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Abstract

Time variation is a fundamental problem in statistical and econometric analysis of
macroeconomic and financial data. Recently there has been considerable focus on de-
veloping econometric modelling that enables stochastic structural change in model pa-
rameters and on model estimation by Bayesian or non-parametric kernel methods. In
the context of the estimation of covariance matrices of large dimensional panels, such
data requires taking into account time variation, possible dependence and heavy-tailed
distributions. In this paper we introduce a non-parametric version of regularisation tech-
niques for sparse large covariance matrices, developed by Bickel and Levina (2008) and
others. We focus on the robustness of such a procedure to time variation, dependence
and heavy-tailedness of distributions. The paper includes a set of results on Bernstein
type inequalities for dependent unbounded variables which are expected to be applica-
ble in econometric analysis beyond estimation of large covariance matrices. We discuss
the utility of the robust thresholding method, comparing it with other estimators in
simulations and an empirical application on the design of minimum variance portfolios.

Keywords: covariance matrix estimation, large dataset, regularization, thresholding,
shrinkage, exponential inequalities, minimum variance portfolio.

JEL classification: C13; C22; C51.

1 Introduction

This paper considers estimation of large covariance matrices under structural change, pos-

sible dependence and heavy-tailed distributions. The problem of structural change in the
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econometric literature has been mainly addressed within either univariate or relatively small
multivariate models and settings. Existing research is primarily focused on factor models
where datasets are summarised by a finite set of unobserved time series, usually referred to
as factors. Examples of this literature include Stock and Watson (2002a, 2002b). There has
been little work done on structural change in large datasets. This paper addresses the issue
without recourse to factor modelling.

Estimation of large covariance matrices is particularly demanding since the number of
estimated objects rises as a square of the dimension of the dataset leading to a large amount
of aggregated estimation error. Several regularization techniques for improved estimation of
large covariance matrices have been proposed which are summarised briefly in the body of the
paper. These include Ledoit and Wolf (2004), Bickel and Levina (2008), Cai and Liu (2011)
and Abadir, Distaso, and Zikes (2014). See also the excellent review article by Fan, Liao, and
Liu (2016) and references therein. That review article focuses on structure-based estimators of
covariance and precision matrices - that is estimators that assume sparsity or a factor model.
For structure-free estimators, see Pourahmadi (2013).

In this paper we develop regularized thresholding estimation in the presence of structural
change of a general unspecified form. The characterisation of the change is an important
aspect of the problem. In contrast to the majority of the work we allow for smooth deter-
ministic or stochastic change of the covariance matrix rather than structural breaks. Some
new characterizations of smooth change introduced in this paper expand upon the notion of
smoothness used in nonparametric inference.

There is limited literature on regularized estimation under deterministic structural change,
see Chen, Xu, and Wu (2013), Zhou, Lafferty, and Wasserman (2010) and Kolar and Xing
(2011); strong mixing, see Fan, Liao, and Mincheva (2013), and heavy-tailed data (indepen-
dent, modelled by elliptical distribution), see, e.g., Wegkamp and Zhao (2016), Han and Liu
(2017), and Fan, Wang, and Zhong (2016). All this work assumes that the volatility pro-
cess is a deterministic function or a constant which is considered extremely restrictive for
economic and financial data, both from a theoretical and an empirical point of view. In a
different stochastic setup than the one considered in the paper, Bickel, Wang, and Zhou (2013)
have provided a theoretical analysis for Bickel-Levina thresholding in the context of realized
covariance, estimated from noisy data.

We provide a unified framework for estimation of the paths of large covariance matrices,
that change over time, in a potentially stochastic way, with temporal dependence, charac-
terised by mixing, and with potentially heavy tails. The key characteristic of such regularized

estimation is robustness to all those data features, which are highly likely to be present in



financial and economic data.

Deterministic change of covariance corresponds to the typical characterization of het-
eroscedasticity. Stochastic (persistent) change of volatility, also considered in our paper, is a
standard vehicle for the modeling of structural change in the economy. It differs from ARCH
type volatility models that have dominated the financial econometrics literature since their
introduction in Engle (1982). It aligns with the empirically established fact that stochas-
tic change in volatility may be more persistent and smooth than that allowed by stationary
conditional volatility models, see Kapetanios (2010).

In order to achieve such a characterization of persistent volatility, we follow the modelling
framework of Giraitis, Kapetanios and Yates (2014, 2018) and specify that the volatility
process is, potentially stochastic, bounded and has small increments. That framework, in
turn, extended the work of, e.g., Dahlhaus (1997) on locally stationary processes, where
change was assumed to be smooth and deterministic, in nature.

This paper is organised as follows. In Section 2, we present the main results. We show that
the thresholding estimation procedure developed by Bickel and Levina (2008) and others, in
general, is robust to dependence, random scaling (volatility) and heteroscedasticity and the
type of distribution of the data. In Section 3, we discuss cross-validation methods for the
selection of tuning parameters and use simulations to compare the performance of regularized
estimation methods. In that Section, we further provide an application of regularized esti-
mation methods for designing minimum variance portfolios. Section 4 contains new results
on Bernstein type inequalities for dependent data, that are of independent interest. They are
particularly important for the rigorous analysis of penalised regression methods, like Lasso, in
the presence of time series dependence. The online supplement contains proofs and technical

results.

2 Thresholding Estimation

Given a sample (y,,---,yp) of a p-variate process y, = (y14,...,Yp:)’, estimation of the
population covariance p X p matrix 3 by the sample covariance is a well defined procedure
when p is fixed. For large covariance matrices, when p increases with 7" the poor performance of
the sample covariance matrix estimate 3 can be improved by various regularization procedures
which include the thresholding methods developed by Bickel and Levina (2008), Cai and Liu
(2011), Fan, Liao, and Mincheva (2013) and others.

The aim of this paper is to investigate the impact of dependence, heteroscedasticity and
distribution of the data on consistency rates for regularised estimation of the covariance matrix

using the Bickel and Levina (2008) thresholding procedure. Under heteroscedasticity, the
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covariance matrix ¥, = var(y,) = E[(y, — Fy,)(y, — Ey})] varies over time, and can be
estimated by the local sample covariance matrix f]t, see (10). For data with a random scaling
(volatility) component, the limit of f]t is less obvious. As shown in the following analysis,
such a limit comprises a time-varying deterministic matrix and a random scale. The novelty of
our theoretical findings is showing that the Bickel-Levina thresholding procedure is robust to
dependence, light or heavy tailedness of the data and it can be adjusted for heteroscedasticity.

To reflect the robustness properties of regularised estimation of 3;, we consider three

settings for y,. Before proceeding further, we provide assumptions, notation and definitions.

Assumption M. (i) The centered stochastic process y, — Fy, is an a-mixing (but not nec-
essarily stationary) process with mixing coefficients o' such that for some 0 < ¢ < 1 and
c>0,

ap <cgf, k>1 (1)

(ii) The elements of Ey, = (t14, ..., ptpr)’ and var(y,) = 3¢ = (0jk¢) k=1, p are such that

|t = s
max(t, s)’

|t — s
max(t, s)

el <O, e — 8] < C loikt] <O, |ojre — Ojis| < C (2)

for 1 <t,s <T where C' < oo does not depend on j,k and ¢,s and T.
The components of y, = (Y14, ..., Yp+)' can have a wide variety of tail behavior. We write

(y,) € £(s), s > 0 to denote a thin-tailed distribution for y;
II}%XEeXp(a|yj,t|5) < oo for some a > 0. (3)
The notation (y,) € H(#), 0 > 2 denotes a heavy-tailed distribution property:
max Ely;|” < oo. (4)
The definitions (3) and (4) imply that there exists ¢y > 0, ¢; > 0 such that for all ( > 0,¢ > 1,

coexp(—c1¢?) if (y;:) € €(s), s >0,

P .t — =
(lyiel =€) < {COC_Q if (y;,) € H(6), 6> 2.

Thresholding under stationarity. Suppose that y, is a stationary a-mixing process. Then,
Fy, = p and ¥ = var(y,) = [o;;] do not depend on ¢. Denote by S = [0:;] the sample

covariance estimate of 3,

E _ T*l Zz—‘:l yjy; _ ggl’ g —_— T*l Z?:l yj (5)
et FI

2 oor F5° denote o-fields generated by {y,,t < j} and {y,,t > j} respectively. Define the a-mixing
coefficient as ax = sup,; sup,cri  pere |P(A)P(B) — P(ANB)|.
—oo? itk
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Hard and adaptive thresholding, introduced by Bickel and Levina (2008) and Cai and
Liu (2011), are two standard procedures to regularize f], when p increases with 7. Hard
thresholding is based on the idea of setting the elements of f], whose absolute values are

smaller than some threshold A, to zero. It yields the estimate

Procedures based on other thresholding operators can be defined, but they have similar prop-
erties to hard thresholding, asymptotically, although they may differ in finite samples.
In their seminal work Bickel and Levina (2008) showed that if y, is an i.i.d. Gaussian

~

process, then the regularized estimator T)(3) of ¥ under a sparsity assumption is consistent,

IT\(8) = =[| = Op(n,)  with A=x 10?’, (6)
IT3(2) ™ = =7 = Op(n,A)  if nyA = o(1) and ||Z]| > ¢ > 0 (7)

where ||.|| denotes the spectral norm and & is a tuning parameter. Thresholding estimation as
a rule assumes that X is approximately sparse, i.e. the sparsity parameter, n,, which is the

maximum number of non-zero elements in a row of X,
max » I(oi; #0) =ny, (8)
p

does not grow too fast with p.
As in Bickel and Levina (2008) and Fan, Liao, and Mincheva (2013), we consider, as a
leading case, the one where X is sparse, although the theory can accommodate large n, < p.

We assume that 7', p — oo.

Theorem 1 Let y,,--- ,y; be a sample from a stationary process (y,) which satisfies As-

sumption M. Let ¢ > 0, ¢ > 0 and
T>cp?, T,p— oo (9)

Then, for sufficiently large k > 0, the reqularised estimate T,\(i) of X satisfies (6) and (7) in

the following cases.

(i) If (y,) € E(s), s > 0.
(i) If (y,) € H(F), 0 >4 and e > 8/(0 —4) in (9).

This theorem shows that the Bickel-Levina thresholding procedure is valid for a stationary

a-mixing process (y,) which may have a non-Gaussian, heavy-tailed distribution. For y, with
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a heavy-tailed distribution, it requires at least four finite moments and p should be relatively

small compared to 7.

Thresholding under heteroscedesticity. In economic applications, heteroscedasticity may
arise due to smooth changes of the mean and unconditional variance of observations. Next
we consider the case when y, is a heteroscedastic process, i.e. var(y,) = X; = [0y;] and
Ely,] = p, vary with t. To account for variation in X, we use a kernel type sample covariance

estimator 3, = (0] of 3, at time ¢ = 1, ..., T given by

=% =K' Zle b -k YY) — YUt g, =K, Zle b t—k| Y (10)

where K; = Zle bu,ji—k| and bp ik are kernel weights defined in (12). The regularized

sample covariance estimate of 3; is defined as
Ty (21) = (Giel (15154 > N)). (11)

Below we modify the thresholding procedure to account for heteroscedasticity.

We assume that 3, is approximately sparse, i.e. the maximum number of non-zero elements
in each row of X for all ¢, n,, is either finite, or does not grow too fast with p. The rate of
change of ¥; and u, will be controlled by (2) of Assumption M.

We will consider kernel estimates (10) with weights
buji-k) = K(|t = k[/H), (12)

where H — oo, H = o(T). K(z), z € (0, a) is a non-negative continuous function with finite

or infinite support, such that, for some C' > 0 and v > 3,
K@) <Cl+z))", |(d/de)K(z)| < C(1+2")"", €0, a) (13)

In particular, the functions K(z) = I(0 < =z < 1), K(x) = (1 +2¥)"! with v > 2 and
K(x) = exp(—cx®) with o > 0 satisfy (13).

The following theorem establishes the consistency properties of the regularised estimate
T (f]t) of ;. Under heteroscedasticity the threshold parameter A in (15) is larger than under
stationarity in Theorem 1. It depends on the bandwidth H (“window size”) and accounts
for the bias-variance tradeoff of change in mean u, = E[y,] and covariance 3; = var(y,). We

denote by n, the sparsity parameter of 3, defined as in (8).

Theorem 2 Suppose thaty,,--- ,yp is a sample from a p-dimensional heteroscedastic process

(y,) which satisfies Assumption M. Let ¢y, c, 0, > 0.



Then, the reqularised estimate T (f]t) of 3, 0T <t <T, with bandwidth H such that

cop” < H =0(T/\/logT) asT,p— oo (14)

for sufficiently large k has the properties

~ 1 H
HT,\(Et) — ZtH = Op(nyA) with A = ky/logp max(\/—ﬁ, T), (15)

T3 (2) ™ ==Y = Op(npd)  if nyh = o(1) and ||| > ¢ > 0 (16)

in the following two cases.
(1) If (y,) € £(s), s > 0.
(i1) If (y,) € H(O), 0 >4 and e > 8/(0 —4) in (14).

The bandwidth H,y = T?/3 yields the lowest threshold Aopt = K Efp’z =K VTI?/gf in (15).

Condition (14) on H is similar to that on 7" in equation (9), Theorem 1. The choice
of A reflects the bias—variance tradeoff of nonparametric inference. Under heteroscedasticity,
dependence and thin-tailed or heavy-tailed distribution of (y,), the optimal bandwidth, H,,; =
T?/? yields the threshold \,,; = & }3% which is the Bickel-Levina threshold (6) with T
replaced by H,,. The tuning parameter s can be selected by cross-validation.

We complete this subsection with typical examples of ;.

Example 3 The following two sequences of real numbers p, ..., pp satisfy assumption (2).

a) py =t7* Z;Zl a;, t > 1 where a; is a bounded sequence of real numbers.

b) e = pre = g(t/T), 1 <t < T where g(z), z € [0,1] is a bounded function with a bounded
derivative. Then,

t=sl _, lt—s

—ul<C
e = pl < T —  max(t,s)

for 1<t s<T.

Thresholding under random scaling. Allowing for heteroscedasticity that involves stochas-
tic scaling is crucial in modelling macroeconomic and financial data.

Such data can be put in the form

y, = Hyxy, (17)

where x; is a heteroscedastic a-mixing process with time-varying mean ng) = Fx; and

)

covariance matrix Eﬁx = var(zx;), and H; = (h;;;) is a random persistent p x p matrix-valued

scaling process. We show below, that for such y, the limit of T,\(i\]t) is a time varying matrix
— (@) g7
X =H,>3"H,
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which itself is a random process. Although no restriction on the dependence between H; and
x; is imposed, the elements (h;;;) of H, are assumed to be persistent (smooth) and thin-tailed

processes. The latter is formalized as follows.

Assumption H. The elements (h;;;) of H; have the following property. For all j, k =1,...,p,
1<t,s<T,T>2,

[t —s| \1/2
|kt — hjk,s] < (m) Pjie s (18)

where (hji.) € E(a), (hjrts) € E(a) for some a > 0.

Under Assumption H, all processes hji, and hjj s satisfy the thin tail property (3) with
the same parameters a.

In Theorem 4 we assume that the sparsity parameter ny of H; is bounded for all ¢ and p,

)

while the sparsity parameter n, of ng may increase with p.

Theorem 4 Suppose thaty,,--- ,yr is a sample from a p-dimensional process, y, as in (17).
Assume that x; satisfies Assumption M and H, satisfies Assumption H with parameter o > 0.
Let v = (a+4)/(2a) and cy, ¢, 6, > 0.
Then, the reqularised estimate T,\(it) of Xy = HtE,Ew)HQ, 0T <t < T, with the bandwidth
H such that
cop” < H =0(T/(logT)") asT,p— oo (19)

for sufficiently large k has the property that

=G e
T3 (Z) ™" = =7 = Op(npd)  if nyh = 0(1) and ||| > ¢ > 0 (21)

in the following two cases.
(i) If (xy) € E(s), s > 0.
(i) If (x;) € H(0), 0 >4 and e > 8/(0 —4) in (19).

The bandwidth H,p = T2 yields the lowest threshold Aopt = K (1355))5” = ff(l;gfzy in (20).

In the presence of random scaling, the threshold, A, in Theorem 4 is larger and the consistency
rate slower than in Theorem 2 under heteroscedasticity. The optimal threshold \,,: depends
on the unknown parameter v = (a + 4)/(2a)) where « is the tail parameter of H;. If a = 2,

then v = 3/2. If H, is bounded, then o = 0o and v = 1/2. In this case A,y = k+/(logp)/Hopt-

Parameter x can be selected by cross-validation.

Next, we provide two examples of processes satisfying (18).



Example 5 Let {; ~ IIDN(0,1). The following sequences (;, t > 1 satisfy (18) with a = 2.
a) (=1t 1/22] &, 1<t<T,
b) G =T3¢

To verify a), let ¢t > s. Write

(G = Gl = [P &+ (2 = s 0 &
< S i Sheen &l + 5 il
< (ttf/z Gtsy  Gts = m‘ Zj:erl fj| + W‘ Z;:1 £]|
noting that t'/2 — s'/2 < (t — s)'/2. Since ¢, ~ N(0, 1), then (t — s)~/? Z] a1 &~ IN(0,1)
which implies (¢;) ~ £(2), ((s) ~ €£(2) and verifies (18) with o = 2.

b) Observe that [G] < 2| 5L, & and |G — G| < (t—s)/2T~2|(t— )2 5\, &| which
implies (18) with a = 2.

