncertainty (h=1) -0.113∗∗ -0.134∗∗∗

(0.037) (0.039)

Uncertainty (h=3) -0.109∗∗ -0.136∗∗∗

(0.038) (0.040)

Uncertainty (h=12) -0.168∗ -0.230∗∗

(0.074) (0.078)

R&D (t-1) 0.658∗∗∗ 0.658∗∗∗ 0.658∗∗∗

(0.007) (0.007) (0.007)

R&D Int. (t-1) 0.596∗∗∗ 0.596∗∗∗ 0.596∗∗∗

(0.008) (0.008) (0.008)

GZ Spread 0.0118∗∗∗ 0.0122∗∗∗ 0.0117∗∗∗ 0.0261∗∗∗ 0.0269∗∗∗ 0.0269∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Real GDP -0.382 -0.359 -0.280 -0.129 -0.107 -0.00714
(0.211) (0.210) (0.206) (0.221) (0.219) (0.215)

Market Cap 0.0665∗∗∗ 0.0665∗∗∗ 0.0665∗∗∗ 0.0567∗∗∗ 0.0567∗∗∗ 0.0567∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Assets 0.145∗∗∗ 0.145∗∗∗ 0.145∗∗∗ -0.263∗∗∗ -0.263∗∗∗ -0.263∗∗∗

(0.005) (0.005) (0.005) (0.007) (0.007) (0.007)

Liabilities 0.0372∗∗∗ 0.0372∗∗∗ 0.0372∗∗∗ 0.0616∗∗∗ 0.0616∗∗∗ 0.0616∗∗∗

(0.003) (0.003) (0.003) (0.004) (0.004) (0.004)

Sales Growth 0.0265∗∗∗ 0.0265∗∗∗ 0.0266∗∗∗ -0.0102∗∗ -0.0102∗∗ -0.0102∗∗

(0.003) (0.003) (0.003) (0.004) (0.004) (0.004)

Net Income (Loss) -3e-05∗∗∗ -3e-05∗∗∗ -3e-05∗∗∗ -4e-05∗∗∗ -4e-05∗∗∗ -4e-05∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Fixed Effects X X X X X X

Observations 161098 161098 161098 161098 161098 161098
Adjusted R2 0.966 0.966 0.966 0.884 0.884 0.884

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
Notes: The table shows the results for the regression for uncertainty on firms’ R&D investment. Standard errors are
presented in parentheses. The reported standard errors in columns (2),(3),(4), and (5) are clustered within-firm. R&D Int.
is an abbreviation for R&D intensity. The h in the Jurado et al. (2015) uncertainty index represents the forecast horizon in
terms of months used for the calculation: 1 for a monthly forecast, 3 for a quarterly forecast and 12 for a yearly forecast.
Fixed effects include firm, industry, quarter, year, and the firm’s age.
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at the yearly frequency decreases intangible capital by 32%, R&D expenditures by 17% and
R&D intensity by 23%. Such a result indicates that longer horizon uncertainty tends to
exacerbate the reduction of the firms’ intangible investment. This seems to be in-line with
the theory on investment because intangible investment is subject to higher sunk costs than
physical investment and has a much longer pay-off horizon. Therefore, if uncertainty is
expected to be prolonged for some time, the effect on the firms’ plans for intangible capital
investment intensifies.

Having established the empirical causal effect of uncertainty on intangible capital
investment, I turn to the investigation of the effects of uncertainty on productivity growth
dynamics through intangible capital investment. To investigate the nexus, I first present a
general equilibrium model of endogenous growth augmented with firm heterogeneity and
non-convex intangible capital costs of adjustment to capture the effects of uncertainty.
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3 Model

In the endeavour to analyse the effects of uncertainty on productivity growth dynamics, I
develop a general equilibrium model of endogenous growth with heterogeneous final
good firms facing non-convex adjustment costs to intangible capital investment. The model
contains two key features which enable it to capture the effects of uncertainty on
productivity growth dynamics at medium frequencies through intangible capital
investment.

Firstly, the model has endogenous productivity generated by investment in intangible
capital and R&D in the spirit of Romer (1990), Comin and Gertler (2006), and Kung and
Schimd (2015). Unlike standard business cycle models which assume exogenous
technological progress, in this model, growth is sustained through the accumulation of
intangible capital. This is defined as a composite of intangible capital goods, each
produced with a single patent that facilitates the production of the final output good.
Innovation increases the overall stock of intangible capital by creating new patents which
require investment in R&D, undertaken by the innovation sector. Intangible capital not
only increases the productivity of the single firms that undertake such investment but
crucially, it also increases the productivity of every other firm through its spillover effects
of innovation.

Secondly, for uncertainty to matter, investment in intangible capital needs to be costly
to reverse. Therefore, in the style of Khan and Thomas (2008), Bloom (2009) and Bloom
et al. (2018), I model the final good firms as heterogeneous firms characterised by
idiosyncratic productivity. These firms face non-convex costs of adjusting intangible
capital, comprising of both fixed costs and partial investment irreversibility. Seen as the
model is cast in real framework, the idiosyncratic productivity distribution should not be
interpreted literally as technology shocks, but more broadly as shocks to the firms’
fundamentals regardless of whether they are demand or supply-driven. Indeed, in the
paper I refer to idiosyncratic productivity and fundamentals interchangeably. Unlike
Bloom (2009) and Bloom et al. (2018), the model does not contain labour adjustment costs
for the simple reason that it renders the solution of the model more complex and
computationally difficult since the model also incorporates an endogenous growth
mechanism. Nevertheless, as noted previously by Bloom (2009), the presence of labour
adjustment costs does not fundamentally change the model’s behaviour. If anything, the
results found for the effect of uncertainty on intangible capital investment and productivity
dynamics will prove to be lower-bound estimates, as labour adjustment costs aggravate the
response of macroeconomic variables.
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3.1 Environment

In the model, time is discrete and the planning horizon is infinite. The economy is
populated by a unit measure of households with no population growth. Each period, the
households take a standard inter-temporal consumption-saving decision and a static
labour supply decision, selling labour services to the final good firms in return for a wage
w, which is determined in a perfectly competitive labour market. Furthermore, the
economy’s production process involves three distinct sectors: a final good sector, an
intangible capital good sector and an innovation sector.

In the model, intangible capital is a CES composite of intangible capital goods, defined
as

m =

[∫ N

0
xν

j dj
] 1

ν

, (4)

where j ∈ [0, N], where xj is the amount of intangible capital good associated with patent
j ∈ [0, N]. Also, N is the measure of patents, and the elasticity of substitution between
patents in production is represented by 1

1−ν where ν ∈ (0, 1).
Intangible capital production is undertaken by a monopolistic competitive intermediate

good sector. Each intangible capital good xj is produced by the intangible good firm, where
patent producers have monopoly power and thus sell the right to use the patent to final
good firms at price px

j .
Innovation, that is the creation of new patents, is left to the innovation sector, which

consists of a representative perfectly competitive firm that increases the total stock of patents
defined by N by undertaking investment in R&D, denoted by S. The model, as is standard
in the growth-cycle literature, differentiates between R&D and intangible capital. However
in the data and in reality, such a distinction is more nuanced. Yet, to model growth-cycles,
the separation is necessary8.

The final good sector is populated by a unit measure of heterogeneous firms, which
produce an identical final output good using labour hired from the household and
intangible capital goods. These firms purchase intangible capital from intangible capital
good firms in an endeavour to increase the productivity of its productive capacity. Final
good firms are characterised by a triple of state variables: (i) idiosyncratic productivity, (ii)
intangible capital stock, (iii) and finally, a fixed cost associated with intangible capital
investment.

The final good firms, at the beginning of the period, will also learn about the next
period’s level of uncertainty σ′, which indicates the dispersion of the idiosyncratic

8The separation between producers of patents and the users of the patents goods that arise from such patents
does not reflect reality as some firms may develop their patents using R&D investments, whilst others may
purchase patented goods from other firms.
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productivity z ∈ Z. Each firm is characterised by an idiosyncratic level of productivity also
observed at the beginning of each period which evolves according to an auto-regressive
Markov process of order one: log(z) = ρzlog(z−1) + σεz where εz ∼ N (0, 1); where ρz

is the auto-regressive coefficient of the productivity process and εz are the disturbances
also drawn every period from a Normal distribution with a standard deviation of σ. Notice
that the timing of uncertainty shocks implies that firms learn in advance about the next
period’s distribution from which they will be drawing their idiosyncratic shocks, therefore
introducing the concept of uncertainty about next period’s fundamentals.

Each final good firms at the beginning of the period also hold a bundle of intangible
capital goods x = {xj}N

j=0. It will be shown in the model that this bundle of intangible
capital goods will boil down to a single representative intangible capital good, that is x = x,
using the equilibrium solution in the intangible capital good sector. Such goods facilitate
the production of the final output good by increasing the productivity of the other factors of
production. Investment in intangible capital goods is undertaken one period in advance, so
a firm will purchase the goods this period which will be put into production the next period.

Investment in intangible capital is also subject to non-convex costs, including a fixed
cost of adjustment. Such cost is expressed in units of output yξ, where ξ is stochastically
drawn each period from the distribution G(ξ) ∼ U [0, ξ̄]. The upper bound of the uniform
distribution represents the overall level of friction in the economy, and the higher the upper
bound the more fictions in intangible capital investment9.

In this set-up, it is sufficient to describe the population of final good firms with the
probability measure µ(z, x) defined over the Borel algebra S for the product space
S = Z×R+.

In addition to these idiosyncratic states, I introduce two aggregate state variables. The
first aggregate state variable relates to the level of uncertainty faced by the agents in the
economy. The uncertainty parameter σ follows a two-state Markov chain which enables
the model to generate periods of low and high uncertainty, where shocks to uncertainty are
modelled as increases in the variances of the respective stochastic process z.

The second aggregate state, as is common with growth-cycle models, is the state variable
is N, the measure of patents in the economy at the end of the period.

9This set-up is tantamount to a model whereby firms all face the same deterministic fixed cost, however,
in such a model the firms’ intangible capital investment policy function is discontinuous. Such discontinuity
renders the computational strategy of the model cumbersome. So to avoid such difficulties, the stochastic set-up
of the fixed cost used in this model helps smooth-out the resulting discontinuities arising in the firm’s policy
function.
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3.2 Final Good Firm

Each firm produces a final output good using a Cobb-Douglass technology function
y(z, l, m) = z(l(1−ζ)mζ)γ where γ is defined as the span of control parameter and ζ as the
intangible capital share of output. Indeed, each firm with productivity z will produce a
final good y by hiring labour l and using intangible capital stock m. Since the intangible
capital stock m is a CES composite of patents xj, as in Eq.4, the firm’s production
technology can be redefined as:

y(z, l, x; N) = z

l(1−ζ)

[∫ N

0
xν

j dj
] ζ

ν

γ

where x = {xj}N
j=0. (5)

Notoriously, for uncertainty to matter, the objective function of the agent, in the case the
firm, needs to be concave. As a result, one condition that the parameters of the production
must satisfy is that of decreasing returns to scale, which in this context means I have to
impose that the span of control parameter is less than unity, γ < 1.

Labour is obtained from the household in exchange for the wage w determined in a
perfectly competitive market. Intangible capital goods are purchased by the final good firm
to be used in production by paying px

j for each patent xj to the intangible good firms every
period. The patents have a homogeneous rate of depreciation defined by δ. The investment
in intangible capital goods is equal to: ix

j = x′j− (1− δ)xj. The rate of depreciation represents
the value of the intangible capital good lost period to period.

Following the literature on non-convex costs of investment and uncertainty, particularly
Khan and Thomas (2008), Bloom (2009) and Bloom et al. (2018), investment in intangible
capital is not friction-less. Intangible capital investment is subject to non-convex costs of
adjusting comprising of a fixed cost and a partial irreversibility cost. To adjust to the optimal
intangible capital x′, the firm must first pay a fixed stochastic non-convex adjustment cost.
Specifically, the adjustment is defined in output units ξy(z, l, x; N). Moreover, firms also
face a partial irreversibility cost meaning that if they would like to disinvest, denoted by the
indicator function I(ix

j < 0), then they face a per-unit loss of ω. One can think of the partial
irreversibility friction as a cost a firm faces in no longer using a patented good in production.

At the beginning of the period, the firm observes its productivity z and the previous
stock of intangible capital x, as well as the aggregate states of the economy (N, σ, µ). At this
point it is possible to define v, the value of the final good firm at the beginning of the period,
as the expected value of the firm, given the possible values of the stochastic non-convex cost

20



ξ:

v(z, x; N, σ, µ) = Eξ ṽ(z, x, ξ; N, σµ),

=
∫ ξ

0
ṽ(z, x, ξ; N, σ, µ) G(dξ).

