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1 Introduction

Estimation of impulse responses (IRFs) via local projections (LP) by Jordà (2005) has

become increasingly common in applied Macroeconometric analysis. A key feature of

the local projection estimator is that it estimates IRFs of variable yt to an innovation

to variable xt directly via linear regressions of the form yt+h = βhxt + dhwt + ut+h,

where wt denotes control variables. Given their flexibility, considerable attention has

been given to investigate the properties of the LP estimator, see, for instance, Stock

and Watson (2018) and Plagborg-Møller and Wolf (2021).

In their most popular specification, LP estimators impose a linearity between yt+h

and (xt, wt). This limitation implies that linear LPs cannot be used to study non-

linear effects of the shocks of interest, for instance non-linearities on the sign or size of

the shock, or on the economic conditions when the shock occurs. Some extensions of

the linear LP estimator have been proposed, but they all rely on the functional form

introduced to model the non-linearity. Jordà (2005) proposes the use of quadratic

and cubic terms. Auerbach and Gorodnichenko (2013a,b) and Ramey and Zubairy

(2018) use a smooth transition function and a threshold function, respectively. Ruisi

(2019) and Lusompa (2021) use a time varying extension of LP based on parametric

state-space models, while Inoue et al. (2022) provides a more general framework for

modelling structural shifts.

In this paper we propose a flexible non-linear extension of the LP estimator that

does not require assumptions on the functional form of the LP regression equation. We

propose a non-parametric LP estimator that uses the Bayesian Additive Regression

Trees (BART) model to approximate the unknown function mh(zt) in the more general

equation yt+h = mh(zt)+ut+h, with zt = (xt, wt). Introduced by Chipman et al. (2010),

BART uses regression trees as its building block. Regression trees split the space of

explanatory variables zt into sub-groups based on rules of the form zt,j < C, where

j = 1, 2, .., K. The function mh(zt) is approximated as a sum of a large number of

small trees. Chipman et al. (2010) show that BART is able to approximate highly
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non-linear functions accurately.

We first illustrate how BART techniques can be applied in a non-linear LP esti-

mator, and we refer to this new methodology as BART-LP. We show that BART-LP

can handle autocorrelation in the error terms, a problem already discussed in the lit-

erature of linear LP estimators. We then document the performance of BART-LP

using Monte Carlo analysis. We build our simulations on three models. First, we use

the same SVAR-GARCH model employed in the simulation by Jordà (2005), where

a structural shock generates non-linear effects that affect the variance of the shock.

Second, we use a recursive Threshold VAR model in which shocks generate stronger

effects in one of the two regimes of the model. Third, we use a sign-dependent moving

average model in which the true monetary policy shock generates different effects de-

pending on the sign of the shock. In all cases, the BART-LP is capable of recovering

the true impulse responses, while the linear LP typically estimates a weighted average

of the true underlying non-linear impulse responses. We focus the discussion on the

IRF estimation, which is separate from identification of the structural shocks. As also

in Jordà (2005), we do not investigate the topic of identification in our framework.

We then apply the new methodology to shed some light on two separate ongoing

debates in the literature. We first apply our methodology to US fiscal spending shocks.

While Auerbach and Gorodnichenko (2013b) has argued that US fiscal multipliers are

stronger in recession than in boom, their evidence has been called into question by

Ramey and Zubairy (2018). We use our BART-LP procedure to show that the answer

to this question depends on the sign of the shock. We show that the multiplier in

response to a positive shock does not change significantly depending on whether the

shock hits the economy in an expansion or in a recession. However, in response to

a negative shock the multiplier is stronger in a recession. Compared to the models

used by Auerbach and Gorodnichenko (2013b) and Ramey and Zubairy (2018), our

methodology can detect both non-linearities over the state of the economy and non-

linearities over the sign and size of the shock. Our results hence help reconcile the
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difference found by Auerbach and Gorodnichenko (2013b) and Ramey and Zubairy

(2018), who used models that are more suitable to detect non-linearities over the state

of the economy, but not over the sign of the shocks. Last, we revisit the analysis by

Forni et al. (2021) on financial shocks. We confirm their result that negative financial

shocks generate detrimental effects on output that increase more than proportionally

in the size of the shock. These effects cannot otherwise be detected by a linear model,

which is doomed to underestimate the effect of strong negative financial shocks.

This paper relates to the literature that studies how BART techniques can be used

in Macroeconometrics. Huber and Rossini (2021) introduce a VAR model where the

dynamics of the endogenous variables are modelled using BART. The authors model

the impact of uncertainty shocks using their proposed model. Huber et al. (2020)

extend the BART-VAR to a mixed frequency setting and evaluate the forecasting

performance of the model. Clark et al. (2021) show that multivariate BART regression

models perform well in terms of tail forecasting. To the best of our knowledge, our

paper is the first one to use BART in an LP framework. The paper is also part of a

broad literature that studies the advantages of IRF estimation using LP estimators,

relative to constructing IRFs on vector autoregressive models. Several contributions

document the performance of LP estimators, including Gonçalves et al. (2022), Kilian

and Kim (2011), Alloza et al. (2019), Breitung et al. (2019) Herbst and Johannsen

(2021), and Bruns and Lütkepohl (2022). While LP estimators are usually proposed

in a frequentist setting, we follow Miranda-Agrippino and Ricco (2021) and take a

Bayesian approach to LP, yet in a non-linear framework.

