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Abstract

Innovative startups are frequently acquired by large incumbent firms. On the one

hand, these acquisitions provide an incentive for startup creation and may transfer ideas

to more efficient users. On the other hand, incumbents might acquire startups just to

“kill” their ideas, and acquisitions can erode incumbents’ own innovation incentives. Our

paper aims to assess the net effect of these forces. To do so, we build an endogenous

growth model with heterogeneous firms and acquisitions, and calibrate its parameters

by matching micro-level evidence on startup acquisitions and patenting in the United

States. Our calibrated model implies that acquisitions raise the startup rate, but lower

incumbents’ own innovation as well as the percentage of implemented startup ideas.

The negative forces are slightly stronger. Therefore, a ban on startup acquisitions would

increase growth by 0.03 percentage points per year, and raise welfare by 1.8%.
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1 Introduction

Startups are a major source of innovative ideas. Therefore, they make a substantial

contribution to aggregate productivity growth in the United States (see e.g. Decker, Halti-

wanger, Jarmin and Miranda, 2016). However, many successful startups never grow into

large independent firms, as they are acquired early on by older incumbents. For these

incumbents, startup acquisitions are often a routine activity: several of the largest American

firms have bought hundreds of startups over the last decade.1

In recent years, regulators have viewed these operations with increasing skepticism. In

2020, the Federal Trade Commission (FTC) announced an inquiry into several high-profile

startup acquisitions and filed lawsuits against two large incumbents, Google and Facebook.2

In 2021, Congress introduced the bipartisan Platform Competition and Opportunity Act,

which aims to prohibit acquisitions by certain large technology platforms, unless these

firms can “demonstrate that [they are] not acquiring a direct, nascent, or potential competitor,
enhancing a market position, or enhancing [their] ability to maintain a market position”.3

While such actions are often motivated by concerns about market power, regulators

have also grown increasingly nervous about potential negative effects of startup acquisitions

on innovation, both in the Tech sector and in the broader economy. A commonly used

argument is that incumbents engage in “killer acquisitions” (a term coined by Cunningham,

Ederer and Ma, 2021), acquiring startups only to kill innovative ideas that threaten the

incumbent’s business. Industry lobbyists have pushed back and argue that acquisitions

actually foster innovation because they motivate founders to create startups in the first

place, and because incumbents are better prepared to commercialize startup ideas.

In this debate, the arguments of both sides have merit and are supported by some

empirical evidence. To make informed decisions, policy makers therefore need to consider

the balance of the positive and negative effects of startup acquisitions on innovation and

productivity growth. To the best of our knowledge, no such comprehensive assessment is

available to date. Our paper aims to fill this gap.

To do so, we develop an endogenous growth model with heterogeneous firms and

startup acquisitions. Our model features the main forces discussed in the public debate, and

also highlights the less commonly discussed (but no less important) effects of acquisitions

1According to a report by the Federal Trade Commission (FTC), the Tech giants Amazon, Apple, Facebook,
Google and Microsoft have acquired more than 600 small firms between 2010 and 2019 (FTC, 2021).

2A report on this inquiry was released in September 2021 (FTC, 2021). The FTC sued Google and Facebook
in October and December 2020, asking Facebook to undo its acquisitions of Instagram and WhatsApp.

3See https://itif.org/publications/2022/01/31/platform-competition-and-opportunity-act-solution-search-
problem.

1

https://itif.org/publications/2022/01/31/platform-competition-and-opportunity-act-solution-search-problem
https://itif.org/publications/2022/01/31/platform-competition-and-opportunity-act-solution-search-problem


on incumbents’ own innovation. We discipline the model by calibrating it to micro data on

acquisitions and patenting in the US. Our calibrated model implies that the negative forces

slightly dominate, so that policies reducing acquisitions increase productivity growth.

Our model builds on the Schumpeterian growth framework. It features a continuum

of incumbent firms, each producing a differentiated product and investing into innovation

to increase its productivity gap over potential competitors. A large mass of non-producing

startups, in turn, seeks to innovate to displace incumbents and enter. We introduce two new

elements into this setting. First, we assume that innovation is a two-stage process: firms

need to invest resources to invent new ideas, and then again to implement these ideas. This

allows us to capture that incumbents might be more or less likely to implement an idea

than the startup that came up with it. Second, we introduce startup acquisitions. In our

baseline model, incumbents invest resources into searching for startups that threaten to

displace them. When their search is successful, they can do an acquisition.