Throughout our analysis we have assumed a significant degree of sparsity for the covariance
matrix. The issue of sparsity can be addressed by extending the method developed by Fan,
Liao, and Mincheva (2013), based on a factor structure, to the time varying case. To do so
note that by Stock and Watson (2002a), factors can be consistently estimated, using principal
component analysis, in the presence of structural change. Then, one can use time varying
regression analysis, based on Giraitis, Kapetanios, and Yates (2018) to obtain time varying
factor loadings and associated residuals. The (sparse) covariance matrix of these residuals can
then be analysed using our proposed method. Due to the considerable technical arguments

needed to implement this approach rigorously we leave this to future research.

3 Implementation of regularized estimation

In this section we compare the finite sample performance of various approaches for the es-
timation of large dimensional covariance matrices. We also examine their usefulness for one
step ahead out-of-sample forecasting of such matrices.

Besides thresholding, another popular method of regularizing the sample covariance esti-
mator is based on shrinkage. Ledoit and Wolf (2003, 2004) have promoted this approach in a
series of papers. We consider the full sample and time-varying version of shrinkage estimators,

defined as
S = purd +(1— P)i iLW,t =purl +(1— p)flt,

where pur = piltr(f)), e = piltr(flt). Here the matrices p, 1 and j, I approximate the
shrinkage target diag(2) and diag(,) and the shrinkage intensity parameter p € [0, 1] can be

9



obtained through cross-validation. Ledoit and Wolf (2004) suggested to evaluate by Lw with
the theoretically optimal

b2 < _
po = s =07 x(E) = yih, b7 = min(B, df),
T
T P
-2 1 2 1 a2

It is of relevance and interest to see how linear shrinkage and its time-varying version compares
to thresholding. Therefore, we implement the linear shrinkage estimator for both simulation
and empirical exercise. For i.i.d. data, the linear shrinkage estimator has by now been
superseded by the nonlinear shrinkage estimator of Ledoit and Wolf (2015). It is important
to note, however, that the latter, unlike its linear counterpart, depends crucially on random
matrix theoretical arguments. Therefore, it requires assuming that data are i.i.d. and p/T has
a finite limit, both of which we consider as too restrictive for our purposes. While the analysis
of the linear shrinkage estimator has also been carried out under similar assumptions, it is
likely that a number of desirable properties of this estimator carry over to less strict settings
than the i.i.d. one. In our empirical application, we also consider this type of shrinkage
estimator.

In the literature, other popular methods for large covariance estimation have been pro-
posed, which do not account explicitly for dependent data. For instance, Cai and Liu (2011)
in a recent paper provide adaptive threshold estimators for the large covariance matrix 3. In
their approach the threshold \;; depends on the 4, j-th entry of the matrix 3 = var(y,) as

follows:

-~

9,~j logp

)‘ij =4 T, o> 0, (22)
- T ) T
0i;=T" Z ((yit —7;) (yjt - ?j) — 3ij) Yy =T Zyit-

=1 =1

Now, the lower bound for an off diagonal element of 3 is not global, but depends on the
variability of the individual point estimate of the 7, j-th element of the sample covariance
matrix 3.

The adaptive thresholding approach of Cai and Liu is further extended in another stimulat-
ing paper by Fan, Liao, and Mincheva (2013). The authors introduce the Principal Orthogonal
complement Thresholding (POET) estimator, to account for non sparsity, using an approxi-
mate factor model. This is done by combining the factor based covariance matrix estimator
and the thresholding approach developed in Cai and Liu (2011). To this end, consider the

10



approximate factor model for y,,
y, = bf; + uy, (23)

where b is the p x K matrix of factor loadings, f; is the K x 1 vector of unobserved factors,
with K << p, and u; is the idiosyncratic error which is uncorrelated with the factor f;. The

factors f; summarize information of the large vector y,. Model (23) implies that
Y =bX;b'+ 3%,

where 3, 3, are defined as ¥y = var(f;), and X, = var(u;). When (23) is an approximate

factor model, ¥, is a non diagonal but sparse matrix. A natural estimator is defined as
Ypoet = bX b 4+ T (Xy)

with b, f, estimated by PCA, flf = T-'ff, 8, = T-'94, 4, = y, — £,b, and T,\Z.j(i)u) is
the regularized estimate of 3, which is adaptively thresholded (see (22)). In practice, the

number of factors K is chosen by information criteria, K,,, as the one used in (34).

3.1 Cross Validation methods

Estimation of large covariance matrices requires the use of a number of tuning parameters.
All the estimators presented above can be generically denoted as mv(i) and mv(it), where
m., is some function and v is a vector of tuning parameters, e.g., p for the Ledoit and Wolf
estimator, x for the Bickel and Levina, (p, H) for time varying Ledoit and Wolf, (k, H) or only
 for the time varying Bickel and Levina, and ¢ for the Cai and Liu and POET estimators.
A popular approach to obtaining values for tuning parameters is via cross-validation. Cross-
validation schemes are especially well-suited to the time-varying framework. We propose for
this framework two objective functions that the optimal choice of parameter(s) v minimize

over a sensible parameter space:

1 d ~ .
Q) =l D (ma(Suma) = wdw?) (my (Ser) — )] (24)
4 4=T,+1
1 T o .
Qg%)v = H T —T Z (m’)’(Eﬂt—l) 1/2y?y?/m’y (Zt\t—l) V2 ]) (25)
4 4=T,+1

x (my (Sg) Pyl my (Sen) = 1))

where y? = y, — g, with 4, as in (10). They are based on the estimate of var (yt]yt_l), it‘t,l,
defined as

t—1 t—1 t—1 t—1
Yipfe—1 = (Z bH,\j—ﬂ)_l Z bH,\j—t\yjy;' - gt|t—1'g:‘,|t—17 Yijp—1 = (Z bH,Ij—ltl)_1 Z DH |t~k Y-
j=1 j=1 j=1 k=1

(26)
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The optimal choice of v is then given by 7 = argmin, ng)v for j = 1 or 2. In (25), the
regularized covariance m., (i?t) matrix is constrained to be positive definite. If EFy, = 0 (or
Ex, = 0in (17)), then y{ can be replaced by y,. For full sample methods, m.(X), that do
not account for time variation (i.e. no H parameter), to select 7, we use the same objective
functions with §t|t—1 computed setting by, |;—y = 1 in (26).

The choice of the objective function depends on the empirical application at hand, while in
different situations, the objectives (24) and (25) can give slightly different estimation results.
In practice, one can use the (25) for choices of 7 that yield a positive definite covariance matrix
mv(it), while dropping all other alternatives, that do not guarantee this property. To ensure
this property, the eigenvalues of mw(it) should always be positive. Giraitis, Kapetanios, and
Price (2013) have shown that cross-validation methods can return tuning parameters that
optimize the forecasting mean squared error in time-varying settings.

All tuning parameters are calibrated over a sensible parameter space. For the time varying
estimator it we search for tuning parameter H = T", with h on the interval [0.45,1]. For
the thresholding methods, the parameter space depends on the data at hand. For instance,
r depends on the individual entries of the it and the specific thresholding approach that is
considered. To this end, we focus on values of £ € [Kmin, Fmax|, Where 0 < Kpin, and Kpax
is the minimum value that implies mw(it) = diag(%,) for H € [T°%, T]. In the adaptive
thresholding approach, as suggested by Cai and Liu, we search for § on [0,12]. In this case,
one theoretically reasonable value is d,,x = 2. This result relies on the fact the @j (see (22))
provides an estimate of the variability of each individual entry of i?t. The same parameter
space is used for the POET estimator. For the Ledoit and Wolf methods, we search for p in
the interval [0, 1]. We look for optimal values using a grid of 20 points for h, 100 points for
k, 50 points for §, and 20 points for p in all the above parameter spaces. In the simulation

experiments we use Q% )7 although results do not alter significantly when we use the Q% )7

3.2 Monte Carlo experiments

Following the theoretical exposition, we carry out a Monte Carlo study to explore the proper-
ties of estimation and forecasting of large deterministic and stochastic time-varying covariance
matrices. We compare the performance of the estimates f], f]t, Ledoit-Wolf shrinkage esti-
mates S, f]LW’t and Bickel-Levina thresholding estimates T,\(fl), T,\(fl\t), Ty, (f]\t), Cai-Liu
thresholding estimates T’ Aij(i) and POET estimators f]poet.

Monte Carlo design. The generation of 3; presents particular challenges. We wish to have
a reasonably realistic generation mechanism for 3, that corresponds to economic or financial

data. Previous work on large dimensional covariance matrices of stationary processes offers

12



little guidance since its designs for 3 with no time variation are rather simplistic for our
purposes.

We choose to have a design for 32; based on the one factor setting used in Bailey, Kapetan-
ios, and Pesaran (2016). It allows for varying degrees of sparsity n, < p. We consider the

data generating model
y, = ()%, t=1,..,T (27)

with two settings for ¥;: deterministic and random. We consider two different settings for
g;: in the first one g; is an i.i.d. p-dimensional standard normal variable while in the second
g; is an ii.d. p-dimensional random variable where each element follows a Student-t(12)
distribution with 12 degrees of freedom. As we consider relatively large values of p compared

to T', we feel that our choice of the number of degrees of freedom is reasonable. Denote
Vt = diag(et) + btbg = {'Uith}

where b,= (blt, bat, -y Uyt 0, ..o O)/, e,= (e, e, ...,ept)/ are p X 1 vectors. Then, we set X; =
{viji/ (vii,lvml)l/ 2}, We assume e;; = hyd; where by, e; and d; will be specified below. This
simulation design can be seen as a one factor model with time-varying factor loadings. Stock
and Watson (2002a) argue that macroeconomic and/or financial time series do possess small
instabilities, which can be amplified when these span a significant long time period, and the
proposed simulation scheme is consistent with this idea.

We set T' = 400 and consider three cases: p = 10 with sparsity parameter 3, 5,10, p = 50
with n, = 5,20, 50, and p = 100 with n, = 10, 40, 100, respectively.

Deterministic 3;. We consider two settings for deterministic time-varying covariance ma-

trices 3; generated respectively by
by =4+ 10(t/T), hy =10+ 25(t/T), (28)
by =4+ 2sin(27t/T)(1 + 2t/T), hy =10+ 2sin(2xt/T)(1 + 2t/T). (29)
In these settings, we set d; = 2, ¢ = 1, ..., p. The first one is a linear trend, while the second
is a sine function of time. All settings provide considerable, smooth change for 3; over time.

Random 3;. We consider one setting for a stochastic time-varying 3, which is generated by

the following rescaled unit root processes:
bie = (24|uie/VE +0.04) (1 +2¢/T),  hiy = (9uae/ V| + 16) (1 + 2¢/T), (30)

where (u;.) are independent random walk processes: w;; = u; 1 + & and &; are i.i.d. N(0,1).
In both settings, we assume that d; are i.i.d. x3 random variables, and in (27) we assume (3;)

to be independent of (&;).
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Finally, and for reference, we also consider a case where the covariance matrix 3, is actually
constant and equal to the identity matrix. Notice that all the above considered simulation
designs are in accordance with our theoretical formulations. For example the processes defined
in (30) involve scaled random walk processes which satisfy Assumption H. Similar arguments
can be used to verify that all the simulated processes we consider satisfy our theoretical
assumptions. As expected, in such cases, forecast methods that allow for time-varying 3,

outperform forecast methods based on non-time varying estimates of 3.

3.3 Monte Carlo results

In this section we discuss performance of the one-step-ahead out-of-sample forecasts of X
for various estimation methods, m.(3;), of a time-varying covariance matrix 3, using several
Monte Carlo experiments.

For the forecasting experiment, given the sample y,, t = 1,...,T", we use the estimate of
3 as the forecast for ¥7,,. Formally, we define the one-step-ahead out-of-sample forecast
of ¥7,1 based on estimation method mv(flt) as §T+1|T = mv(iTﬁT). In our Monte Carlo

experiments, we evaluate the forecast error using the Frobenius norm
| Z 77— — ETHF (31)

and denote by frmse(m,) its Monte Carlo average over 500 replications. To compare the
quality of forecasts based on different estimation methods, as a benchmark, we choose the
standard sample covariance estimate Mmpepen = 3% which does not account for time variation.
We report the relative frmse, frmse(m.)/frmse(mpenen). The smaller the latter is, the better
is the performance of the method. Since in-sample forecasting of 3; by §t|t71 reduces to
estimation of 3, _; by mv(it_u_l) using data y,, t = 1,...,t — 1, parameter 7y can be selected
using cross-validation.

For each replication the tuning parameter v in (31) is estimated by cross-validation method
using objective function (24) over the last 24 observations (7, =T — 24 in (24)). We denote
by subscript "cv” tuning parameters 7., obtained by cross-validation, set H,, = T2%/3 and
H,p = T'? in estimation of a deterministic and stochastic X;, respectively, whereas Kot is
as in section 3, and p,,; as above.

Tables 1-7 present simulation results on the out-of-sample forecast error of large covari-
ance matrices for various models of ¥; and its estimation methods. They report the average
relative frmse(m.,)/frmse(Mpencn), over 500 replications. Smaller numbers indicate superior

performance. The best performing method is bolded and the second best is underlined.

14



Table 1: Relative frmse of one step ahead forecasts for deterministic time varying >;. T = 400,

¥ generated by (29): sine function with a drift, ¢; iid N (0, 1)

”dimension p” 10 10 10 50 50 50 100 100 100
"sparsity n,” 3 5 10 5 20 50 10 40 100
Method Tuning prmt Relative frmse
Forecasts based on non time-varying estimates of X
Bickel-Levina Key 1 1 1.01 097 1 1 0.97 1 1
Cai-Liu 0 =2 0.99 1 1 0.94 0.99 1 0.93 0.99 1
Ocw 1 1 1 0.97 1 1 0.97 1 1
POET Kevs Kopt 1 095 096 094 098 0.99 093 0.99 1
Ledoit-Wolf Popt 1.03 102 1.001 109 102 1.001 1.11 1.02 1.01
Pev 1.01 1 1.01 1 1 1.01 1 1 1
Forecasts based on time-varying estimates of ¥,
pIN H,, 0.83 0.71 0.62 136 0.78 0.61 1.41 0.79 0.59
Tv-Ledoit-Wolf Heyy pev 0.86 0.72 0.62 133 0.78 0.62 1.41 0.79 0.59
Tv-Bickel-Levina Kevs Hopt 0.71 0.69 0.82 0.81 0.77 0.61 0.81 0.88 0.89
Kevy, Hopt 0.83 0.85 085 089 0.86 0.8 091 0.87 0.95

Table 2: Relative frmse of one step ahead forecasts for deterministic time varying ¥;. T" = 400,

¥; generated by (28): trend function, &, 7id N(0, 1)

”dimension p” 10 10 10 50 50 50 100 100 100
"sparsity n,” 3 5 10 5 20 50 10 40 100
Method Tuning prmt Relative frmse
Forecasts based on non time-varying estimates of 3
Bickel-Levina Kew 1 1 1 0.97 1 1 0.96 1 1
Cai-Liu 0=2 0.99 1 1 0.94 0.99 1 0.93 0.99 1
Ocw 1 1 1 0.97 1 1 0.96 1 1
POET Kevy Kopt 1 095 097 094 098 0.99 093 0.99 1
Ledoit-Wolf Popt 1.03 1.02 1.01 109 1.02 1.01 1.11 1.02 1.01
Pev 1.01 1.01 1.01 1 1 1.01 1 1 1.01
Forecasts based on time-varying estimates of 3;
P H,, 0.62 057 05 107 06 05 111 06 05
Tv-Ledoit-Wolf Pevs Hey 0.68 0.61 052 1.09 0.61 051 1.12 0.61 0.52
Tv-Bickel-Levina Kevy Hey 0.55 0.55 0.59 0.59 0.58 0.6 052 0.55 0.59
Kevs Hopt 0.53 0.47 0.49 0.57 0.49 0.5 0.51 0.43 0.44
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Table 3: Relative frmse of one step ahead forecasts for stochastic time varying ;. T = 400,
¥, stochastic generated by (30), &, #id N (0, 1)

”dimension p” 10 10 10 50 50 50 100 100 100
"sparsity n,” 3 5 10 5 20 50 10 40 100
Method Tuning prmt Relative frmse

Forecasts based on non time-varying estimates of 3

Bickel-Levina Kev 1 1 1.01 0.96 1 1 0.95 1 1
Cai-Liu 0=2 0.99 1 1.01 093 101 1.03 091 1.02 1.03

dev 1 1 1.01  0.96 1 1 0.95 1 1

POET Kevs Kopt 1.01 099 098 097 099 099 093 0.99 1
Ledoit-Wolf Popt 1.02 101 101 1.01 102 101 1.02 1.02 1.01

Pev 1.01 1 1 0.99 0.99 1 1 1 1

Forecasts based on time-varying estimates of ¥

PN H, 0.66 0.5 0.58 1.13 0.61 0.63 123 0.74 0.54
Tv-Ledoit-Wolf Pevs Hep 0.66 052 06 098 061 064 1.12 075 0.54

Tv-Bickel-Levina Kev, Hey 0.61 05 063 0.70 0.60 0.74 o0.77 0.7 0.8
Kevs Hopt 0.65 0.48 066 075 063 0.71 079 0.78 0.81

Tables 1-6 provide comparisons of the quality of out-of-sample forecasting of a time-varying
covariance matrix >; based on the sample covariances 2, it, and their regularized versions by
Ledoit-Wolf shrinkage and Bickel-Levina thresholding methods. For the latter, the threshold
A is adapted to time variation via bandwidth H as described in (15) and (20), while tuning
parameters are selected by cross-validation as described in Section 3.1. For comparison reasons
we also include the Cai-Liu adaptive thresholding estimator and the POET estimator of 3.
We use cross-validation to choose the tuning parameter, ¢, in Cai-Liu adaptive thresholding
estimator, as well as the theoretically optimal value (§ = 2). In POET estimator we use
information criteria to choose the optimal number of factors K denoted by K.