(6)

Here ṽ represents the value of the firm once it has observed the draw of the non-convex
adjustment cost. Indeed, once the firm observes the draw of ξ, it decides whether to pay the
cost and adjust its intangible capital to its optimal level. Alternatively, it can avoid the fixed
cost and operate with this period’s intangible capital, net of depreciation. The firm’s choice
of adjusting the intangible capital can be represented as follows:

ṽ(z, x, ξ; N, σ, µ) = max
{
−ξy(z, l, x; N) + vA(z, x; N, σ, µ) , vNA(z, x; N, σ, µ)

}
. (7)

Here, vA represents the value of the firm upon adjustment of intangible capital, which
equals the discounted flow of profits from production given that the firm optimises over all
the factors of production:

vA(z, x; N, σ, µ) = max
x′,l

{
y(z, l, x; N)−

∫ N′

0
px

j [x
′
j − (1− δ)xj]dj

−
∫ N′

0
ωI(ix

j < 0)dj− w(N, σ, µ)l
}

+ EΩ(N, σ, µ)v(z′, x′; N′, σ′, µ′|z, N, σ, µ).

(8)

Whereas, vNA is the value of the firm upon not adjusting. This equals the discounted
flow of profits from production, given that the firm optimises only over labour and retains
its predetermined level of intangible capital:

vNA(z, x; N, σ, µ) = max
l
{y(z, l, x; N)− w(N, σ, µ)l}

+ EΩ(N, σ, µ)v(z′, (1− δ)x; N′, σ′, µ′|z, N, σ, µ).
(9)

In this set-up, Ω(N, σ, µ) represents the state-contingent discount factor used by firms
to discount future flows, since the firms are ultimately owned by the households. Note
that expectations for the next period are taken with respect to the exogenous processes of
productivity Γz, as well as to the endogenous aggregate distributional state µ. Note that due
to the timing assumption of the uncertainty state, the firms do not take expectations with
respect to σ since they learn about the future dispersion of productivity in advance.

Seen as each firm has to choose whether to adjust the level of intangible capital based
on the draw of the fixed adjustment cost, after having observed all other aggregate and
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idiosyncratic states, it is possible to define for every firm a threshold adjustment cost
ξ(z, x; N, σ, µ) such that the value of adjusting its intangible capital stock is equal to the
value of not adjusting:

− ξ(z, x; N, σ, µ)y(z, l, x; N) + vA(z, x; N, σ, µ) = vNA(z, x; N, σ, µ). (10)

Equivalently, the threshold for adjusting capital can be expressed as an explicit function:

ξ(z, x; N, σ, µ) =
vA(z, x; N, σ, µ)− vNA(z, x; N, σ, µ)

y(z, l, x; N)
. (11)

In this set-up, the firm’s optimal intangible capital investment policy decisions can be
represented by the following piecewise function:

X(z, x, ξ; N, σ, µ) =

x′(z, x; N, σ, µ) if ξ ≤ ξ(z, x; N, σ, µ),

x(1− δ) otherwise.
(12)

Whereby X(z, x, ξ; N, σ, µ) is equal to the optimal level of capital if the adjustment cost
is below the threshold ξ(z, x; N, σ, µ). Otherwise, it is equal to the previously accumulated
level of intangible capital minus its depreciation.

Denote L(z, x; N, σ, µ) and Y(z, x; N, σ, µ) as the employment and output policy functions
respectively. It is also possible to denote the total amount spent on non-convex costs by firms
as

Ξ(N, σ, µ) =
∫ ξ

0

[∫ N′

0
y(z, l, x; N)I(ix

j 6= 0) + ωI(ix
j < 0)dj

]
G(dξ)µ(d[z× x]), (13)

where I(ix
j 6= 0) is an indicator function. It takes the value 0 if the firm does not invest, that

is, ix
j = X(z, xj, ξ; N, σ, µ)− (1− δ)xj = 0, and I(ix

j 6= 0) = 1 if the firm chooses to invest,
hence X(z, xj, ξ; N, σ, µ) 6= (1− δ)xj.

Notice that as a result of the introduction of the fixed cost of adjustment, the intangible
investment policy function will exhibit an inaction region. In the inaction region, firms will
find it more advantageous not to invest and instead wait and see until uncertainty subsides
or capital depreciates beyond a certain point, rather than continue investing. Such inaction
region is the basis for the real option channel and will be paramount for uncertainty to have
an effect on macroeconomics dynamics. Indeed, an exogenous second-moment shock to
fundamentals will generate the dynamics of aggregate productivity through the canonical
real options channel, whereby uncertainty reduces the firms’ demand of intangible capital,
slowing down its accumulation.
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3.3 Intangible Good Firms

Intangible good firms are monopolists which turn one patent j into an intangible capital
good xj using one unit of final output as a factor of production. Monopoly power is a crucial
assumption in this framework as it is needed to create positive profits in equilibrium. Giving
a positive value to patents provides incentives for the innovation sector to produce new
patents, which will be described in Section 3.4. Since intangible good firms are monopolist,
they maximise profits πj by optimally setting prices px

j :

πj(N, σ, µ) = max
px

j

{
px

j x′j(px
j ; N, σ, µ)− x′j(px

j ; N, σ, µ)
}

. (14)

Note that x′j(px
j ; N, σ, µ) represents the demanded quantity for patent j ∈ [0, N], which is a

function of its price and the aggregate states (N, σ, µ).
The value of owning exclusive rights to produce the intangible capital good x′j is equal

to the present discounted value of profits obtained from its sale

f j(N, σ, µ) = πj(N, σ, µ) + (1− φ)βEΩ(N, σ, µ) f j(N′, σ′, µ′|N, σ, µ), (15)

where φ is the patents’ obsolescence rate. When a patent becomes obsolete, it provides no
further value as it cannot be used for final good production10.

Assuming a symmetric equilibrium a lá Dixit and Stiglitz (1977), the monopolist
competitive characterisation of the intangible good sector implies that all monopolists in
the sector will choose the same price and quantity:

x′j(N, σ, µ) = x′ = X(N, σ, µ) and px
j = px =

1
ν

. (16)

Thus, the profits for each monopolist can be written as:

πi(N, σ, µ) = π(N, σ, µ) =

[
1
ν
− 1
]

X(N, σ, µ). (17)

Note that I have substituted in the total amount of intangible capital goods demanded
X(N, σ, µ). Moreover, it is possible to re-formulate the present discounted value of profits
by dropping the j subscript:

f (N, σ, µ) = π(N, σ, µ) + (1− φ)βEΩ(N, σ, µ) f (N′, σ′, µ′|N, σ, µ). (18)

10Note that φ, the patents’ obsolescence rate, is different from δ, the depreciation rate of the intangible capital
good. Whilst the former refers to the process by which a patent becomes obsolete, the latter refers to the value
lost in the intangible capital good produced with a certain patent. For example, imagine a computer. The patent
that allowed the construction of the computer may become obsolete rendering the technology no longer useful
for production, or the computer itself through wear-and-tear may depreciate and thus need replacing.
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As a result of the symmetric equilibrium, one can define the quantity of intangible
capital goods demanded by the final good firms equivalently as a single patented good
x′ = x′. The simplification of the symmetric equilibrium allows the model not to track all
the different varieties of patents and assume that there is only one equally diversified
patent. Furthermore, the overall intangible capital stock can be taken to be:
m(N, σ, µ) = N

1
ν X−1(N, σ, µ).

3.4 Innovation Sector

The innovation sector is perfectly competitive and so can be formulated by a single
representative innovation firm. In contrast to the intangible good firms who transform final
outputs goods into existing patents, the innovation firm generates new patents by investing
amount S in R&D. As a result, R&D expenditures by the innovation firms increase the total
number of patents available in the economy N, whose law of motion can be written as:

N′(N, σ, µ) = θ(N, σ, µ)S(N, σ, µ) + (1− φ)N. (19)

The term θ(N, σ, µ) represents the innovation firm’s productivity of R&D expenditures

θ(N, σ, µ) =
χN

S(N, σ, µ)1−η Nη
, (20)

where η ∈ [0, 1] is the elasticity of new patents with respect to R&D and χ is a scaling
parameter11. Such specification postulates a positive externality whereby a higher stock of
intangible capital makes innovation more productive, hence

(
δθ
δN > 0

)
as in Romer (1990).

In fact, as the stock of intangible capital increases, the creation of new patents is facilitated.
Additionally, this specification also exhibits a congestion externality whereby R&D
investment has decreasing marginal returns, that is

(
δθ
δS < 0

)
as in Comin and Gertler

(2006) and Kung and Schimd (2015). This means that additional R&D spending leads to a
less than proportional increase in the total stock of intangible capital.

Assuming that the sector is characterised by free entry, one can deduce that the value of
a new patent is equal to the value of the patent to the intangible good firms12. Therefore,
the innovation firm’s problem is to optimally choose the amount of R&D expenditures S to
maximise profits, which consists of the present discounted value of the revenues generated

11The scaling parameters will be useful to calibrate the Balanced Growth Path growth rate of the model.
12It is for this reason that it is essential to have the monopolistic competition assumption in the intangibility

good sector, as it ensures that there is always a non-negative value to producing new patents.
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by the new patents minus the costs of R&D expenditures:

max
S
−S(N, σ, µ) + θ(N, σ, µ)S(N, σ, µ)EΩ(N, σ, µ) f (N′, σ′, µ′|N, σ, µ). (21)

Given the free entry condition, the optimal level of R&D expenditures can be obtained
via the zero profit condition which yields:

S(N, σ, µ) = θ(N, σ, µ)S(N, σ, µ)EΩ(N, σ, µ) f (N′, σ′, µ′|N, σ, µ). (22)

3.5 Households

A unit mass of identical households populates the economy and there is no population
growth. I assume that households also have access to a complete set of state-contingent
claims, which are not modelled here since there is no heterogeneity in households, and as
such these assets are in zero net supply in equilibrium. As a result, it is possible to cast the
household’s problem in terms of a representative household for simplicity.

The household has the following preferences with respect to consumption C and labour
Lh

U(C, Lh) = log(C)− ϕ(1− Lh), (23)

where ϕ is the parameter for the relative dis-utility of labour. Define β as the discount factor.
The use of this utility function is dictated by computational reasons. The model’s solution is
complicated, so to avoid having to also find the wage that clears the labour market, I use this
utility function because its linearity with respect to labour allows us to obtain a closed-form
solution for the wage rate.

The household can store wealth as one-period shares in firms denoted with the measure
λ. The household is the ultimate owner of the intangible good firms and innovation firms,
and so every period it receives the profits from their activities. Note that the per-period
profits obtained by the household will be equal to Π(N, σ, µ) = Nπ(N, σ, µ)− S(N, σ, µ).
Given the prices for their current shares $(z, x|N, σ, µ) and the real wage they receive for
their labour w(N, σ, µ), the household optimally chooses their current consumption
C(N, σ, µ), the labour supply Lh(N, σ, µ), as well as the number of shares λ′ to purchase at
price $′(z′, x′|N′, σ′, µ′). It does so by maximising its lifetime utility subject to their budget
constraint:

H(λ; N, σ, µ) = max
C,λ′,Lh

U(C(N, σ, µ), Lh(N, σ, µ)) + βEH(λ′; N′, σ′, µ′|N, σ, µ) (24)
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s.t.

C(N, σ, µ)+
∫

S
$′(z′, x′; N, σ, µ)λ′(d[z′ × x′]) ≤

w(N, σ, µ)Lh(N, σ, µ) +
∫

S
$(z, x; N, σ, µ)λ(d[z× x]) + Π(N, σ, µ).

Denoting p(N, σ, µ) as the marginal utility of consumption and Ω(N, σ, µ) as the
stochastic discount factor, one can derive the household’s first-order conditions as follows:

p(N, σ, µ) =
1

C(N, σ, µ)
, (25)

w(N, σ, µ) =
ϕ

p(N, σ, µ)
, (26)

Ω(N, σ, µ) =
βEp′(N′, σ′, µ′)

p(N, σ, µ)
. (27)

Let C(λ; N, σ, µ) describe the household’s current consumption policy function, where
Lh(λ; N, σ, µ) is the labour supply policy function, and I denote λ(z′, x′, λ; N, σ, µ) as the
policy function for the quantity of shares purchased in firms with productivity z′ and
intangible capital stock x′.