The model reflects the multiple channels through which startup acquisitions affect

innovation and growth. Precisely, we show that any change in the growth rate from its

baseline value (triggered, for instance, by a shock to search costs or a change in antitrust

policy) can be decomposed into three margins: (i) changes in the startup rate (i.e., the

number of new startups created in a given time period); (ii) changes in the sales-weighted

percentage of startup ideas that are implemented; and (iii) changes in the own innovation

rate of incumbents. The relative importance of these three margins depends on the initial

shares of startup and incumbent ideas in aggregate productivity growth.

What drives changes in these three margins? First, in our model, shocks that increase

the frequency of acquisitions generally also increase the startup rate. Indeed, startups only

sell if the acquisition price exceeds their outside option of remaining independent. Thus,

a higher frequency of acquisitions increases the value of creating a startup and leads to

more startups being created in equilibrium. This positive effect mirrors the widespread

conviction in the business world that acquisitions are a desirable outcome for startups.4

Second, the impact of acquisitions on the implementation of startup ideas is a priori

unclear. On the one hand, incumbents might have lower implementation costs than

startups.5 When this effect dominates, more frequent acquisitions lead, all else equal, to

more implemented startup ideas. On the other hand, our model also features a “replacement

4In fact, numerous guides advise entrepreneurs how to position their startups in order to be acquired.
For some examples, see (1) https://www.forbes.com/sites/alejandrocremades/2019/08/02/how-to-get-
your-business-acquired, (2) https://www.inc.com/john-boitnott/how-to-boost-your-businesss-odds-of-an-
acquisition or (3) https://thinkgrowth.org/how-to-build-a-startup-that-gets-acquired-85ada592bfd7.

5Such a cost advantage might be due to economies of scale and scope, a larger customer base, a better
access to capital markets, or greater business experience.
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effect” as in Arrow (1962): an incumbent’s marginal benefit from implementing a startup

idea is smaller than the one of the startup itself, providing a motive for “killing” an idea

that would have been implemented by an independent startup. When this effect dominates,

more frequent acquisitions might lead to fewer implemented startup ideas.

Finally, the own innovation rate of incumbents responds to startup acquisitions through

several general equilibrium channels. A higher frequency of acquisitions attracts more

startups, which means that incumbents are more frequently threatened with displacement.

Even if incumbents manage to defuse this threat through an acquisition, this is costly, as

they need to pay off the startup. The higher startup rate therefore lowers the value of

incumbents and their incentives to innovate. Furthermore, incumbent innovation is also

affected by a composition effect. In our model, incumbents with a high productivity gap

over their potential competitors have low innovation incentives. The share of such firms in

the economy crucially depends on entry (which resets productivity gaps), and entry is in

turn affected by the frequency of acquisitions.

Our paper’s objective is to assess the quantitative importance of the three margins listed

above. To do so, we calibrate our model to match micro data on innovation and acquisitions.

Crucially, our targeted moments include direct causal evidence on the effect of acquisitions

on the implementation of ideas.

We rely on two data sources. First, we use data collected by Guzman and Stern (2020),

which covers the universe of startups created in 32 US states between 1988 and 2008.

This data allows us, for instance, to compute the percentage of startups that are acquired.

However, it does not identify the firms in the actual acquisition deals or follow their

outcomes over time. Therefore, we construct a new data set by combining information on

acquisitions (from the ThomsonONE M&A database), patents (from the NBER Patent Data

Project) and accounting data (from Compustat).

Using this new data set, we study the impact of acquisitions on the implementation

of ideas, one of the key margins in our model. To measure implementation, we track

patent citations. We interpret an increase in the citations received by a startup patent after

acquisition as evidence for the acquisition increasing the likelihood of implementation,

and a decrease as evidence for the acquisition lowering this likelihood. To control for

selection, we use a matching algorithm, assigning each treatment patent to a group of

control patents with similar characteristics. For the average deal, we find that an acquisition

increases citations of the acquired patent by around 22%, implying that incumbents have a

comparative advantage for implementation that outweighs the Arrow replacement effect.

In line with our model, we find that the boost to citations is lower if the acquirer has a high

market share, or if the acquirer and the startup belong to the same industry.
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We calibrate our model’s parameters to match our regression results and other moments.

