
Efficient Taxation of Labour Income under the Threat of Conflict

Asen Ivanov

Working Paper No. 990  August 2025  ISSN 1473-0278         

School of Economics and Finance



Efficient Taxation of Labour Income under the

Threat of Conflict

Asen Ivanov∗

Queen Mary University of London

August 18, 2025

Abstract
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1 Introduction

Characterising the set of efficient tax schedules over labour income is an important

topic in public economics.1 However, in examining the efficiency of a tax schedule,

the papers in this literature do not allow for the possibility that it may trigger social

conflict (e.g., in the form of lobbying, election campaigns, time spent on political

discourse, and even violent clashes).

In the current paper, I take a simple model with affine taxation of labour income

and append to it the threat of conflict (TC). In particular, (i) society makes an initial

choice of a tax rate,2 (ii) each productivity type can challenge this tax rate, (iii) if no

type challenges, this tax rate is implemented, (iv) a challenge by any type triggers

conflict in which types expend resources on conflict, (v) types’ expenditures on conflict

determine their probabilities of “winning” the conflict, and (vi) the winning type gets

to set the final tax rate.

The central question I address is how the set of efficient tax rates under TC (i.e.,

the set of initially chosen tax rates in (i) that are efficient given (ii)-(vi)) compares

to the set of efficient tax rates in a standard model without TC. I demonstrate theo-

retically that, under certain conditions, the former set is a proper subset of the latter

set. Then, calibrating the model to the United States, I show numerically that the

difference between the two sets is quantitively very large.

1In a setting in which the government can use only affine tax schedules, the revenue-maximising
tax rate is strictly below 1 (as illustrated by the famous Laffer curve), and tax rates above it are
inefficient. In the context of nonlinear taxation, a seminal early contribution is Werning (2007), and
a more recent contribution is Bierbrauer et al. (2023).

2The tax rate pins down the intercept of the tax schedule (and, hence, the whole tax schedule)
through the government budget constraint.
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2 The Model

2.1 Types

There are types i = 1, . . . , I, where I ≥ 2. Type i has hourly wage wi, where

0 ≤ w1 < . . . < wI . The proportion of individuals of type i is pi > 0.

2.2 Preferences

Each type has a von Neumann-Morgenstern utility function over consumption and

labour (measured in hours) that is of the form c − β ǫ
1+ǫ

l
1+ǫ
ǫ , where β > 0 and ǫ >

0. Thus, preferences exhibit quasilinearity in consumption, constant (Hicksian and

Marshallian) elasticity of labour supply (which is equal to ǫ), and risk neutrality with

respect to lotteries over consumption.

2.3 Initial Choice of Tax Schedule

Society makes an initial choice of a tax schedule over labour income. I assume this

choice is restricted to affine tax schedules, i.e., to tax schedules of the form τ(y) =

−T + ty, where y is pre-tax labour income, T ≥ 0 is the guaranteed post-tax income

of somebody with zero pre-tax labour income, and t ≤ 1 is the tax rate.3 The tax

schedule has to satisfy the government budget constraint

t
I
∑

i=1

piwili(t) = T +G,

where G ≥ 0 is the exogenously given government expenditure per-capita and li(t) =

(1−t)ǫwǫ
i

βǫ is the labour supplied by type i.4 I assume that t
∑I

i=1 piwili(t) ≥ G at the

3Tax rates above 1 lead to the exact same outcome as t = 1 (namely, y = 0 for all types).
4Type i facing tax rate t chooses l by solving maxl≥0(1−t)wil+T−β ǫ

1+ǫ
l
1+ǫ
ǫ . It is straightforward

to establish that the unique solution to this problem is l =
(1−t)ǫwǫ

i

βǫ .
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tax revenue-maximising tax rate, t = 1
1+ǫ

.

The following notation will be useful. Let T (t) denote the level of T that is

determined by t through the government budget constraint. (From here on, I will

identify tax rate t with the tax schedule τ(y) = −T (t) + ty.) Define type i’s indirect

utility under tax rate t as

ui(t) = (1− t)wili(t) + T (t)− β
ǫ

1 + ǫ
li(t)

1+ǫ
ǫ .

Next, let tmin (tmax, respectively) denote the lowest (highest, respectively) tax rate

that covers government expenditures.5 Finally, let ti denote type i’s optimal tax rate,

i.e., the solution to maxt≤1,T (t)≥0 ui(t).
6

2.4 Potential Challenge

Given the initially chosen tax rate, each type decides whether to challenge it. If no

type challenges, the initial tax rate is adopted. If at least one type challenges, there

is conflict (i.e., it takes one to start a fight). Each type i challenges tax rate t if the

expected utility type i would obtain in the ensuing game of conflict is strictly higher

than ui(t).