3.6 Aggregate Constraint

The aggregate constraint, derived from the household’s budget constraint, specifies that
the total resources of the economy must be equal to the total expenditures. In this model,
the aggregate constraint of the economy specifies that the total final output produced by
the final good firms, Y(N, σ, µ) =

∫
S

y(z, l, x; N)d([z × x]), must be equal to the total
consumption by the household, C(λ; N, σ, µ), the total investment in intangible capital,
N′X(N, σ, µ), and the expenditure on R&D by the innovation sector, S(N, σ, µ), and finally
the amount spent by firms in non-convex adjustment costs Ξ(N, σ, µ). The aggregate
constraint can be expressed as

Y(N, σ, µ) = C(λ; N, σ, µ) + N′X(N, σ, µ) + S(N, σ, µ) + Ξ(N, σ, µ), (28)

where the strict equality in the aggregate constraint is guaranteed by the properties of the
utility function.
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3.7 Recursive Competitive Equilibrium

The model comprises of three exogenous idiosyncratic states: the idiosyncratic
productivity (z), the firm’s intangible capital stock (x) and the non-convex cost (ξ).
Furthermore, there is one exogenous aggregate state, the aggregate uncertainty level (σ),
and two endogenous aggregate states: the joint distribution of firms over the intangible
capital holdings and productivity µ(z, x), and the measure of intangible capital (N).

Given any initial conditions {N0} and the law of motion for the productivity process z
and the uncertainty process of σ, a recursive competitive equilibrium is defined as a set of
value functions {v, ṽ, vA, vNA, f , H}, prices {w, (Ω)S

j=1, $, $′, px}, and quantities
{Y, X, S, Ω, L, C, N} that solve the final good firms’ problem, the intangible firm problem,
the innovation sectors’ problem, and the household problem, as well as clearing the market
for assets, intangible capital goods, labour, and output:

(i) v, ṽ, vA, vNA satisfies the final good firms’ problem in Eq.(6)-Eq.(9) and (Y, L, X, ξ) are
the associated policy functions.

(ii) f satisfies the intangible good firm’s problem in Eq.(18) and X is the associated policy
function.

(iii) S is the innovation sector’s policy function which solves Eq.(21).

(iv) H satisfies the household’s problem in Eq.(24) and (Ω, C, Lh) are the associated policy
functions.

(v) The asset market clears:

Λ(zm, x; N, σ, µ) = µ′(zm, x; N, σ, µ) ∀(zm, x) ∈ S

and
∫

S
µ′(zm, x; N, σ, µ) = 1.

(29)

(vi) The labour market clears:

Lh(N, σ, µ) =
∫

S
L(z, x; N, σ, µ)µ(d[z× x]). (30)

(vii) The intangible capital market clears13:

M′(N, σ, µ) = N′X(N, σ, µ) = X(z, x, ξ; N, σ, µ). (31)
13The simplification of the intangible capital markets uses the symmetric equilibrium solutions of the

intangible good sector.
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(viii) The output market clears:

Y(N, σ, µ) = C(λ; N, σ, µ) + N′X(N, σ, µ) + S(N, σ, µ) + Ξ(N, σ, µ). (32)

(ix) The distributional state µ(z, x) evolves according to the law of motion Γµ

µ′(z′, x′) = Γµ(µ(z, x), N, σ, µ), (33)

where the decision rule X(z, x, ξ; N, σ, µ) together with the exogenous stochastic
process for σ and the endogenous process for N, are consistent with the transitional
rule Γµ.

3.8 Decision Rules

Using C and L to describe the market-clearing value of the household consumption and
labour which satisfy the equilibrium conditions, it can be shown that market-clearing
requires the household first-order conditions to be equal to:

w(N, σ, µ) =
UL(C, L; N, σ, µ)

UC(C, L; N, σ, µ)
, (34)

Ω(N, σ, µ) =
βEUC(C′, L′; N′, σ′, µ′)

UC(C, L; N, σ, µ)
. (35)

It is now possible to simplify the model and solve it by directly substituting the
equilibrium conditions for the household maximisation problem into the final good firms’
problem. By representing (V, Ṽ, VNA, VA) as the final good firm value functions expressed
in terms of marginal utility of consumption units, the final good firms’ problem can be
stated as:

y(z, l, x; N) = z
(

l(1−ζ)N
ζ
ν xζ
)γ

where x = x, (36)

V(z, x; N, σ, µ) = EξṼ(z, x, ξ; N, σ, µ),

=
∫ ξ

0
Ṽ(z, x′, ξ; N, σ, µ) G(dξ),

(37)
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Ṽ(z, x, ξ; N, σ, µ) = max
{
−ξy(z, l, x; N)p(N, σ, µ) + VA(z, x; N, σ, µ) ,

VNA(z, x; N, σ, µ)
}

,
(38)

VA(z, x; N, σ, µ) = max
x′,l

p(N, σ, µ)
{

y(z, l, x; N)− px[N′x′ + (1− δ)Nx]

−ωN′I(ix < 0)− w(N, σ, µ)l
}

+ βEV(z′, x′; N′, σ′, µ′|z, N, σ, µ),

(39)

VNA(z, x; N, σ, µ) = max
l

p(N, σ, µ) {y(z, l, x; N)− w(N, σ, µ)l}

+ βEV(z′, (1− δ)x; N′, σ′, µ′|z, N, σ, µ).
(40)

Note that the expressions have been simplified by substituting for x = x given the result
of the symmetric equilibrium in the intangible good sector.

Moreover, it is possible to simplify the intangible good firm’s problem and the innovator
sector’s problem similarly, by substituting for the equilibrium conditions for the household
maximisation problem. Let’s denote F as the value of a patented good in terms of marginal
utility consumption units, then:

F(N, σ, µ) = p(N, σ, µ)Π(N, σ, µ) + (1− φ)βEF(N′, σ′, µ′|N, σ, µ), (41)

S(N, σ, µ) =
θ(N, σ, µ)βEF(N′, σ′, µ′|N, σ, µ)

p(N, σ, µ)
, (42)

θ =
p(N, σ, µ)

βEF(N′, σ′, µ′|N, σ, µ)
. (43)

This concludes the description of the model. I turn to the theoretical analysis of the
endogenous growth mechanism and description of the Balanced Growth Path (BGP from
hereon-in).

3.9 Endogenous Growth and Balanced Growth Path (BGP)

Unlike real business cycle frameworks, the model developed in this paper exhibits an
endogenous growth process driven by the accumulation of patents. Unfortunately, due to
the lack of an analytic solution to the final good firm’s problem, it is not possible to write
an equation for the endogenous productivity process of the economy. However, it is
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possible to show analytically how the growth rate of the total stock of intangible capital is
ultimately a function of the value of the exclusive rights to patents.

Let’s derive an expression for the growth rate of the total stock of intangible capital N.
By taking the law of motion of intangible capital stock in Equation 19 and substituting for
the productivity of R&D in Equation 20, the following equation is obtained:

N′(N, σ, µ) = χN1−ηS(N, σ, µ)η + (1− φ)N. (44)

Using the above equation, I substitute out the variable for the R&D investment using
the first-order condition of the innovation firm in Equation 42, to get the growth rate
equation. Denoting ∆N′(N, σ, µ) = 1 + g′(N, σ, µ) as the gross growth rate of the total
stock of intangible capital and dividing the equation above by N yields:

g′(N, σ, µ) = −φ +

[
χ

1
η

βEF(N′, σ′, µ′|N, σ, µ)

p(N, σ, µ)

] η
1−η

. (45)

Ultimately, the growth rate of the intangible capital, and therefore of the economy,
arises at any given time from two possible channels: (i) the stochastic discount factor and
(ii) the demand for intangible capital. On the one hand, any increases in the stochastic
factor will increase the growth rate as a lower consumption growth will drive up savings
and investment. On the other hand, an increase in the demand for intangible capital will
boost the value of patents, which will increase the economy’s growth rate. Specifically,
more valuable patents imply higher monopoly profits which induce the innovation sector
to increase R&D expenditure, thus increasing the stock of intangible capital at a faster rate.
Interestingly, since the monopoly profits depend on the demand for intangible capital, an
uncertainty shock may reduce the economy’s growth rate endogenously through the
higher real option of deferring intangible capital investment.

The Balanced Growth Path (BGP from hereon-in) is characterised by the constant
growth rate in the variables of the model. In the BGP, the model has a constant level of
patented goods X, but the stock of patents available N grows at the economy’s growth rate
g. In the model, Equation 45 disciplines the growth rate of the economy and illustrates that
for a BGP to exist, I necessitate two conditions: a constant stochastic discount factor given
by a constant interest rate, and a constant value of patents. Firstly, since in the BGP all
variables grow at a constant rate so too will consumption, thus resulting in a constant ratio
of marginal utilities which by the household’s first-order conditions will mean a constant
stochastic discount factor. Secondly, homogeneity of degree one in the accumulating factor
of the production function (N) is sufficient for a constant value of patents, which the
following condition must hold ζγ

ν = 1.
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4 Model Solution

The solution of the model poses some major obstacles to overcome and in doing so, I
present a novel approach to solve models featuring heterogeneous agents, aggregate
uncertainty, and a system of non-linear first-order difference equations which describes the
model’s endogenous growth mechanism. Interestingly, the same approach could be used to
solve any model with both heterogeneous agents and a system of non-linear first-order
difference equations. Such a solution method would be adopted to investigate questions so
far inaccessible to researchers as they are too complex to solve computationally.

The first obstacle arises from the introduction of heterogeneous final good firms under
aggregate uncertainty in a general equilibrium setting. This feature of the model means
that the solution of the model relies on a variant of the Krusell and Smith (1998) algorithm.
Specifically, I make use of a similar algorithm to Young (2010), which increases the accuracy
and efficiency of the solution by using a histogram approach to the distribution of firms over
productivity and capital, instead of using firm-level simulations which induce sampling
errors. Indeed, firm heterogeneity means that prices in the model are not only a function of
the aggregate states but also a function of the endogenous high-dimensional distributional
state µ(z, x). Since agents in the model take expectations with respect to tomorrow’s prices,
the solution needs to estimate the transitional rule Γµ which governs the evolution of the
joint distribution of firms over productivity and intangible capital holdings. The details on
how the model is solved are deferred to Appendix C.5. Table 4 displays the solution to the
forecasting rules needed to estimate the law of motion of Γµ.

The second, and most important, obstacle in this model when computing the
simulations, is that not only does one have to solve the firms’ value function optimisation
problem as in standard models featuring heterogeneous firms, but also the system of
non-linear first-order difference equations which encompasses the endogenous growth
mechanism in the model. Indeed, after the firms’ optimal policy functions are computed, to
generate the growth cycle dynamics it is necessary to solve a system of non-linear
first-order difference equations which comprise the set of equations relating to the
intermediate good sector and the innovation sector. In representative agents models, these
systems of equations are solved under Rational Expectations, however, since the final good
firms’ problem cannot be solved under Rational Expectations as explained above, I will use
the same Bounded Rationality approach to solve the system of non-linear equations. This
means that the forecast law of motion for aggregate intangible capital X is used to compute
the value for the next period’s value of patents (F′). Further details of the model’s
simulation are outlined in Appendix C.5.

Finally, since the model’s endogenous mechanism for growth renders the model
non-stationary, for the model to be solved, I need to stationarise the model equations by
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Table 4. Forecasting Rules for Model Solution under Aggregate Uncertainty

Intangible Capital Forecasting Law of Motion

α β R2 S.E
X(σL, σL) -0.135 0.949 0.999 0.006
X(σL, σH) -0.252 0.906 0.999 0.002
X(σH, σL) -0.255 0.904 0.999 0.001
X(σH, σH) -0.183 0.931 0.999 0.005

Price Forecasting Law of Motion

α β R2 S.E
p(σL, σL) 0.641 -0.681 0.999 0.004
p(σL, σH) 0.833 -0.609 0.999 0.001
p(σH, σL) 0.936 -0.569 0.999 0.001
p(σH, σH) 0.665 -0.670 0.999 0.003

Notes: This table presents the forecasting rules obtained when solving the baseline model. Each forecasting rule takes the
following form: log(m̂) = αm

i,j + βm
i,jlog(X̂t) where i, j = {σL, σH} and m̂ = {Xt+1, pt}. The α refers to the constant of

each regression, whilst the β refers to the coefficient with respect to the independent variable. The R2 is the coefficient of
determination and refers to the accuracy of the regression and S.E. refers to the standard error of the β coefficient to gauge
the precision of the estimation. The Den Haan (2010) check results are: X max error = 0.010; X average error = 0.002; p
max error = 0.008; p average error = 0.001.

removing trend growth. In Appendix C.2, I stationarise the model around a BGP and in
Appendix C.3, I derive the non-stochastic BGP equations.
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5 Calibration

The model is calibrated to the U.S. economy for the pre-2008 Great Recession period at a
quarterly frequency. The parameters are calibrated by matching moments generated by the
model in a state of non-stochastic BGP assuming that the aggregate state of uncertainty is
in the low state (see Appendix C.3 for further details). There are three sets of parameters: i)
the standard parameters of an endogenous growth model; ii) the parameters relating to the
heterogeneous firms model with non-convex adjustment costs; iii) and finally, the
parameters governing the uncertainty state stochastic process of uncertainty.