The paper is organised as follows. Section 2 presents the empirical model. Section 3

reports the results from the simulation exercise. Section 4 shows the application to

fiscal and financial shocks. Section 5 concludes.
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2 Flexible local projections

In this section we outline the methodology, which we refer to as the BART-LP model,

or flexible local projections. We discuss how BART-LP approximates the unknown

conditional expectation function of local projection models, discuss the prior, and

outline the posterior sampler. We then discuss how to compute generalized impulse

responses to structural shocks within our framework.

2.1 The BART approximation

We work with the equation

yt+h = mh

(
xt, zt,w

(h)
t+h

)
+ ε

(h)
t+h, (1)

where yt+h denotes the scalar variable of interest, h = 0, 1, ..., H is the impulse re-

sponse horizon, and ε
(h)
t+h satisfies E

(
ε
(h)
t+h|xt, zt,w

(h)
t+h

)
= 0. We aim to study how yt+h

responds to a change in the scalar variable xt. The vector zt contains observable

control variables, possibly including lagged values of yt and contemporaneous and/or

lagged values of other variables. The vector w
(h)
t+h contains additional control variables

in the form of estimated residuals, as explained in Section 2.3. While (xt, zt) are the

same for every regression model h, w
(h)
t+h can potentially change. The function mh(.)

captures the true unknown conditional expectation function. The residual ε
(h)
t+h is as-

sumed to be normally distributed with variance σ
2 (h)
t+h . As noted in Jordà (2005), ε

(h)
t+h

is serially correlated for h ≥ 1.

It is common in the literature to assume a functional form for mh

(
xt, zt,w

(h)
t+h

)
.

The most popular applications of LPs use a function of the type

yt+h = g(qt)
[
α
(h)
0 xt +α

′(h)
1 zt +α

′(h)
2 w

(h)
t+h

]
+ (2)

+
(
1− g(qt)

)[
β
(h)
0 xt + β

′(h)
1 zt + β

′(h)
2 w

(h)
t+h

]
+ ε

(h)
t+h. (3)
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The special case of a linear model sets g(qt) = 1, ∀ t, and estimates the impulse re-

sponse to a shock to xt using the estimates for {α(h)
0 }Hh=0 (Jordà, 2005). Non-linear

applications usually specify a transition variable qt, assume a specific non-linear func-

tional form for g(.), and compute non-linear impulse responses as a function of the

estimates for {α(h)
0 , β

(h)
0 }Hh=0. For example, the smooth transition formulation by Auer-

bach and Gorodnichenko (2013a,b) sets g(.) equal to the logistic function, while the

threshold formulation by Ramey and Zubairy (2018) and Alpanda et al. (2021) sets

g(.) equal to the indicator function.

Our paper differs from the existing literature by approximating the unknown condi-

tional expectation function mh

(
xt, zt,w

(h)
t+h

)
using Bayesian Additive Regression Trees

(BART). It is assumed that

mh(xt, zt,w
(h)
t+h) ≈ fh(xt, zt,w

(h)
t+h|Γ

(h),µ(h)) =
J∑
j=1

fh,j(xt, zt,w
(h)
t+h|Γ

(h)
j ,µ

(h)
j ), (4)

where fh,j(xt, zt,w
(h)
t+h|Γ

(h)
j ,µ

(h)
j ) denotes a single regression tree j at horizon h and

fh(xt, zt,w
(h)
t+h|Γ(h),µ(h)) denotes the sum of J regression trees. The parameters of

the regression trees are the tree structures Γ(h) = [Γ
(h)
1 , ..,Γ

(h)
J ] and the terminal nodes

(or leaves) µ(h) = (µ
(h)′

1 , ..,µ
(h)′

J )′, with µ
(h)
j of dimension Bj × 1 and Bj the number

of terminal nodes of tree j. As an illustration, each regression tree divides the space

of each explanatory variable by using binary splitting rules. Denoting Xi as the i-th

entry of the vector
(
xt, zt,w

(h)
t+h

)
, these rules are defined as:

Xi ≤ c, (5)

Xi > c,

with c the threshold value. Observations are assigned according to these splitting

rules, and the terminal nodes return the fitted value conditional on the split. The

fitted value of the dependent variable, based on a single regression tree, is then given
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by

fh,j(xt, zt,w
(h)
t+h|Γ

(h)
j ,µ

(h)
j ) =

Bj∑
b=1

I(Xi)µ
(h)
j,b , (6)

where I(.) denotes an indicator function that equals 1 ifXi belongs to the set defined by

the splitting rule implicit in Γ
(h)
j . Note that the complexity of each tree is determined

by Bj, the number of terminal nodes. We refer the reader to the Online Appendix for

an illustrative example of a regression tree, and to Hill et al. (2020) for a comprehensive

review.

The model in equation (4) approximatesmh

(
xt, zt,w

(h)
t+h

)
using a sum J trees. Each

tree in the sum is restricted to be small a priori to avoid overfitting, and thus explains

a small proportion of yt+h and is a ‘weak learner’. Chipman et al. (2010) show that

a low value of J reduces predictive accuracy. As J increases, predictive performance

initially improves, but this improvement tapers off, eventually. In practice, studies

such as Huber et al. (2020) note that the difference in predictive accuracy is negligible

for J > 150 and complex functions can be easily approximated using J = 200 or 250.