Monte Carlo results, for deterministic >;, reported in Tables 1-2, 4-5 and for stochastic ¥,
reported in Tables 3, 6 clearly show what to expect from the considered methods. In general,
they indicate a significant impact from deterministic or stochastic change of ; on the quality
of forecasting of 3, by various methods.

A number of interesting conclusions can be drawn from the tables. It is unlikely that
the time invariant sample covariance estimate > will produce good forecasts of ¥, for all t.
We use it as a benchmark. Clearly, estimation and forecasting need to be adapted to both

time variation and sparsity of 3;. The relative forecasting error, reported in the tables shows
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Table 4: Relative frmse of one step ahead forecasts for deterministic time varying »;. T = 400,
¥; generated by (29): sine function with a drift, ¢; 7id¢(12)

”dimension p” 10 10 10 50 50 50 100 100 100
"sparsity n,” 3 5 10 5 20 50 10 40 100
Method Tuning prmt Relative frmse

Forecasts based on non time-varying estimates of 3

Bickel-Levina Kew 0.99 1 1.03 0.93 1 1 091 099 1.02
Cai-Liu 6=2 0.98 0.99 1 0.88  0.99 1 0.87 0.99 1
O 0.99 1 1 0.94 1 1 0.92 0.99 1

POET Kevs Kopt 1 0.93 095 089 0.97 099 088 0.98 0.99

Ledoit-Wolf Popt 1.04 1.03 1.01 112 1.03 1.01 1.13 1.03 1.01

Pev 1 1 1.03 1 1.01 1 1 1 1.02

Forecasts based on time-varying estimates of >;

PN H,, 0.8 069 052 127 071 054 1.07r 067 0.5
Tv-Ledoit-Wolf Pevy Hew 079 0.7 058 126 0.72 056 107 0.69 0.54

Tv-Bickel-Levina Kev, Hey 0.71  0.65 0.61 0.76 _0.61 0.55 _0.59 _0.55 0.53
Kevs Hopt 0.62 0.56 057 0.74 0.58 0.53 0.57 0.49 0.48

Table 5: Relative frmse of one step ahead forecasts for deterministic time varying ;. T = 400,
¥.; generated by (28): trend function, &; itd t(12)

”dimension p” 10 10 10 50 50 50 100 100 100
"sparsity n,” 3 5 10 5 20 50 10 40 100
Method Tuning prmt Relative frmse

Forecasts based on non time-varying estimates of X

Bickel-Levina Kev 0.99 1 1 0.93 1 1 0.93 0.99 1
Cai-Liu 0=2 0.98 0.99 1 0.89 0.99 1 0.88 0.99 1
dev 0.99 1 1 0.93 1 1 0.93 1 1
POET Kevs Kopt 1 093 095 089 097 099 088 0.98 0.99
Ledoit-Wolf Popt 1.04 102 101 1.12 103 101 114 1.03 1.01
Pev 1 1 1.01 1 1 1.01 1 1 1

Forecasts based on time-varying estimates of >;

2t H,, 1 0.88 0.78 1.18 094 0.8 1.15 096 0.74
Tv-Ledoit-Wolf Pevs Hew 1.01 088 0.79 117 095 082 1.14 097 0.75

Tv-Bickel-Levina Kevy Hey 095 083 078 092 087 08 095 086 _0.74
Kevs Hopt 0.86 0.78 082 095 0.85 08 089 0.84 0.78
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Table 6: Relative frmse of one step ahead forecasts for stochastic time varying ;. T" = 400,
¥, stochastic generated by (30), e; 4idt(12)

”dimension p” 10 10 10 50 50 50 100 100 100
”sparsity n,” 3 5 10 5 20 50 10 40 100
Method Relative frmse
Forecasts based on non time-varying estimates of 3

Bickel-Levina Key 0.99 1.02 1.01 093 1.02 1 0.97 1 1
Cai-Liu 0=2 0.97 1 1.02 0.88 1.02 102 093 1.03 1.05

Oew 0.98 1.01 1.01 093 1.01 1 0.96 1 1

POET Kevs Kopt | 1.03° 099 097 095 0.97 1 0.96 0.98 1
Ledoit-Wolf Popt 1.02 1.01 1.02 098 1.03 101 1.01 1.03 1.01

Pev 1 1.03 1 1 1.01  0.99 0.99 1 1

Forecasts based on time-varying estimates of

PN H,, 1.01 0.73 0.67 1.03 09 057 085 084 0.71
Tv-Ledoit-Wolf | pey,, Hey | 1.01 076 0.66 1.04 09 0.56 0.84 0.84 0.69

Tv-Bickel-Levina | &y, Hey | 0.93  0.73  0.73 0.77 0.88 0.59 0.65 0.81 0.72
Kev, Hopt | 1.19 079 082 09 1.04 058 0.7 088 0.73

Table 7: Relative frmse of one step ahead forecasts for fixed deterministic . T = 400, ¥ = I,
e, iidt(12)

”dimension p” 10 50 100
"sparsity n,” 1 1 1
Method Tuning prmt Relative frmse
Forecasts based on non time-varying estimates of 3
Bickel-Levina Kew 0.9 0.7 0.61
Cai-Liu 0 =2 0.78 0.47 0.35
Ocv 0.88 0.68 0.58
POET Kev, Kopt 1.16 086 0.71
Ledoit-Wolf Popt 0.7 0.42 0.31
Pev 0.98 1 1
Forecasts based on time-varying estimates of
P He, 1.29 1.15 1.08

Tv-Ledoit-Wolf Pevs Hew 1.02 1.09 1.05

Tv-Bickel-Levina Keyy Hey 1.05 0.72 0.58
Kevs Hopt 1.18 0.87 0.68
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that regularization of the sample covariance estimate )y by Ledoit-Wolf shrinkage, Bickel-
Levina, Cai-Liu and POET thresholding methods is not effective. However, the time varying
sample covariance estimate f)t seems to be able to adapt to time variation effectively: in
some cases it significantly improves the quality of forecasting of 3J;. Regularization of f)t by
Ledoit-Wolf shrinkage does not materially improve forecasting quality, while regularization
of f]t by Bickel-Levina thresholding method significantly improves it in all experiments. As
expected, improvement tends to be slightly stronger when 3J; is sparse, however, the effect of
time variation in 3J; on forecasting quality is more severe than that of sparsity.

The thresholding procedure T}, (f]t) with \,,+ based on the theoretically optimal H,,: and
cross-validated x and thresholding procedure 7T’ )\(f}t) where both xk and H are chosen using
cross-validation, produce similar improvements of the forecasting quality. Hence, the choice
of theoretically optimal H,, given in Theorem 2 and Theorem 4, is a decent alternative to
cross-validated H and the 7 Aopt(flt) thresholding method can be recommended for empirical
work.

Finally, in Table 7, we consider a base case scenario in which the true covariance matrix
3 = I is the identity matrix and does not vary with ¢t. Now, the sample variance estimate )
performs better, especially for small p. The methods that do not account for time variation,
outperform the time varying methods, as expected, while the Ledoit-Wolf shrinkage estimator
is the best performing method in all experiments. This is not surprising given that the
Ledoit-Wolf method actually shrinks the estimate towards the identity matrix. As expected,
our proposed time-varying forecasting methods suffer somewhat when p is small, while when
p increases, they can deliver benefits over sample variance estimate S, This indicates that

the sparsity feature can be captured over the methods in this case too.

3.4 Empirical application

In this section we present an empirical demonstration of the potential gains from using the
proposed covariance matrix estimators to design minimum variance portfolios. The illustration
is motivated by the availability of large datasets on stock returns, and the increased demand
for portfolios with lower risk exposure.

The literature on portfolio allocation is well grounded on the mean variance efficient port-
folio frontier proposed by Markowitz (1952). The minimum variance portfolio offers a suitable
device for examining the possible superiority of portfolio weights based on the proposed large
time-varying covariance estimators, as it neutralizes the impact of the estimated expected
return parameters, focusing solely on the covariance matrix estimation (see e.g. Jagannathan

and Ma (2003)).
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Noting that 3, is the p x p covariance matrix of p-dimensional vector of returns, collected
in y,, the minimum variance portfolio is designed to minimize investors’ exposure to risk,
regardless of preferences. The vector of optimal weights given by
>,

$) = =t
we (%) s,

where 1, is a p-dimensional vector of ones. In practice, one has to choose an estimator for 33,
and routinely compute the minimum variance weights. In our analysis, we compute portfolio
weights, employing our large covariance matrix estimators, i.e. wW; = wt(f)t).

Since our proposals involve sparse covariance estimators, we choose our sample to ac-
commodate this assumption as much as possible. To this end, we obtained data from the
Center for Research in Security Prices database and focus on daily returns from 10 differ-
ent industry sectors. The sectors are: Consumer NonDurables, Utilities, Healthcare-Medical
Equipment-Drugs, Telephone-Television Transmission, Business Equipment, Oil-Gas-Coal Ex-
traction, Manufacturing, Consumer Durables, Consumer NonDurables, Other. The smallest
portfolio examined is a 10 stocks portfolio, comprised of 1 stock from each of the 10 sectors.
The 20 stocks portfolio is comprised of 2 stocks from each of the 10 sectors and so forth until
the 100 stocks portfolio which is the largest portfolio examined. With this selection of stocks,
our aim is to accommodate a block diagonal structure for the large covariance matrix of re-
turns. The sample period starts at 10-Jun-2005 and ends at 23-Aug-2019 (7" = 3967 daily
observations).

To examine the out of sample risk performance, we will proceed as follows: every five days
portfolio weights are selected as a function of the large covariance matrix estimate my(f]t).
These are kept constant for the subsequent 5 trading days while the corresponding portfolio
returns are computed as y?* = Y °F | @, ,y; s for s =t + 1,..,t + 5. Then the large covariance
matrix is reestimated and the portfolio weights are updated (see Table 8 Panels A, B, C), or
it is not reestimated and the porfolio weights remain unchanged (see Table 8 Panel D). The
above steps are repeated until the end of the sample, i.e. for the last 775 trading days of
our sample (period from 28-Jul-2016 until 23-Aug-2019). At the end, we use the 775 out of

sample portfolio returns y?°* s = 1,.., 775, to compute the associated variance

—

Port folioVariance = var(yrert).

The method that provides the minimum out of sample portfolio variance is considered as the
best performing one.
To accommodate our minimum risk objective we modify the cross-validation criteria de-

veloped in Section 3.1 as follows: we choose tuning parameter(s) -y, used to compute w;, that
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minimize the objective function

N - 2
Qf,?p = % Zi:t—79 (wsys - % Zzzt—w wsys)

where y, is the p-vector of portfolio returns at time ¢. The tuning parameter ranges and
positive definiteness constraints discussed in Section 3.1 also apply here.

To account for non sparse covariance matrices, we further extend our proposals following
the approach developed in Fan, Liao, and Mincheva (2013). To this end, we first extract a
number of factors from the portfolio returns and then regularize the remaining part by our

proposed estimator. More formally, we consider the approximate factor model, for returns y,,
Y, = bft + Uy

where b is the p x K matrix of factor loadings, f; is the K x 1 vector of unobserved factors,

with K << p, and u; is the idiosyncratic error. We can then conclude that
Zt — blsz + Zu,t (32)

where X, 3, ; are defined as X = var(f;), and 3, ; = var(u;). Assuming that ¥, is sparse

and possesses significant time variation, a natural estimate of (32) is
S =b'Eb+ Th(Zu,) (33)

with B, ﬁ estimated by PCA, if = T_lf’/f, and Tk(iu,t) is the time varying regularized large
covariance estimator of the residuals u, = y, — B/f\t In practice, the number of factors K can
be chosen by information criteria (see e.g. Bai and Ng (2002)) or set equal to a fixed number.

In our empirical exercise we estimate K according to

- . 1\~ p+T pT
K = argogr%lgM{ln (5 Zai> + K <p—T) In (m } (34)

i=1
where 62 = L 5°7 12, and 1 is the i-th element of u,.

In addition to all the above mentioned models we consider two more methods for estimating
the large covariance matrices. The first model is due to Ledoit and Wolf (2015) who extend the
previously discussed linear shrinkage estimator to the non linear case. To this end, let u be an
eigenvector of 3 = var (y,) and 3 be an associated estimate of . The corresponding sample
eigenvalue is equal to o/ Su. Nonlinear shrinkage replaces this quantity with a consistent
estimator of u'3u. Recovering the population eigenvalues from the sample eigenvalues requires

inverting the Marchenko-Pastur equation (see Theorem 1 of Marchenko and Pastur (1968)).
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Table 8: Performance of out of sample minimum variance portfolio forecast

”dimension p” 10 20 30 40 50 70 100
"dimension 1" 3967 3967 3967 3967 3967 3967 3967
Method ‘ Tuning prmt ‘ Relative Variance
Panel A: Forecasts based on non time-varying estimates of ¥ (with reestimation)
1/p 1.166 1.636 1486 1.572 2175 1993 1.76
rolling 6mth 0.96 1.075 0927 0931 0.82 1.014 1.953
rolling 12mth 0.893 0.952 0.812 0.823 0.654 0.658 0.73
Bickel-Levina Kew 0.934 0978 0.975 0961 1.047 1.014 1.019
Cai-Liu k=2 1 0.999 0.993 1.01 1.041 1.196 1.238
Key 0932 0984 0971 096 0986 0.982 1.03
POET Kevs Kopt 1.011 1.012 1.006 1.016 1.014 1.019 1.011
Ledoit-Wolf Popt 0.993 0978 0.982 0992 1.012 1.009 1.007
Pew 0.929 0.925 0.843 0.893 1.023 0.989 0.969
Ledoit-Wolf(non linear) 1 0.995 0.993 0.991 0.999 1.002 0.998
Panel B: Forecasts based on time-varying estimates of X;
TV He, 0.919 0.959 0.814 0.746 0.625 0.637 0.771
TV-LW Hey,pew 0.879 0.959 0.822 0.799 0.659 0.619 0.599
Tv-Bickel-Levina® Fevs Hey 0.877 0981 0.877 0.831 0.616 0.605 0.597
Kev, Hopt 0.936 1.073 0.994 0929 0.829 0.958 0.951
Tv-Bickel-Levina-Factor® Kevy Hey 1.026  1.144 1.057 1.041 0924 0.844 0.824
Keys Hopt 1.397 1.301 1.232 1.182 0.992 0.979 0.947
Tv-Bickel-Levina®” Kevy Hey 0.87 0987 0.87 0.832 0.61 0.604 0.597
Kew, Hopt 0.884 0.899 0.755 0.789 0.648 0.641 0.634
Tv-Bickel-Levina-Factor? Kepy Hey 1.031 1.139 1.046 1.056 0.916 0.846 0.835
Kew, Hopt 1279 136 1.108 1.144 0.95 0.926 0.905

Panel C: Forecasts based on conditional covariance matrix estimates of ¥,

RARCH | 092 0.909 0.801 0.8 0726 0994 1
Panel D: Forecasts based on non time-varying estimates of ¥ (no reestimation)

rolling 6mth 1.113  1.028 0.929 1.142 1.223 1.718 2494
rolling 12mth 0966 0.938 0964 1.376 1.1 1.197  1.215
Bickel-Levina Kew 1.027  1.038 1.036 1.146 1.075 1.096 1.091
Cai-Liu K= 1.027  1.037 1.039 1.068 1.109 1.562 1.576
Kew 1.128 1.077 0.995 1.097 1.125 1.152 1.092
POET Kev, Kopt 1.027  1.05 1.065 1.055 1.131 1.163 1.124
Ledoit-Wolf Popt 1.018 1.008 1.029 1.047 1.09 1.104 1.098
Pev 0.948 0.942 0.833 0.894 1.192 1.109 1.038
Ledoit-Wolf(non linear) 1.028 1.032 1.042 1.049 1.078 1.101 1.09

Notes: Out of sample portfolio variance relative to the performance of the portfolio derived from the full
sample covariance estimate. The method that provides the minimum out of sample risk exposure is marked
in bold(blue). The second best is underlined(red). The examined period starts at 10-Jun-2005 and ends at
23-Aug-2019 (T = 3967 daily observations), and the out of sample evaluation period covers the last 775
observations of our sample. Data correspond to daily returns from 10 different industry sectors. The
superscript “S” in “Tv-Bickel-Levina” and “Tv-Bickel-Levina-Factor” methods indicate thresholding a
stochastic 3; using A given in (20) while the superscript “D” corresponds to thresholding a deterministic ¥
using A as in (15).
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Ledoit and Wolf (2015) introduced an effective numerical method for inverting the Marchenko-
Pastur equation.

The second model stems for the large conditional covariance modelling literature. Noureldin,
Shephard, and Sheppard (2014) propose a model that allows estimation of flexible GARCH
type dynamics in moderately large dimensions. They refer to it as the multivariate rotated
ARCH model. The main idea of this approach is to undertake a transformation (in particular,
a rotation) of the raw returns, and then use a BEKK-type parametrization of the time-varying
covariance matrix. Inference is computationally attractive and based on the quasi-maximum
likelihood (QML).

For the p-dimensional returns y, = X'/2¢,, the unconditional covariance X is decomposed
as X = PAP’ where P is the matrix of eigenvectors and A is the matrix of non negative
cigenvalues. Then, since £, = P (A)™"/? P'y,, with var (¢,) = I,, the conditional variance of ¢,

can be modelled as a BEKK type parametrization (see Engle and Kroner (1995))
var (5t|€t—1) = Gt|t71 = (Ip — AA, — BB/) + A&t_lEg_lA, + BGt71|tle,7 G() = Id. (35)

In our empirical application we apply the scalar specification of (35) that assumes A = a'/ I,
and B = b'/21L,.

Finally, we also include in our analysis a number of portfolios which are commonly consid-
ered in the portfolio selection literature. The first is the equally weighted portfolio w; = 1/p,
where 1 is a vector of ones of dimension p. The second is the rolling sample, covariance ma-
trix estimate based portfolio. We consider rolling sample estimates of size equal to 6 and 12
months.