5.1 Standard Endogenous Growth Model Parameters

The selection for the parameters relating to the endogenous growth model is illustrated in
Table 5. Starting with the household sector, the discount factor β is set to match an annual
interest rate of 5%, as obtained from the Penn World Table. Whilst the parameter pertaining
to the relative disutility of labour ϕ is chosen to achieve a 64% labour share of output,
calculated from the Penn World Table14 As for the final good firms, the parameter for
elasticity of intangible capital to output ζ is set to achieve an overall intangible capital good
elasticity of output to half in Kung and Schimd (2015)15. The parameter relating to the
intermediate good firms, that is, the inverse mark-up of patents parameter ν is picked to
ensure the BGP condition holds16. Finally, the innovation sector I calibrate the scale
parameter χ to match a 1.4% Balanced Growth Path growth, as calculated from the World
Bank national accounts data. The elasticity of new patent creation with respect to R&D η is
set in accordance to estimates by Kung and Schimd (2015), and the patents obsolescence
rate φ matches the 15% annual rate used by the Bureau of Labor Statistics.

5.2 Final Good Firm-Specific Parameters and Non-Convex Adjustment Costs

There are six parameters directly pertaining to the final good firm-specific parameter and
non-convex intangible capital adjustment parameters: i) the persistence of the productivity
process (ρ); ii) the standard deviation of the productivity process in the low uncertainty
state (σL); iii) the span of control parameter (γ); iv) the intangible good depreciation rate
(δ); v) the upper limit of the distribution of the stochastic fixed costs (ξ̄); vi) the per-unit loss
associated with intangible capital disinvestment (ω).

14The Penn World Table data I use is the share of labour compensation in GDP at current national prices for
the United States.

15Note that the intangible capital goods elasticity of output is equal to ζγ due to the decreasing return to scale
of the production function.

16See Section 3.9 for more details.
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Table 5. Growth Model Parameter Calibration

Parameter Value Target Source

Households
β 0.987 Annual interest rate of 5% Penn World Table
ϕ 6.461 Labour share of output to 64% Penn World Table

Final Good Firms
ζ 0.587 Elasticity of x to y Kung and Schimd (2015)

Intermediate Good Firms
ν 0.500 Inverse mark-up BGP condition

Innovation Sector
χ 0.966 BGP Growth of 1.4% World Bank
η 0.835 Elasticity of N′ to S Kung and Schimd (2015)
φ 0.036 Patent obsolescence rate BLS

Notes: The table shows the calibration of the standard parameters of the model with endogenous growth, where the
parameters, its value, the description, and their respective targets and sources are presented in order.

To calibrate these parameters, I use quarterly intangible capital investment data for
publicly traded firms from COMPUSTAT, which I have already utilised in the empirical
section 217. Firstly, I select only the pre-Great Recession period, from 1990 to 2007, to build
the data moments needed for calibration. Secondly, I clean and deflate the data as in
Section 2. Thirdly, I construct the intangible capital investment rate for each firm i at period
t accordingly:

IX
i,t =

intanqi,t − (1− δBLS)intanqi,t−1

intanqi,t−1
, (46)

where the variable intanq is the intangible capital held by the firm and δBLS is the
obsolescence rate of intangible capital which is chosen following the BLS estimates
provided18.

The histogram of intangible capital investment rates resulting from the COMPUSTAT

17I use quarterly data for two reasons. Firstly, it matches the frequency of the model. Secondly, quarterly data
better identifies the fraction of firms that are inactive with respect to intangible capital investment, as yearly
data may be too coarse. Using quarterly data to construct the distribution for intangible capital investment rates
also means recognising that the data is affected by the seasonality of such investment. The problem lies in the
fact that intangible investment is subject to tax deductions, thus firms have incentives to move the accounting of
their intangible capital investment towards the fourth fiscal quarter. However, to make sure that the seasonality
does not affect key moments of the distribution, I also construct the distribution using yearly data and check
that the moments are not altered.

18In the data there is no distinguishing between the depreciation of the intangible capital good (δ) and the
obsolescence rate of the patent of that good (φ), as a result, I use the most commonly used rate for the calculation
of the investment rate. Moreover, this also allows the model to replicate the average investment rate moments
using δ.
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Figure 2. Intangible Capital Investment Distribution
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Source: COMPUSTAT accessed via Wharton Research Data Services and author’s calculations.
Notes: The figure shows the distribution of the firms’ quarterly intangible capital investment rates from 1990 to 2007. The
distribution is cut off at the specified intervals to better represent the density of the positive and negative spikes, defined as
investment rates ±20%. The density within investment rates between −1% and 1% represent the percentage of firms that
are classified as inactive.

dataset is reported in Figure 2. It is immediately noticeable that the distribution of
investment rates for intangible capital is highly asymmetric, with a positive slowness and
significant excess kurtosis. Indeed, the majority of firms exhibit positive investment rates
of around 0% to 5%. Moreover, there is a considerable mass of firms around 0% and at the
extremities, with a larger share of firms amassing above the 20% investment rate. The
distribution of intangible capital investment is remarkably similar to the distribution of
physical investment constructed by Cooper and Haltiwanger (2006) for the U.S. economy.

It is also possible to analyse the moments selected for calibration in Table 6 where the
data moment is displayed in the second column, along with the standard errors. The
moments confirm the intuition given by the distribution in Figure 2. The average
intangible capital investment rate is 2.6%. The fraction of firms deemed to be inactive with
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Table 6. Intangible Capital Investment Moments

Moment Data Model

Average investment rate 2.6% (0.011) 2.6 %
Inaction investment rate 17.4% (0.002) 15.6%
Positive investment rate 64.9% (0.003) 59.5%
Negative investment rate 17.8% (0.003) 20.1%
Spike: positive investment 8.3 % (0.001) 6.7%
Spike: negative investment 2.7 % (0.001) 2.1%

Source: COMPUSTAT accessed via Wharton Research Data Services and author’s calculations.
Notes: The moments are built using quarterly firm-level data on intangible capital investment rates. Firms with intangible
capital investment rates between −1% and 1% are deemed as inactive. The positive (negative) spike moment is defined
as firms with investment rates ±20%. Such definitions are in line with work by Cooper and Haltiwanger (2006). The
bootstrapped standard errors are presented in parentheses and are expressed in the same units as the moments.

respect to the investment in intangible capital is 17%, where a firm is deemed inactive if it
has an investment rate between −1% and 1%19. Furthermore, the data show that firms
engage in sudden bursts of investments, with over 8% of firms featuring an investment rate
of over 20% and nearly 3% having an investment rate below 20%. Given to the dimension
of the panel dataset, the investment rate moments are estimated with a high degree of
precision, as shown by the minuscule standard errors. However, this does not mean there
is not plenty of heterogeneity in the firm-level dimension. Indeed, as already indicated by
the distribution of investment rates in Figure 2, there is a wide dispersion of investment
rates in the distribution given that the standard deviation of the average investment rate of
intangible capital is 42%.

The selection of these moments for the calibration of the parameters that pertain to the
intangible capital investment (ρ, σL, γ, δ, ξ̄, and ω) follows the tradition of lumpy
investment literature20. The distinction is that whilst previous literature focuses on
physical capital investment, this paper aims to calibrate the parameters to match key
moments of the distribution of intangible capital investment rates. Specifically, the average
investment rate informs the calibration of the patent’s depreciation rate δ, since it governs
the ratio of investment to intangible capital stock. The inaction investment rate is extremely
useful in choosing the correct value of the fixed cost parameter ξ̄ which governs the firm’s
capital adjustment choice. The share of positive and negative investment rates disciplines
the standard deviation in the low uncertainty state σL. Notably, as already highlighted by

19These discretionary bounds are set according to the lumpy investment literature (see Cooper and
Haltiwanger (2006) and Khan and Thomas (2008)). The needs for such bounds arises from the fact that in such
datasets it is impossible to encounter observation with exactly 0% investment rates, thus a proxy is necessary.

20See Cooper and Haltiwanger (2006) and Khan and Thomas (2008).
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Table 7. Final Good Firm-Specific Parameters and Non-Convex Adjustment Costs
Calibration

Parameter Value Description

ρ 0.950 Persistence of productivity process
σL 0.041 Standard deviation in low uncertainty state
δ 0.026 Intangible capital goods’ depreciation rate
ξ̄ 0.005 Upper limit of the fixed cost distribution
ω 0.560 Partial irreversibility per unit loss
γ 0.762 Span of control parameter

Notes: The table displays the values of the parameters calibrated using the Simulated Method of Moments (SMM) with
the data moments displayed in Table 6. The only exception is the persistence of the productivity process, rho, which is
chosen in accordance to previous literature on firm heterogeneous models (i.e. Khan and Thomas (2008) and Bloom (2009))
in absence of relevant data.

Cooper and Haltiwanger (2006) and Khan and Thomas (2008), one cannot rely solely on the
fixed cost parameter to match the entire moments of the investment rate distribution. The
spikes in the investment rate distribution shape the size of the parameter for the unit loss
for disinvestment ω and the span of control parameter γ. Unfortunately, the data available
is not able to inform the persistence parameter of the productivity process, hence I follow
the literature on heterogeneous firms to set ρ to 0.95, in accordance with Khan and Thomas
(2008) and Bloom (2009).

I undertake the calibration using the Simulated Method of Moments (SMM) and the
resulting values for the parameters are displayed in Table 7. The details of the method are
laid out in Appendix B. Remarkably, the results of the calibration produce model moments
very close to the data, as illustrated in Table 6. The model, although not explicitly built to
replicate the distribution of investment rates in intangible capital, manages to capture the
key features of such distribution. Notably, if one compares the results of the calibration to
the literature on uncertainty and physical capital investment, I notice some similarities and
some differences driven by the nature of intangible capital. Specifically, the variance of
productivity shocks in the low state of uncertainty and the upper limit of the fixed cost
distribution are quite similar to the estimates of Cooper and Haltiwanger (2006), which
reflect the similarities in the dispersion and inaction of firms between intangible and
tangible capital investment rates. The differences arise when calibrating the partial
irreversibility parameter which is double the estimates of Bloom (2009), thus
acknowledging the difficulty of reversing intangible capital investment, notoriously much
harder than physical capital investment. Note that, unlike previous lumpy investment
literature (see Khan and Thomas (2008)), the model does not require a region of investment
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Table 8. Uncertainty Stochastic Process Parameter Calibration

Parameter Value Description Source

σH/σL 1.370 Increase in σ in high uncertainty state (I—B—E—S)
πL,H 0.026 Prob. of high uncertainty shock Bloom et al. (2018)
πH,H 0.943 Persistence of high uncertainty state Bloom et al. (2018)

Notes: The table displays the values of the parameters relating to the aggregate stochastic process of uncertainty. The
parameters are set in accordance to Bloom et al. (2018), apart from the increase in σ in high uncertainty state, which is set
according to the increase in the average firm-level standard deviation of EPS taken from the Institutional Brokers Estimate
System (I—B—E—S) dataset.

for which the non-convex costs of adjustment are not enforced in order to capture both the
inaction region and the spikes in investment rates. This is due to the inclusion of partial
irreversibilities.

5.3 Uncertainty State Stochastic Process Parameters

In this section, I present the calibration of the uncertainty state stochastic process which
consists of two sets of parameter: i) the probabilities that govern the stochastic process of
uncertainty; and, ii) the increase of the second-moment of the fundamental’s distribution in
the high uncertainty state.

5.3.1 Probabilities of the Stochastic Process of Uncertainty

The uncertainty state of the economy is represented by a two-state Markov process whereby
there is a low uncertainty state σL and a high uncertainty state σH. The underlying stochastic
process can be described by the following transition matrix:

Γσ(σ
′ = σi|σ = σq) =


↓ σ′, σ′ → σL σH

σL 1− πL,H πL,H

σH 1− πH,H πH,H

.

(47)

As a result of this setup, there are two probabilities to calibrate: i) the probability of a
transitioning to a high uncertainty state (πL,H); and, ii) the probability of remaining in the
high uncertainty state (πH,H). The calibrated parameters are express in Table 8.
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I rely on estimates by Bloom et al. (2018) to inform (πL,H) and (πH,H). They have
estimated the stochastic process of aggregate uncertainty for the U.S. economy from 1972 to
2010. Bloom et al. (2018) estimated the variance of both idiosyncratic and aggregate shock
to productivity, as well as the transitional probabilities for such a process. They have
assumed that the underlying stochastic process which governs the transition between low
and high uncertainty states is the same for both aggregate and idiosyncratic uncertainty. As
such, I can use their estimates to inform the probabilities in this model even if I do not
model the differences between aggregate and idiosyncratic uncertainty. The Markov
process that is estimated tells us that if the economy is in the low uncertainty state, there is
a 2.6% probability of a high uncertainty shock and that the persistence of such a shock is
94.3%.