To study the link between acquisitions and productivity growth, we then solve the model

for different values of incumbents’ search costs for startups. We find that high search

costs (implying infrequent acquisitions) are associated with high growth, while low search

costs (implying frequent acquisitions) are associated with low growth. Decomposing these

differences into the three margins highlighted above, we find that more frequent acquisitions

are associated with a higher startup rate, but also with lower rates of incumbent innovation

and, surprisingly, a lower percentage of implemented startup ideas. The latter negative

effects are due to a general equilibrium feedback: the higher startup rate erodes the value

of incumbents, lowering innovation incentives for incumbents and non-acquired startups.6

As incumbent ideas are the main source of growth in our calibration (in line with the

evidence in Akcigit and Kerr, 2018 and Garcia-Macia, Hsieh and Klenow, 2019), the fall in

incumbents’ own innovation quantitatively dominates and drags the growth rate down.

In line with these results, we find that a ban on startup acquisitions would increase the

aggregate growth rate by about 0.03 percentage points by year, and increase consumption-

equivalent welfare by 1.8%. The ban lowers the startup rate, but this is more than

compensated by an increase in incumbent innovation and in the percentage of implemented

startup ideas. Partial bans have a similar, but somewhat smaller impact.

Finally, we explore the robustness of these results. Using our baseline model, we provide

a range of potential results by considering different values for each of our calibration targets.

This shows that higher values for the effect of acquisitions on idea implementation, a larger

share of startup ideas in overall growth and higher bargaining power for incumbents would

all somewhat dampen the negative effects of acquisitions. We also develop an extension

of our model in which we allow incumbents to acquire startups that do not threaten to

displace them. Results are quantitatively similar to the baseline, but underline that the

negative effects are driven by acquisitions of competing startups.

Related literature There is a growing empirical literature on the effect of acquisitions

on innovation. Cunningham et al. (2021) show that in the US pharmaceutical industry,

acquirers are more likely to stop drug research projects of acquired firms when these overlap

with their own drug portfolio. These killer acquisitions are more frequent for acquirers

with a dominant market position. Seru (2014) and Haucap, Rasch and Stiebale (2019) also

provide evidence for a negative effect of mergers and acquisitions (M&As) on firm R&D.

Phillips and Zhdanov (2013) instead argue that acquisitions stimulate innovation by small

6This common negative effect explains the fall in the percentage of implemented startup ideas, despite the
positive partial equilibrium effect uncovered by our regressions.
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firms aiming to be acquired. Using data on publicly traded firms, they show that small firms’

R&D increases after an acquisition shock. Bena and Li (2014), Kim (2020) and Liu (2022)

study the effect of M&As on innovation and knowledge spillovers. We provide empirical

evidence from a new data set that corroborates some of these findings. However, the main

contribution of our paper is to use a general equilibrium model (disciplined by the empirical

evidence) to assess the macroeconomic significance of these cross-sectional findings.

On the theoretical side, there has been an intense interest in the industrial organization

literature on the effect of M&As on innovation (see Federico, Langus and Valletti, 2017;

Cabral, 2018; Bourreau, Jullien and Lefouili, 2018; Bryan and Hovenkamp, 2020; Callander

and Matouschek, 2020; Fumagalli, Motta and Tarantino, 2020; Kamepalli, Rajan and

Zingales, 2020; Letina, Schmutzler and Seibel, 2020; Denicolò and Polo, 2021; Brutti and

Rojas, 2021). These studies are based on partial equilibrium models, while our contribution

is to provide an aggregate general equilibrium perspective.

In the macroeconomic literature, Jovanovic and Rousseau (2002), Dimopoulos and

Sacchetto (2017) and David (2020) analyze the effects of M&As on the allocation of capital,

but do not consider innovation and productivity growth.7 More closely related to us,

Cavenaile, Celik and Tian (2021) develop an endogenous growth model with mergers

between incumbents. Our focus is different: we study startup acquisitions, leading us to

consider novel issues such as the effects of acquisitions on the startup rate and on the

implementation of ideas.8 Finally, Lentz and Mortensen (2016) and Akcigit, Celik and

Greenwood (2016) incorporate different versions of a market for ideas (through buyouts

or patent sales) in endogenous growth models, showing that such markets improve the

allocation of ideas. More broadly, we contribute to the literature on endogenous growth and

firm dynamics (Klette and Kortum, 2004; Akcigit and Kerr, 2018; Peters, 2020), by extending

its standard framework to incorporate acquisitions and study their macroeconomic impact.