The BART approximation of the relationship between yt+h and xt has implications

for the properties of the impulse responses. As the regression trees split the space of

the covariates via rules of the type shown in equation (5), the estimated predictions

on the right-hand side of equation (15) are dependent on their history. Similarly, the

shock d to variable xt can lead to predictions that proportionally differ if the size and

sign of the shock leads to the covariate space where the relationship between yt+h and

xt is substantially different from the ‘average’ impact. We now discuss estimation, and

then return to a detailed discussion of non-linear impulse responses in the BART-LP

model in Section 2.4.

2.2 Estimation

The model in equation (1) can be estimated using the MCMC algorithm described in

Chipman et al. (2010), which we summarize here for completeness.
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2.2.1 Priors

The prior distributions proposed by Chipman et al. (2010) play a crucial role, as they

are devised to reduce the possibility of overfitting. The joint prior for the parameters

of the J trees of the model at each horizon h is factored as follows:

p
(
(Γ

(h)
1 ,µ

(h)
1 ), (Γ

(h)
2 ,µ

(h)
2 ), ..., (Γ

(h)
J ,µ

(h)
J )
)

=
J∏
j=1

p(µ
(h)
j |Γ

(h)
j )p(Γ

(h)
j ), (7)

where p(µ
(h)
j |Γ

(h)
j ) =

∏Bj

b=1 p(µ
(h)
b,j |Γ

(h)
j ).

The prior for the tree structure Γ
(h)
j depends on the probability that the node

at depth d = 0, 1, 2, .. is not a terminal node. This prior probability is given by

α(1 + d)−β where α ∈ (0, 1) and β > 0. Higher values of β and smaller values of α

reduce this probability and impose a stronger belief that the tree has a simple (i.e.

shorter) structure. We follow the recommendation by Chipman et al. (2010) and set

α = 0.95 and β = 2. The prior for the threshold value c implies that this parameter

is assumed to be uniform over the range of the values taken by the variables. In the

default setting, the choice of splitting variable is also assumed to be uniform across

the regressors.

To define p(µ
(h)
j |Γ

(h)
j ) Chipman et al. (2010) first transform the dependent vari-

able so that it lies between −0.5 and 0.5. As a consequence, mh

(
xt, zt,w

(h)
t+h

)
is also

expected to lie between these values. The prior p(µ
(h)
j |Γ

(h)
j ) is assumed to be normal

N(0, S). The variance S is set as 1
2κ(J0.5)

, with κ set to 2, the value recommended by

Chipman et al. (2010). Under this default prior, there is a 95% probability that the

conditional mean of the dependent variable lies between −0.5 and 0.5.

A conjugate inverse χ2 prior is used for the variance σ
2 (h)
t+h . The hyperparameters

of the prior distribution are set by using an estimate σ̂
2 (h)
t+s of the variance obtained

from a linear regression. If the true model is non-linear σ̂
2 (h)
t+s will be biased upwards.

Under the default prior, the hyperparameters are chosen so that Pr(σ
(h)
t+s < σ̂

(h)
t+s) = 0.9.

The total number of trees J is fixed.
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2.2.2 MCMC algorithm

The MCMC algorithm devised by Chipman et al. (2010) samples from the conditional

posterior distributions of σ
2 (h)
t+h and the parameters of the regression trees in each

iteration.1 Each iteration of the algorithm samples from the following conditional

posteriors:

1. conditional on the trees, the error variance can be easily drawn from the inverse

Gamma distribution;

2. the conditional posterior distribution of the tree structure is not known in closed

form and a Metropolis-Hastings algorithm is used. Define R
(h)
j as the residual:

R
(h)
j = yt+h −

∑
i 6=j

f(xt, zt,w
(h)
t+h|Γ

(h)
j ,µ

(h)
j ). (8)

The j − th tree is proposed using the density q(Γnewj ,Γoldj ). Chipman et al.

(2010) use a proposal density that incorporates 4 moves: (i) splitting the node

into two new nodes (grow), (ii) transforming adjacent nodes to terminal node

(prune), (iii) changing the decision rule of an interior node (change), (iv) swap-

ping a decision rule between a node that is above and the node before it (swap).

The probabilities associated with these moves are fixed at 0.25, 0.25, 0.4 and 0.1

respectively. The proposed tree structure Γnewj is accepted with probability

α =
q(Γnewj ,Γoldj )p(R

(h)
j |Γnewj , σ2 h

t+h)p(Γ
new
j )

q(Γoldj ,Γnewj )p(R
(h)
j |Γoldj , σ2

t+h)p(Γ
old
j )

, (9)

where p(Rj|Γj, σ2 h
t+h) is the conditional likelihood and p(Γj) denotes the prior.