5.3.2 Increase in Uncertainty

To inform the increase of the second-moment of the distribution of fundamentals, I make
use of Institutional Brokers Estimate System (I—B—E—S) data21. The I—B—E—S contains
data about the earnings-per-share (EPS) of U.S. publicly traded companies, as well as the
analysts’ forecast of each firm’s EPS. The data is cleaned to only include U.S. based
companies and I only keep firms that report EPS data throughout the period 2005-2009.
Like Bloom et al. (2018), I have chosen to calibrate the increase in uncertainty using data 2
years either side of the 2007 Great Recession. Usually, the literature relies on sales data or
TFP data to calibrate the second-moment of the distribution of fundamentals. In contrast, I
have chosen to use EPS data for the simple reason that in the Sections 6.3 and 6 I will use
the I—B—E—S forecast data on firms’ EPS to disentangle the increase in agents’ forecast
from the realised dispersion of the firms’ EPS.

To calibrate the second-moment of the distribution of fundamentals, I use the
I—B—E—S data to construct a measure of realised dispersion of firms’ EPS. Notably,
building the firm-level dispersion of the realised EPS poses a major difficulty in that one
can only observe a single realisation of the EPS per firm at any given point in time, which
means that calculating any dispersion measure is impossible. Since the I—B—E—S data
reports at a quarterly frequency, to overcome this issue, I take the yearly dispersion of the
firm’s EPS over four quarters. As such, one can calculate the measure for realised
dispersion at the firm level as

σr
i,t =

Di,t

| ¯EPSi,t|
, (48)

where Di,t is the yearly standard deviation of the EPS for each firm i ∈ [0, J], and the

21Accessible via Wharton Research Data Services.
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measure is normalised by the median of the firm’s EPS at the yearly frequency ( ¯EPSi,t). I
then take the average firm-level dispersion of the EPS, σr

i,t, to build the aggregate measure
σr

t = 1
I ∑I

i=1 σr
i,t. The realised standard deviation of EPS displays an increase of 37% from

2007 to 200922. I have used the EPS data from the I—B—E—S dataset for consistency. Since
the I—B—E—S data also provides forecasts about the firms’ EPS, later this will allow me to
empirically quantify the difference in the increase in forecast EPS dispersion and the
realised EPS dispersion.

Once I have calibrated the model to the U.S. economy pre-Great Recession, I move to
the quantitative analysis of the model. Specifically, I investigate the growth effects of an
uncertainty shock, to then delve deeper into the inspection of the mechanisms involved.

22The increase in the measure is robust in changing the start date to 2006 or 2005.
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6 Quantitative Analysis

The quantitative analysis of the model is laid out in this section. Firstly, I will analyse the
model’s response to an uncertainty shock and elicit the effects on productivity dynamics.
Next, I will make a clear distinction between the different channels at work when an
uncertainty shock hits the economy. Specifically, I will differentiate between the expectation
and distributional effects of an uncertainty shock. I will bring empirical evidence that
questions the assumption that the dispersion of firms’ expectations increases one-to-one
with the realised dispersion of shocks during an uncertainty shock. Finally, I will model
uncertainty by separately calibrating the dispersion of the firms’ expectations and the
dispersion of realised shocks, such that a shock to uncertainty can replicate the slow
recovery and weak productivity growth experienced by the U.S. economy after the Great
Recession.

6.1 The Growth Effects of an Uncertainty Shock

I turn to the analysis of the model’s response following a second-moment shock to the
fundamentals. After having solved the model under aggregate uncertainty using a variant
of the Krusell and Smith (1998) algorithm, where I leave the elucidation of the algorithm
employed for the Appendix C.5, the model is subjected to a second-moment shock to the
productivity process of the final good firms. As per the timing established in the model, the
firm learns next period’s productivity distribution one period in advance. The response of
the economy is calculated as follows. I independently simulate 1000 economies for 200
quarters each, where for the first 100 quarters the exogenous processes of productivity and
uncertainty evolve as indicated by their respective stochastic processes. Then, for all
economies at the 101st quarter, I shock the second-moment of the productivity distribution
and impose it be in the higher level σ = σH, regardless of the histories. Following the
homogeneous shock to the economies, each economy’s stochastic process will evolve
normally until the 200th quarter. I compute the model’s response to the shock as the
average impulse response functions for each variable across the different economies23.
More details of the conditional simulation can be found in Appendix C.5.4.

Figure 3 displays the model’s response to an increase in the second-moment of the firms’
fundamentals. Note that I have normalised the shock period to the first quarter. The red
line with o symbols represents the model’s response to the second-moment shock, the blue
line with × symbols represents the response to the model without the endogenous growth

23Robustness of the results is carried out by increasing the number of economies and the total length of each
economy, as well as varying the shock period. Safe to say that the results are robust to all these checks.
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Figure 3. Growth Effects of an Uncertainty Shock

Notes: The figure shows the response of the endogenous growth model to a second-moment shock to the fundamentals. The
red line with o symbols displays the model’s response with the endogenous growth mechanism, whilst the blue line with ×
symbols represents the model’s response without endogenous growth, and the black dashed line shows the model’s response
in partial equilibrium (PE) setting. The horizon is in quarters. Note that all plots are in percentage deviations from the
Balanced Growth Path, except the growth rate plot (g) and the inaction plot, which are in percentage points deviations.
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mechanism in place24, and the black dashed line represents the model’s response in a partial
equilibrium setting. As previously mentioned, note that the Total Factor Productivity does
not have a closed-form expression. However, following previous literature, I define it as
TFP = Y/

(
L(1−ζ)N

ζ
ν Xζ

)γ
, where Y, L, and X are the aggregates of output, labour, and

intangible capital goods.
In Figure 3 it is immediately noticeable the similarity of the response of this model to

exercises undertaken by Bloom (2009) concerning physical capital, most starkly, in the
response of aggregate capital and output. The initial shock provokes a severe downturn in
investment in intangible capital goods (Ix) of around 10% and a decrease in the intangible
capital goods (X) by 0.35%, followed by a sharp upturn which overshoots above its initial
BGP level before converging to the original level after 40 quarters. The reaction of final
good firms to the heightened levels of uncertainty causes a sharp decline in intangible
capital investment.

The endogenous growth mechanism in the model operates through two key channels:
i) the stochastic discount factor channel; ii) and the intangible capital demand channel. I
discuss the mechanism of each of these in turn.

Stochastic Discount Factor Channel — The endogenous growth mechanism, as shown
by the different responses of the two models in the first quarter, produces an increase in
growth on impact due to the increase in consumption that generates a one-time increase in
the stochastic discount factor. The increase in the stochastic discount factor is a by-product
of the uncertainty shock in a general equilibrium setting. As already noted by Bloom et al.
(2018), uncertainty generates misallocation of the factor of inputs as firms do not adjust
their intangible capital optimally. This misallocation acts similarly to a negative
first-moment shock to aggregate productivity. As the household observes this
pseudo-first-moment shock, it lowers the expected return on savings, therefore discouraging
saving and rendering consumption more attractive, at least in the first period. The
consumption is also allowed to increase due to the timing of the uncertainty shock. At the
period of the shock, fundamentals remain unaltered, so while intangible capital investment
will be lower today, the direct effects will only show up next period. Hence, as output
remains more or less unchanged, lower investment frees up resources for consumption.

By contrasting the general equilibrium response (the red line with o symbols) and the
partial equilibrium response (the black dashed line) in Figure 3, then it is obvious that
without the general equilibrium effects where, by definition, the stochastic discount factor
channel is switched off as the household is not modelled, this one-time increase in growth
disappears. This possibly unattractive feature of the model is given by the simplicity of

24Such a model is computed by setting the scaling parameter χ to zero, which effectively shuts off the
mechanism for endogenous accumulation of intangible capital.
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how the household is modelled. Without repetition, Bloom et al. (2018) provide some
useful suggestions on possible remedies, all of which would require significantly
increasing the computational complexity of the model.

Intangible Capital Demand Channel — Any temporary perturbations to intangible
capital dynamics produce medium-term demand in the growth of productivity (g) and
lasting effects on output (Y). Indeed, the initial fall in intangible capital investment causes
a collapse in the present discounted value of patents after the initial impact, which
discourages temporarily patent production and innovation for the first year. Figure 3
highlights a downturn in the number of patents produced (N) and a sharp decline in R&D
(S), which are absent in the model without endogenous growth. This temporary
contraction results in a fall in the growth rate of productivity and the economy of 0.05
percentage points. Nevertheless, the contraction in investment in the first few quarters is
followed by an upsurge in the periods following . As demand increases when uncertainty
subsides, the higher intangible capital goods cause a subsequent boom in the economy and
the endogenous growth mechanism produces a long-lasting expansion which lasts for
almost 10 years. This overshoot phenomenon of investment, thanks to the positive spillover
effects of intangible capital, generates an above BGP growth of productivity for nearly 30
quarters, driven by higher intangible capital demand. This increases the discounted value
of patents and results in higher R&D expenditures. Overall, the overshoot culminates with a
permanent level increase in output and productivity of around 0.6%.

Overall, the model augmented with endogenous growth features a propagation
mechanism which generates dynamics that would be absent in a model without growth.
This provides evidence of the importance of investigating the drivers of intangible capital
investment, which can generate dynamics in productivity growth and permanent change
in output. Specifically, the uncertainty shock is propagated thanks to the endogenous
growth mechanism which generates aggregate productivity dynamics that permanently
affect the level of output and productivity by altering the returns to producing patents.

6.2 Disentangling the Effect of Uncertainty on Intangible Capital Investment

The initial collapse of intangible capital investment to a second-moment shock, which
confirms the empirical findings in Section 2, seems to suggest that uncertainty causes a
brief recession in the economy, but it is immediately followed by a lasting period of higher
growth and increase productivity due to the overshooting of investment in intangible
capital. This indicates an inconsistency between the model’s response and the story of the
U.S. economy following the Great Recession, which has experienced a prolonged period of
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feeble below trend productivity growth. To understand the discrepancy between the model
and the data, one must look at disentangling the different effects of a second-moment
shock to the fundamentals.

Whenever modelling uncertainty shocks, there are two vital but juxtaposed effects
which generate the notorious J-shaped response of investment. An announced increase in
the second-moment of the fundamental distribution has expectations effects, which means
that firms’ forecast a more dispersed distribution of future fundamentals shocks; and
distributional effects, which affects the firm’s investment decisions through the realisation of
more dispersed shocks. This paper is not the first one to make the distinction between
these effects, indeed Bloom et al. (2018) have called the former “pure uncertainty shocks”
and the latter the “volatility effects”. I will discuss each effect in the context of endogenous
growth, unlike the previous literature, so as to further understand the growth effects of a
second-moment shock.

To disentangle the different effects, that is, the expectation effects and the distribution
effects, Figure 4 presents the contribution of each of the different channels to a
second-moment shock to productivity. The red line with o symbols depicts the model’s
response to a second-moment shock as before, the blue line with × symbols plots the
model’s response only with the expectation effects, and the black dashed line illustrates the
model’s response only with the distributional effects. To disentangle the two effects from
each other. I proceed as follows: to account only for the expectation effects of uncertainty,
firms in the model, upon news of the future increase in their productivity’s variance, will
take expectations under the new high uncertainty state, however, the shock that realises
will be taken from the low uncertainty state. Conversely, by assuming that firms’
expectations remain unaltered, whilst the economy is hit by the shocks drawn from the
high productivity state, it is possible to capture the distributional effects of uncertainty.

Expectation Effects — When firms forecast a higher dispersion of future productivity
shocks, two types of expectation effects underline the response of the firms’ investment
decision. Firstly, and most notably, the real option channel generates a sharp fall in
investment when higher forecast dispersion of shocks interacts with non-convex costs of
capital adjustment. When firms expect a wider distribution of fundamentals, they will find
it more beneficial to wait and see instead of investing or dis-investing. The option value of
waiting is created by the interaction of the expected higher variance of shocks and the
presence of non-convex costs of adjusting investment. Since it is costly to reverse any
investment decision thanks to these costs, some firms will ride out the uncertainty by not
adjusting their investments. Such inaction, however, causes investment in intangibles to
fall.

A secondary but less powerful effect that arises when firms expect higher dispersion of
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Figure 4. Disentangling Uncertainty Effects from the Distributional Effects

Notes: The figure shows the decomposition of the response of the endogenous growth model to a second-moment shock
to the fundamentals. The red line with o symbols displays the model’s response with the endogenous growth mechanism,
whilst the blue line with × symbols represents the baseline model’s response only with expectation effects, and the black
dashed line shows the model’s response only with the distributional effects. The horizon is in quarters. Note that all plots
are in percentage deviations from the Balanced Growth Path, except the growth rate plot (g) and the inaction plot, which
are in percentage points deviations.
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shocks is the Oi-Hartman-Abel effect25. Seen as the optimal choice of intangible capital is a
convex function with respect to productivity, an increase in the variance of the underlying
stochastic process of the fundamentals may induce firms to expand. This effect only operates
in the medium-term, because in the short-term the option value of waiting for the resolution
of uncertainty dominates thanks to the non-convex costs of adjustment. Since such non-
convex costs become less important in the medium-term, the increase in the variance of the
expected productivity shocks produces an increase in the expected average of productivity,
which induces an increase in investment.