2.5 The Game of Conflict

In case of conflict, each individual of each type i expends xi ≥ 0 units of the con-

sumption good on conflict. If x1 = . . . = xI = 0, each type i wins with probability

5That is, tmin (tmax, respectively) is the smaller (larger, respectively) root of t
∑I

i=1 piwili(t) = G.
6By examining the derivative of ui(·), it is straigthforward to establish that ti =







max

(

tmin,

∑
j
pjw

1+ǫ
j

−w1+ǫ
i

(1+ǫ)
∑

j
pjw

1+ǫ

j
−w

1+ǫ

i

)

if
∑

j pjw
1+ǫ
j > w1+ǫ

i

tmin otherwise
.
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1/I; otherwise, type i wins with probability

(pixi)
α

∑I

j=1(pjxj)α
, (1)

where α > 0.7 The type that wins gets to set the final tax rate.

In case of conflict, type i’s expected utility given (x1, . . . , xI) is

Ui(x1, . . . , xI) =







1
I

∑I

j=1 ui(tj) if x1 = . . . = xI = 0
∑I

j=1
(pjxj)α

∑I
k=1(pkxk)α

ui(tj)− xi otherwise
.

A Nash equilibrium is a tuple (x∗
1, . . . , x

∗
I) such that, for all i ∈ {1, . . . , I}, x∗

i ∈

argmaxxi≥0 Ui(x
∗
1, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
I).

I make two assumptions. First, I assume that ti 6= tj for all types i and j such

that i 6= j. The justification is that, if two distinct types had the same optimal tax

rate, they would likely join forces in the conflict so that it would make little sense to

treat them as distinct players. This assumption plays a role in the proof of Lemma 1

below and will guide the selection of the number of types, I, in the calibration of the

model.

Second, I assume that there exists a unique Nash equilibrium. This assumption

underlies the specification in section 2.6 below of how each type evaluates the game

of conflict ex ante. The following lemma provides a sufficient condition.8

Lemma 1 If α < 1, the game of conflict has a Nash equilibrium. If α ≤ 0.5, the

Nash equilibrium is unique.9

7This class of so-called contest success functions has been axiomatised by Skaperdas (1996).
8This game of conflict is very similar to the game of conflict analysed in Esteban and Ray (1999).

Lemma 1 also lays no claim to novelty as its statement and proof closely follow results in that paper.
The game of conflict here and in Esteban and Ray (1999) differs from most of the literature on
contests in that a loser cares about who wins. For textbook treatments of the latter literature, see
Konrad (2015) and Vojnović (2015).

9All proofs are in the appendix.
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Note several implicit assumptions in the game of conflict. First, I assume that

individuals with different wages form distinct groups for the purposes of conflict.

The benefit of this simplification is that it avoids having to model how individuals

with different wages form alliances in the conflict. The main cost is that, to avoid

ti = tj for some distinct types i and j in the calibration exercise below, the empirical

distribution of wages will have to be approximated by one with a small number of

types.

Second, all individuals of the same type act as one. In particular, there is no issue

of free-riding or miscoordination among them.

Third, I allow the xi’s to be arbitrarily large. Thus, I am ignoring any budget

constraint each type may be facing.10

Fourth, I assume that the initial tax rate plays no role. Thus, I am ruling out

that (i) the initial tax rate applies for a period of time until the conflict is resolved

and (ii) the initial tax rate establishes a status quo that enjoys some advantage in

the conflict. Note that, if (i) or (ii) holds, the initial tax rate becomes more similar

to a tax rate chosen without TC (i.e., once and for all as in a standard model). Thus,

(i) and (ii) are likely to close any gap between the set of efficient tax rates under TC

and the set of efficient tax rates without TC.

Finally, I rule out the possibility to challenge the tax rate set by the winner.

2.6 Expected Utility under TC

Let (x∗
1, . . . , x

∗
I) denote the Nash equilibrium of the game of conflict. Let Z = {t ∈

[tmin, tmax]|uj(t) ≥ Uj(x
∗
1, . . . , x

∗
I), ∀j ∈ {1, . . . , I}}, i.e., Z denotes the set of feasible

tax rates that do not get challenged by any type.

10In the appendix, I provide further comments on this assumption.
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The expected utility under TC for each type i given initial tax rate t is

u∗
i (t) =







ui(t) if t ∈ Z

Ui(x
∗
1, . . . , x

∗
I) otherwise

.

3 Efficient Tax Rates without TC and under TC

Let us start with the following definition.

Definition 1 Tax rate t ∈ [tmin, tmax] is efficient without TC (under TC, respectively)

if there exists no other tax rate t̂ ∈ [tmin, tmax] such that ui(t̂) ≥ ui(t) (u∗
i (t̂) ≥ u∗

i (t),

repectively) for all i ∈ {1, . . . , I} with strict inequality for some i ∈ {1, . . . , I}.

It is easy (and by no means novel) to characterise the set of efficient tax rates

without TC.

Lemma 2 The set of efficient tax rates without TC is [tmin, t1].

The following proposition contains the main theoretical result.

Proposition 1 If Z contains at least two distinct tax rates, the following hold.

1) Z = [zL, zU ] for some zL and zU such that tmin ≤ zL < zU ≤ t1.