This step is repeated for j = 1, 2, .., J trees;

3. the conditional posterior distribution of the terminal node parameters is Gaus-

1Intuitive descriptions of this MCMC algorithm can be found in Clark et al. (2021) and Hill et al.
(2020).
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sian with the parameters known in closed form. Therefore, the draw of µ
(h)
j for

j = 1, 2, .., J can be carried out in a straightforward manner;

4. given a draw of the model parameters conditioning on (xt, zt,w
(h)
t+h), the pre-

dicted value can be computed as

E
(
yt+h|xt, zt,w(h)

t+h

)
=

J∑
j=1

fh(xt, zt,w
(h)
t+h|Γ

(h)
j ,µ

(h)
j ) =

J∑
j=1

Bj∑
b=1

I(xt, zt,w
(h)
t+h)µ

(h)
j,b ,

(10)

with I(xt, zt,w
(h)
t+h) an indicator function equal to 1 if (xt, zt,w

(h)
t+h) belongs to

the splitting rule implied by [Γ
(h)
1 , ...,Γ

(h)
J ].

2.3 Autocorrelation

The residual term in LP models is known to be autocorrelated, a feature that must

be taken into account in the estimation. In the case of linear local projections, it

has been shown that the residual at horizon h follows a MA(h − 1) process, see

for instance Lusompa (2021). Lusompa (2021) suggests a GLS procedure whereby the

autocorrelation is eliminated by including leads of the LP residuals from horizon h = 0

in the conditioning set.2

The non-parametric setting considered in this paper encompasses non-linear mod-

els. For the purpose of illustration, consider a simple non-parametric AR(1) model

yt+1 = v(yt;A1) + et+1. (11)

Iterating the process forward 3 periods as an example gives

yt+2 = v
(
v(yt;A1) + et+1;A1

)
+ et+2,

yt+3 = v
(
v(v(yt;A1) + et+1;A1

)
+ et+2;A1) + et+3.

2Lusompa (2021) suggests an efficient strategy that transforms the dependent variable of the LP
regressions and does not require one to explicitly include the horizon 0 residuals as regressors.
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It is useful to compare this with a BART-LP for this horizon:

yt+3 = f3(yt|Γ3,µ3) + ε
(3)
t+3. (12)

The function f3(yt|Γ3,µ3) approximates the non-linear relationship between yt and its

lead, but does not account for the dependence between the dependent variable and

lagged shocks. Thus in this setting, the residual ε
(3)
t+3 is a non-linear function of et+1

and et+2, and has a non-linear autocorrelation structure.

In general, the Voltera expansion of any non-linear time-series shows its complex

dependence on past shocks:

yt =
∞∑
i=0

φiet−i +
∞∑
i=0

∞∑
i=j

ζijet−iet−j +
∞∑
i=0

∞∑
i=0

∞∑
k=0

φijet−iet−jet−k + ... (13)

To account for this autocorrelation, we propose to include an estimate of the shocks,

w
(h)
t+h = (êt+1, êt+2,..., êt+h−1), as additional covariates in the h−period BART-LP. Fol-

lowing Lusompa (2021) we construct w
(h)
t+h at every horizon h ≥ 1 using the residuals

of the period h = 0 flexible local projection yt = f0(xt, zt,w
(0)
t |Γ(0),µ(0)) + ε

(0)
t , with

w
(0)
t = 0. Then, the flexible local projection for period h is specified as

yt+h = fh(xt, zt,w
(h)
t+h|Γ

(h),µ(h)) + ε
(h)
t+h. (14)

The BART approximation of the true non-linear function mh(xt, zt, ŵ
(h)
t+h) proxies the

non-linear dependence of yt+h on et+1, et+2,..., et+h−1 and ameliorates the autocorrela-

tion in ε
(h)
t+h.

2.4 Generalized structural impulse responses

The computation of impulse responses to structural shocks typically relies on two

conceptually different pillars: an estimation procedure for the impulse responses, and

an identification scheme for the structural shock of interest. Our paper only aims to
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advance the literature on the former, and does not investigate the topic of identification

in a non-parametric framework.

Define yt a k × 1 vector of variables of interest, with xt one of the entries of yt.

Define φi,h the impulse response of variable yi,t to a structural shock to variable xt of

size d, with i = 1, .., k. Following Koop et al. (1996), φi,h is given by

φi,h = E(yi,t+h|xt = d;nt)− E(yi,t+h|xt,nt). (15)

We compute generalized impulse responses numerically using the following algorithm:

1. estimate the model for h = 0,

yi,t = f0
(
xt, zt,w

(0)
t |Γ(0),µ(0)

)
+ ε

(0)
i,t , (16)

with w
(0)
t = 0, and store D vectors of dimension T × 1 containing the estimated

residuals associated with D posterior draws, {ε̂(0),di,t }Tt=1, d = 1, .., D;

2. for the generic draw d of the residuals {ε̂(0),di,t }Tt=1 and for the generic horizon h,

estimate the model

yi,t+h = fh
(
xt, zt,w

(h)
t+h|Γ

(h),µ(h)
)

+ ε
(h)
i,t+h, (17)

with

w
(h)
t+h = (ε̂

(0),d
i,t , ε̂

(0),d
i,t−1, ..., ε̂

(0),d
i,t−h+1); (18)

3. compute the predicted values (ŷ0,di,h , ŷ
1,d
i,h ) associated with one posterior draw from

model (17) conditioning on

(
xt = x̄, zt = z̄, w

(h)
t+h = w̄(h)