In Figure 4, the blue line with × symbols shows that the Oi-Hartman-Abel effects are
dominated by the real option channel, which means that overall the expectation effects
produce a downturn in investment and output, leading to a prolonged recession and a
drop in the level of output and productivity through the endogenous growth mechanism.
Indeed, expectation effects alone through the real option channel produce and increase in
the share of inactive firms of 1 percentage point. The rise of inaction causes an immediate
fall in the intangible capital investment of 0.5%, leading to a fall in the growth rate of the
economy of 0.05 percentage points. As investment slowly reverts to its trend, growth is
depressed beyond the business cycle frequencies, and, eventually this leads to a 0.75%
permanent loss of output and productivity.

Distributional Effects — After the announcement one period ahead of a future increase
in the variance of the stochastic process of productivity, the firms not only are affected by
the expectation of this increase but are also directly affected by the distributional effects of
the realised variance. Firstly, an increase in the realised variance of productivity means that
after the announcement period, the firms will draw their productivity shocks from a
distribution with a larger variance. The distributional effect of a larger variance causes an
increase in investment and production, due to the convexity of the optimal investment
function with respect to productivity. This means that the new wider distribution causes
some firms to draw high productivity shocks and thus increase production and investment
disproportionately more than the firms that draw low productivity shocks. Although
similar to the aforementioned Oi-Hartman-Abel effects, the realised increased in variance
directly induces higher levels of production and investment through the realisation of the
shock, rather than the mere expectation.

A second reason, which has been less explored by the literature on uncertainty
literature, is the indirect realised first-moment shock created by an increase in the
second-moment of the productivity distribution. The indirect realised first-moment shock is a
by-product of how uncertainty has been modelled thus far, that is an anticipated increase
in the second-moment of the distribution of productivity shocks. More specifically, since

25See Oi (1961), Hartman (1972), and Abel (1983) for further clarification.
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productivity in the model is distributed as a log-normal, any increase in the variance will
be accompanied by an increase in the mean. That is, given that the productivity is
distributed as follows z ∼ logN (0, σ), then the mean of the productivity process is
µ = exp{0 + σ2

2 }, meaning that an increase in σ generates an increase in the realised mean
of productivity shocks. Hence, if the uncertainty shock increases the realised variance of
the distribution, not only may the firm directly increase its investment and output due to
the aforementioned realised variance, but the firm may also increase its investment because
it will be hit by a higher productivity shock on average.

In Figure 4, the black dashed line shows that these distributional effects have a positive
impact on intangible investment from the second period onwards when the shocks begin to
materialise. As firms are hit by shocks with higher variance, and to a smaller extent with a
higher mean, firms that receive high idiosyncratic productivity shocks begin to increase their
investment and their production. In contrast to the expectation effects, the distributional
effects generate a fall in the share of inactive firms of more than 2 percentage points. In fact,
without the change in expectations, the real option channel disappears. The distributional
effects cause investment to increase by 7.5% and output by 1.25%. As investment begins to
decline, the endogenous growth mechanism pushes the growth rate up by 0.06 percentage
points. Overall, these effects lead to a permanent increase in output and productivity of
1.25%.

6.3 Firm-level Evidence of the Components of an Uncertainty Shock

As demonstrated by the exercise in Section 6.2, it is paramount to understand whether this
uncertainty shock is driven by expectation or distributional effects to establish the
permanent effects of uncertainty. That is, whether the effect of uncertainty derives from an
increase in the expected variance of future shocks (Eσ′), or an increase in the realised
variance of the shocks (σ′). Seen as these sources produce opposed responses to investment
and therefore productivity dynamics, it is necessary to understand the relevant
contribution of these effects in the data to understand the effects of uncertainty.

So far, when modelling uncertainty, I have assumed, along with the literature on
uncertainty, that an announced increase in the variance of productivity is fully
materialised, that is, Eσ′ = σ′. This supposes that the forecast variance of the firms
increases one-to-one with the variance of the realised shocks. To discern whether this
happens in reality, I turn to the data.

The novelty of the Institutional Brokers Estimate System (I—B—E—S) dataset is that
apart from containing data on the Earning-Per-Share of the publicly listed U.S. companies,
it also contains point forecast of the EPS made by individual analysts. Forecast data on EPS
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provides a simple, yet intuitive, manner to measure the dispersion of the firm’s expected
distribution of fundamentals, and as such, I can identify it separately from the dispersion of
realised shocks. Indeed, EPS forecasts yield ex-ante data on the agents’ beliefs of the firm’s
fundamentals, whilst the realised EPS provides information on the actual fundamentals.

Consequently, using the same data as the one utilised for the calibration of the
uncertainty shock, I build an aggregate measure of within-firm forecast dispersion in the
following manner. I first calculate the quarterly dispersion measure

σ
f
i,q =

D f
i,q

| ¯EPS f
i,q|

, (49)

where D f
i,q is the quarterly standard deviation of the EPS forecast made by the analysts for

the firm i ∈ [0, J] at the forecast period t, and it is normalised by the quarterly median
forecast of Earning-Per-Share, ¯EPS f

i,q. To be consistent with the earlier measure, I construct
the measure at the yearly frequency by taking the yearly average across quarters and firms26,
and it can be expressed as

σ
f
t =

1
Q

Q

∑
q=1

1
I

I

∑
i=1

σ
f
i,q, (50)

where t is the yearly frequency.
Figure 5 illustrates the dispersion of forecasted σ

f
t and realised earnings-per-share (EPS)

ratios σr
t . The solid blue line displays the EPS forecast dispersion measure (σ f

t ), whilst the red
dashed line illustrates the realised EPS dispersion (σr

t ). The measures are indexed at the pre-
Great Recession levels with the base year 2007. As evidenced by Figure 5, during the Great
Recession forecast dispersion has increased at a greater rate than the realised dispersion. If
one compares the measures, the realised dispersion increased by just over a third, whereas
forecast dispersion increase more than three-fold, precisely by 3.17%. The repercussions of
these finding are vital to this paper and this line of research as a whole. It is shown that
during the Great Recession, firms expected a higher dispersion of future shocks which only
partially materialised. This evidence provides support to the thesis that during the Great
Recession the expectation effects of uncertainty have been far greater than the distributional
effects, and one should not assume that the forecast variance of the firms increases one-to-
one with the variance of the realised shocks.

26Such adjustment also corrects for any seasonality within the year.
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Figure 5. Evidence of Expectation and Distributional Effects
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Source: Institutional Brokers Estimate System (I—B—E—S) accessed via Wharton Research Data Services at https:
// wrds-www. wharton. upenn. edu/ .
Notes: The figure displays the within-firm dispersion of Earning-Per-Share σr

t and the dispersion of its forecast σ
f
t . The

solid blue line displays the EPS forecast dispersion measure, whilst the red and dashed line illustrates the realised EPS
dispersion. The measures have been indexed at pre-Great recession level using the year 2007 as the base year.

6.4 The Scarring Effects of Uncertainty during the Great Recession

In light of this evidence, I update the assumptions in modelling uncertainty to calculate the
scarring effects of uncertainty brought about by the Great Recession. As mentioned above,
so far when modelling an uncertainty shock it has been assumed that the dispersion
expected by firms is exactly equal to the realised dispersion. As highlighted by Section 6.3,
this assumption is not borne out in the data. As a result, in this section, I present an
alternative modelling of uncertainty, where I decouple the stochastic process of realised
shocks (σ) and the firms’ expectations of such shocks (σ f ).

To model such shock, I assume that in the low uncertainty state, the stochastic process
of firms’ fundamentals and the firms’ expectations have the same variance, that is σ

f
L =
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Figure 6. Uncertainty Shock during the Great Recession

 

Notes: The figure shows the response of the model to an uncertainty shock during the Great Recession when calibrating
separately the firms’ expectation variance and the shock realisation variance. The red line with o symbols displays the
baseline model’s response with the endogenous growth mechanism. The blue line with × symbols represents the model’s
response only with the expectation effects, and the black dashed line shows the model’s response only with the distributional
effects. The horizon is in quarters. Note that all plots are in percentage deviations from the Balanced Growth Path, except
the growth rate plot (g) and the inaction plot, which are in percentage points deviations.
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σL. However, in the high uncertainty this equality breaks down. Specifically, I assume
that whilst the variance of the shock’s stochastic process increases by a just over a third
(σH = 1.37 ∗ σL), the variance of firms’ forecast of such shocks increases more than three-
fold (σ f

H = 3.17 ∗ σL).
Figure 6 plots the model’s response to an uncertainty shock when expected dispersion

and the realised dispersion of fundamentals are decoupled. Immediately, one notices that
the model can replicate the slow recovery in productivity growth experienced by the U.S.
economy post-Great Recession. Indeed, as the uncertainty shock hits the economy, in the
short-run the model behaves as before, that is, the real option effects generate an option
value of waiting to invest for firms. The percentage of inactive firms, firms that freeze their
investment decisions, spikes by 4 percentage points with respect to the pre-shock period,
and only slowly converges back to its usual level after around 40 quarters. The higher
investment inactivity by firms means that intangible capital investment falls by 30%
causing lower growth of productivity, which is around half of the drop in intangible capital
investment in the Great Recession. The lower intangible investment generates a quarterly
loss of 11 percentage point in productivity growth, which amounts to 50 basis points per
annum. Even if investment slight overshoots as the distributional effects are still present
but are not as strong as before, there is a slow decline in output which culminates to a
permanent fall of 1.0% produced by the endogenous growth mechanism. Similarly, whilst
the growth rate of productivity reverts to its BGP levels, there is a permanent effect on the
level of productivity of around 1.0%. The model simulations indicate that uncertainty has
accounted for a fifth of the GDP lost and a quarter of the loss in TFP in the U.S. as a
consequence of the Great Recession.

As before, general equilibrium effects, through the stochastic discount factor channel,
cause a one-period increase in growth rates, which reverses as soon as the stock of
intangible capital begins to decline. As fundamentals do not change when the uncertainty
shock hits the economy, the stochastic discount factor increases because the marginal utility
of consumption (p) needed to clear the final good market increases. Thereby increasing the
present discounted value of patents for one-period, which fuels innovation and R&D
spending. The slight increase in labour and output is again due to the lack of labour
frictions, seen as the uncertainty shock lowers wages, so firms will increase labour demand
and production in the first period.

Figure 6 also depicts the model’s responses with just the expectation effects (the blue line
with × symbols) and just the distributional effects (the black dashed line). What is evident is
that, under this new specification of an uncertainty shock, where the forecast variance is
decoupled from the variance of the realisation of the shock, the expectation effects through
the real option channel dominates the model’s overall response. Most strikingly, the
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difference is made by the share of firms that exhibit an inactive behaviour with respect to
intangible capital investment.

Interestingly, by separately calibrating the increase in the firms’ forecast variance about
future shock and the realised dispersion of such shocks, the model can resolve the
overshooting problem that uncertainty shocks can generate. The empirical uncertainty
literature, most notably Jurado et al. (2015), has found empirical evidence of the output and
other macroeconomic variable overshooting following an uncertainty shock to be lacking.
This paper demonstrates that the divergence between the empirical data and the theory
rests on the fact that, whilst in model forecast and realised variance increase one-to-one, in
the data, forecast variance increases more than realised variance. Therefore by decoupling
the two processes, I can replicate the empirical evidence of the literature.
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7 Conclusion

During the last two decades, the U.S. economy has undergone a great transformation: the
amount of net investment in intangible capital has overtaken the net investment in tangible
(physical) capital. However, unlike tangible capital, investment in intangible capital is a
key driver of productivity growth. As a result of this transformation and the nature of
intangible capital, understanding the drivers of investment in intangibles can rationalise
recent trends in productivity growth, such as the post-Great Recession slowdown in
productivity growth. A vital determinant of investment is uncertainty, however, recent
literature has focused on the effects of uncertainty on physical capital. The objective of this
paper was to investigate the effects of uncertainty on productivity growth dynamics
through intangible capital investment.

The paper generated two key insights. Firstly, I provided empirical evidence of
uncertainty reducing investment in intangible capital. Using data on publicly traded firms,
and exploiting the firm-level variations on investment, I establish a causal link between
uncertainty and firms’ investment decisions in intangible capital and R&D. I find that a
standard deviation increasing the Jurado et al. (2015) uncertainty index causes a fall in
intangible capital of 1.6% and a reduction in R&D expenditures of 0.9%.