2) Suppose that, in the Nash equilibrium of the game of conflict, (x∗
1, . . . , x

∗
I), the

following does not hold: x∗
i = 0 for all i ∈ {2, . . . , I − 1}, x∗

1 > 0, x∗
I >

0, U1(x
∗
1, . . . , x

∗
I) = U1(0, x

∗
2, . . . , x

∗
I) and UI(x

∗
1, . . . , x

∗
I) = UI(x

∗
1, . . . , x

∗
I−1, 0).

Then, at least one of the weak inequalities in part 1) is strict.

3) The set of efficient tax rates under TC equals Z.
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The possibility that Z consists of a single tax rate seems like an uninteresting

knife-edge case. The potentially substantive restriction is that Z 6= ∅.11

The condition in part 2) rules out the case in which only types 1 and I are active

in the conflict and each of them is indifferent to being inactive. This also seems like

an uninteresting knife-edge case. Moreover, it cannot occur if α < 1.12

The upshot of Lemma 2 and Proposition 1 is that, under the conditions in the

proposition, the set of efficient tax rates under TC is a proper subset of the set of

efficient tax rates without TC. Of course, a key question is to what extent these two

sets differ. This question will be addressed in the numerical analysis.

4 Calibration

For the numerical analysis, I need to choose the elasticity of labour supply (ǫ), the

number of types (I), the wage distribution (the wi’s and pi’s), the preference param-

eter β, government expenditures (G), and the parameter α in (1).13

4.1 Elasticity of Labour Supply

There is considerable controversy in the literature on the appropriate values for the

Marshallian and Hicksian elasticities of labour supply with respect to the wage.14

Table 6 in Keane (2011) reports estimates of these elasticities for males from a wide

range of studies. I perform the computations for ǫ ∈ {0.1, 0.5, 1}, which roughly covers

the range of estimates of the Hicksian elasticity and the range of positive estimates

of the Marshallian elasticity in Keane’s Table 6.15

11If Z = ∅, all t ∈ [tmin, tmax] are efficient under TC for the trivial reason that they all get
challenged and are, hence, all equally irrelevant.

12This follows from Claim 1 in the proof of Lemma 1.
13In what follows, all dollar amounts are in 2012 dollars.
14Keane (2011) and Saez et al. (2012) provide surveys of this literature.
15In Keane’s Table 6, the reported estimates of the Hicksian elasticities range between 0.02 and

1.32. Only two of the around two dozen Hicksian-elasticity estimates are above one. The reported
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4.2 Number of Types

I set I = 3. This can be justified based on the following two considerations which pull

in opposite directions: (i) the more types there are, the better one can approximate

the empirical distribution of wages, but (ii) a large number of types can lead to some

types i and j (where i 6= j) being sufficiently similar that ti = tj . It turns out that,

with I = 4, one obtains t3 = t4 = tmin for any ǫ ∈ {0.1, 0.5, 1}. In contrast, with

I = 3, it will be the case that, for any ǫ ∈ {0.1, 0.5, 1}, ti 6= tj for any two distinct

types i and j.

4.3 Wage Distribution

Let F (·, w1, w2, w3, p1, p2) denote the cumulative density function (CDF) of wages

given the parameters (w1, w2, w3, p1, p2). I choose (w1, w2, w3, p1, p2) by minimising the

L2 distance between F and an empirical CDF of wages, H .16 The latter is constructed

based on an empirical distribution of hourly wages for individuals between the ages

of 25 and 60 in the United States in 2021 obtained from Heathcote et. al (2023). The

details of how H is constructed are provided in the appendix.

Table 1 presents the result. The table also shows each type’s optimal tax rate, ti,

for each ǫ ∈ {0.1, 0.5, 1}. Note that ti 6= tj for any two distinct types i and j.

estimates of the Marshallian elasticities range between -0.47 and 0.7, with an average value of 0.06.
For the utility function I use, ǫ ≤ 0 does not make sense. (For ǫ = 0 and ǫ = −1, utility is not
defined; for ǫ such that ǫ < 0 and ǫ 6= −1, li(t) = ∞ if wi > 0 and t < 1.)

16That is, I choose (w1, w2, w3, p1, p2) by numerically solving
minw̃1,w̃2,w̃3,p̃1,p̃2

∫∞

0
(F (w, w̃1, w̃2, w̃3, p̃1, p̃2) − H(w))2dw. I verify that this problem has a

unique solution by initiating the numerical minimisation algorithm from ten different seeds.
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Type 1 Type 2 Type 3
Hourly wage $12.5 $27.2 $55.8
Proportion of population 0.41 0.37 0.22
Optimal tax rate given ǫ = 0.1 0.85 0.25 0.16
Optimal tax rate given ǫ = 0.5 0.59 0.21 0.1
Optimal tax rate given ǫ = 1 0.46 0.22 0.09

Table 1: Calibrated distribution of types and types’ optimal tax rates.