The remainder of the paper is organized as follows. Section 2 presents our model

and highlights the channels through which startup acquisitions affect growth. Section 3

describes our micro data, lays out stylized facts, and empirically estimates the effects of

acquisitions on startup ideas. Section 4 presents our calibration and our main quantitative

results. Section 5 discusses extensions and robustness checks, and Section 6 concludes.

7Pellegrino (2022) and Cao and Zhu (2022) instead analyze the macroeconomic effect of M&As on
markups. There is also an extensive literature on the microeconomic effects of M&As, including Rhodes-Kropf
and Robinson (2008), Andersson and Xiao (2016), Blonigen and Pierce (2016) and Wollmann (2019).

8Likewise, Weiss (2022) uses an endogenous growth model to study changes in innovation costs, but does
not consider the effect of acquisitions on the startup rate and on the implementation of ideas. Pearce and Wu
(2022) study growth and welfare effects of acquisitions, but their focus is on brands of incumbent firms (with
an application to the retail sector), and not startups. Our paper is also related to Celik, Tian and Wang (2022),
who study the effects of information frictions in the merger market on innovation and business dynamism.
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2 Model

In this section, we develop a model of the linkages between startup acquisitions and

innovation. While we build on Schumpeterian heterogeneous-firm growth models (partic-

ularly Peters, 2020), our model introduces two new elements: a distinction between the

invention and the implementation of ideas, and the possibility of startup acquisitions.

2.1 Assumptions

Preferences and technology Time is continuous, runs forever and is indexed by t ∈ R+.

A representative consumer maximizes lifetime utility, given by

U =
∫ +∞

0
exp (−ρ · t) · ln (Ct) dt, (1)

where ρ > 0 is the time discount rate and Ct stands for the consumption of the unique

final good at instant t. We normalize the price of the final good to one. The household is

endowed with L > 0 units of time, which she supplies inelastically at the wage wt. The

household owns all firms in the economy and accumulates wealth At according to the

budget constraint Ȧt = rt · At + wt · L− Ct, where rt is the rate of return on assets.

The final good is produced under perfect competition and assembled from a continuum

of differentiated products with a Cobb-Douglas production function. Precisely,

Yt = exp

(∫ 1

0
ωjt · ln

(
yjt

ωjt

)
dj

)
, (2)

where yjt is the output of product j at instant t and ωjt is the quality of product j at

instant t. Product quality can take values in a finite set Ω, and products transition from

state ω to state ω′ at an exogenous Poisson rate τω,ω′ . We assume that the economy starts

in the steady state of this process and normalize
∫ 1

0 ωjtdj = 1.

Each product can potentially be produced by a large number of firms f , with a linear

technology using labor:

yj f t = aj f t · lj f t, (3)

where yj f t is the output of product j by firm f at instant t, aj f t is the productivity of the

firm, and lj f t is the labor input. We assume static Bertrand competition on product markets,

implying that each product is only produced by the highest-productivity firm in equilibrium.

We denote the productivity of this firm by ajt. Productivity is improved through innovations,

which are the result of a two-step process. First, firms invest into research in order to
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generate new ideas. Then, they invest into implementation in order to develop these ideas.

The next section describes these technologies.

Research and Implementation Innovations are generated by incumbent firms (which

already produce at instant t) and by a large mass of startups (potential entrants).

To generate an idea at a Poisson arrival rate z, an incumbent must pay a research cost of

ξ I · zψ ·Yt units of the final good. In this cost function, ξ I > 0 is a scaling factor and ψ > 1
is the elasticity of research output with respect to research spending. Thus, research costs

are increasing and convex in the arrival rate of ideas. Furthermore, they are proportional to

aggregate output, to ensure balanced growth.

To develop an idea, the incumbent needs to invest into implementation. Precisely, if the

incumbent invests κI · i
ψ
I ·Yt units of the final good (with κI > 0), it successfully implements

the idea with probability iI .9 We assume that productivity evolves on a ladder with step size

λ > 1. An implemented idea (an innovation) increases the productivity of the incumbent

by one step on this ladder, i.e., by a factor λ. Instead, an idea that is not immediately

implemented disappears forever.