Secondly, I developed a general equilibrium growth model with heterogeneous firms to
understand the effects of uncertainty on productivity dynamics. Calibrating the model to
the U.S. economy pre-Great Recession, and simulating an uncertainty shock, modelled as
an increase in the dispersion of the final good firms’ fundamentals, the model produces an
immediate recession followed by a prolonged expansion. Investment falls due to the real
option channel on impact, causing a recession and a downturn in productivity growth.
However, after the initial fall, distributional effects produce a sustained recovery in
intangible capital and therefore productivity growth. Although the model confirms the
empirical findings which see uncertainty reducing investment in intangible capital at least
in the short-term, it is not able to produce the feeble productivity growth experienced by
the U.S. economy post-Great Recession.

Nevertheless, using forecast dispersion earnings-per-share data on publicly traded
firms, the paper has questioned the validity of a key assumption when modelling
uncertainty shocks. Specifically, when modelling uncertainty it is normally assumed that
firms’ expectations of the variance of the shocks increase on-to-one with the dispersion of
realised shocks. However, I provide empirical evidence that during periods of high
uncertainty, firms expect a higher dispersion of possible shocks in contrast to the shocks
that are realised. When allowing firms’ beliefs to differ from the realised shocks in the
second-moment of the distribution of fundamentals, more precisely, when imposing that
firms expect a greater variance of the distribution than the realised shocks, the model is
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also able to account for the weak productivity growth that has plagued the U.S. economy
after the financial crisis of 2008. The model estimates that uncertainty during the Great
Recession has slowed down productivity growth by 50 basis points per annum, causing a
permanent loss of output and productivity equal to 1.0%. The result is driven by the fact
that expectation effects, which drive the real option channel, are stronger when modelling
firms’ beliefs separately from the realised shocks to the fundamentals. The permanent loss
of output generated by a temporary shock to uncertainty accounts for a fifth of the GDP
permanently lost by the U.S. economy since the Great Recession; whilst the loss in
productivity amounts to a quarter of the permanent TFP lost during the same period.

Finally, a vital contribution of this paper, aside from its stated objective, has been the
ability to solve a model with both a non-trivial distribution of heterogeneous agents and a
first-order difference system of equations. Such computational achievement can help
researchers tackle economic questions that require models thus-far deemed too complex to
solve computationally.
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Impact of Financial and Uncertainty Shocks. European Economic Review, 88:185 – 207. SI:
The Post-Crisis Slump.

Comin, D. and Gertler, M. (2006). Medium-Term Business Cycles. American Economic Review,
96(3):523–551.

Cooper, R. W. and Haltiwanger, J. C. (2006). On the Nature of Capital Adjustment Costs. The
Review of Economic Studies, 73(3):611–633.

Corrado, C., Haskel, J., Jona-Lasinio, C., and Iommi, M. (2016). Intangible Investment in
the EU and US Before and Since the Great Recession and its Contribution to Productivity
Growth. EIB Working Papers 2016/08, European Investment Bank (EIB).

Corrado, C., Hulten, C., and Sichel, D. (2009). Intangible Capital And U.S. Economic
Growth. Review of Income and Wealth, 55(3):661–685.

Correia, S. (2016). REGHDFE: Stata Module to Perform Linear or Instrumental-Variable
Regression Absorbing Any Number of High-Dimensional Fixed Effects.

Den Haan, W. J. (2010). Assessing the Accuracy of the Aggregate Law of Motion in Models
with Heterogeneous Agents. Journal of Economic Dynamics and Control, 34(1):79 – 99.

Dixit, A. K. and Stiglitz, J. E. (1977). Monopolistic Competition and Optimum Product
Diversity. American Economic Review, 67(3):297–308.

56



Fernald, J. G. (2012). A Quarterly, Utilization-Adjusted Series on Total Factor Productivity.
Working Paper Series 2012-19, Federal Reserve Bank of San Francisco.

Fernald, J. G. (2014). Productivity and Potential Output Before, During, and After the Great
Recession. Working Paper Series 2014-15, Federal Reserve Bank of San Francisco.

Garcia-Macia, D. (2017). The Financing of Ideas and the Great Deviation. IMF Working
Papers 17/176, International Monetary Fund.
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Appendices

A Data and Empirics

The COMPUSTAT data requires some attention before the estimation. In this section, I
describe the steps I have taken to clean and construct the data. First, I remove all firms
which are not based in the U.S. by only keeping those firms that have ”USA” as their ISO
Country code of incorporation character. Subsequently, all duplicates are eliminated by
dropping the observations that contain ”PRE-FASB” in their company name. I also remove
all the observations which have missing data for any of the variables I employ in the
estimation, except for the firm’s net value intangible capital since it is only reported from
the year 2000 onward. Further, I drop the firms which do not report consecutive quarterly
data. Consequently, I deflate the R&D expenses using the GDP implicit deflator. Since the
model does not take into account the firms’ dynamics - that is the entry and exit of firms in
the market - to make the dataset and model as compatible as possible I drop the first and
last observation from every firm in the dataset. Finally, another problem of data is that
there are observations that show enormous increases and decreases in intangible
investment of an order of ten times the stock of the firm’s intangible capital stock. This
problem arises due to firms merging or purchasing other firms and integrating the capital
stock. Since the model is not capable of capturing these dynamics, I drop these data points
which are observed in the top and bottom 1% of the dataset.

I proceed in constructing three extra variables necessary for the empirical strategy:
market capitalisation is built by multiplying the firm’s total outstanding common shares
with the price of the firm’s stock at quarterly close; sales growth is the difference in logs
between the firm’s total sales at period t and period t− 1; research intensity is expressed as
the firm’s research expenses over total assets.
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B Method of Simulated Moments

The Method of Simulated Moments (MSM) as introduced by McFadden (1989) obtains the
parameters which minimise the sum of squared residuals between the data moments and
the model’s moments, which can be represented as:

Θ = arg min
Θ

d(Θ)′Wd(Θ), (51)

where Θ is a N × 1 vector of parameters, d(Θ) is a M × 1 vector of residuals, and W is a
M×M weighting matrix. There is requirement that there are as many parameters (N) and
moments (M), that is N ≥ M. In the case that N = M then the model is just-identified,
whereas if N > M the model is over-identified. Note that setting W as a diagonal matrix
with the bootstrapped standard deviation of each moment in the data ensures that when
solving Equation 51 minimises the distance between data moments and the model’s
moments in the most efficient manner.

In order to solve the MSM I rely on the root-finding method of Nelder and Mead (1965).
Since I use a local root-finding method, I conduct robust checks by altering both the initial
starting values and the step factor and I find that results do not change.
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C Model and Computational Strategy

C.1 State Space Discretization

The model contains a total of three states to discretise: idiosyncratic productivity (z),
idiosyncratic capital good (x), uncertainty states (σ). The discretization of the three states is
as follows:

• The idiosyncratic productivity (z) is discretised into a grid z ∈ {z1, ..., zNz} containing
of Nz = 5 log-linearly spaced points.

• The idiosyncratic intangible capital good (x) is discretized into a grid x ∈ {x1, ..., xNx}
containing of Nx = 25 log-linearly points between 1× e−5 and 1× e1.

• The aggregate states (σ) are four (Nσ = 2): the low uncertainty state (σL) and the high
uncertainty state (σH). These aggregate states can be represented into the following
grid σ ∈ {σL, σH}.

• The stochastic process of the aggregate states can be represented by the transition
matrix Γσ of size Nσ × Nσ where ∑Nσ

l=1 πσ j, l = 1 for all j ∈ {1, ..., Nσ}. The transition
matrix probabilities are displayed in Equation 47.

Overall, the state space used for the numerical method used for the computational purposes
of the model is Nz × Nx × Nσ × Nσ, or more specifically 5× 25× 2× 2.
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C.2 Stationary Model

Given that the model features an endogenous growth rate g, in order for the model to be
solved, one needs to stationarise the model by removing the trend. For the economy to
exhibit a constant growth rate, the model is assumed to have homogeneity of degree one
in the production function with regards to the accumulating factors of production and a
constant interest rate. In this case, then all accumulating variables will growth at the same
rate g. Here I present the stationarised model equations.

Household
p̂(N, σ, µ) =

1
Ĉ(N, σ, µ)

, (52)

ŵ(N, σ, µ) =
ϕ

p̂(N, σ, µ)
, (53)

Ω̂(N, σ, µ) =
β

1 + g′(N, σ, µ)
. (54)

Final Good Firm
ŷ(z, l, x; N) = z

(
l(1−ζ)xζ

)γ
, (55)

V̂(z, x; N, σ, µ) =
∫ ξ

0

ˆ̃V(z, x, ξ; N, σ, µ)G(dξ), (56)

ˆ̃V(z, x; N, σ, µ) = max
{
−ξ ŷ(z, l, x; N, σ, µ) + V̂A(z, x; N, σ, µ),

V̂NA(z, x; N, σ, µ)
}

,
(57)

V̂A(z, x; N, σ, µ) = max
x′,l

p̂(N, σ, µ)
{

ŷ(z, l, x; N, σ, µ)− px[(1 + g′)x′ + (1− δ)x]

−ŵ(N, σ, µ)l −ωI(ix < 0)}
+ βEV̂(z′, x′; N′, σ′, µ′|z, N, σ, µ),

(58)

V̂NA(z, x; N, σ, µ) = max
l

p̂(N, σ, µ) {ŷ(z, l, x; N, σ, µ)− ŵ(N, σ, µ)l}

+ βEV̂(z′, x(1− δ); N′, σ′, µ′|z, N, σ, µ),
(59)

ξ̂(z, x; N, σ, µ) =
V̂A(z, x; N, σ, µ)− V̂NA(z, x; N, σ, µ)

ŷ(z, l, x; N)
. (60)
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Intangible Good Sector

px =
1
ν

, (61)

Π(N, σ, µ) = (px − 1)X(N, σ, µ), (62)

F̂(N, σ, µ) = p̂(N, σ, µ)Π(N, σ, µ) + (1− φ)βE
F̂(N′, σ′, µ′|N, σ, µ)

1 + g′(N, σ, µ)
. (63)

Innovation Sector
θ̂(N, σ, µ) = χŜ(N, σ, µ)(η−1), (64)

θ̂(N, σ, µ) =
p̂(N, σ, µ)(1 + g′(N, σ, µ))

βEF̂(N′, σ′, µ′)
, (65)

[1 + g′(N, σ, µ)] = θ̂(N, σ, µ)Ŝ(N, σ, µ) + (1− φ). (66)

Market Clearing Conditions

Ŷ(N, σ, µ) = Ĉ(N, σ, µ) + (1 + g)X(N, σ, µ) + Ŝ(N, σ, µ) + Ξ̂(N, σ, µ) (67)

Λ̂(zm, x, µ; N, σ, µ) = µ′(zm, x) ∀(zm, x) ∈ S and
∫

S
µ′(zm, x) = 1, (68)

L̂h(N, σ, µ) =
∫

S
L(z, x; N, σ, µ)µ(d[z× x̃]), (69)

X(N, σ, µ) =
∫

S

∫ ξ̄

0
X(z, x, ξ; N, σ, µ)G(dξ)d([z× x]), (70)

Ŷ(N, σ, µ) =
∫

S
y(z, l(z, x; N, σ, µ), x; N)µ(d[z× x]), (71)

Ξ̂(N, σ, µ) =
∫ ξ

0
[(1 + g)ŷ(z, l, x; N)I(ix 6= 0) + ωI(ix < 0)] G(dξ)µ(d[z× x]). (72)
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C.3 Non-Stochastic Balanced Growth Path Equations

To calculate the Non-Stochastic Balanced Growth Path (NSBGP), I assume that economy is
not hit by any aggregate shocks, so that the aggregate state does not change (σ′ = σ). It is
assumed that the growth rate of the economy is constant, thus g′ = g, such that the economy
is on the balanced growth path. As such, I assume that any aggregate variable â′ = â if the
variable is a growing variable at rate g, and a′ = a if it is constant. Here I present the model’s
stationarised equations for the Non-Stochastic Balanced Growth Path.