4.4 The Parameter β

I set the parameter β as follows. I assume that the tax schedule individuals face in

reality is of the form τ̂(y) = y − e1.71666y0.818.17 Then, I set β to equal the solution

to
∑I

i=1 pi

(

0.818e1.71666w0.818
i

β

)
ǫ

1+ǫ−0.818ǫ

= 1616. The left-hand side is the average hours

worked by the three types in the model if facing the tax schedule τ̂(·).18 The right

hand-side is the average hours individuals between the ages of 25 and 60 in the United

States worked in 2021.19

4.5 Government Consumption Per Capita

According to the World Inequality Database, US national income per individual over

age 20 in 2021 was $70,067.20 According to Piketty, Saez, and Zucman (2018), total

(i.e., federal, state, and local) government consumption in the US has been around

18 percent of national income since the end of World War II. I assume that (i) the

labour share in national income is sixty percent21 and (ii) the share of government

17This is the tax schedule over income (overall income, not just labour income) estimated by
Heathcote et al. (2017) for the United States.

18It is straightforward to show that, given τ̂ (·), the optimal labour supply of type i equals
(

0.818e1.71666w0.818
i

β

)
ǫ

1+ǫ−0.818ǫ

.
19To be precise, 1616 is the average of the variable “thours2” for 2021 in the file “cps sampleC.dta”

provided in the replication materials for Heathcote et. al (2023).
20The number is $80,860 in 2021 dollars, which I converted into 2012 dollars using the Bureau of

Labor Statistics inflation calculator at https://data.bls.gov/cgi-bin/cpicalc.pl
21The Federal Reserve Bank of St. Louis reports on its website that the share of labour compen-

sation in GDP was 0.597 in 2019. See https://fred.stlouisfed.org/series/LABSHPUSA156NRUG
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ǫ = 0.1 ǫ = 0.5 ǫ = 1
[tmin, t1] [0.16, 0.85] [0.12, 0.59] [0.09, 0.46]

α = 0.1 [0.36, 0.45] [0.24, 0.31] [0.19, 0.25]
Z α = 0.25 [0.35, 0.49] [0.23, 0.33] [0.17, 0.25]

α = 0.5 [0.32, 0.55] [0.2, 0.35] [0.14, 0.25]
α = 0.1 0.13 0.15 0.15

zU−zL
t1−tmin

α = 0.25 0.19 0.21 0.2

α = 0.5 0.32 0.31 0.3

Table 2: Efficient tax rates without TC ([tmin, t1]) and under TC (Z = [zL, zU ]), as
well as the ratio zU−zL

t1−tmin
for different values of α and ǫ.

expenditures financed from taxes on labour income equals the labour share in national

income. Thus, I set G = 70, 067× 0.18× 0.6 ≈ $7, 567.

4.6 Parameter in the Contest Success Function

I am not aware of empirical evidence that could provide guidance for choosing α, es-

pecially given that this parameter is likely to be context-specific. Lemma 1 motivates

the restriction α ∈ (0, 0.5]. With the aim of covering much of this range, I perform

the computations for α ∈ {0.1, 0.25, 0.5}.

5 Results

The top part of Table 2 displays the interval [tmin, t1] for different values of ǫ. The

middle part presents, for different combinations of α and ǫ, the set Z, which in all

cases turns out to be of the form Z = [zL, zU ]. The bottom part shows, for different

combinations of α and ǫ, the ratio zU−zL
t1−tmin

, which captures how much smaller the set

of efficient tax rates under TC is than the set of efficient tax rates without TC.22

22To compute Z for given α and ǫ, I needed to compute the Nash equilibrium of the game of
conflict. The latter was computed by numerically solving the system of equations (4) given in the
proof of Lemma 1.
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Table 2 reveals the following.

Finding 1 For all combinations of α ∈ {0.1, 0.25, 0.5} and ǫ ∈ {0.1, 0.5, 1}, the

following hold.

1) Z is an interval [zU , zL], where tmin < zL < zU < t1.

2) The length of Z is in the range 0.06-0.15.

3) The ratio zU−zL
t1−tmin

is in the range 0.13-0.32.

The main message of this finding is that TC dramatically shrinks the set of efficient

tax rates.

6 Concluding Remarks

My guiding principle in setting up the model was simplicity. I took a simple model of

taxation and appended to it a simple, essentially off-the-shelf model of conflict. Apart

from providing theoretical and numerical tractability, this guiding principle helps to

guard against the danger that I have devised the model to produce a dramatic result.

The flip side is that the model is unrealistic in many respects. Notably, it exhibits

static labour supply; identical-across-individuals, quasilinear, constant-elasticity-of-

labour-supply preferences over consumption and labour; risk-neutrality for lotteries

over consumption; a restriction to affine taxation; a particular technology of conflict

(as captured by the Ui functions) that hardly does justice to actual conflict in society;

exogenously given groups in the game of conflict that are taken to coincide with wage

types (which entailed approximating the empirical distribution of wages with three

types); lack of free-riding or miscoordination within groups; no limits on expenditures

on conflict; in case of conflict, irrelevance of the initial tax rate and impossibility to

challenge the tax rate set by the winner; and a restriction α ≤ 0.5, which is imposed for

12



convenience (to guarantee a unique Nash equilibrium) rather than based on empirical

evidence.