Ideas and innovations are also generated by startups. A startup can be created at a fixed

cost ξS · Yt and generates a Poisson arrival rate 1 of ideas. A startup’s idea applies to a

randomly drawn good j ∈ [0, 1]. When the startup invests κS · i
ψ
S ·Yt units of the final good

(with κS > 0), it implements the idea with probability iS. As with incumbent ideas, startup

ideas are either implemented immediately or never. To allow for the empirical fact that

startup ideas on average represent larger advances than incumbent ideas (as we will show

in Section 3.2), we assume that a startup idea increases productivity by nS = 1 + N steps,

where N ∈N is drawn from a Poisson distribution with parameter γ. Thus, on average, a

startup idea represents γ more steps on the productivity ladder than an incumbent idea.

The quality of the idea is only revealed after investing into implementation.

In equilibrium, a startup that implements its idea displaces the incumbent producer of

product j and becomes the new incumbent in this product line. However, the startup may

not always choose to invest into implementation: alternatively, it can be acquired by the

incumbent. In the next section, we describe these acquisitions.

Acquisitions We assume that acquisitions can take place if, and only if, there is a “meeting”

between the startup and the threatened incumbent producer.

9To be exact, we assume that the implementation probability is min (iI , 1). However, we choose parameter
values ensuring that probabilities are always well below 1. For simplicity, we therefore omit the min operator.
The same statement applies to all other implementation and meeting probabilities introduced below.
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The meeting probability is endogenous, and depends on the effort of the incumbent in

monitoring the startup scene. We assume an incumbent needs to spend χ · sϕ · Yt (with

χ > 0 and ϕ > 1) units of the final good in order to generate a probability s to meet any

startup that has an idea on the incumbent’s product. Thus, search costs are increasing

and convex in the search effort. As usual, they also scale with aggregate output to ensure

balanced growth. We think of this framework as a reduced-form model of information and

search frictions in the acquisition market. These frictions prevent incumbents from noticing

all threatening startups and force them to spend resources in order to monitor the market.

When there is a meeting, the incumbent may acquire the startup. Then, the incumbent

transfers pA
jt units of the final good (the acquisition price) to the startup in exchange for

the startup exiting forever and handing over its idea to the incumbent. The acquisition

price is determined through Nash bargaining, where the incumbent has a bargaining weight

α ∈ (0, 1). The incumbent then invests to implement the startup’s idea, using its own

implementation technology. That is, by investing κI · i
ψ
A · Yt units of the final good, it

implements the startup’s idea with probability iA.

Acquisitions occur if and only if they generate a surplus, that is, if and only if the joint

value of both firms after the acquisition is larger than the sum of their outside options.

There are two reasons for which acquisitions may generate a surplus in the model. First, the

startup’s idea may be more valuable in the hands of the incumbent (if the latter has lower

implementation costs, i.e., if κI < κS). Second, acquisitions prevent entry, and therefore

prevent the destruction of incumbent rents. While the first source of surplus represents a

socially valuable transfer of ideas, the second does not.

Startup idea
appears

Meeting

No Meeting /
No Acquisition

Acquisition

Incumbent
implements

Incumbent
doesn’t

implement

Startup
implements

Startup
doesn’t

implement

Entry

s

1−
s

Surplus > 0 i A

1− iA

iS

1− iS

Surplus = 0

Figure 1: Timing of events for a startup idea within a period (t, t + dt).

Life-cycle of a startup idea Figure 1 summarizes the timing of events for a startup idea

within an instant of length dt. After the idea appears, the incumbent notices it and meets the
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startup with probability s. If there is no meeting, the startup invests into implementation,

which leads to possible entry and displacement of the incumbent (with probability iS). If

there is a meeting and the acquisition surplus is positive, an acquisition occurs and the

incumbent chooses the probability iA with which to implement the startup’s idea.

2.2 Equilibrium

2.2.1 Household decisions, prices and profits

Throughout, we consider a balanced growth path (BGP) equilibrium with positive

startup creation, in which all aggregate variables grow at a constant rate g. On the BGP,

consumption growth holds the Euler equation

Ċt

Ct
≡ g = r− ρ. (4)

Bertrand competition implies that each product is only produced by the highest-

productivity firm. However, pricing decisions depend on the relative productivity of this

incumbent with respect to the firm with the second-highest productivity. In our model, this

“follower” is an old incumbent, displaced by the current incumbent when the latter overtook

production. Denoting by aF
jt the productivity of the follower firm for product j at instant t,

we define the “technology gap” (the number of productivity steps between the incumbent

and the follower) as the integer njt holding

λnjt ≡
ajt

aF
jt

, (5)