Household
p̂ =

1
Ĉ

, (73)

ŵ =
ϕ

p̂
, (74)

d̂ =
β

1 + g
. (75)

Final Good Firm
ŷ(z, l, x) = z

(
l(1−ζ)xζ

)γ
, (76)

V̂(z, x) =
∫ ξ

0

ˆ̃V(z, x, ξ)G(dξ), (77)

ˆ̃V(z, x) = max{−ξ ŷ(z, l, x) + V̂A(z, x), V̂NA(z, x)}, (78)

V̂A(z, x) = max
x′,l

p̂{ŷ(z, l, x)−px[(1 + g)x′ + (1− δ)x]− ŵl −ωI(ix < 0)}

+ βEV̂(z′, x′),
(79)

V̂NA(z, x) = max
l

p̂ {ŷ(z, l, x)− ŵl} + βEV̂(z′, (1− δ)x), (80)

ξ̂(z, x) =
V̂A(z, x)− V̂NA(z, x)

ŷ(z, l, x)
. (81)
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Intangible Good Sector

px =
1
ν

, (82)

Π = (px − 1)X, (83)

F̂ =
p̂Π(1 + g)

1− (1− φ)β
(84)

Innovation Sector
θ̂ = χŜ(η−1), (85)

θ̂ =
p̂(1 + g)

βF̂
, (86)

(1 + g) = θ̂Ŝ + (1− φ). (87)

Market Clearing Conditions

Ŷ = Ĉ + (1 + g)X + Ŝ + Ξ̂, (88)

Λ̂(zm, x, µ) = µ′(zm, x) ∀(zm, x) ∈ S and
∫

S
µ′(zm, x) = 1, (89)

L̂h =
∫

S
l(z, x)µ(d[z× x]), (90)

X =
∫

S

∫ ξ̄

0
X(z, x, ξ)G(dξ)d([z× x]), (91)

Ŷ =
∫

S
y(z, L(z, x), x)µ(d[z× x]), (92)

Ξ̂ =
∫ ξ

0
[ŷ(z, l, x)I(ix 6= 0) + ωI(ix < 0)] G(dξ)µ(d[z× x]). (93)
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C.4 Balanced Growth Path Algorithm

In this section, I explain how the model’s balance growth path is solved, where the
objective is to find the economy’s growth rate g. When solving for the Non-Stochastic
Balanced Growth Path I abstract from aggregate uncertainty and I fix the aggregate state of
the economy (σ′ = σ).

The solution involves bisecting the price of the consumption good p (the marginal
utility of consumption) around the excess consumption demand. Even though the model
features multiple prices, I only bisect the price of consumption due to some simplifications
which render the solution computationally feasible. Firstly, thanks to the functional form of
the utility function that has been assumed, I only have to bisect about the price of the
consumption good, since the wage w is only functions of parameters and of p. Secondly,
due to the symmetric equilibrium assumed in the intangible good sector I know that the
price of the intangible capital goods, px is only a function of the elasticity of substitution of
patents, which means it is constant.

As a result the algorithm for finding the model’s growth rate in the Balanced Growth
Path is the following.

C.4.1 Bisection Algorithm

1. Start by guessing an upper and lower bound of price p: p+ and p−. Let γb ∈ (0, ∞] be
the bounds updating parameter.

2. Check that the upper bound price p+ yields an excess supply of consumption by
solving the model in BGP (see C.4.2 BGP Model Algorithm), if not update
p+ = (1 + γp)p+ and repeat step.

3. Check that the lower bound price p− yields an excess demand of consumption by
solving the model in BGP (see C.4.2 BGP Model Algorithm), if not update p− = (1−
γb)p− and repeat step.

4. Once I have the upper and lower bound of price, p+ and p−, I can bisect the price
accordingly: p∗ = (p+ + p−)/2, and solve the model in BGP (see C.4.2 BGP Model
Algorithm):

(a) If p∗ yields excess consumption supply set p+ = p∗ and repeat Step 4.

(b) If p∗ yields excess consumption demand set p− = p∗ and repeat Step 4.

(c) If p∗ clears the consumption good market within a set tolerance, exit the
algorithm.
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C.4.2 BGP Model Algorithm

The solution for the model given a certain guess on the consumption price p is found as
follows.

1. Given the price p, use the household’s first order condition with respect to labour
(Equation 74) to find the wage rate w.

2. Solve the final good firm’s value function using the value function iteration technique
to find the optimal policy functions Y(z, l, x) , L(z, x), X(z, x), ξT(z, x) given the price
p:

(a) Guess an initial next period’s value function V(z′, x′) = Y(z, l, x)27.

(b) Using the guess for V(z′, x′), solve the firm’s value function conditional on
adjusting (Equation 79) and not adjusting capital (Equation 80) and retrieve both
the value functions VA(z, x), VNA(z, x) and the policy functions
Y(z, l, x), L(z, x), XA(z, x), XNA(z, x).

(c) Using the threshold’s policy function (Equation 81) find the policy function for
adjusting capital or not ξT(z, x).

(d) Find the value for today’s value function V(z, x) using the policy functions
ξT(z, x) and value functions (VA(z, x), VNA(z, x) (Equation 77 and Equation 78).

(e) If the error between the guess V(z′, x′) and V(z, x) is within a set tolerance, then
exit the loop; otherwise, set V(z′, x′) = V(z, x) and repeat steps (b) to (d).

3. Once the final goods firm’s problem is solved retrieve the policy functions and solve
for the ergodic stationary distribution µ(z, x):

(a) Guess an initial distribution µ(z, x).

(b) Using the policy functions X(z, x), ξT(z, x) and the stochastic transitional matrix
for the productivity process Γz find next period’s distribution µ(z′, x′).

(c) If the error between the guess µ(z, x) and next period’s distribution µ(z′, x′) is
within a set tolerance, then exit the loop; otherwise, update the distribution
µ(z, x) = µ(z′, x′) and repeat step (b).

4. Solve the intangible good sector’s problem with the value function iteration technique
and using the policy functions and the stationary distribution obtained:

27I use this guess as it has the advantage of skipping the initial iteration when one uses V(z′, x′) = 0 as a
guess.
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(a) Using the intangible good policy function X(z, x), the capital adjustment policy
function ξT(z, x), and the stationary distribution µ(z, x), find the total intangible
capital good X.

(b) Calculate the current period profits (ΠX) for intangible capital goods (Equation
82 and Equation 83).

(c) Guess initial next period value function F′ = ΠX.

(d) Solve the innovation sector’s system of non-linear equations (Equations 85, 86,
and 87) using the Nelder and Mead (1965) root-finding method. Obtain the
optimal growth rate g given the guess on F′.

(e) Using g and F′ solve the intangible good firm’s value function and obtain F.

(f) If the error between the guess F and next period’s value function F′ is within a
set tolerance, then exit the loop; otherwise, update the guess F′ = F and repeat
steps (d) to (e).

5. Calculate the consumption supplied Cs using the aggregate constraint (Equation 88),
the policy functions and the stationary distribution.

6. Using the household’ first order condition with respect to consumption (Equation 73)
calculate the consumption demanded Cd given the price p.
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C.5 Stochastic Model Solution Algorithm

The simulation algorithm for the model under aggregate uncertainty follows the method
of Krusell and Smith (1998). The model solution is based on iterating on the beliefs of the
laws of motion of agents regarding the aggregate intangible capital level and the price of
consumption. However, seen as I am working with a model with an endogenous growth
rate, some modification are needed to the original algorithm. Indeed, the original Krusell
and Smith (1998) algorithm is augmented with a section which solves for the growth rate of
the economy using a system of non-linear first order difference equations. What follows is
an elucidation of the algorithm used to solve the model under aggregate uncertainty.

C.5.1 Outer Loop Algorithm

1. Guess the coefficients for the endogenous law of motion of the joint distribution
µ(z, X) using the first moment X̂ as its characterisation:

log(X̂′) = αX
i,j + βX

i,jlog(X̂) where i, j = {σL, σH}. (94)

2. Guess the coefficients for the forecast of the price of consumption p:

log(p) = α
p
i,j + β

p
i,jlog(X̂) where i, j = {σL, σH}. (95)

3. Solve the model for all states and for all aggregate intangible capital grid points to
obtain the final good firms value function V(z, x; σi, σ′j , X̃), the intangible good firm
value function F(σi, σ′j , X̃), where X̃ represents the aggregate intangible capital grid28.
See Algorithm C.5.2 for details.

4. Having obtained the value functions for all states and aggregate grid points over the
aggregate intangible capital grid, I can now unconditionally simulate the economy for
T periods. See Algorithm C.5.3 for details.

5. Figure out whether the time series of X, p are generated from the unconditional
simulation are the same as the time series X f ′, p f generated by the beliefs of the laws
of motions.

(a) Regress the time series X f ′ and p f on X separately for each state i, j = {σL, σH}:

log(X̂′) = α̂X
i,j + β̂X

i,jlog(X), (96)

28This is how the highly dimensional object µ is discretized, by assuming that only the mean, that is the
aggregate intangible level of capital matters.
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log(p) = α̂
p
i,j + β̂

p
i,jlog(X), (97)

(b) Calculate errors between the time series generated, ErrX, Errp.

(c) Execute the Den Haan (2010) check.

6. If the errors ErrX, Errp are within a set tolerance, then exit the loop.

7. Otherwise, let γKS be the coefficient’s updating parameter and update the coefficients
as follows:

αm
i,j = γKSα̂m

i,j + (1− γKS)αm
i,j ∀ m = {X, p} ∀ i, j = {σH, σL}, (98)

βm
i,j = γKS β̂m

i,j + (1− γKS)βm
i,j ∀ m = {X, p} ∀ i, j = {σH, σL}. (99)

8. Repeat steps 3 to 5.

C.5.2 Inner Loop Algorithm

This algorithm solve the model given a set of beliefs on the laws of motion for X and p.

1. Using the coefficients guessed {αm
i,j, βm

i,j} ∀ m = X, p and ∀ i, j = {σL, σH}, obtain

the forecasts: X̃ f (σi, σ′j , X̃) and p f (σi, σ′j , X̃).

2. Using the household’s labour first order condition obtain the wage forecast
w f (σi, σ′j , X̃).

3. Use the intangible good firm’s symmetric equilibrium result for the price of intangible
capital to get px.

4. Solve the final good firm’s problem using value function iteration to obtain
V f (z, x; σi, σ′j , X̃), as well as the policy function L(z, x; σi, σ′j , X̃),
X(z, x; σi, σ′j , X̃), Y(z, x; σi, σ′j , X̃). The algorithm for the value function iteration is
similar to C.4.2 BGP Model Algorithm.

5. Solve the intangible good firm’s problem using value function iteration and solving a
system of non-linear equation to obtain F f (σi, σ′j , X̃)..
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C.5.3 Unconditional Simulation Algorithm

This algorithm solve the unconditional simulation for the stochastic model given a set of
beliefs in the law of motion with respect to X and p, and the resulting value functions
V(z, x; σi, σ′j , X̃) and F f (σi, σ′j , X̃) for each state i, j = {σL, σH}. T refers to the time period of
the simulation.

For every t = 1, ..., T:

1. Draw an aggregate state σt+1 according to the exogenous process of Γσ.

2. Start by guessing an initial distribution µ1(z, x) and an initial total number of patents
N1.

3. Using the initial distribution obtain the staring level of intangible capital goods X1.

4. Using the coefficients for the law of motion for joint distribution µ(z, x) get the forecast
X̂ f

t+1, given the draw of the aggregate shock σt+1.

5. Solve the model for the state σt+1 by bisecting about pt similar to Algorithm C.4.1
Bisection Algorithm, and calculating the next period’s value functions by interpolating
V(z, x; σi, σ′j , X̃) and F f (σi, σ′j , X̃) on the forecast of X̂ f

t+1.

6. Using the policy functions Xt(z, x), ξT
t (z, x) from the previous step, and the stochastic

transitional matrix for the productivity process Γz find next period’s distribution
µ(z′, x′).

7. Obtain the aggregate intangible capital good demanded Xt+1, the growth rate gt+1,
and work out Nt+1.

C.5.4 Conditional Simulation Algorithm

This algorithm solve the conditional simulation for the stochastic model given a set of
beliefs in the law of motion with respect to X and p, and the resulting value functions
V(z, x; σi, σ′j , X̃) and F f (σi, σ′j , X̃) for each state i, j = {σL, σH}. T refers to the time period of
the simulation and Ne to the number of economies simulated.

For every i = 1, ..., Ne:

1. For every t = 1, ..., T:

(a) Draw an aggregate state σi,t+1 according to the exogenous process of Γσ.
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(b) Start by guessing an initial distribution µi,1(z, x) and an initial total number of
patents Ni,1.

(c) Using the initial distribution obtain the staring level of intangible capital goods
Xi,1.

(d) Using the coefficients for the law of motion for joint distribution µ(z, x) get the
forecast X̂ f

i,t+1, given the draw of the aggregate shock σi,t+1.

(e) Solve the model for the state σi,t+1 by bisecting about pi,t similar to Algorithm
C.4.1 Bisection Algorithm, and calculating the next period’s value functions by
interpolating V(z, x; σi, σ′j , X̃) and F f (σi, σ′j , X̃) on the forecast of X̂ f

i,t+1.

(f) Using policy functions Xi,t(z, x), ξT
i,t(z, x) from the previous step, and the

stochastic transitional matrix for the productivity process Γz find next period’s
distribution µ(z′, x′).

(g) Obtain the aggregate intangible capital good demanded Xi,t+1, the growth rate
gi,t+1, and work out Ni,t+1

2. Once you have done this for all Ne economies, the impulse response functions will be
the the average of the variables of interest:

xIRF
t =

∑Ne
1 xi,t

Ne
(100)
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