In the end, I view my results as proof of concept that TC can have a substantial

impact on the set of efficient tax schedules over labour income. Hopefully, this will

encourage other researchers to incorporate TC into their models of taxation.
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Appendix A: Comments on the Absence of Budget

Constraints in the Game of Conflict

I allow expenditures in the game of conflict to be arbitrarily large. I do so because

(i) it is not clear what upper limits to impose on them23 and (ii) such limits open

up the possibility of corner solutions which would complicate the numerical analysis

(especially given that α ≤ 0.5 may no longer guarantee the existence of a unique

Nash equilibrium). Nevertheless, this assumption seems particularly egregious as it

ignores the very realistic possibility that high-wage types are likely to have access to

more resources that can be devoted to conflict.

Having said that, this assumption by itself probably does not negate the main

message of the paper for two reasons. First, Proposition 1 does not rely on the

level of the Nash equilibrium expenditures (only on the existence of a unique Nash

equilibrium).

Second, it turns out that, for all combinations of α and ǫ considered in the numer-

ical analysis, type 1 challenges tax rates below zL, type 3 challenges tax rates above

zU , and type 2 challenges tax rates above some threshold that is strictly greater than

zU so that challenges by type 2 do not affect Z. Introducing constraints on expendi-

tures on conflict that are looser for higher types (i) is likely to discourage type 1 from

challenging, which would push zL down, (ii) is likely to encourage type 3 to challenge

more, which would push zU down, and (iii) may cause type 2 to start challenging tax

rates that go unchallenged by the other types. Effect (i) makes Z longer while effects

23There are three potential avenues for imposing such limits. First, one could assume that each
type has an endowment from which to make expenditures on conflict. However, in any quantitative
implementation, it would be unclear how to choose these endowments. Second, one could allow
each type to borrow up to its worst-case (in terms of who wins the conflict) future post-tax income.
Third, one could allow each type to borrow up to a limit that equals the type’s expected future
post-tax income. In this case the borrowing limit is endogenous–it affects the xi’s which affect
types’ probabilities of winning which, in turn, affect expected post-tax labour income.
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(ii) and (iii) make it shorter, so that the net effect on the length of Z is ambiguous.

However, even if effect (i) is maximal (i.e., zL gets pushed down all the way to tmin)

while effects (ii) and (iii) are nil, Z would still be much smaller than [tmin, t1] because,

for any combination of α and ǫ, zU is much smaller than t1 in Table 2.24

Appendix B: The Empirical CDF of Wages

To construct the empirical CDF of wages, H , I proceed as follows. First, I obtain

from Heathcote et. al (2023) an empirical distribution of hourly wages for individuals

between the ages of 25 and 60 in the United States in 2021.25,26 Next, I calculate the

following percentiles of this distribution: 0 (i.e., lowest wage in the data), 5, 10, . . .,

90, 91, 92, . . ., 99, 99.1, 99.2, . . ., 100 (i.e., highest wage in the data). Then, I obtain

a preliminary CDF of wages, Ĥ, as a piecewise function that linearly interpolates

between these percentiles.27 Finally, I obtain H by assuming that ten percent of the

population have zero wage and rescaling Ĥ accordingly, i.e., H(w) = 0.1 + 0.9Ĥ(w)

for w ∈ [0,∞). I add zero-wage individuals because the empirical distribution of

hourly wages excludes individuals who work zero hours, many of whom presumably

24A caveat here is the following. I cannot rule out that effects (i)-(iii) happen to shrink Z down
to the empty set. If that happens, all t ∈ [tmin, tmax] become efficient under TC. See footnote 11.

25Wages are computed as annual labour income + annual self-employment income
annual hours worked , where the denominator

is based on the “new hours” measure, which the authors claim is superior. The computations exclude
individuals who worked fewer than 260 hours in the year (the vast majority of these having worked
zero hours so that wages cannot be computed). For details, see the definitions of labour income
and self-employment income as well as the explanations for Figures 6 and 7 in Appendix A of their
paper. Their paper itself reports insufficient data for my purposes, so I obtained the distribution
of wages from the variable “new wage” in the “cps sampleC.dta” file provided in their replication
materials.

26Some summary statistics of this empirical distribution are as follows: mean = 34.5; standard
deviation = 40.7; (lowest wage, 50-th percentile, 90-th percentile, 99-th percentile, 99.9th percentile,
highest wage) = (3.6, 25, 60.6, 173.1, 528.9, 1375).

27For example, if wages w′ and w′′ are the 5-th and 10-th percentiles, respectively, then, Ĥ(w) =
5 + 10−5

w′′−w′
(w − w′) for w ∈ [w′, w′′].
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would not work whatever the tax schedule.28

Appendix B: Proofs

6.1 Proof of Lemma 1

For future reference, note that at any (xi, x−i) such that xi > 0,29 we have

∂Ui

∂xi

(xi, x−i) =
αpαi

x1−α
i

(

∑I

j=1 p
α
j x

α
j

)2

∑

j 6=i

pαj x
α
j (ui(ti)− ui(tj))− 1. (2)

Note also that the assumption ti 6= tj for all i and j such that i 6= j implies

ui(ti) > ui(tj) for all i and j such that i 6= j. The proof below implicitly relies on the

latter set of inequalities.