In Table 8 we report out of sample portfolio variance results, as a ratio to the benchmark
portfolio which is the full sample estimate, reestimated every 5 days. From Table 8 we
can draw some important conclusions about the performance of our approaches. First, our
study suggests that there are significant advantages from using the proposed time-varying
covariance estimators to derive minimum variance portfolios. In all large portfolios considered,
the proposed time-varying methodologies (see Panel B) outperform the full sample fixed ones
(see Panel A and D). This is true when we estimate the fixed large covariance only once, using
data up to 28-Jul-2016 (see Panel D) or when we reestimate them every 5 days in our out of
sample evaluation period (see Panel A).

The unregularized time-varying estimator f]t, seems to perform well, while its performance
is affected by the size of the portfolio p as one would expect. For the proposed regularized es-
timator, the results remain satisfactory for both H selected by cross-validation and fixed H,,
indicating the effectiveness of the derived theoretical value, H,,. In this case the deterministic

estimator seems to outperform the stochastic one, providing larger risk improvements.
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When we adjust our approach for non sparse covariance matrices, through the factor de-
composition mechanism given in (33), the designed portfolios perform better than the fixed
estimators (Panel A and D), especially when p is large. Having said that, it is important
to emphasize that non sparse versions of our proposals deteriorate, compared to their sparse
analogues, indicating that the fixed component of estimator (33) captured by the factor part
dominates the sparse time varying component, while the latter proves more important for
minimum risk portfolios. On the other hand, time varying regularization through shrinkage
(TV-LW), proves important as this method is among the top performing ones. Finally, com-
paring our methods with the large conditional covariance model RARCH (see Panel C), it
becomes apparent that this outperforms the fixed estimators (Panel A and D), for small and

medium p, while for p = 100 this becomes equivalent to the full sample estimate.

4  Exponential inequalities

This section contains new results on Bernstein type inequalities for (weighted) sums of ran-
dom variables (r.v.’s) () that are dependent, unbounded and have thin- or heavy-tailed

distributions. We suppose that (;) satisfies the following a-mixing assumption.

Assumption A. (;) is such that {; — E¢; is an a-mixing (but not necessarily stationary)

sequence with the mixing coefficients ay such that for some ¢, > 0 and 0 < ¢ < 1,
ap < et k>1. (36)
In, addition we assume that variables, (;), have thin- or heavy-tailed distributions.
The notation (§;) € £(s), s > 0 denotes thin tails and means that for some a > 0,
mjaerxp(a|§j|s) < 00. (37)
The notation (§;) € H(#), 8 > 2 corresponds to heavy tails and means that
max El&|? < o0. (38)

Exponential inequalities for sums of r.v.’s, §; with thin- and heavy-tailed distributions will be

stated respectively using functions

(Vi

log®t

(11,72, ¢,¢) = co{exp ( — (") + exp ( — oo )72)}, (>0, t >2, (39)

gt(717 67 C, C) = Co{exp(—01<7) + C*‘9l¢:*(9/2—1)}7
where v; > 0, 72 > 0, 6 > 2 and non-negative constants ¢ = (¢, ¢1, ¢2) do not depend on ¢, ¢.

Throughout the paper, we denote a V b = max(a,b) and a A b = min(a, b), while C' stands for

generic constants.
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4.1 Exponential inequalities for unbounded variables

First, we establish Bernstein type inequalities for sums

Sy =T1/? 25:1(&@ — E¢)

of a-mixing and bounded variables &.
Lemma 1, (40), below significantly improves the bound for P(St > () obtained in Theorem
3.5 of White and Wooldridge (1991). Its proof uses exponential inequalities for a-mixing

bounded random variables obtained in Theorem 2 of Merlevede et al. (2009).

Lemma 1 Let the sequence (§;) of r.v.’s satisfy Assumption A. Then, for all ¢ >0, T > 2,

fr(2,7,¢,0)  if (&) € E(s), s >0, (40)

P([Sr| = () < { , .
gT(Qve e g) Zf (5]) S 7‘[(9), 0> 2 (41)

with v = s/(s+ 1) and for any 2 < 0’ < 0 where ¢ does not depend on ¢, T

4.2 Exponential inequalities for weighted variables

Next we obtain Bernstein type inequalities for sums

T
Sty = 12 Z burje—k) (& — E&k) (42)
k=1

of weighted a-mixing variables &, with thin- or heavy-tailed distributions. The weights by x
are defined in (12) and (13). Under the assumption (13), they satisfy

by < C(1+ (k/H)) ™, g — buper| < CH (14 (k/H)") ™' (43)

with v > 3. So, in (42), r.v.s. & are strongly downweighted when £ is distant from ¢.

In the next lemma we obtain exponential inequalities for P(|St:| > ().

Lemma 2 Let (§;) satisfy Assumption A and (43) holds.
Then for all ( >0,1<t<T,

fu(2,7,¢,0)  if (&) € E(s), s >0, (44)
9u(2,60',¢,¢) if (§) € H(B), 6>2 (45)

with v = s/(s+ 1) and for any ¢ € (2,6) where ¢ does not depend on ¢, t,H,T.

P(|Sr:] > () < {
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To obtain exponential inequalities for sums

T
Sre=H "> by (& — E&),
k=1

when the variables &, are centered by E¢;, write

T
Sty = Srp+ T8, TTgi= H1/? Z bH,\t—k\(Efk — E&).
k=1

The next lemma provides bounds for P(|St,| > ¢) and |rz,|.

Lemma 3 (a) For any |¢| > 2|rry|, P(|Srs| > ¢) < P(|Srs| > ¢/2).
(b) If |[E& — E&| < Clt — K|tV E)™ fort,k=1,2,..., then

Ire| < CLHP?(H v i)~ (46)
If |E&, — E&| < Ot — kT fort,k=1,2,...,T, then
lrr4| < C H**T 1. (47)

Constants C,C7 do not depend on k,t, H,T.

Exponential inequalities for sums Sy, allow to establish a bound for max;—y 7 |Sr.| which is

useful in applications. A bound for max,—; _r|S7.| can be obtained using
max |St| < max [Sr4| + max |rr|.
¢ t : t :

Corollary 6 Let (&;) satisfy Assumption A and (43) hold. Assume that (§;) € E(s), s > 0
or (&) € H(D), 6 > 2.

(a) Then, for any sequence 1 <t =ty <T, as T — oo,

STﬂg - Op(l) (48)
(b) If in addition,
I <H<T forsomec>0,08>0, (49)
then for any € > 0,
. Op(log'?T) if (&) € E(s), s > 0, (50)
121%)%‘ el = 1/2 1/60 rre—1/2 s
Op(log'?T + (TH)Y'H2) if (&) € H(6), 6 > 2. (51)
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Finally, we establish uniform bounds for sums of weighted variables [£].

Denote

|t — K|
H

T
vy = H! Z bH7|t_k|( )V|§k|, where v € [0, 1].
k=1

Corollary 7 Let (§;) satisfy Assumption A and (43), (49) hold. Then,

Op(1) i (&) € &(s), s >0, (52)
Op(l) i (&) € H(6), 6>2 and 5> 1/(6—1) in (49).  (53)

max vUpg =
s=1,....T ~’

4.3 Exponential inequalities with random scaling

In this section we discuss exponential inequalities for sums

Sglt) = H Y230 bagewhi (& — B&),
§¥lt) =H 2y ba je—k| (M€ — M &),

for products hi& of an a- mixing process (&) and a random scaling factor (“volatility”) hg.
Differently from ARCH models, where hy, is a stationary process, here hy, is a persistent (non-
stationary) process satisfying Assumption B below. It introduces smoothness and thin tail
distribution restrictions on h;, see Example 5. We impose no restrictions on the dependence
between (hy) and (§). We assume that (&) are a-mixing variables with thin- or heavy-tailed

distributions.

Assumption B. (h;) satisfies one of the following two assumptions:

|t;k|)l/2 tk=1,2 (54)
|ht B hk| S |§\/]]z| tk» ) g Ly oees
(— ). 1<tk<T (55)

where (hy) and (&) are such that for some a > 0,

(h) € E(@), (&) € E(). (56)

Set
(tv H)Y2H=' if (54) holds, (57)
Ht —
TY2H=' if (55) holds.

Denote ' = (dyy for ¢ > 0. Notice that ( A (' = (1 A dge)C.

First we establish exponential inequalities for sums where variables hi&y, are centered by hy E¢.
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Lemma 4 Let (§;) satisfy Assumption A, (h;) satisfy Assumption B with o > 0 and (43)
holds.

Then there exists ¢ > 0 such that for all( >0, 1 <t, H <T, T > 1,
fH(71772707C/\ C/) Zf (gj) < 5(5>7 § > 07 (58)
gH(’)/h 0/7 ¢, C A C,) Zf (5]) € H(9)7 0 > 27 (59)

with 1 = 2a/(2+ a), 2 = as/(a+ s+ 1) and for any 0’ € (2,0).

PS> ¢) < {

The same exponential inequalities hold for §i(ph2, when hi&;, are centered by h;FE¢;. For that

we need an additional assumption on E¢&.

Assumption B’. (h;) satisfies Assumption B, and there exists C' < oo such that for all
t? k? T7

t—k
el (hy,) satisfies (54), (60)

P -pal<cq VE
( — )1/27 1<t,k<T if (hg) satisfies (55). (61)

Lemma 5 Let the assumptions of Lemma 4 hold and Assumption B’ be satisfied. Then

fr(ny2 6, CAC) if (&) € E(s), s >0,
gr(n,0,e,CAC) i (&) € H), 0> 2,

where v1, v2 and 0" are the same as in Lemma 4.

P(SM > ¢) < {

Exponential inequalities allow to bound S;ht) and maxj<s<r |§¥2|

Corollary 8 Let Assumptions A and B with o > 0 hold and (43) be satisfied. Assume that
(&) €&(s), s>0 or (&) e H(B), 0 > 2.

(a) Then, for any sequence 1 <t =ty <T, as T — oo,
SP = Op(1 + dgh). (62)

In addition, if B, satisfies Assumption B then 5;’12 = Op(1+dy;).
(b) Let hy, satisfy (55), B¢ satisfy (61), and ¢T° < H <T where ¢, > 0 do not depend on
H,T. Then,

Op((1+ HT ) (log T)"/) if (&) € E(s), (63)

max |§:(Fh2| = 1/6
- ’ Op((1+ HT*){(log T)"/" + g_@m}) if (&) € H(), 6 >2 (64)

with v1 = 2a/(2 4+ «) and for any € > 0.
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The following auxiliary corollary provides bounds for sums of weighted variables |hz&;|. Denote

T
Apy=H ZbH,|t7k||ﬁk - Bt} \he&i|, 1<t<T.
=1

To bound Ar;, we need an additional assumption on (S, hy).

Assumption C. (G, hy) satisfy one of the following two assumptions:

t—k
c%, 1<tk<T (65)
CETIER S
()" 1<tk<T (66)
where C' < oo does not depend on ¢, k, T and (14,) € E(«) for some a > 0.

Corollary 9 Let Assumptions A, C and (43) be satisfied. Assume that (§;) € £(s), s >0 or
(5]) S 7‘[(8), 0> 2.

(a) Then, for any 1 <t =ty <T, as T — oo,

N Op(HT™) if (65) holds, (67)
e {Op((H/T)1/2) if (66) holds. (68)

(b) Assume that ¢cT° < H <T for some ¢,6 >0, and § > 1/(0 — 1) if (§;) € H(0). Then,

max |Arg| =
1<s<T

Op(HT™ 1) if (65) holds, (69)
{ Op((H/T)"*(log T)"/*) if (66) holds. (70)

5 Conclusion

The estimation of covariance matrices for large datasets has received considerable attention
in recent years. Various regularization techniques for improved estimation of such matrices
were developed, mainly for independent, identically distributed variables with exponentially
declining probability tails. Dependence, heavy-tailed distributions and structural change are
prevalent in large economic and financial data sets, and they may affect regularized estima-
tion. The paper shows that the standard Bickel-Levina type thresholding procedure remains
consistent for o -mixing stationary variables following various probability distributions. It
takes a further step away from stationarity and allows for heteroscedasticity and stochastic
change (volatility) of a very general form. It shows that the thresholding procedure can be
aligned with kernel type estimates of time-varying covariances, and that the optimal threshold
Aopt = H\/m used in such a case is an intuitive adjustment for heteroscedasticity
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compared to the threshold, A, = “\/W , that is appropriate for stationary data.
The paper shows that the thresholding procedure, adjusted for heteroscedasticity, is robust
to dependence and the type of distribution of the data, and its tuning parameters can be
selected by cross-validation. Its finite sample performance, illustrated by a detailed Monte
Carlo study and an empirical application on designing minimum variance portfolios, provides
a clear rationale for the proposed theoretical methods. Finally, the paper derives Bernstein
type exponential inequalities for weighted sums of dependent random variables with thin or

heavy-tailed distributions, that are of independent theoretical interest.
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This Supplement provides proofs of the results given in the text of the main paper. It is
organised as follows: Section A provides proofs of the main results on exponential inequalities
of Section 4 of the main paper. Section B provides proofs of Theorems 1-3 of the main paper.
Section C contains auxiliary technical lemmas.

Formula numbering in this supplement includes the section number, e.g. (A.1), and refer-
ences to lemmas are signified as “Lemma A#”, “Lemma B#", “Lemma C#”, e.g. Lemma Al.
Equation, lemma and theorem references to the main paper do not include section number
and are signified as “Equation (#)”, “Lemma #”, “Theorem #”, e.g. (1), Theorem 1.

In the proofs, C stands for a generic positive constant which may assume different values

in different contexts, and we denote a V b = max(a,b), a A b = min(a, b).

A. Exponential inequalities. Proofs

This section contains the proofs of the results of Section 4 on Bernstein inequalities for
(weighted) sums of random variables &; that are dependent, unbounded and have thin- or
heavy-tailed distributions.

We shall frequently refer to the a-mixing Assumption A and property (36) of (&;) of Section
4 of the main paper. To denote that r.v.’s (£;) have thin- or heavy-tailed distributions, we
use respectively notation (§;) € £(s), s > 0 and (§;) € H(0), § > 2 of Section 4 of the main
paper, see (37) and (38).

Merlevede, Peligrad and Rio (2009) in their Theorem 2 obtained a Bernstein type in-
equality for bounded a- mixing random variables. The following lemma is a minor auxiliary

generalization of their result to a sequence of truncated random variables.

Lemma A1l Let the sequence () of zero mean random variables satisfy Assumption A. Set
Epk =&l (|&k| < D) where D > 0. Suppose that

m* = r}glx(EKk]p)l/p < oo for somep > 2.



Then, there exist 0 < ¢ < oo such that for all{ >0, D >0 and T > 2,

T .
P(‘ kz:;(fD,k — EgD,kH > C) < exp ( - 2T + D? + CD10g2 T)’ (A.l)

with ©* = m*(1+243 7%, a;_Q/p) where ¢ > 0 depends only on c, in (36) of Assumption A.

Proof of Lemma Al. By Theorem 14.1 of Davidson (1994), under Assumption A, the
truncated process ({p;) is also a-mixing with mixing coefficients ay, < ay,. Hence, the bound

(2.3) of Theorem 2 in Merlevede et al. (2009) implies

P(} S i (pp — Bépyp)| > C) <exp (- U%mp;imog%)’

with
vh = sup (var(&p,) + 2 |eov(€piEpy)l).

i>0 —
7>
where ¢ depends only on ¢, in (36). We will show that v% < ©? which proves (A.1).
The conclusion (2.2) in Davydov (1968) applied with p = g > 2 gives

lcov(€p,is€p,5)| < 12(EIEpP) /P (Elép ) Pa, 5" < 12m7ay 5.

|i—3l |i—]

Observe that var(ép;) < B}, < (Elp|?)*? < m*. Hence,
vh <m*(1 +24Za1.72/p) =1* < o0

which completes the proof of the lemma. [J

The proof of Lemma 1 of the main paper combines the modified version, Lemma A1, of the
exponential inequality for bounded random variables by Merlevede, Peligrad and Rio (2009),
with a truncation argument employed in White and Wooldridge (1991).

Proof of Lemma 1. Without restriction of generality we prove the validity of (40), (41) for
¢ > 1. (The inequalities (40) and (41) can be extended to 0 < ¢ < 1 by selecting large enough
constant ¢o.) Recall that Sp = T-Y2 3] (& — E&).