)
, (19)(

xt = x̄+ d, zt = z̄, w
(h)
t+h = w̄(h)

)
, (20)
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respectively, with
(
x̄, z̄, w̄(h)

)
defined below. Compute ψdi,h = ŷ1,di,h − ŷ0,di,h and

store (
ŷ0,di,h , ŷ1,di,h , ψdi,h

)
; (21)

4. repeat steps 2-3 for h = 0, .., H, store {
(
ŷ0,di,h , ŷ1,di,h , ψdi,h

)
}Hh=0 given the same

posterior draw d for {ε̂(0),di,t }Tt=1;

5. repeat steps 2-4 for d = 1, .., D;

6. compute the average across posterior draws

ψi,h =
1

D

D∑
d=1

ŷ1,di,h −
1

D

D∑
d=1

ŷ0,di,h . (22)

The exact implementation of the above procedure depends on how the structural

shocks are identified. Different options are in principle available. One option is to

follow Plagborg-Møller and Wolf (2021) and Barnichon and Brownlees (2019) and

replicate a recursive identification scheme by using appropriate control variables. For

example, if the aim is to estimate the response of GDP to an interest rate shock that

is restricted to have a zero contemporaneous impact on GDP and CPI in a trivariate

model, one can set xt equal to the policy interest rate and add contemporaneous GDP

and CPI into zt, which will also include L lags of the variables. Alternatively, one

can set xt equal to either a proxy for the structural shock of interest, or equal to the

true realizations of the shocks, if available, and set zt = (y′t−1, ..,y
′
t−L)′. Either way,

the generalized impulse responses are computed as φi,h = ψi,h, with ψi,h from equation

(22).

An alternative approach is to follow Jordà (2005) more closely and use a separate

impulse vector. One can estimate a preliminary SVAR on yt and use a preferred

identification approach to estimate the impulse vector d of variables yt to a shock to

variable xt of size d. The above algorithm can then be run by setting xt = 0 and

zt = (y′t−1, ..,y
′
t−L)′. Step 1 of the algorithm is still required to generate {ε̂(0),di,t }Tt=1,
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d = 1, .., D. Steps 2 to 4 are then run for h = 1, 2, .., H, replacing equations (19)-(20)

with

(
xt = 0, zt = z̄, w

(h)
t+h = w̄(h)

)
, (23)(

xt = 0, zt = z̄ + d, w
(h)
t+h = w̄(h)

)
. (24)

The generalized impulse responses are then computed as φi,h = di for h = 0 with di

the i− th entry of d, and as φi,h = ψi,h from (22) for h = 1, .., H.

Last, to be operational, the above procedure requires specifying the conditioning

values
(
x̄, z̄, w̄(h)

)
as well as the shock d. The former can be set differently depending

on whether the shock is simulated to hit the economy at any point in time or on

a subset of periods. Our baseline specification sets
(
x̄, z̄, w̄(h)

)
equal to the sample

average, which is computed within each regression model h. d, instead, can be set in

accordance to the sign and size of the intended shock.

3 Monte Carlo simulation

We use Monte Carlo simulations to assess if BART-LP can recover the true non-

linear patters of a data generating process. We use three different data generating

processes: a SVAR-GARCH model, a Threshold VAR model, and a sign-dependent

Moving Average model.
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3.1 SVAR-GARCH model

The first model we use for simulations is the model from Section III.B in Jordà (2005),


y1t

y2t

y3t

 = A


y1t−1

y2t−1

y3t−1

+Bht +


√
htε1t

ε2t

ε3t

 , (25)

(ε1t, ε2t, ε3t)
′ = εt ∼ N(0, I3), (26)

ht = 0.5 + 0.5ht−1 + 0.3
√
htε1t, (27)

B =


−1.75

−1.5

1.75

 A =


0.5 −0.25 0.25

0.75 0.25 0.25

−0.25 −0.25 0.75

 . (28)

In this model, each shock i affects only variable i contemporaneously, while all shocks

affect all variables after one period. Contrary to the second and the third shock, the

first shock features time-varying variance.3

Figure 1: Monte Carlo simulation - SVAR-GARCH
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We use a simulation exercise to study how well the BART-LP methodology recovers

3We code the simulation exercise following the exact code available in the replication files from
Jordà (2005).
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the true impulse responses associated with a shock to y1t of size 1. We first use

generalized impulse responses to simulate the true impulse responses associated with

ε1t = 1. We then generate simulated data for 300 periods and discard the first 100, as

in Jordà (2005). The remaining 200 observations are used to estimate the pointwise

linear LP impulse response, as well as the impulse response computed from the BART-

LP method, setting d = 1. We replicate the exercise 100 times and store the generated

estimates. The estimated model uses 2 lags, and sets xt equal to the true realizations

of ε1t. We set J = 250.