The proof proceeds via a sequence of claims.

Claim 1 Assume α < 1. Given any i ∈ {1, . . . , I} and x−i, 0 /∈ argmax
xi≥0

Ui(xi, x−i).

Proof:

If x−i = (0, . . . , 0), xi = 0 cannot be a best response for type i because that type

can increase its probability of winning in a discrete fashion (namely, from 1/I to 1)

by making an infinitesimal strictly positive expenditure on conflict.

If x−i 6= (0, . . . , 0), Ui(xi, x−i) is continuous in xi at xi = 0. But then

lim
xi↓0

∂Ui

∂xi

(xi, x−i) =
αpαi

x1−α
i

(

∑I

j=1 p
α
j x

α
j

)2

∑

j 6=i

pαj x
α
j (ui(ti)− ui(tj))− 1 = ∞ (3)

implies that xi = 0 cannot be a best response to x−i. Q.E.D.

28Nineteen percent of individuals in the data for 2021 in Heathcote et. al (2023) work zero hours.
These individuals do not work given the actual tax schedule they are facing. I am effectively assuming
that around half of them would not work given any tax schedule, and I am ignoring the other half.

29As usual, x−i = (x1, . . . , xi−1, xi+1, . . . , xI). Also, with the customary abuse of notation,
(xi, x−i) is to be read as (x1, . . . , xI).
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Claim 2 Assume α < 1. (x∗
1, . . . , x

∗
I) is a Nash equilibrium if and only if it solves

∂Ui

∂xi

(xi, x−i) = 0, ∀i ∈ {1, . . . , I}. (4)

Proof:

Suppose (x∗
1, . . . , x

∗
I) is a Nash equilibrium. By Claim 1, x∗

i > 0. Therefore,

(x∗
1, . . . , x

∗
I) must satisfy the first-order conditions (4).

In the other direction, assume that (x∗
1, . . . , x

∗
I) satisfies the first-order conditions

(4). Fix i ∈ {1, . . . , I}. Note that we must have x∗
i > 0. Given that ∂Ui

∂xi
(·, x∗

−i)

is strictly decreasing on (0,∞), ∂Ui

∂xi
(x∗

i , x
∗
−i) = 0 is sufficient to guarantee that

Ui(x
∗
i , x

∗
−i) ≥ Ui(xi, x

∗
−i) for all xi > 0. Thus either Ui(x

∗
i , x

∗
−i) ≥ Ui(xi, x

∗
−i) for

all xi ≥ 0 or Ui(0, x
∗
−i) ≥ Ui(xi, x

∗
−i) for all xi ≥ 0. The latter possibility is ruled out

by Claim 1. Q.E.D.

Claim 3 If α < 1, the system of equations (4) has a solution.

Proof:

Let ∆ = {s ∈ R
I |
∑I

i=1 si = 1 and si ≥ 0, ∀i}. Given s ∈ ∆, define

R(s) =





I
∑

i=1

(

αpi
∑

j 6=i

sj(ui(ti)− ui(tj))

)
α

1−α





1−α

. (5)

Observing that R(s) > 0, define the function φ : ∆ → ∆ by

φi(s) =
1

R(s)
1

1−α

(

αpi
∑

j 6=i

sj(ui(ti)− ui(tj))

)
α

1−α

, ∀i ∈ {1, . . . , I}.

Given that ∆ is compact and φ is continuous, there exists s∗ such that φ(s∗) = s∗

(by Brauwer’s fixed point theorem).

18



Now, let (x∗
1, . . . , x

∗
I) be defined by

x∗
i =

(

s∗iR(s∗)

pαi

)
1

α

. (6)

Using (2), the first-order conditions (4) evaluated at (x∗
1, . . . , x

∗
I) can be written

as30

1

R(s∗)
1

1−α

(

αpi
∑

j 6=i

s∗j (ui(ti)− ui(tj))

)
α

1−α

= s∗i , ∀i ∈ {1, . . . , I}. (7)

But the left-hand side is φi(s
∗) which equals s∗i given that s∗ is a fixed point of φ.

Thus, (x∗
1, . . . , x

∗
I) solves the system of equations (4). Q.E.D.

Claim 4 If α ≤ 1/2, the system of equations (4) has a unique solution.

Proof:

Define R(x1, . . . , xI) =
∑I

j=1 p
α
j x

α
j and σi(x1, . . . , xI) =

pαi x
α
i

R(x1,...,xI)
.

Assume there are two solutions to the first-order conditions (4), (x̄1, . . . , x̄I) and

(x̂1, . . . , x̂I) such that (x̄1, . . . , x̄I) 6= (x̂1, . . . , x̂I).
31 Without loss of generality, assume

R(x̄1, . . . , x̄I) ≥ R(x̂1, . . . , x̂I).