We start with (40). We need to prove that

VT )7)}
log®> T 7
with v = s/(s 4+ 1) where positive constants ¢y, cy,co do not depend on ¢,7. Denote by

P(15r] > ¢) < fr(27,6,0) = cofexp (= e1?) +exp = el (A2

D = Dy, the truncation constant depending on 7', ¢ which will be selected later. Write
& = wy, + vy where wy, = §I([§| < D), vg = &I(|§| > D). Then,

T T
Sr o= T (wy— Buwy) + T (v — Evy) (A.3)
k=1 k=1
=: St1+Sr2



and
P(|57| = ¢) < P(lsral = ¢/2) + P(lsra| = ¢/2).
Thus, to prove (A.2), it suffices to show that for some ¢, for all ( > 1, T > 2,

P(lsril > ¢) < fr(2,7,¢,¢), i=1,2. (A.4)

By Assumption A, (§; — E¢;) is an a-mixing process which mixing coefficients oy, satisfy (36).
Hence, by Theorem 14.1 in Davidson (1994), (w; — Fw;) and (v; — Ev;) are a-mixing sequences

and their respective mixing coefficients o, and a, satisty
Qg < Qpy Qe < O, k>1. (A.5)

Thus, by Lemma A1, for all 7> 2 and D > 0,

61C2T
02T + D2 4+ (TY2Dlog? T

) (A.6)

P(|sra] > ¢) <exp (-

where ¢; > 0 does not depend on T, D or {. Using, on the r.h.s. of (A.6), the inequality

1 1
— S — ,
lal + 0] + [e] = 3max(al, [b], |¢])

with a = 0*T, b = D? ¢ = (T"/?Dlog* T, we obtain

! -2 / 1/2
2 6T (T
P(ISTJIEC)Sexp(—cllé)—l—exp(— D2 )—G—exp(—m), Czl (A?)
with ¢} = ¢;/(30%), dj = ¢ /3. Setting

T1/2
B log T’

(A.7) becomes

P(’STJ’ > C)
A
<exp(— %) +exp (- cg(c T) log* T) +exp (— 02% T). (A.8)
We select D = Dy such that (Ar/D = D*. Then,
(CA )1/5+1) (CA )8/8+1) and C%T_(CA )S/S-i-l) (A9)

For ¢ > 1, T > 2 it holds (A7 > Ar > 1. This together with (A.9) implies (CAT)/D > 1.
Notice that log* T > log?2 =: v > 0 for T > 2, and v € (0, 1). Hence,

(CA—T)2 log T > (%)v

D - )
CAT CAT /( +1) C\/_ s/( s+1
S e S s/(s
D ="p ~vAr) (log )



Applying these relations in (A.8), we obtain

P(IST,1| > C) < exp ( — c’1C2) 1 2exp ( _ CQUZC)AT)

<exp (— () +2exp (— du(CAr )/ )

CVT | s)(s+1)
o))

< 2<exp (=% +exp (—ch(
S fT(2777cvg)‘

This proves (A.4) for P(|sr1| > (). Turning to sr2, by Markov inequality,

T

Plsral 2¢) < T B(Y (0~ Bu)) (A.10)

k=1

T
< ¢rt Z cov (v, vg).
jk=1

Let p,¢g > 1, 1/p+ 1/q¢ < 1. Assumption (§;) € &(s) implies Elv;|? < oo, Elv;|? < oo.
Since (v; — Ev;) is a-mixing sequence with the mixing coeflicients o, ; < aj, k > 1, then, by
Conclusion 2.2 in Davydov (1968),

jcov(vj, vk)| < 12(Efv [P) /P (Elos]?) a9 G # . (A.11)
In turn, for j = k, var(v;) < Ev?. Setting
V, := max(Elv;|")"/?,
i>1

we obtain

T T
P(lsral >¢) < (T [Zvar(vj) + Z cov(vj,vk)]

jk=1: k;ﬁj

< VR CRIR2V V(T Z o)
Jik=1:k#j

where e:=1—1/p—1/q > 0. By (36),
T ka:l:jﬂc g = T3 al(T —5) <322, af < oo
This implies that with some C' that does not depend on T or D, it holds that
P(Jsra| > ) < CC2(VE+1,V)). (A12)
Set p=q =24 § where § > 0 is a small number. Then, by (A.12),

P(|spa| > ¢) < CCHVE+ V7)< CC2V7 (A.13)



because Vi = max; Ev} < max; (E|v;|P)?/P = V2. For D >0, by (C.9) it holds that
Elv;[? = E[|§;P1(1§;] > D)] < cjexp(—ci D*)
for some ¢, ¢ > 0 which do not depend on j and D. This implies
V2 < (co!)?? exp(—(2/p)er' D°).
Thus, there exists ¢y > 0, ¢ > 0 such that for all { > 1, T'> 2, in view of (A.9),
P(lsr2l > ¢) < CC%exp (- (2/p)cyD?)

< ¢pexp ( - C2(CAT)S/(S+1))

ﬂ)s/(sﬂ))

= ¢y exp ( — CQ(logQT

S fT(2a7767 C)a

which proves the bound (A.4) for sz and completes the proof of (A.2) and (40).

Proof of (41). Let (&;) € H(6). We need to prove that for any fixed 2 < 6’ < 6,

P(|Sr]>¢) < gr(2,0,¢,Q) (A.14)

= co{exp(—clfz) + C_GIT_(QW_D}, (>0, T>2.
Write Sp = sr1 + sr2 as in (A.3). To verify (A.14), it remains to show that
p(|$T,i‘ Z C) < gT(270/707 g)a L= 172 for some c.

It suffices to consider the case ¢ > 1.
We start with the evaluation P(|sr1| > (). Set

a ' VT

D=——"—7—72>1

log?((VT) ~

where a > 0 will be selected below. For ¢ > 1 it holds log(¢v/T) > log(v/T) > log(v/2) =:
b > 0. Then, from (A.7) we obtain

P(|5T,1| > () < exp ( — 0'1(2) + exp ( — cha® logG(C\/T)) + exp ( — C’Qalog(C\/T))
< exp ( — c'1§2) + exp ( — cha?b’ 1og(§\/f)) + exp ( — cgalog(gﬁ)).

Hence, selecting a such that cya?b® > @', cha > ', we obtain

Plsnal 2 O) < exp (~ 64¢%) +2(CVT) "



This proves the bound (A.14) for P(|sz,1| > ().
Next we turn to P(|sr2| > (). By (A.13),

P(|sr2| > () < CC_QVZDQ
with p =2+ 4. According to (C.10), we can bound
Elo;|P = B[|&[P1(|&| > D)] < oD~
with some ¢, > 0 which does not depend on D and j. This implies

Vp2 < (66)2/pD7(97p)(2/p).

Hence,
P(lsto| >¢) < C¢ DO PER) (A1)
= OCANT) " Par,
where ,
. (¢CVT)?" 2 B (alog®(¢\/T))0-P)(/p)
T.CT ple-peh) (CVT)
and

T=0-p)2/p)—(0'=2)=0-0—0(p—2)/p=0—-0—05/p>0

when 0 > 60, p =2+ and § > 0 is selected sufficiently small. Since (ﬁ > /2 for ¢ >1,
T > 2, this implies that sup;s rsy a7 < C' < 0o, Thus, (A.15) implies

P(|spa| > ¢) < VT2 < g1(2,6 ¢, ()

which proves the bound (A.14) for P(|sr2| > ().
This completes the proof of (41) and the lemma. [

We start the proof of Lemma 2 with the following technical lemma.

Lemma A2 Let xy, k,t > 1 be random variables such that E|xu| < oo and ay and vy > 0

be real numbers such that

n
max max Z @y |vg < 00. (A.16)
n>1 1<t<n

1<k<n

Then there exists € > 0 such that for all { >0,t>1,
|

p > 0) < o E[—I lzal o 1 A17
(’ ; atkajtk’ = C) >¢€ 1r£ka§}(n C'Utk- (Cvtk - E) ( )



Proof of Lemma A2. By (A.16) there exists € > 0 such that

D lamvw| < 1/(22), t>1.
k=1

From
o/ vek| = |2/ v (I (|2 /vi] < Q) + I(|wp/ven] > £C)) < €+ yun,

where yy, = [Ty /v | (|2 /0| > €C), we obtain

n n ‘:L' ’ n n
k
| Z atk$tk| < Z |atkvtk| : < Z |atkvtk|(50 + Z |atkUtk|ytk:
k=1 k=1 Utk k=1 k=1

< C/Q + Z |atkvtk|ytk-
k=1

Then, by Markov inequality,

P(ZZ:1 |Gk Veke | Yo > C/Q) < (¢/2)7' Yor_y lawve| By,
(¢/2)7H (> lawve]) maxi<k<n By

/e -1
(¢/2)7 (2¢) max Eys,

P(| >y amw] > C)

IAIA

IN

which proves (A.17). O

Proof of Lemma 2. Without restriction of generality assume that ¢ > 1. Notice that
property (43) of by, implies

T-1

kv H kv H

1/2 < _ 1/2 <
max by )< C, ; bre = bt (=) < €, (A.18)
where C' < oo does not depend on H,T.
Denote &, := &, & = &y, for k> 0. Write
Sra = H 20 bujr (& — E&) (A.19)
= H V2 bua(§, — BG) + HY2 S 2 b k(& — EEY)

1 2
o

To prove (44) for P(|Sz.| > (), it suffices to verify that for £ = 1,2,
P(lsal =€) < far(2.7,e.0) i (&) € £(s), 5> 0. (A.20)

To prove (45) for P(|St.| > (), it suffices to show that for £ = 1,2,
P(lsgh] =€) < gu(2.6,e,C) i () € H(6), 6>2. (a.21)
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(2 )

We provide the proof for 5% 1 (For sy, the proof is similar). Set

=0 (& - BE), g =k, v = (B fork=1,..t—1.

. . Y
Using summation by parts, we can write sy, as

t—2
S(Tl% = 02 Z(ka — bpger) Tk + H oy 2y
=1
-1
= S . (A.22)
=1

where
Qi = H71/2(bH,k —bppyr) for k=1,.,t-2, a1 = H71/2bH,t—1‘
Subsequently, using notation y; and v introduced above, we can write
=0 aw (kv H)Y? A.23
S = Dper Qo (K H)Y= (yi/vi). (A.23)
From (A.18) it follows
t—1
Zatk k\/H 1/2<C

k=1
where C' < oo does not depend on ¢, H,T. Hence, by Lemma A2, there exists € > 0 such that

pre = P(Is9)] > ¢) < ™! max E['yk|l(|yk| > ¢)]. (A.24)

1<k<t Cvp —
Notice that v, > 1.
Proof of (44). Suppose that (§;) € £(s). Then, (40) of Lemma 1 implies

Therefore, by (C.11) of Lemma C2(ii),
EllyelI(lyr] > eCui)] < fu(2,7, ¢, eCui)
for some ¢ which does not depend on k. Thus, (A.24) implies
—1
pre < Clngll?i{t v (2,7, ¢ eCuy) < C’lrgl?é fi(2,7, ¢, eCu). (A.25)

For k > H, it holds that v, = 1, and we have

Ir (2, v, €, 5§Vk) = co{exp ( — (gC)Q) + exp ( _ CQ(ifg\Q/i)s/(sH))}

fu(2,7,¢,0).

IN



For 1 <k < H, we have v, = (H/k)"? > 1 and v,vk = v/ H, which allows to conclude

fi(2,7, ¢,eCuy) = (:o{exp(—m(a@k)?) +exp (— 02(%)5/(S+1))}
< Co{eXP ( - 61(602) + exp ( — 02(15(;_2\/?)5/(5“))}

= fu(2,7.¢,¢).
Together with (A.24), this yields pr¢ < fu(2,7, ¢, () which proves (A.20).
Proof of (45). Assume that (§;) € H(#) and let 6 € (2,6). By (41) of Lemma 1,
P(lyrl = ¢) < gx(2,8',¢,0)
for k > 2, and by (C.12) of Lemma C2(iii),
EllyilI(|yx] > eCvi)] < max(eCvy, 1) gk (2,6, ¢, eCvy) (A.26)
for some ¢ which does not depend on k. Notice that (v, > 1. Then,
(e¢vi) " max(eCyy, 1) < max (1, (eCry) ™) < T4e
Thus, by (A.26) and (A.24),
pre < C max gy (2, o' c’,sguk) (A.27)

1<k<t

where C' depends on €. For k£ > H we have v, = 1, and therefore

gk (2a 9,7 ¢, 5CVk) = Gk (27 0/7 C, 5() = CO{eXp ( - CI(EC)Q) + (66)_9/k_(91/2_1)}
S 9gH (27 0/’ ¢, ‘€C> :

For k < H, we have v}, = (H/k)"/? > 1 and therefore

(gyk)—glk—(G'/Q—l) — (C(H/k)1/2>—0’k,—0'/2k — (CH1/2)_9’]€
< C*@’Hf(H'/Qfl)

which allows to conclude

9k(2,0' ¢, eCry) = co{exp (—ci(eCm)?) + (5<yk)_0/k;_(9//2—1)}

cofexp (= ea(e0)?) + () H-012)
= gu(2,0,c,eQ).

IA

Together with (A.27), this implies pr¢ < gu (2,6, ¢, () which proves (A.21). O
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Proof of Lemma 3. (a) Write Sp, = St+~+ rrs. Assumption ¢ > 2|rr,| implies ¢ — |rry| >
(/2. Therefore

P(|Sr] =€) = P(ISra| = ¢ = rral) < P(IS7a| > ¢/2).

(b) If |E¢, — E&| < Clk —t|/(t Vv k) for k,t > 1, then by (C.16) of Lemma C3,

— T —k 3/2
Irey] <CHY2Y, ) bH,|t—k|(|l;v_k|) < e

for some ¢; > 0 which proves (46).
If |E& — BE&| < Clk—t|/T for k,t = 1,...,T, then by (43),

—1/2 - |t — k|
lrry| < CH ZbH,\t—H( T )
k=1
T
t— k| HY? H3/?
< C H—lzb,{,“,m(' ) < (A.28)
( £ H ) T T

for some ¢ > 0 which does not depend on ¢, H,T. This proves (47). O

Proof of Corollary 6.
Proof of (a). The bounds (44)-(45) together with definition of f;, g; in (39) imply

P(|Sr¢| >b) =0, T — 00, b— oc.
Hence, St: = Op(1) which proves (48).
Proof of (b). Assume that (§;) € £(s), s > 0. We will show that as T" — oo, b — o0,

P( max_[Sry| > bdry) =op(1), & :(1ogT)1/2+M(logT)1” (A.29)
P T.H PASD T.H Hl/2 :

.....

T
S Z fH(2> 7, ¢, b(ST,H)
t=1

< TCO{GXP (= c1(bor,m)?) +exp (— CQ(%W)}

< Tco{exp (= c1b?logT) + exp ( — c2b” log T)}
<2 ' =0

for b such that c;b* > 2, cb? > 2. This proves (A.29). Under assumption T < H<Tit
holds 07,5 = O(log"/? T)). Hence, (A.29) implies (50):

P(tlrllaxT!ST,t! >blog"?T) =0, T — o0, b— co.

10



Next, assume that (§;) € H(8), 6 > 2. Let ' € (2,0). We will show that, as " — oo, b — oo,

T /
P( max_[Sr| > bir) = op(1), dru = (logT)"* + HY*(—5=)""

7 o (A.30)

,,,,, 7 |Sre| = bOr1r)

= Zt:l (1974l = bor) < >y 91 (2,0, ¢, bor p)

< Tep{exp (— er(b6r.)?) + (br )" H- 0}

< co{Texp (— erb?log T) + b~ (57=) " TH- /2~ 1)}
<co{T 4679} =0

as T'— oo and b — oo. This proves (A.30). To prove that (A.30) implies (51), it suffices to
show that for any £ > 0 there exists 2 < 6’ < # and a > 0 such that

log" 2T + (HT)YH*Y% > abpy, Opp =log"?T + (TH)YY H~/2, (A.31)
Write
(HT>1/9HE—1/2 — (HT>1/9/H—1/2UH7 Vg = (HT)I/Q_I/Q/HE.
We will show that vy > a > 0 for some 1 > a > 0 which proves (A.31). By the assumption
of the corollary, ¢cT° < H < T. Then,

He (CTJ)E

- = € b Pyp—

If b > 0, this implies vz > ¢¢. Clearly, b > 0 if 6’ is selected sufficiently close to 6. [
Proof of Corollary 7. Let 0 < v < 1. Write

T
vrg = H Y by wil&l, brjery = brjw ([t — K|/ H)". (A.32)
k=1

By (43), ZH,|t_k‘ < C(1+(k/H)"" 1)1 Tt is easy to see that ng satisfies (43) with parameter

v — 1. Since under assumptions of corollary,
< <
I?Sf(EK’“‘ < C < oo, maXH ZbH -k < C,

then

1<t<T

T
max |vr,| < max vat\ +C, = H Y by pw (1G] — Elél).
k=1

11



Since (&) satisfies Assumption A, then by Theorem 14.1 in Davidson (1994), (|&x|) also satisfies
Assumption A. To prove the claim (52)-(53) of the corollary, it remains to show that

max [vp,| = Op(1). (A.33)

1<t<T

Let (&) € £(s), s > 0. Then, by (50) of Corollary 6 and assumption (49) on H,

max [vf,| = O(H ?log'?T) = op(1).

1<t<T

Let (&) € H(A), 6 > 2. Then, by (51) of Corollary 6 and assumption (49), for any € > 0,

max [vy,| = Op (H2log T + (TH)V H*Y).

1<t<T

By assumption, H > ¢T° with 6 > 1/(f — 1) which implies that (T H)Y?H*=' = 0(1) when ¢
is selected sufficiently small. This proves (A.33) and completes the proof of the corollary. [

Proof of Lemma 4. Without restriction of generality assume that ¢ > 1.
Proof of (58)-(59) for P(\S(Tht)] > (). Denote
Ry = hi_k, & =&k, R = heyr, & = &yx for k> 0.
As in (A.19) write S(Thz as
St = H Y b8 — BG)

= H V2350 buahi &+ H P Y bi i€l

= 5%2;1 + S(Tffz)e;r
Proof of (58)-(59) for S;ht) reduces to verification of these bounds for S(T}f 2;1 and s(T}f 2;2:
fr(n e, e.CAC) () € E(s), (A.34)

P(sM 1 >¢) <
(Isrsel 2 €) < {gH('yl,H',c,Q/\ ¢) if (&) e H(B), 0 >2 (A.35)

for £ =1,2. We start with s%;l. Denote

k

_ kN H 12
vp=Y (& - EE), yp="k"Pan, yp=hk = (T) P k>1. (A.36)
i=1
Then as in (A.22), summation by parts yields
sy = H Y2 (buahly — b si bl )ae + H YV ?by g ohi

= {H_1/2 Z;Ql(bH,k — b 1) (hn) + H_l/sz,t—l(h;_ﬁft—l)}
+H VST b (M — Py )
2
=1 s e (A.37)
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Hence, it suffices to verify the bounds (A.34)-(A.35) for 3%1;1 and s%)t;l.
First, we evaluate P(]s(;;;ﬂ > (). The sum Sg};;l can be obtained from s(Tl)t in (A.22) by
replacing xy by hjzg. Therefore, the same argument as in the proof of (A.24) implies that

there exists € > 0 such that

P(lspral = ¢) <t max ((v) " BllyilI(yil = eCu], (=1, T=2 (A3

.....