Figure 1 reports the results of the analysis. The squared black line shows the

true generalized impulse responses. The shock increases y1t on impact by 1, and

generates no contemporaneous response in (y2t, y3t). It subsequently generates an

oscillating pattern in (y1t, y2t) and a hump-shaped response of y3t. The dashed line

shows the pointwise mean impulse response from the linear LP model, with the mean

computed on the pointwise estimates along the 100 iterations. The continuous line

and the shaded area report the pointwise median and 95% band computed over the

100 median responses from the BART-LP method, where within each iteration, the

median response from BART-LP is computed over 2,000 posterior draws. We see that

BART-LP does remarkably well in replicating the response of all variables, capturing

both the timing and the magnitude of the response correctly. By contrast, the response

estimated with the linear model estimated an attenuated effect, underestimating the

effect of the shock in the short horizon.
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3.2 Threshold VAR model

The second model we use for simulations is

yt = [Π1yt−1 +B1εt] · I(y3,t−1 ≤ 0) + (29a)

+ [Π2yt−1 +B2εt] · I(y3,t−1 > 0), (29b)

εt ∼ N(0, I), (29c)

with yt = (y1t, y2t, y3t)
′, εt = (ε1t, ε2t, ε3t)

′ and

Π1 =


0.25 0.25 −0.25

−0.25 0.25 −0.25

0.25 0.25 0.15

 , B1 =


0.10 0 0

−0.20 0.15 0

0.10 −0.10 1

 , (30)

Π2 =


0.50 1.25 −1.75

−0.25 0.50 −1.25

0.25 0.25 0.15

 , B2 =


0.10 0 0

−0.20 0.15 0

0.10 −0.10 0.40

 . (31)

The model is a recursive Threshold Vector Autoregressive model that jumps across

two regimes depending on the endogenous evolution of the third variable. See, for

instance, Castelnuovo and Pellegrino (2018).

We first compute the true generalized impulse responses to a positive one-standard-

deviation shock to a y3t in regime 1 by setting the initial condition of the impulse

response to y0 = 0. We then study how well the linear-LP and the BART-LP estima-

tors recover the true impulse responses. We generate a dataset of 300 observations,

discard the first 100 and use the remaining 200 to estimate the impulse responses.

We compute the point estimates of the linear LP, and compute the pointwise median

over 2,000 posterior draws from the BART-LP estimates. We then repeat the exercise

over 100 iterations. The estimated models use 4 lags and set (xt, zt) to replicate the

recursive ordering within LP models, as discussed in Section 2.4. We set J = 250.
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Figure 2: Monte Carlo simulation - TVAR
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The shock hits the system when the system is in regime 1. Under linearity, the

model would stay in regime 1, with an impulse response uniquely pinned down by

(Π1, B1). Instead, the non-linearity of the model implies an endogenous evolution

across regimes, in accordance with the endogenous response of y3t. Figure 2 shows the

results of the exercise. The pink continuous line shows the true linear impulse response

associated with regime 1. The squared black line captures the true generalized impulse

responses. The two lines differ. The dashed line shows the estimated response from

the linear-LP. The figure shows that this response lies between the true generalized

and the true linear impulse responses. By contrast, the impulse response estimated

via BART-LP better estimates the true generalized impulse response. The model

correctly captures the evolution of all three variables. It detects that the endogenous

evolution across regimes makes the response of the first two variables more pronounced

compared to a linear model that remains in regime 1.
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3.3 Sign-dependent Moving Average model

The third model we use for simulation is

yt =
20∑
l=0

βgdp, l · εgdp,t−l +
20∑
l=0

βπ,l · επ,t−l + (32)

+
20∑
l=0

[
β+
ff,l · I(εff,t−l ≥ 0) + β−ff,l · I(εff,t−l < 0)

]
· εff,t−l, (33)

εt ∼ N(0, I), (34)

with yt =
(
gdpt, πt, fft

)′
a vector containing real GDP, inflation, and the federal funds

rate, and ε =
(
εgdp,t, επ,t, εt,ff

)′
a vector of structural shocks. The model is a moving

average process of order 20 driven by three structural shocks, a GDP shock, an inflation

shock, and a monetary policy shock. The monetary policy shock affects the variables

differently at each horizon t+ h, depending on whether the monetary policy shock at

time t is positive or negative. The true impulse responses are captured by {βgdp, l}20l=0

for the GDP shock, by {βπ, l}20l=0 for the inflation shock, and by {β+
ff, l, β

−
ff, l}20l=0 for

the positive and negative monetary policy shock.

We calibrate the model following an approach similar to Barnichon and Brownlees

(2019). We first estimate a recursive VAR model on US real GDP, inflation and the

federal funds rate to estimate linear impulse responses to a GDP shock, an inflation

shock and a monetary policy shock. We then set {βgdp,l, βπ,l, β−ff,l}20l=0 equal to the

estimated impulse responses to three shock: the GDP shock, the inflation shock, and

the monetary policy shock. Last, we set β+
ff,l = β−ff,l for every l, with two exceptions:

(1) at horizons l = 2, 3 the first entry of β+
ff,l equals 3 times the first entry β−ff,l, and

(2) at horizons l = 7, 8, .., 20 the second entry of β+
ff,l equal 3 times the second entry of

β−ff,l. This implies a data generating process in which positive monetary policy shocks

affect output and inflation 3 times more than negative shocks in the short term (for

output) and in the medium term (for inflation) horizons.