The demand for each product j holds yjt = ωjt · Yt/pjt. As the price elasticity equals 1,

an unconstrained monopolist would choose an arbitrarily high price. However, the price of

any incumbent must also be low enough to keep the follower out of the market. For any

product j, the average cost of the follower at instant t is by a factor λnjt higher than the one

of the incumbent. Thus, when the incumbent charges a markup λnjt , the follower makes

zero profits and does not produce. Accordingly, prices hold

pjt = µ(njt) ·
wt

ajt
with µ(njt) = λnjt , (6)

and profits are given by

πt
(
ωjt, njt

)
= ωjt ·

(
1− λ−njt

)
·Yt. (7)
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Equation (7) shows that profits are increasing in product quality ωjt, and increasing and

concave in the technology gap njt. They do not depend on the productivity level ajt.

2.2.2 Research, implementation and acquisitions

Incumbent’s dynamic decisions At every point in time, incumbents need to choose an

optimal level of research spending z and search effort s. Moreover, whenever they obtain

an idea, they need to choose an optimal implementation probability, and whenever they

meet a startup, they must decide whether or not to acquire it.

The dynamic problem of the incumbent has one endogenous state variable (the technol-

ogy gap n) and one exogenous state variable (product quality ω). Furthermore, the value

function also depends on some aggregate variables, which change over time. We denote the

value function by Vt(ω, n). On the BGP, the Hamilton-Jacobi-Bellman (HJB) equation is

r ·Vt(ω, n) = max
z,s

{
πt (ω, n)︸ ︷︷ ︸

Profits

− ξ I · zψ ·Yt︸ ︷︷ ︸
Research cost

− χ · sϕ ·Yt︸ ︷︷ ︸
Search effort

+ z ·max
iI

[
iI ·
(

Vt(ω, n + 1)−Vt(ω, n)
)
− κI · i

ψ
I ·Yt

]
︸ ︷︷ ︸

Own innovation

+ x ·
[

s ·VMeet
t (ω, n) + (1− s) ·VNoMeet

t (ω, n)−Vt(ω, n)
]}

︸ ︷︷ ︸
Startup appears

+ ∑
ω′∈Ω

τω,ω′ ·
[

Vt(ω
′, n)−Vt(ω, n)

]
︸ ︷︷ ︸

Quality shock

+ V̇t(ω, n)︸ ︷︷ ︸
Drift

. (8)

The HJB equation shows how the discounted value of the firm changes over time. First,

at every instant, the firm collects static profits and spends on research and startup search,

as shown in the first line. As shown in the second line, the incumbent discovers an idea at

Poisson rate z, and then chooses an implementation probability iI. An implemented idea

increases its technology gap by one step. The third line shows that at rate x, a startup

makes an innovation on the incumbent’s product. In that case, there is a meeting (and

thus potentially an acquisition) with probability s, and no meeting with probability 1− s.
We denote by VMeet

t (ω, n) the expected continuation value of the incumbent if there is

a meeting, and by VNoMeet
t (ω, n) the expected continuation value if there is no meeting.

Finally, the fourth line shows that the incumbent is subject to exogenous product quality
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shocks, and that its value drifts over time due to aggregate growth.

Acquisitions and startup creation To analyze the interaction between an incumbent and

a startup that threatens to replace it, we first consider the case in which there is no meeting

between both firms. In that case, there is no acquisition, and the incumbent’s expected

continuation value is

VNoMeet
t (ω, n) =

[
1− iS,t (ω, n)

]
·Vt(ω, n), (9)

where iS,t (ω, n) is the optimal implementation probability chosen by the startup. When

the startup does not implement, the incumbent’s continuation value is just its current value.

Instead, when the startup implements, the incumbent is displaced and its continuation

value is zero.

Likewise, we can derive the expected value of a startup in the absence of a meeting,

denoted by VNoMeet
S,t (ω). This quantity holds

VNoMeet
S,t (ω) = max

iS

{
iS ·
( +∞

∑
nS=1

θ(nS) ·Vt(ω, nS)

)
− κS · i

ψ
S ·Yt

}
(10)

where θ(nS) ≡ exp (−γ) · γnS−1

(nS−1)! is the Poisson probability that the startup’s innovation

advances productivity by nS steps. In the absence of a meeting, a startup chooses an optimal

implementation probability iS. When its idea is implemented, the startup becomes the new

incumbent. With probability θ(nS), it takes nS steps on the productivity ladder, yielding a

technology gap of nS over the previous incumbent (who is now the follower). Instead, if

implementation fails, the startup has a continuation value of zero.