We now show that for all { > 0, k£ > 2,
P(lypl > ¢) < gr(n,0',¢,¢) i (&) € H(O), (A.40)

with 71, 72 and @ as in (58)-(59). Recall that y, = hjy; where (h},) € £(a) by assumption
(56). Moreover, (40) and (41) imply that

P(lyel > ¢) < fr(2,7,¢,¢) if (&) € E(s),
P(‘yk‘ > C) < gk(2>9/70’ C) if (fj) € H(e)

So, (A.39) and (A.40) follow from Lemma C1 (iii) and (iv), respectively.
As shown in the proof of (44) and (45), the relations (A.38)-(A.40) imply

P(Ishral > Q) < fu(mqe,e.0) i (&) € E(s), (A41)
P(Ist. = ¢) < gu (.0, e,C) i (&) € H(O), (A.42)

which verifies (A.34)-(A.35) for Sg};;l. Next we show that setting (' = (dpy,

P(ysgi;l‘ > C) < fH(’Yl,’72>C> </> if (51@) S 5(3), <A43)
Pl =€) < gn(m.0.e.¢) i (&) € H(O). (A.44)

Together with (A.37)-(A.40), the latter proves (A.34)-(A.35) for 5%2;1'
We now prove (A.43)-(A.44). We have

P(s50al = €) = Pldailsisa] > diniC). (A.45)
In view of definition of A}, by assumptions (54)-(55),
By — Ry = hy g — gy = 6, P, fork=1,..t—2,

and &y, = t — k if (54) holds; dy, = T if (55) holds, while (&) € £(«) by assumption (56).

Then, with v, and y;, as in (A.36), setting y; = Epark™Y? = &pyp, We can write

s
+

Ou; k1/2 _< Oue Vk.
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Hence,

d
dmsyy, = Z Hijka(h' Peoy) (A.46)
+—2
~ yk ~ dHt kv H 1/2
= a , a b,

Next we show that for all ¢, H, T,

t—2

s =Y |aw| < C < oo, (A.47)
k=1

Let (54) hold. Then, by definition, dg; = (H V #)Y2H=1, 3, = |t — k|, and by (C.17),

by kv H H — b [t —j|VH
SthdHtZHl/z( Gy B O o G R R
k=

J=1

Let (55) holds. Then, dy; = TY?H~!, 65y = T, and by property (43) of by s,

-2

b k\/H
ZH’“ )r<o tz2 T>2
k=1

From (A.45)—(A.47) and Lemma A2 it follows that there exists ¢ > 0 such that

2 2 - vl . il
P(1s$),1 =€) = P(ldmsi | > ¢) < e ' max E C’_zkj(cwk > ). (A.48)

This bound is of the same type as (A.38) for P(|5Tt 1| = ¢). Recall that y = &uyr and by
(56), variables &, have the property (&) € £(a). Hence, (A.48) implies (A.43)-(A.44) by the
same argument as in the proof of (A.41)-(A.42) for s%)t;l.

The proof of the bounds (A.34)-(A.35) for sgf 2;2 can be obtained using similar arguments as
above for sgfg;l. This completes the proof of (A.34)-(A.35) which imply (58)-(59) of Lemma 4
for P(ISW] > ¢). O

Proof of Lemma 5. It suffices to verify (A.34)-(A.35) for P(|§¥12| > (). Write
g(Tht) = S;(ph,? +rrg, Trp = H~Y/? Zle bH,\t—k\(thfk - htEft)-

Since by Lemma 4, P(|S:(Fh2| > () satisfies (58)-(59) and thus (A.34)-(A.35), to establish the
corresponding bounds for P(|§(Tht) | > (), it suffices to show that P(|ry.| > () satisfies (A.34)-
(A.35) as well. We will prove that there exists ¢ > 0 and ¢; > 0 such that

P(|7“T,t| > C) < cpexp(—ci(*), ¢>0,T>2. (A.49)

14



Since o > v1 = 2a/(2 + «), (A.49) together with definition (39) of f; and g;, implies (A.34)-
(A.35) for P(|rry] > ().
Proof of (A.49). Write

P(lrrel = ¢) = P(duelrrel > ¢'), ¢ = duiC.

Case 1. Suppose that E|&, — E&| and |hy — hy| satisfy assumptions ((60), (54)). Then,

\he B — M E&G| <0 |hi (B, — E&)| + [E&| [h — hyl (A.50)
t—k
< C(%)l/zzm 2k = |hie| + |l

Under (54), by definition (57), dgy = (t vV H)Y/2H~'. Hence,

T
tVH obgi [t —k
dHt|7'T,t’ < C;atkzk, A = ( i )1/2 Hig[ k’|(|tv k|)1/2
Applying (C.16) with v = 1/2, we get
T
tirll???TZatk <(C <
k=1
Hence, by Lemma A2, there exists € > 0 such that
P(durry > ¢') <e' max E[@](@ > 5)] (A.51)
tlrrel =2 6) = e BT e 2
By assumption (56), (z;) € £(a). Hence, by Lemma C2(i),
EllzI(|zk] > e¢')] < chexp(—i¢"?)
which together with (A.51) implies
P(dilrrel > (') < e’ exp(=c1¢").
Therefore,
P(jrrs] > ¢) < chexp(—ci(’®) for ¢' > 1. (A.52)

This bound remains valid for 0 < ¢’ < 1 if ¢ is selected such that ¢jexp(—c}) > 1. Then,
coexp(—ci¢’®) > cpexp(—c)) > 1 for 0 < (' <1

and, thus, (A.52) holds. This proves (A.49).
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Case 2. Suppose that E|&, — E&| and |hy — hy| satisfy assumptions ((61), (55)). Then, instead
of (A.50), we have the bound

t—k
|hi E&, — v E&| < C(|—T|>1/2Zk7 2k = |hg| + &l (A.53)
Under (55), by definition (57), dgy = TY?H~" for t = 1,...,T. Hence,

T
) T b JE—k biten |t — K
dHt|TT,t| < Czatkzlﬁ al, = (_)1/2 H,|t k|(| ‘)1/2 _ H,|t k|(| ‘)1/2.

— H H T H H
By the same argument as in (A.28) it follows that
T
 max ay, < C < oo
S k=1

Hence, as above, by Lemma A2, there exists ¢ > 0 such that (A.51) holds, and using the same
argument as in Case 1, we obtain (A.49).
Thus, P(|rr| > () satisfies (A.49) which completes the proof of the lemma. [

Proof of Corollary 8. (a) Recall that ( A (' = ((1 A dp). The bounds (58)-(59) together
with definitions of f, g; in (39) imply

P((1 A d)|SP] > 1) =0, b— .
This proves (62):
57(1}?2 = Op((l A dHt)_l) = Op(l + d;ﬁ)

The same argument implies §:(th) = Op(1+dj;), since by Lemma 5, P(|§:(th) | > () satisfies
the same bounds (58)-(59).

(b) Under assumption (55), dpy = TV2H™'. Set 2z, := (1 A dHt)géht)
Assume that (§;) € E(s), s > 0. We will show that as T' — oo, b — o0,

(log H)*
P( o [ersl > brm) = op(1).  drm = (05T)!" + (1

og T)Y 2, (A.54)

where ; and v, are the same as in (58) of Lemma 4.
For b > 0, by (58), definition of f;, (39), and equality (¢ A ¢')(1 Adgs) ™' = ¢,

.....

< Zthl fru(m, 72, c b5T,H)

< Tco{exp ( — cl(b(STﬂ)“) + exp ( — CQ(%#)VZ)}
< Tco{exp (= c1b™logT) + exp ( — c2b™ log T)}

< QCQT_l —0
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for b such that c;b" > 2, ¢;b" > 2. This proves (A.54). Since for ¢T° < H < T it holds
org = O(loglh1 T), (A.54) implies:

tflllaXT |ZT,t’ = Op(5T7H) = ()p(lOgl/,y1 T)

This together with definition 27, = (1 A dHt)§(Th2 . where dp; = TY?H~', and inequality
(LATYV2HN)™' < 1+ HT'? implies (63):

max |57} = Op((LATV?H ) log"™ T) = Op((1 + HT'/*)10g"™ T).

t=1,...,

Next, consider the case (§;) € H(f), 8 > 2. First we show that for any ¢’ € (2, ), as T" — oo,

T ,
 max lzrt| = Op(dr.m), Orm = (log T>1Ml + HI/Q( )1/0

T HY -1 (A.55)

For b > 0, by (59), definition of g;, (39) and equality ({ A ¢')(1 Adg)™' = ¢, we obtain

P(mathl ..... T lere] > b5T,H)
< X P((LA )| St > bor)
<L gu(m, 8, ¢,bdrp)
< Tco{exp (= c1(bdrm)™) + (b(ST’H>—9’H—(€’/2—1)}
< co{T exp ( — b logT) + b*(’/(#)*ljﬂ]{f(e’/%l)}
<c{T"+bv"} =0

as T — oo and b — oo. This proves (A.55). The same argument as in the proof of (51) of
Corollary 6 shows that validity of (A.55) for any 2 < 6’ < 6 implies that for any & > 0,

tilllaXT ‘ZT,t| = Op (gT,H)7 gT,H = (10g 77)1/’y1 + HEil/Z(TH)l/H. <A56)

-----

gaxTyS’(T{?\ = Op((AA+HTYVA) o)

= Op((1+HT'*){(log T)V/™" + H= V(T H)Y%})
which proves (64) and completes the proof of the corollary. O

Proof of Corollary 9. Denote

t—k
H

T
-1
Uriv = H E bH,\tko

k=1

"€k, 0<wv< 1. (A.57)
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Proof of (67) and (69). Let (65) hold. Then,

t—k
T

T
[Ary| < CH™Y by |16kl = C(H/T)vrp1- (A.58)

k=1

Since under assumptions of lemma, maxy, E|| < oo, together with (43) this implies

t—

k
| =0,

T
Evryy < C(max Blge|) H ™! ; it

Hence, vy, = Op(1) which together with (A.58) proves (67):
|Ary| = C(H/T)Op(1) = Op(H/T).
Notice that by Corollary 7, under the assumptions of Corollary 9(b),

max |vrs,| =0p(l), 0<v<1. (A.59)

1<s<T

This together with (A.58) proves (69):

max |Ar,| < C(H/T) 1@582%‘1}13’1’ =Op(H/T).

1<s<T
Proof of (68) and (70). Let (66) hold. Then

a t—k
|Aqy| < CH*leH,u—m( T

k=1
By (66), (vw) € £(a), v > 0, while by assumption of corollary, (§;) € &£(s), s > 0 or
(&;) € H(0), 6 > 2. Thus, from Lemma C1 (i)-(ii) it follows maxy, E|véy| < co. Hence,

M2 vl - (A.60)

t—k

T
B|Aqy| < C(H/T)!? (max Elvyé& ) H ;bm_k( )12 < C(H/T)'?,

where C' > 0 does not depend on ¢, H,T. This proves (68), Ar, = Op((H/T)"?).
Next, by (A.60),

max [Ar,;| < C(H/T)Y?*( max_|vy|)( max vy /9), (A.61)

1<t<T 1<k t<T 1<t<T

where vy g 1/9 is defined by (A.57). Since (vy) € £(a), (C.3) of Lemma C1 implies:

max_|vy| = Op((logT)l/a).

1<k,t<T
By (A.59),

s feray2] = Op(1)

which together with (A.61) proves (70):
max |Ar| = Op((H/T)'*(10g T)"'*).

This completes the proof of the corollary. [
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B. Proofs of Theorems 1-3.

For convenience of the proof of Theorems 1-3, we include Lemma B1 which summarizes the
key steps of the proof of Theorem 1, Bickel and Levina (2008) and adjusts them to our setting.
Recall notation of p x p covariance matrix 3, = [0;;¢|, sample covariance estimator f]t =

[0i5.4) of X4, (10), and the regularized sample covariance estimate defined in (11):
Ty (21) = (Giel (15150 > N)).
Denote »
M= maxp|8ij7t —0ijtl, N = max ZI(|EW — oij] > A/2).

i,5=1,..., i=1,...,p
Jj=1

Recall the definition of the sparsity parameter n, of covariance matrix ¥, which is the maxi-

mum number of non-zero elements in a row of ¥, see, e.g., (8).
Lemma B1 (see Bickel and Levina (2008, proof of Theorem 1)). For any A > 0,

IT\(Z) — || < 2M N + Mn, + 2)n,,. (B.1)
Moreover, if X is such that as T — o0,

max; j—1 pP(|3¢j,t — 0yt > )\/2) = 0(19_2); (B.2)

.....

then

In addition, if (B.3) holds, n,A = o(1) and ||%;|| > ¢ > 0, then

1

T3 () = =7 = Op(np)). (B.4)

Proof. Verification of (B.1) follows closely the steps of the proof of Theorem 1, pp. 2582-2584
in Bickel and Levina (2008). For clarity, we include the details of the proof.
We have

TA(Zs) — 3¢ = [6ijilij=1,..p0  Oije = Oijul (|0i] > A) — 0.

By the well-known property of the spectral norm of a symmetric matrix,

7777 p

p
IT5(S0) = 2l < max (D 19el) (B.5)

7=1
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Write
e = {03l (|i¢] > A) = oijel(|loije|l > A/2)} + {—0ijul (|oije] < A/2)}
Ol + -
Notice that
851 < lowel I (Il < A/2) < (A/2)I(oi30] # 0).
On the other hand,

00, = Gun(I(Gyl > N — I(oiel > M2)) + Gije — 0ij.0) L (|0554) > A/2)
= {0 L(1Gije] > A, |oie] S AN2)}+{=04L(|050] < A, Joije] > A/2)}

~ 1 2 3
H{@ie — o) (134 > A/2)} = vijs + vy + i
Notice that for |7;;4] > A, |oi;+] < A/2 it holds

Gijel < 2(1Gi| — |oijel) < 2[G550 — 0l

Gije — 0igel = [Tijel — lowel > A/2.

Hence,

W)l < 20810 — oyl ([Gije — 0igal > A/2),

2

|U1(335| < M(loyel # 0),

i)l < [Bise = oual (ol # 0).
Therefore,

1 2 1 2 3 2
Bl < 1801+ 185 < [ + [l + o) + 195

< 206350 — 0iil L (10550 — 0ijel > N/2) + [Gije — 0ijalI (|04 # 0) + 2X (|oj] # 0).

.....

p
175 (32:) — || < igaxp(z 13ije])
7777 j:l
p
< 2{ max (G — 0yjalH{ max Y I(|Gy0 — 054l > A/2)}
i,7=1,...,p i=1,....,p —

7=1

.....

2M N + Mn, + 2Xn,

IN
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which proves (B.1).

Proof of (B.3). 1f (B.2) holds then
p
P M > )\/2 S Z |Uij,t — Uij,t| > )\/2) S p2 maXP(‘(/T\Z'j’t — O'ij,t‘ > /\/2) = 0(1)
— R

In turn,

P(N >1)<P(N>0)<P(M>\2)—0.

This shows that M = Op(A\) and N = Op(1) which together with (B.1) proves (B.3).
To prove (B.4), set B := T,\(it), A :=¥;. By assumption, ||A]| > ¢ > 0 and n,A = o(1).
By (B.3), ||B — A|| = Op(nyA) = op(1). Thus,

1Bl = [[A+ (B = A = [[A]| = [|B = Al = ¢ = 0p(1) = ¢(1 + 0p(1)).
This implies ||[B~!|| = Op(1). Hence,

IB = A7 = [A(A- BB < A7 [ A— B |B7
¢ 0p(m,A)Op(1) = Op ()

IN

which proves (B.4). O

Proof of Theorem 1. Recall that
A = k(T ogp)'/? (B.6)

has property A — 0 as 7" — oo in view of (9). By assumption of the theorem, (y;) is a
stationary sequence, the sample covariance matrix > = (0i;) given by (5) is the estimate of
3 = (0y;) = var(y) and o0;; does not depend on t.

By Lemma B1, in view of definition (B.6), to show (B.3) and thus, the claim (6) of Theorem

1, it suffices to prove that for sufficiently large k,

-----

max; j=1 pP(\/a\m — 0ij| > 2)\) = 0(]9_2). (B?)

(Notice that (B.7) implies that (B.2) holds for sufficiently large x which in turn proves (B.3).)
Fix (i,7) and set z;, = YirYjk- Because of stationarity assumption, Fy;, = Eyii, Ey;r = Eyn
and Ez, = 0;; do not depend on k. Observe that

0ij = cov(Yir, Yjx) = Ezi — By Eyjg.
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Then we can write

T
Gy—oy = T Z YikYjk — Yillj — Oij
k=1

T T
= sri — 4l + Eya Byj, spi =T Z(Zk —EBz), §=T" Z%k
k=1 k=1

Observe that
Ui, — Eyan EByj = (Ui — Eya)(y; — Eyjn) + Elyal (W — Eyin) + Elynl (9 — Eya).
Both assumptions (yix) € £(s) and (yix) € H(#) imply that m = max; j, Ely| < oo.
Therefore,
G55 — oij| < |srgl + 10 — Byal |95 — Byl +ml|y; — Byul +m|g; — Eyal.
So, we obtain
P(|5—w — Uij| > 4/\) < P(|3T,ij| > /\) + P(|gz — Ey21| |gj — Eyj1| > )\) (Bg)
+P(m|j; — Eyj1| > X) + P(m|g; — Eyal > X).
Since A = o(1) as T — oo, then v/A > X for A < 1. Hence,
P(lg; — Eyal ly; — Byl > ) (B.9)
< P(|lyi — Eyal > \/X) + P(|lg; — Byl > \/X)
S P(’gl - Eyzl’ > >\) +P(’ZJJ - Eyjl\ > )\)

Therefore, to prove (B.7), it suffices to show that uniformly in 7, j, as T' — oo,
max P(|s7;] > A) =o(p~?), max P(|lgi — Eya| > A) =o(p™?),  (B.10)
P i=1,....p

m
=1

ax P(mm — Ey11| > )\) = O(p_Q), (Bll)
D

-----

when & is selected sufficiently large. We will prove (B.10), while (B.11) can be shown using

the same argument as in the proof of the second claim in (B.10).