Note that the first-order conditions (4) evaluated at (x̄1, . . . , x̄I) and (x̂1, . . . , x̂I)

can be written, respectively, as

ασi(x̄1, . . . , x̄I)
∑

j 6=i

σj(x̄1, . . . , x̄I)(ui(ti)− ui(tj)) = x̄i, ∀i ∈ {1, . . . , I} (8)

ασi(x̂1, . . . , x̂I)
∑

j 6=i

σj(x̂1, . . . , x̂I)(ui(ti)− ui(tj)) = x̂i, ∀i ∈ {1, . . . , I}. (9)

30The equations below are equivalent to the first-order conditions (4) at (x∗
1, . . . , x

∗
I) if x

∗
i > 0, ∀i.

The latter inequality holds for the following reason. si = 0 implies sj > 0 for some j 6= i which, in
turn, implies φi(s) > 0. Thus, si = 0 cannot hold at a fixed point of φ. Thus, s∗i > 0 which, by the
definition of x∗

i in (6), implies x∗
i > 0.

31By Claim 1, each type’s expenditure on conflict is strictly positive in any Nash equilibrium.
Hence, σi(x̄1, . . . , x̄I) and σi(x̂1, . . . , x̂I) are well-defined and strictly positive.
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Based on conditions (8) and (9), σi(x̄1, . . . , x̄I) = σi(x̂1, . . . , x̂I) for all i implies

(x̄1, . . . , x̄I) = (x̂1, . . . , x̂I), a contradiction. Hence, σi(x̄1, . . . , x̄I) 6= σi(x̂1, . . . , x̂I)

for some i.

Let k ∈ {1, . . . , I} be such that σk(x̄1,...,x̄I)
σk(x̂1,...,x̂I)

≥
σj(x̄1,...,x̄I)

σj(x̂1,...,x̂I)
for any j ∈ {1, . . . , I}.

Given that
∑I

j=1 σj(x̄1, . . . , x̄I) =
∑I

j=1 σj(x̂1, . . . , x̂I) = 1, σk(x̄1, . . . , x̄I) > σk(x̂1, . . . , x̂I)

must hold. Given the latter inequality and R(x̄1, . . . , x̄I) ≥ R(x̂1, . . . , x̂I), it follows

that x̄k

x̂k
> 1.

From the first-order conditions (8) and (9), we obtain

x̄k

x̂k

=
ασk(x̄1, . . . , x̄I)

ασk(x̂1, . . . , x̂I)

∑

j 6=k σj(x̄1, . . . , x̄I)(ui(ti)− ui(tj))
∑

j 6=k σj(x̂1, . . . , x̂I)(ui(ti)− ui(tj))
=

R(x̂1, . . . , x̂I)

R(x̄1, . . . , x̄I)

x̄α
k

x̂α
k

∑

j 6=k

σj(x̄1,...,x̄I)

σj(x̂1,...,x̂I)
σj(x̂1, . . . , x̂I)(ui(ti)− ui(tj))

∑

j 6=k σj(x̂1, . . . , x̂I)(ui(ti)− ui(tj))
<

R(x̂1, . . . , x̂I)

R(x̄1, . . . , x̄I)

x̄α
k

x̂α
k

∑

j 6=k
σk(x̄1,...,x̄I)
σk(x̂1,...,x̂I)

σj(x̂1, . . . , x̂I)(ui(ti)− ui(tj))
∑

j 6=k σj(x̂1, . . . , x̂I)(ui(ti)− ui(tj))
=

R(x̂1, . . . , x̂I)

R(x̄1, . . . , x̄I)

x̄α
k

x̂α
k

σk(x̄1, . . . , x̄I)

σk(x̂1, . . . , x̂I)
=

R(x̂1, . . . , x̂I)
2

R(x̄1, . . . , x̄I)2
x̄2α
k

x̂2α
k

≤

(

x̄k

x̂k

)2α

.

Putting together x̄k

x̂k
> 1 and x̄k

x̂k
<
(

x̄k

x̂k

)2α

, it follows that 2α > 1, i.e. α > 1/2.

Q.E.D.

6.2 Proof of Lemma 2

Note that (i) for each type i, ui(·) is single-peaked with peak at ti (i.e., strictly

increasing to the left of ti and strictly decreasing to the right of ti) and (ii) tmin =

tI ≤ tI−1 ≤ . . . ≤ t1.
32 As a result, (a) any tax rate above t1 is strictly worse than t1

32Point (i) can be established by examining the derivative of ui(·). Point (ii) follows from the
expression for ti given in footnote 6.
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for all types and (b) for any t ∈ [tmin, t1], any move to a higher tax rate makes type tI

worse off and any move to a lower tax rate makes type t1 strictly worse off. Q.E.D.

6.3 Proof of Proposition 1

In the proof, I will repeatedly and without explicit mention make use of the statements

in the first sentence in the proof of Lemma 2. By way of notation, let (x∗
1, . . . , x

∗
I)

denote the Nash equilibrium of the game of conflict.

Proof of part 1):

Take tax rates t′ and t′′ such that t′ < t′′ and t′, t′′ ∈ Z, and take t ∈ (t′, t′′). For

any type i, ui(t) ≥ min(ui(t
′), ui(t

′′)). Hence, no type challenges t so that t ∈ Z.