We design the simulation exercise as follows. We generate an artificial dataset
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Figure 3: Monte Carlo simulation - Sign-dependent Moving Average
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of size T = 400, discard the first 100 observations and use the remaining 300 for

estimation. We estimate the BART-LP model by controlling for the true shocks driving

the data, together with up to 2 lags of the shocks and the endogenous variables. Last,

we replicate the analysis 100 times and store the pointwise responses from the linear

and the BART LPs, computing separately the generalized impulse responses associated

with d± 1. We set J = 250.

Figure 3 shows the impulse responses. The (+) and (−) red lines show the true

impulse responses associated with a positive and a negative monetary policy shock,

respectively. The responses to a negative shock are reported with flipped sign to

improve the comparison. By construction, the true response of the federal funds rate

does not change in the sign of the shock, while the true response of GDP and inflation

is 3 times stronger in response to a positive shock in periods in which the estimated

linear responses imply strong responses of GDP and inflation. The black continuous

line shows the pointwise median response associated with the linear LP. Note that it

sits approximately halfway through the true positive and negative responses. The blue

and grey shaded areas report the 68% pointwise posterior bands associated with the

BART-LP model following a positive and a negative shock, respectively. The BART-

LP methodology estimates the true response of GDP correctly both qualitatively and
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quantitatively. It correctly detects that positive shocks have stronger short run effects

on GDP than negative shocks, and also estimates the true values of the responses

accurately. As for inflation, BART-LP correctly estimates the differential response

qualitatively, detecting the stronger effect of positive shocks. While the response to

a positive shock is somewhat underestimated, the response to a negative shock sits

approximately in the middle of the estimated bands. All in the all, the model correctly

detects that positive and negative shocks do not have the same effect.

Table 1: Monte Carlo Probability that the effect is stronger for a positive shock

GDP Inflation Fed funds
h T = 100 T = 200 T = 300 T = 100 T = 200 T = 300 T = 100 T = 200 T = 300

0 49 48 54 54 52 59 58 47 56
2 100 99 100 59 60 54 56 44 46
3 81 86 91 50 53 47 54 39 46
6 54 43 38 55 49 49 47 44 49

14 49 51 45 73 93 89 43 52 53
15 50 54 40 68 81 82 49 48 49

We further assess the ability of the model to detect differences in positive and

negative monetary policy shocks by replicating the analysis over datasets of different

lengths. We set the estimation sample period equal to T = 100, 200, 300 observations,

keeping the initial discarded observations to 100. For each sample size, we replicate the

analysis 100 times and compute the percentage of Monte Carlo iterations in which the

effect is stronger after a positive rather than a negative shock in absolute value. Table 1

reports the results for few illustrative horizons, indicating in bold the horizons and

variables for which the data generating process features a non-linearity in the response

to positive and negative shocks. On impact, the data generating process implies no

non-linearity between positive and negative shocks. Indeed, the estimated impulse

responses are well distributed across iterations, with around 50% of the iterations

detecting a stronger effect of positive shocks and the remaining 50% detecting the

opposite. At horizons 2-3, close to all iterations detect that the effects of a monetary

shock are stronger on GDP, consistent with the data generating process, while correctly

not finding evidence of non-linearities in the response of inflation and the policy rate. 6

20



horizons from the shocks the model correctly detects no non-linearity in any variable.

At horizons 14-15 it correctly detects a stronger effect on inflation associated with

positive compared to negative shocks, and no non-linearity in the remaining variables.

4 Empirical analysis

In this section, we apply the proposed model to two recent issues that have featured

prominently in the empirical literature on non-linear macroeconomic dynamics.

4.1 Fiscal shocks during recessions and expansions

In a seminal contribution Auerbach and Gorodnichenko (2013a) use a smooth transi-

tion VAR model to show that the response of output to government spending shocks is

larger during recessions. However, this evidence was disputed by Ramey and Zubairy

(2018) who use a 120 year sample of quarterly data to estimate the response to mili-

tary spending news shocks and show that there is no systematic difference between the

spending multiplier in normal periods and those characterised by slack. Both papers

use a non-linear LP model, but postulate a functional form for the transition, using

either a logistic function or an indicator function.

We build on section VI-B of Ramey and Zubairy (2018) and re-visit the analysis

of state-dependent fiscal multipliers using our flexible BART-LP model from equation

(1). We set yt+h equal to h-period ahead of (1) military spending news (newst), (2)

real per-capita government spending (gt), and (3) real per-capita GDP (yt).
4 We first

estimate a linear SVAR model in these three variables and estimated the impulse vector

d associated with the first shock. We then compute impulse responses as explained in

Section 2.4. We include 4 lags of the variables into the model. We set the number of

4The data set collated by Ramey and Zubairy (2018) is quarterly and runs from 1889 Q3 to 2015
Q3. The variables used in our analysis are downloaded from the website of the Journal of Political
Economy. Government spending and GDP are transformed via the procedure described in Gordon
and Krenn (2010).
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trees to 250 and use 2,000 posterior draws, with a burn-in of 1,000 draws.

We study non-linear effects of government spending shocks as follows. We de-

fine periods of recessions as periods where yt is less than its 20th percentile, while

expansions denote periods where yt is above the 80th percentile. We then compute

generalized impulse responses by generalizing over randomly drawn values of the con-

ditioning values. Compared to Auerbach and Gorodnichenko (2013a) and Ramey and

Zubairy (2018), our framework also allows for the computation of impulse responses

that potentially differ for the size of the shock. For this reason, we compute the gener-

alized impulse responses to either a contractionary or an expansionary fiscal spending

shock, both studied either in a recession or an expansion.