Denote
T
S;“,ij = T1/25T,ij, St = T”Qyi =T1/2 Z(y’k — Eyir).
k=1
Then, with n = T2,
P(|sr5l > X) < P(IS7451 > n), (B.12)

P(|57: = Bya| > X) < P(|St,] = n).
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By Assumption M, the process (y, — Ey,) is a-mixing, and therefore processes (z, — Ezy),
(yir — Eyir) are also a-mixing with mixing coefficients satisfying (1).

(i) Let (yix) € E(s). Then (z;) € £(s/2), and Ez, = 0;; does not depend on k. Hence, (40) of
Lemma 1 implies that with v = (s/2)(1 + s/2),

P(’S;:,z‘ > 77) < fT(2a%C, 77)

Notice that 7 = x(logp)'/2. Then, by definition of f, in (39),

frven) = afexp(-an?) + e (- (L))
., ¢, = colexp(—c exp ( — co(——
T\4,7,CM 0 p 1n p 2 IOgQT
log T)'/21/?
- ekt log T (M ’V}
co{exp( 1k log )+6Xp( 62( log? T

= o(p™?)
because ¢;x% > 2 when  is chosen large enough, and under assumption (9), T > cp°,

(log T)Y/2T"/2

logp =o((————) ).

ogp O(( log2 T

This together with (B.13) and (B.12) proves (B.10).

(i) Let (yi) € H(A). Then, (z) € H(6/2), and (41) of Lemma 1 implies
P(|S7,1 >n) <gr(2,0,¢.m), 2<6 <0/2, (B.14)
P(|S7l > n) < gr(2,0', c.m).

1/2

Recall that n = k(log p)'/?. Then the function gr given in (39) has property

gT<27 6/7 C, 77) - Co{exp ( — Can) —+ 7779T*(9l/2*1)}
s (v )+ st 100

= o(p7?)

because c;x% > 2 for large enough r, and since under assumption (9) of the theorem,
p? =o(T?*71) (B.15)

if 0 € (2,0/2) is selected close enough to 6/2. Indeed, then T > ¢op, € > 8/(0 — 4) which

implies p? = o(T?/271) if ¢ is selected close enough to 6/2.

This, together with (B.14) and (B.12) proves (B.10) which completes the proof of (6).
Property (7) follows using (B.4) of Lemma B1. [J
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Proof of Theorem 2. Recall that in Theorem 2
A = k(logp)'/? max (H /% H/T). (B.16)

By Lemma B1, to prove (B.3) which is equivalent to the claim (15) of theorem, it suffices
to verify validity of (B.2) when parameter « is selected sufficiently large. For notational

simplicity, instead of (B.2) we will show that for sufficiently large &,

max P (|5, — 0454| > 4X) = o(p~?). (B.17)

5,J=1,....p

Since k can be arbitrary selected, (B.17) implies (B.2).
Recall that y, = (y1s, ..., Ypt)'. Set zx = yiry;k. Notice that

Oij ke = Cov(yika yjk:) = Ezk — EyzkEygk

Then,

aij,t — Oijt = Kt_l Z;;rzl bH,\t—kIyikyjk — YitYjt — Tijt
= STt — Yt + Eya By, (B.18)
STijt = Kt_l Z;{:l bH,|t—k\(Zk - EZt)7 Yit = Kt_l Zle bH,\t—sz‘k.

Notice that
UitUit — EvaEyje = (Ui — Evyi) (Uje — Eyie) + Elyal (G50 — Eyie) + By (G — Eva).
Under assumption (y;) € E(s) or (yix) € H(#), max;; |Ey,| < m < co. Hence,
1Gij.e — oijel < AsTijel + |Gie — Eviel [Ue — Eysel + ml|yje — Eyjel + m|Gie — Eyial.
Therefore,

P<|8ij,t — O-ij,t’ > 4)\) S P(|ST,ij,t| > /\) -+ P(|’ljn — Eyzt| |gjt — Eyjt‘ > >\) (Blg)

Notice that A = o(1) as T — oo by (14). Hence, v/A > X for A < 1. So,

P(15it — Byl [yje — Eysel > ) (B.20)
< P(|gi — Eyu| > \/X) + P(|yj: — Eyje| > \/X)
< P(|§it — Byy| > )\) + P(’gjt — Byj| > )\)~
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Therefore, to prove (B.17), it suffices to show that uniformly in ¢, j, as T"— oo,

ij@laXpPOST’UA > ) =o(p~?), igaXpP(@t — Byg| > X)) =o(p™?), (B21)

=l..,p 7 =l,...,

max P(m|§it — Eyyl| > )\) =o(p?). (B.22)

7777 p
We will prove (B.21). ((B.22) can be shown using the same argument as in the proof of the
second claim in (B.21)). Write

T T
ST,ij,t = H1/2Kt71 <H71/2 Z bH,|t—k|<Zk — EZk) -+ H71/2 Z bH,\t—k\(EZk — EZt))
k=1 k=1

. 1/2 —1 *
= H'Y2K; (S50 + TTie),

T T
Gir — Byy = H'YWK'(H™/? Z ba -k (Yir — Evir) + H'?2 Z b je— k) (EYix — Eyzt))
k=1 k=1

= Hl/thfl(s*T’Lt +rrit)-
Observe that there exists a1, as > 0 such that forall 1 <t < T, T > 1,
aH < K; <ayH.
Then
(K /HY)\ > ay HY?X =: 1, (B.23)
Therefore

P(|srijel > A) < P(Isqi0 +rrael >n) < P(Isi.0 > 10— [rrijel),
Pl — Byl > X) < P(|shs +rriel >n) < P(Ishi,l >n—rrad).

First we show that, as p — oo,
rrajel <n/2, fread <n/2 (B.24)
which implies
P(|srijel > A) < P(|5;},ij,t| >n/2), (B.25)
P (|7 — Eyiel > X) < P(|s7,04] = 1/2).

To verify (B.24), we use the equality Ez = Elyuy;:] = cov(yit, yjt) + Eyi Ey;. which together

with assumption (2) implies that uniformly in i, ¢, s,

t—s
1yl < €. |By— Byl < 02, (B.26)
t—
|Ez| < C, |Ez — Ezs| < C| S|.
tVs
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This together with (46) of Lemma 3 and the assumption of the theorem, d7° < ¢ < T, yields

H3/2 H3/2 H3/2
iit] < Cho—7—— < C\ < Co——, B.27
Irrsiel < Cogrs < Cgver < O %7 (B.27)
H3/2
it < Co—=
Irriel < o

because H = o(T') by the assumption (14). Since
MWH > k(logp)2H?T,

this implies
1/2

7 _am(logp) 9, 7
’TT,ij,t’ C*/5 ’TT,i,t\

when k(logp)/? is sufficiently large. This proves (B.24) and (B.25).

By Assumption M, the process (x; — Fax;) is a-mixing, and therefore (z;, — Ez;) is also

> 2

a-mixing with mixing coefficients satisfying (1).
(i) Let (y,) € E(s). Then, (z) € E(s/2) and (yix) € E(s/2). So, applying (44) of Lemma 2
we obtain
P(Is7i50l > 1/2) < fu(2,7,¢,0/2), 7= (s/2)(1 +5/2), (B.28)
P(s7.el > n/2) < fu(2,7,¢,n/2).

The function

fu(n,72,6,¢) < co{exp(—cl(%) +exp (— CQ(%)W} (B.29)
given in (39) is non-increasing in ¢. By (B.23),
n/2 > (a1/2)rx(logp)"/?. (B.30)
Thus,
fu(2,7,¢,n/2) (B.31)

1/2
< eofexp (— er(an /27 o) + ex0 ( — (/2 log i) ) | = 0l
because c;(a;/2)*x? > 2 when & is chosen large enough, and by (14), H > cop°, which implies

H1/2
10g2 H) )

logp = 0((10g1/2p
This together with (B.28) and (B.25) proves (B.21).
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(i) Let (y,) € H(0). Then, (z) € H(0/2) and (y;x) € H(0/2), and using (45) of Lemma 2,

we obtain

P854l > 0/2) < gu (2.0, c.,n/2), 2<0 <0/2, (B.32)
P<|3;i,t| > 77/2> < 9H(2,9’,c, 77/2).

The function

gu(7,0',¢,¢) = ca{exp (=) + C_et_(elﬂ_l)} (B.33)
given in (39) is non-increasing in (. Again, using the bound 1/2 > (a1/2)x(log p)'/?, we obtain
gH(279/707 77/2) <B34)

< co{exp (= ci(ar1/2)’k*logp) + ((al/Q)/{(logp)l/2)_6/H_(9,/2—1)}

=o(p~?)

because ¢ (a1/2)?k? > 2 for large enough x and because p? = o( H?/>~') under the assumption
(14) of the theorem if 6’ € (2,0/2) is selected close enough to 6/2, see the proof of (B.15).
Clearly, (B.34), (B.32) and (B.25) prove (B.21).

This completes the proof of the claim (15) of theorem.

The claim (16) of the theorem is shown in (B.4) of Lemma BI.

The bandwidth H,, = T%?3 minimizes max (H~'/2, (H/T)), so

A = (log p)"? max (H, (H/T)) = A = s(logp)/*T /3
which proves the last claim of the theorem. []

Proof of Theorem 4. In this theorem,

4
A = w(log p)* max (H~V2, (H/T)?), v= O‘; . (B.35)
(0%

Notice that by (19), A = o(1). As in Theorem 2, to prove the main result (20) of this theorem,
it suffices to verify (B.17), i.e. to show that uniformly in 4, 7, for sufficiently large x it holds:

P(\@ﬁ — Uij,t‘ > 4)\) = O(p_2). (B36)
We will rewrite 0, — 0;;; as follows. Observe that

Yy = Hy®e = (Yar - Ypr), Where yip = 350 Diukur,
3, = HX"H, = (0;;,), where o5, =5"

u,v=1

(z)

P tNjua t O
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_\"P : () _
and Yipyjx = Eu,v=1 Riw Mo kTur ok Since o, = E[Tyy] — Exy Ex,, then

p
Oijt = Z hiu,thju,t (E[:Eutl'vt] - E[xut]E[l'ut]) .

u,v=1

So,

Oijt — Oijt = K{1 2521 b |tk YikYjk — Yitljt — Oijt (B.37)
= v we1 Tijuvt, Where
Tt = Sijavt = Yiuijot T (Pt B[0u]) (Pjoe BlT0]),
St = K Y0 bajeen (Riwiljo kZuror — Piw it E[TuTo)),
Yiug = K ' Zle br |tk P o Tk
By assumption of the theorem, the sparsity parameter ngy of H, is finite and fixed, and does
not depend on ¢, p, T. Therefore, for any fixed (i,7) the sum >.? _ [...] in (B.37) includes no

u,v=1

more than n% of non-zero terms. Without restriction of generality, assume that

nH
Oijt — Oijt = E g uv,t-

u,v=1

Hence, to verify (B.36), it suffices to show that uniformly in 4, j, u, v, for sufficiently large & it
holds:

P(|Tijuvel > 4N) = o0(p72), XN = X/n}. (B.38)
Set Siut = Yiut — Riwt B[ Tut],  Viwg = hiwt E[Tu). Then,

Tijuvt = Sijuvt — (SiutSjvt + ViutSjvt + VjotSiut)-
Thus, similarly to (B.19),

ﬂ-z’j,m},t S P(|§ij,uv,t‘ > A,) + P(|Siu,t3j'u,t| > )\/) <B39)
+P(|U7Lu,t$jv,t’ > )\/) + P(|Ujv,t3iu,t’ > )\,)

Since A — 0, assume that A < 1. Then, A’ < 1, and similarly to (B.20),

P(|5iu,t5jv,t > )\/) < P(’Siu’t’ > )\/> + P(|Sjv,t| > )\I)

Therefore, to prove (B.38), it suffices to show that uniformly in u,v,4,j, as T — oo, for

sufficiently large « it holds

P([Biunel > X) = op?). Pllsjudl > X) = olp). (B.40)
P(|viisui] > N) = o(p™?).
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Let i, j,u,v be fixed. Define z; := xuxTor, %k = N kNjo k. By Assumption M, the process
(xy — Exy) is a-mixing, and therefore the process (2 — Ezi) is also a-mixing with mixing
coefficients satisfying (1). Moreover, as in the proof of Theorem 2, Ez; satisfies (B.26). By
Assumption H, (h;, ) satisfies (18) with parameter o and (hi) with parameter /2.

We can write

~ —1771/2 -1/2 T 7 7

Sijuvt = K, H / Qijuvity  Qijuvt = H~Y Zkzl bH,\t—k| (hkzk - htEZt)a
_ g—1g171/2 _ pr-1/2\T

Siut = Kt H / Qiu,ts Qiut = H / Zkzl bH,|tfk\ (hzu,kxuk: - hiu,tExut>-

This together with (B.23), setting n = a; H/2\, implies

P(|§z’j,uv,t| > /\/) P('Qij,uv,t| > 7])7 (B41)
P(lsiusl > N) < P(|giusl =),
P(’Uiu,tsjv,t| > /\/) < P(|Uz'u,tij,t| > T])'

IN

IN

In addition, set L = b(logp)'/® > 1, where b > 0 will be selected below. Then,

P(‘Um,tq]'u,t‘ > 77) < P(‘Um,t’ > L) + P(L‘ij,t’ > 77) (B.42)

= P(Jvig| > L) + P(lgjos] > L7'9),
P(|Qiu,t‘ > 77) < P(|Qiu,t’ > L_lﬁ)-

We will show that there exist sufficiently large b > 0 and x > 0 such that

P([viugl > L) = o(p™?), (B.43)
P(|gijuvel = 1) = 0(p™?),  P(|gjuel =n/L) = o(p~?) (B.44)

which together with (B.42), (B.41) implies (B.40) which completes the proof of (B.36).

Proof of (B.43). By assumption, (x;) € £(s) or (x;) € H(#) which implies max;; |Fz;| < m <
oo. Therefore, |vis| = |hiwiEluw]| < m|hiu]. By Assumption H, (hi,:) € E(a). Therefore,
(Vint) € (o) which implies that for some ¢, ¢; > 0,

P(|Um,t’ > C) < coexp(—ai[¢]?), ¢>0.
Using this bound with ¢ = L = b(logp)'/®, we obtain
P(|ving] > L) < coexp(—c1b®logp) = o(p~?)

when b is selected such that ¢;b* > 2. This proves (B.43).
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Proof of (B.44).

(i) Let (z4) € &£(s). Recall that giju.: is a weighted sum of variables ﬁkzk, and by the
assumptions of the theorem, (hiy) € E(@). Thus, (hy) € E(a/2) and (z,) € £(s/2). On the
other hand, ¢;,.; is a weighted sum of variables hj, x Tk, where (hi, ;) € () and (x4) € E(s).
Hence, by the claim (58) of Lemma 5,

P<|Qij,uv,t| > 77) < fH (717727 0777(1 A dHt))7 (B45)
P(|qiugl = n/L) < fu(¥1 95, ¢, (/L)1 A dpy)),

where
2(a/2 200 a/2)(s/2 as
Lo e 20 (@) | e
a/24+2 a+4 a/24+s/24+1 2a+2s+4
;. 2« ;o as
T ar2 PTars+1

By assumption of the theorem, 6T <t < T. We will show below that

n(1Adye) > ask(logp)™, a5 = 6Y%(ay /n%), (B.47)
(/D) (ANdm) > agre(logp)™,  aj =b"16"2(ar/nF).

The function fy(y1,72,¢, (), see (B.29), is non-increasing in ¢. So,

Ji (72N dm)) < a2, e ash(log p) /™),

/

fu(vivtse, (/L)L A duy) < fu(1, 7, ¢ asr(logp) /).

Notice that,

fH(’Yla 727 C, a(s’%(logp)l/’h)

H
< Co{exp ( — ci(ask)™ 10%17) + exp ( —C (aw(logp)”“ o

because ¢;(ask)” > 2 when k is selected sufficiently large, and because by the assumption
(19), H > ¢op°, which implies

1/2

H
logp = o (log!/™ pIOg—QH)W)-

The same argument implies, that for sufficiently large x,
fu (1,7, ¢, asr(log p)V7h) = o(p™?).
Together with (B.45) and (B.41) this proves (B.40).
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Proof of (B.47). Notice that v = (o + 4)/(2a) in (B.35) has property:
vpn=1, (v—a )y =1 (B.48)

By definition (57), dy; = (¢t Vv H)Y2H~'. By assumption, 6T < t < T and H = o(T).

Therefore,

dgr > (6T NH)Y2H™ > (5T)V2H,
LAdg, > 0Y2(AATY2HTY).

Since for any e > 0, (1Ve)(1 Ae™!) =1, we obtain

NN dn) = (ar/ny)k(logp)” {(H Y2V (H/T)*)H*} (1 A die)
(a1 /n2)k(logp) Y2 (1 v HT Y2 (1 ATY2H™Y)

v

= (a1/n%)6"*k(logp)” = asr(logp)”.

Since by (B.48), v = 1/~ this proves the first claim in (B.47).
On the other hand, L™! = b~ (log p)~"/®, and therefore,

(/L)L Adpy) 2 b~ (ar /ng)6 k(log p)~/* = ajr(log p)'/™

by (B.48) which completes the proof of (B.47).