Thus, Z is a nonempty interval.

Next, let Zi = {t ∈ [tmin, tmax]|ui(t) ≥ Ui(x
∗
1, . . . , x

∗
I)}. That is, Zi denotes the set

of feasible tax rates that do not get challenged by type i. Given the continuity of

ui(·), Zi is closed. Given that Z =
⋂I

i=1 Zi, Z is closed.

Finally, type I is strictly worse off under any tax rate t > t1 than if it challenges,

sets xI = 0, and the worst possible type from I’s perspective (which is type 1) wins.

Hence, t /∈ Z. Thus, Z ⊆ [tmin, t1].
33 Q.E.D.

Proof of part 2):

Consider the following exhaustive cases.

Case 1: x∗
i > 0 for some i ∈ {2, . . . , I − 1}.

33Z ⊆ [tmin, t1] implies that tmin < t1, which will be used without explicit mention in the rest of
the proof.
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In this case, we have

U1(x
∗
1, . . . , x

∗
I) ≥ U1(0, x

∗
2 . . . , x

∗
I) > min

j∈{1,...,I}
u1(tj) = u1(tI) = u1(tmin)

UI(x
∗
1, . . . , x

∗
I) ≥ UI(x

∗
1, . . . , x

∗
I−1, 0) > min

j∈{1,...,I}
uI(tj) = uI(t1),

where the strict inequality in the first (respectively, second) line follows from the

fact that, with expenditures on conflict (0, x∗
2 . . . , x

∗
I) (respectively, (x

∗
1, . . . , x

∗
I−1, 0)),

there is a positive probability that type i ∈ {2, . . . , I−1} wins, which is not the worst

possible outcome for type 1 (respectively, I).

By the continuity of u1(·), type 1 rejects all tax rates close enough to tmin. Simi-

larly, by the continuity of uI(·), type I rejects all tax rates close enough to t1. Thus,

tax rates close enough to tmin and t1 are not in Z.

Case 2: x∗
i = 0 for all i ∈ {2, . . . , I − 1} and either x∗

1 = 0 or x∗
I = 0.

If x∗
1 = 0, type I does not have a best-response. In particular, xI = 0 cannot be

a best-response because an infinitesimal increase in expenditure on conflict increases

type I’s probability of winning in a discrete fashion, and xI > 0 cannot be a best-

response because making a smaller (but still positive) expenditure on conflict does not

reduce type I’s probability of winning. If x∗
I = 0, type 1 does not have a best-response

for similar reasons. Thus, this case is inconsistent.

Case 3: x∗
i = 0 for all i ∈ {2, . . . , I − 1}, x∗

1 > 0, x∗
I > 0, U1(x

∗
1, . . . , x

∗
I) >

U1(0, x
∗
2, . . . , x

∗
I).

In this case, we have

U1(x
∗
1, . . . , x

∗
I) > U1(0, x

∗
2 . . . , x

∗
I) ≥ min

j∈{1,...,I}
u1(tj) = u1(tI) = u1(tmin).

By the continuity of u1(·), type 1 rejects all tax rates close enough to tmin. Thus, tax
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rates close enough to tmin are not in Z.

Case 4: x∗
i = 0 for all i ∈ {2, . . . , I − 1}, x∗

1 > 0, x∗
I > 0, UI(x

∗
1, . . . , x

∗
I) >

UI(x
∗
1, . . . , x

∗
I−1, 0).

In this case, we have

UI(x
∗
1, . . . , x

∗
I) > UI(x

∗
1, . . . , x

∗
I−1, 0) ≥ min

j∈{1,...,I}
uI(tj) = uI(t1).

By the continuity of uI(·), type I rejects all tax rates close enough to t1. Thus, tax

rates close enough to t1 are not in Z. Q.E.D.

Proof of part 3):

Let zL and zU denote the lower and upper end point, respectively, of the interval

Z. Take any tax rate t̃ ∈ [tmin, tmax] such that t̃ /∈ [zL, zU ]. Tax rate t̃ gets challenged

so that each type i obtains expected utility Ui(x
∗
1, . . . , x

∗
I). Note that Ui(x

∗
1, . . . , x

∗
I) ≤

ui(t) for any t ∈ [zL, zU ]. Let Ai = {t ∈ [zL, zU ]|Ui(x
∗
1, . . . , x

∗
I) = ui(t)}. Given the

shape of ui(·), Ai consists of at most two points. Hence,
⋃I

i=1 Ai consists of at most 2I

points. Thus, it is possible to pick t̂ ∈ [zL, zU ] such that Ui(x
∗
1, . . . , x

∗
I) < ui(t̂), ∀i ∈

{1, . . . , I}. Thus, t̃ is inefficient under TC.

Next pick t ∈ [zL, zU ]. At any tax rate outside of [zL, zU ], all types are weakly

worse off. Type I is strictly worse off at any tax rate in [zL, zU ] above t. Type 1 is

strictly worse off at any tax rate in [zL, zU ] below t. Thus, t is efficient under TC.

Q.E.D.
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