Figure 4: Response to positive (top panel) and negative (bottom panel) military news
shocks during recessions and expansions
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Figure 5: Cumulated multiplier
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The top panel of Figure 4 presents the response to an expansionary spending shock

normalised to increase g by 0.1 units on impact. The response of g and y is estimated

to be more persistent during recessions. However, the response of these two variables

moves closely together in the two regimes. As a consequence, the spending multiplier

(defined as the ratio of the cumulated response of y to the cumulated response of g)

is similar across regimes. This can be seen from the left panel of Figure 5, which

displays the estimated multipliers and shows that evidence for a systematically larger

multiplier during recessions is weak. However, it is interesting to note that contrac-

tionary spending shocks produce different dynamics. The bottom panel of Figure 4

shows that the response of y to these shocks during expansions is less persistent. As

a consequence the multiplier for spending cuts during these periods is systematically

smaller than the estimate during recessions. This distinction helps reconcile the dif-

ferent results found by Auerbach and Gorodnichenko (2013a) and Ramey and Zubairy

(2018) by documenting that state-specific non-linearities can be different depending

on the sign if the shock.
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4.2 Non-linear impact of Financial shocks

In a recent contribution Forni et al. (2021) use a non-linear vector moving average

model to show that large negative financial shocks have a proportionally larger impact

on the US economy. We revisit this question using the flexible local projection proposed

in this paper. We use the model from equation (1) setting yt+h equal to (1) growth

of industrial production (IPt), (2) CPI inflation (CPIt), (3) unemployment rate (Ut),

(4) Excess bond premium (EBPt) of Gilchrist and Zakraǰsek (2012), (5) stock returns

(STOCKt) and (6) federal funds rate (FFRt). The data is monthly and the sample

runs from 1973M1 to 2022 M2.5

We follow the identification approach by Forni et al. (2021) and identify the mon-

etary policy shock as the shock that affects fast moving variables but not slow moving

variables. We estimate a preliminary linear VAR model using the above ordering of

the variables and estimate the impact vector associated with the entry of the excess

bond premium in a recursive identification. We then add 6 lags of all variables. We

simulate positive and negative shocks, considering either a shock that moves the excess

bond premium by ±50 basis points, or by ±300 basis points.

The results of the analysis are shown in Figure 6 and Figure 7, which report the

impulse responses associated with the small or the large exogenous variation of the

excess bond premium, respectively. The response to expansionary shocks has been

multiplied by -1, to improve the comparison. Figure 6 shows that when the magnitude

of the financial shock is relatively small, systematic evidence for differences in responses

across the sign of the shock is largely absent. However, for large shocks there is clear

evidence of sign non-linearity. Figure 7 shows that shocks that increase EBPt by 300

basis points are associated with large declines in output, inflation, stock returns and

the interest rate while the unemployment rate rises. The responses to expansionary

shocks of the same size are substantially smaller in magnitude. These results broadly

5The excess bond premium is downloaded from the federal reserve website. Stock returns are
calculated using the Standards and Poor total return index obtained from Global Financial database.
The remaining variables are taken from the FRED database.
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Figure 6: Response to contractionary and expansionary financial shocks that change the
excess bond premium by 50 basis points. The response to expansionary shocks has been

multiplied by -1 for the purpose of comparison.
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confirm the findings reported by Forni et al. (2021).

5 Conclusions

Local projections are widely used in Macroeconometrics, as they provide a flexible

tool to estimate impulse responses to structural shocks of interest. However, the

most popular linear specification of local projections introduces the assumption of

a linear relationship among variables within each horizon h considered. This paper

introduces a flexible local projection that generalises the model of Jordà (2005) to a

non-parametric setting by using Bayesian Additive Regression Trees (BART). Using
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Figure 7: Response to contractionary and expansionary financial shocks that change the
excess bond premium by 300 basis points. The response to expansionary shocks has been

multiplied by -1 for the purpose of comparison

0 5 10 15 20 25

-6
-4
-2
0
2

0 5 10 15 20 25
-2

-1

0

0 5 10 15 20 25

0

1

2

0 5 10 15 20 25

0

1

2

3

0 5 10 15 20 25

-0.2

-0.1

0

0 5 10 15 20 25

-2

-1

0

Monte Carlo experiments, we show that the model is able to capture impulse response

non-linearities driven by state-dependence, sign-dependence or size-dependence.

We apply our methodology to US fiscal and financial shocks. We show that while

it is true that the fiscal multiplier is stronger in recession, as advocated by Auerbach

and Gorodnichenko (2013a), this holds true only in response to a contractionary fiscal

shock. In response to an expansionary shock, we confirm the result by Ramey and

Zubairy (2018), namely that the fiscal multiplier does not change significantly between

recession and expansion. We then confirm the results by Forni et al. (2021) that finan-

cial shocks have non-linear effects on the economy. A financial shock that increases

the cost of borrowing generates contractionary effects that increase more than propor-
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tionately in the size of the shock. This suggests that strong negative financial shocks

generate stronger effects that would be otherwise predicted using linear models.
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