(i) Let (i) € H(6). Then g;j e, is a weighted sum of variables hyz, where (hy) € £(v/2)
and (zx) € H(0/2). In turn, g, is a weighted sum of variables hj, gz where (hi,x) € ()
and (z,) € H(0). Thus, by the claim (59) of Lemma 5,

P(|q¢j,uv,t| > 77) < g (717 0/7 ¢, 7](1 A dHt))7 9/ € (27 9/2>7 <B49)
P(|Q7,u,t| > 7’]/L) < gH(’}/i,QI,C, (n/L)(l/\dHt))7

where 7, and ] are the same as in (B.46). Since gy (71,72,¢, (), (B.33), is a non-increasing

function in ¢, by (B.47) we can bound

9u (f}/l7 6/’ ¢ 77(1 N dHt)) S 9 (717 8,7 G, aéﬁ;(logp)l/ﬁﬂ)a

g (7{7 9,7 &) (W/L)(l A dHt)) S g (71a 9,7 ) aglﬁj(logp)l/%) :

Notice that

g (717 0/7 C, acsfi(logp)l/’h)

1 1
< co{exp (= ci(ask)" logp) +

_ —2
(a(;/f(logp)l/”ﬂ)e' H@//Q_l } — 0(p )
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when £ is selected such that ¢;(asx)™ > 2, and ¢’ € (2,60/2) is selected close enough to 6/2,
see the proof of (B.34). Similarly, it can be shown that for sufficiently large &,

gu (71,0, ¢, asr(log p)t1) = o(p~2).

Together with (B.49) this implies (B.44). This completes the proof of the claim (20) of
Theorem 4.

The claim (21) of the theorem is shown in (B.4) of Lemma B1.

The bandwidth H,, = T"/? minimizes max (H~'/2, (H/T)"/?) which implies

A = r(log p)” max (H™ V2 (H/T)"?) > Aoy = r(log p)*T~/*

which proves the last claim of the theorem. [

C. Auxiliary results

This section contains auxiliary results used in the proofs.
Recall definition of functions f; and g, (39).

Lemma C1 (i) Let x € E(a), y € (') where o > 0, o« > 0. Then xy € E(a) where
a=oad/(a+d).

Moreover, x +y € E(min(a, ') and |z| < |z| implies z € E(a).
(it) Let v € E(a), y € H(0) where >0, 6 > 0. Then zy € H(8') for any 0 < ¢ < 6.

(111) Let (z;) € E(a), a > 0 and P(ly| > ¢) < filn,72,¢,(), ¢ >0, t > 2 with 1,72 > 0.
Then

P(|xtyt’ ZC) Sft(&/la;\haclag)a C>07 t227 (Cl)
where 71 = ay/(a+ M), Yo = aye/(a+72) and ¢ does not depend on t, .

(iv) Let (x) € E(a), a >0 and P(|ye] > ¢) < gi(7,0,¢,(), ¢ >0, t > 2 where v >0, 6 > 2.
Then for any 0" € (2, 6),

P(|xtyt| Z <) S gt(% 9/7 CI7C)7 C > 07 t 2 27 (C2)

where ¥ = ay /(o + ) and ¢ does not depend on t, .

(v) If (z;) € E(), (vu) € E(a) for some a > 0 then as T — oo,

max |z = Op((logT)l/a), max |zl = Op((logT)l/“). (C.3)

1<t<T 1<t,k<T
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Proof.
(i) Let x € E(a), y € £(a’) where a > 0, &' > 0 and let @ = ad//(a + &'). Then for some
a >0,
Eexp(alz]®) < 0o, Eexp(aly|”) < co.
To prove (i), we will show that E exp(a|zy|®) < co.
Set p = (a+d)/d/, g = (a+a')/a. Thenp > 1,¢ > 1, 1/p+1/qg =1 and ap = a,
aq = «. Hence, for k = 1,2, ... by Holder’s inequality,

Elzy|™ = E[z|**y|™*] < (Blz[**)Y?(Ely[Fo) Y1 = (B|z|t)V/P(Ely|F)!/
< (max(Elz|**, Ely[**)Y*TY4 = max(E|z|**, Ely|*)
< Elz* + Ely[**".

Therefore,

5 0" Blry|™ - df (Bl + Elylt)
Eexp(alzy®) < ZTSZ i

k=0 k=0
< Eexp(alz]®) + E exp(aly|”) < oc.

(ii) Let z € E(a), y € H(O) where a > 0, 6 > 0. Then, for some a > 0,
Eexp(alr|*) < 0o, FEly|’ < cc.

The latter implies that E|z|® < oo for any b > 0.
Let 6 € (0,60). To prove (ii), we will show that E|zy|’ < co. Set p = 6/6 and let ¢ > 1
be defined by equality 1/p+ 1/¢ = 1. Then, by Hélder inequality,

Eley” < (EJlz|”)9(Ely|"")"? = (Ela|")"(Elyl")"* < co.

This completes the proof of (ii).
Before proceeding to the proof of (iii)-(iv), we obtain the following two auxiliary results.

First, consider the function
f@) =24 c(v/z)”, >0

where o > 0,0’ > 0, v > 0, ¢ > 0. It achieves its unique minimum at
To = (Co//a)1/(a+a’)va’/(a+a’)

because g is a unique solution of equation f'(z) = az®~' — ca/(v/x)*'2~" = 0 and f"(z) =

75 %a(a+ /) > 0. Thus,
f(x) > fzo) = v x>0 (C.4)
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where @ = aa/ /(a4 /) and ¢ = (ca’ /o)) (1 + a/d).
Second, we obtain the upper bound for P(|xy| > () for the product of r.v.s  and y when
re&(a),a>0. Let p,¢g>1,1/p+1/q¢=1. Then

P(leyl > ¢) = Yo P({lz] € [k, k+ 1)} 0 {|zy| > ¢})
< oo PYe(lz| € [k k+ 1) PYa(lyl > ¢/(k + 1)).

Since x € £(a), then for k > 0,
P(lz| € [k, k+1)) < P(|lz| > k) < ¢fexp(—2¢1k®), k>0
for some ¢, > 0, ¢} > 0. Denote

e i= exp(—ck*)PY(|y| > (/k).

Then,
P(lzyl > ¢) < O gexp{—2dk* + i (k+ 1)} grr1c
< Cmaxgsi gre Yopeol =201k + ¢4 (k + 1)7}
< . .
< C’Iilzafcgkg (C.5)

We use this result to evaluate P(|xy| > () in parts (iii)-(iv) of the lemma.

(iii) Without restriction of generality, we assume that ¢ > 1. By (C.5),

P(lziy:| > ¢) < C'max gee. (C.6)

Under assumptions of (iii), grc = exp(—cik®) tl/q(Z,%c, (/k). To evaluate ftl/q(Z,%c, C/k),
denote ¢; = (v/t/log?t. Using the definition of function f;, (39), and inequality

(a+b)YT< a1 b1 4 b>0, (C.7)
we obtain

e /R < C (e (= al¢/) + e (- ale/h™)
< O (exp (— (/@) (/M) +exp ( — (ea/a) (G/R)™) ).

Hence, there exist constants c;, ¢, > 0 such that

gg < Ofexp(—cy (K + (¢/R)™)) + exp(—c, (k" + (Gu/k)™)) }-
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Next, using (C.4) to bound f(k) := k*+ (¢/k)™, f(k) := k*+ ((;/k)* from below, we obtain
gre < 5 (exp(=ciC) +exp(=6¢P)) = LG T, ¢, Q) k21,
with 71 = ay1 /(e +711), 72 = ay2/(a+ 7). Thus, (C.6) implies
P(|zye] > ¢) < fi(F1, 72, ¢ 1 Q)

which proves (iii).

(iv) Let ¢ > 1. Under assumptions of (iv), (C.6) holds with

k¢ = exp(—cllka)gtl/q(% 0,c,C/k).

Next we evaluate gtl/q(’y,ﬁ,c, ¢/k). Let 2 < 0 < 6. Then, /¢’ > 1 and (0 —2)/(0' —2) > 1.
Let ¢ > 1 be such that min(6/6¢’, (68 —2)/(¢' —2)) > ¢. By (C.7) and definition of ¢, (39),

9" (7,0, ¢,C k) < C(exp{—cl(g/ky} + (g/k;)—f’t—(g/?—l))l/q
C{exp{—(c1/q)(¢/k)7} + ¢Vag= 0= Dlagblay. (C.8)

IN

Definition of ¢ > 1 implies /¢ > ¢ and (#/2 —1)/q > ¢'/2 — 1. This together with (C.8)
yields

gtl/q(q/, 0',c.C/k) < C(exp{—(c1/q)(¢/k)"} + C_e/t_(elﬂ_l)kg/q), (>1,t>1.

Hence,
(L v —0',—(0"/2—-1) L 11.aN\1.0/q
max gy < Cmaxexp{—c”(k" + (C/k)")} + CCt max{exp(—cy'k")k"}

< C(maxexp{—c)"(k* + (¢/k)")} + ¢ @2Y),
Applying to f(k) := k* + (¢/k)” the bound (C.4), we obtain
max g <6 (exp(=eiCT) + ¢4 = 03,0, ¢",)
with 7 = ay/(a + ). Then (C.6) implies P(|ziy:| > () < g:(7, ¢, ¢*, () which proves (iv).

(v) We need to show that, as T'— oo, b — 00,
> 1/04 > 1/0( .
P(t:nll’z.micT 2| > b(log T)"*) — 0, P(t,krillz,i.}‘{.,T 2| > b(log T)V*) = 0

By assumption, there exist a > 0 and a > 0 such that

« (0%
r?zaquexp(aM:t\ ) < 00, gg}liEeXp(a\xtﬂ ) < o0.
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Let b be such that ab® > 2. Then, as T" — oo,

T

-----

Similarly,

.....

T
Elexplalzu|®) _ 7
<T C —0.
Z xp(ab®logT) — Z ~

k=1 tk=1

This completes the proof of (v) and the lemma. [

Lemma C2 Let vy > 0.

(i) Let & be a zero mean random variable. Then for all ¢ > 0,

coexp(—ciC®)  ifE€&(s),s>0 (C.9)

E(\élﬁ(\ﬂ > C)) < { ol if & e HO), v <0 (C.10)

for some cog > 0, ¢; > 0 which do not depend on (.

(i) Let sy, t > 1 be zero mean random variables such that for some v >0, 72 > 0 and c,

P(|St’ ZC) Sft(71772>c7C) fO?" CL”C>0, t22

Then,
E|:|St|7](|st| > C)] S ft(71772vc,7§)7 g > Oa t Z 2a (Cl]_)

where ¢ does not depend on (, t.

(7ii) Let sy, t > 1 be zero mean random variables such that for some 6 >0, v1 > 0 and c,

P(lsel > ¢) < gi(m,0,¢,¢) for all (>0, ¢ >2.

Then, for 0 <~y <0,
Els:|"I(]s:| > ¢)] < max(¢?,1)ge(n1,6,¢,¢), ¢ >0, t>2, (C.12)

where ¢ does not depend on (, t.
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Proof. Without restriction of generality let ( > 1. Denote F'(z) = P(|¢| > x). Then
B¢l > Q) = = [T a"dF(x) = =QF(C) + [ a7 F(x)da. (C.13)

(i) If (&) € E(s), then F(z) < ¢jexp (—2c;|z|*) for some ¢}y, ¢, > 0. Notice that F(z) > F((),
x > (. Applying these bounds in (C.13), we obtain (C.9):

E[IEMI(El > Q)] < FYAO{OFY2(Q) + [ 2 FY2 () dw}
< CFY2(() < Cexp(—d(¥).

If (£) € H(0), then F(z) < cj|x|™%. Using this bound in (C.13), we obtain (C.10):
E[l€l1(€] > ) < C{¢1¢1 + /C T e dg} < 00,
(ii) Let again ¢ > 1. Denote F;(z) = P(|S¢| > ). Then as in (C.13),
Bl 105 > 0] = = [ wR @) = ~CRQ+ [ R @ (1
Ells (s > Q] < E(O{CFE (0 + / e P ).
By assumption, P(|s:| > {) < fi(71,6, ¢, (). Definition (39) of f; implies that
fi(v1,72,¢,¢) < copexp ( — QClCmi“(”l’”)), (>0,t>2
for some cg,c; > 0. Thus, by (C.14), for ( > 1

E|:|St|’yl(|8t| > C)j| S ft1/2(71)727 ¢, C) (C’yftl/2(fyl7727 ¢, <) + floo x’y_lftl/2(’yl7727 ¢, Z‘)dl’)
< O 0,72, ¢,.0) < Cfi(m,72.¢,C)

for some ¢ in view of (C.7). This proves (C.11).

(iii) Let ¢ > 1. Since P(|s¢| > () < g:(m,0,¢, (), (C.14) implies
Bl 1l > O € Contn .0+ [ ol 0,0, (©15)
By definition (39), g:(71,6, ¢, () < co{exp(—2¢,¢") + ¢~9%~0/2=D} for some ¢y, ¢; > 0. Thus,
/COO 27 g, (71,0, ¢, x)dx
< C(exp(—clgw) /COO 27 exp(—ciz")dx + /Coo x7*9*1t7(9/2’1)d:c>

< CQW’ ( exp(—01§71) + C_Gt_(eﬂ_l)) - C’ygt (’71a 07 0,7 C)

for some ¢. This together with (C.15) proves (C.12). O
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Lemma C3 Let by satisfy (43) withv >3 and 0 <~y < 2. Then for 1 <t,H<T,T > 1,

d It — k| H
H! b ji— T (O K C.16
> bl ) < (16
T
t—klVH H
HS by (LMY e o My C.17
;H,t W) < Clgy) ™™ (C.17)
where C' > 0 does not depend on t, T, H.
Proof. Notice that
H H HANt

(T = ((7)7/\1) = (=

By (43), by, < C(1+ (k/H)")~* for k > 0 where v > 3. Therefore, for 0 < v < 2,

), (C.18)

T
-1 v g
H ; buk(k/H)' < C, maxby(k/H)" < C, (C.19)
where C' does not depend on H,T.
Denote by I, g the Lh.s. of (C.16). Then, by (C.19), noting that ¢V k > ¢,

| _k| H)'y
t

I —H*lTb i k'”—H’lTb t v H7<C
vH ; H,It—k\( ) = ; H,\t—k\( H )(t\/k;> < (—

tVk
On the other hand, since |t — k|/(t V k) < 1, using (C.19) we obtain
ILy<H! Z;;le bk < C

which together with (C.18) proves (C.16).
To prove (C.17), denote by Iy the Lh.s. of (C.17). Write

T t/2
IH:]'I_1 Z []—FH_IZ[] =: IH;1+IH;2.
k=t/2+1 k=1
Then,
T
_ t—klVH H
Ima < [H™ ) bT,tm(%)”?(gW]
k=t/2+1
T
H _ |t —klVH H
< Hzrg—1 bt 1/2] « (2172
< C(t) [ ;T,tk(—ﬂ ) }_C(t)

by (C.19). On the other hand, for 1 < k <¢/2, it holds |t — k| > t/2. Then,
L= (|t = k|/H)(H/|t = k[) < 2(|]t = k|/H)(H]?),
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and
t/2

Iyo <2H! Z{bmtqﬂ(

k=1

|t —k|VH

EOR

H
t

Then, using the second claim of (C.19), we obtain

HY? & H
I < V2 < o(—)YA
a2 < C(— ); <C(5)

The bounds for Iy, and Iy imply Iy < C(H/t)/2.
In view of (C.18), to prove (C.17), it remains to show that Iy < C. By (C.19),

Iy

IN

_ T —k
H Zk:l Z)T,Iltf/’cl(%)lﬂ(%)l/2

_ 2H —k|VH _ T —k|VH
H! Zk:l bT7|t—kl<%)l/z<%)l/2 +2H07! Zk:2H bT,\t—kl(%y/Q
< CH2YE k2 4 CHTV S by ()2 <

IN

where C' < 0o does not depend on ¢, H and T'. This proves Iy < C' and (C.17), and completes
the proof of the lemma. [J

References

Bickel, P. and E. Levina (2008) Covariance regularization by thresholding. The Annals of
Statistics 36, 2577-2604.

Davidson, J. (1994) Stochastic Limit Theory. Oxford University Press.

Davydov, Y. (1968) Convergence of distributions generated by stationary stochastic pro-
cesses. Theory of Probability and Its Applications 13, 691-696.

Merlevede, F., M. Peligrad and E. Rio (2009) Bernstein inequality and moderate deviations
under strong mixing conditions. IMS Collections High Dimensional Probability V: The
Luminy Volume 5, 273-292.

White, H. and J. M. Wooldridge (1991) Some results on sieve estimation with dependent
observations. In: Semiparametric and Nonparametric Methods in Econometrics and
Statistics, ed. by W. Barnett, J. Powell, and G. Tauchen, pp. 459-493. Cambridge

University Press.

39



School of Economics and Finance

‘Qs’ Queen Mary

University of London

This working paper has been produced by
the School of Economics and Finance at
Queen Mary University of London

Copyright © 2020 Yiannis Dendramis,
Liudas Giraitis and George Kapetanios

All rights reserved

School of Economics and Finance Queen
Mary University of London

Mile End Road

London E1 4NS

Tel: +44 (0)20 7882 7356

Fax: +44 (0)20 8983 3580

Web: www.econ.gmul.ac.uk/research/
workingpapers/



	covers editable.pdf
	Introduction
	Model
	Individual States
	The Economic Model
	Individual Choices
	Equilibrium

	The Epidemiological Model
	True Epidemiological States
	Observed Epidemiological States
	Infection Rates

	Government Policies

	Quantitative Analysis: SK vs UK
	Calibration
	GDP and Inequality
	Counterfactual Policy Analysis
	Virus Visas and Inequality

	Conclusion
	Blank Page