Next, we turn to the case in which a meeting does take place. To determine whether this

leads to an acquisition, we compute the surplus that would be generated by an acquisition,

denoted Σt (ω, n). The surplus holds

Σt(ω, n) = max

[
0, max

iA

{
Vt(ω, n) + iA ·

+∞

∑
nS=1

θ(nS) ·
(

Vt(ω, n + nS)−Vt(ω, n)
)

− κI · i
ψ
A ·Yt

}
−VNoMeet

t (ω, n)−VNoMeet
S,t (ω, n)

]
.

(11)

In equation (11), the term inside the curly brackets captures the joint value of incumbent

and startup after an acquisition. The acquisition allows the incumbent to keep its baseline

value Vt(ω, n). Moreover, the incumbent acquires the startup’s idea and chooses an optimal
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implementation probability iA for it. In case of success, the quality of the idea is revealed,

and an idea of quality nS improves the incumbent’s technology gap by nS units. Finally,

the incumbent transfers the acquisition price to the startup. This acquisition price is the

startup’s post-acquisition value. Thus, it is a pure transfer between the two firms and does

not feature in the joint value shown in equation (11). To obtain the surplus, we subtract

from the joint value the outside options of incumbent and startup, i.e., their expected values

in the absence of a meeting.

An acquisition takes place if, and only if, the surplus is positive. Then, the surplus is

split between both firms according to their Nash bargaining weights. Consequently, the

continuation value for an incumbent in case of a meeting with the startup is

VMeet
t (ω, n) = VNoMeet

t (ω, n) + α · Σt(ω, n). (12)

For the startup, the continuation value conditional on meeting the incumbent is

VMeet
S,t (ω, n) = VNoMeet

S,t (ω, n) + (1− α) · Σt(ω, n). (13)

Whenever an acquisition takes place, this continuation value of the startup is also equal

to the acquisition price. Finally, in an equilibrium with positive startup creation (x > 0), a

free-entry condition must hold:

ξS ·Yt = Et

[
st(ω, n) ·VMeet

S,t (ω, n) +
(

1− st(ω, n)
)
·VNoMeet

S,t (ω, n)
]

, (14)

where st(ω, n) denotes the search effort by an incumbent with quality ω and technology

gap n. This equation shows that the cost of creating a startup, ξS · Yt, must be equal to

the expected benefit of creating a startup. To compute the latter, note that the startup’s

idea falls on a random product j, characterized by a quality ω and a technology gap n. The

expectation operator on the right-hand side of equation (14) refers to the joint distribution

of products over these states. Depending on whether the startup meets an incumbent or

not, it obtains one of the continuation values defined in equations (10) and (13).

Optimal policies To solve for the BGP policies, we guess and verify that the incumbent’s

value function holds Vt(ω, n) = v(ω, n) ·Yt, i.e., that value scales one-to-one with aggregate

output. This allows us to solve for the model in two blocks: we can first (numerically) solve

for the startup rate, innovation and acquisition decisions, and the invariant distribution of

products across quality levels and technology gaps. Then, in a second step, we can compute

wages, consumption and the growth rate of the economy.
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Appendix A.1 rewrites the HJB equation using the normalized value function v, and

derives analytic expressions for the optimal research investment rate z(ω, n) and the optimal

search effort s(ω, n) by incumbents. In both cases, incumbents equalize the marginal cost

and the marginal benefit of these investments. For research, the marginal benefit is the

expected gain in incumbent firm value from discovering (and potentially implementing) an

own idea. For search, the marginal benefit is the expected surplus that the incumbent can

extract from an acquisition.

Table 1, in turn, summarizes the optimal implementation probabilities for startup ideas

implemented by the startup (iS) or the incumbent (iA), and for incumbent’s own ideas (iI).

Incumbents and startups may make different implementation choices for the same idea.

These differences stem from differences in both marginal costs and marginal benefits. First,

implementation costs may differ: all else equal, a lower marginal cost (a lower cost shifter

κ) implies higher investment. Second, as the value function is concave in the technology

gap n, there is an Arrow replacement effect: the fact that the incumbent already earns

some monopoly rents makes it less attractive to implement (as captured by the term v(ω, n)
subtracted from the marginal benefit in the second and third lines of Table 1). When this

last effect dominates, some ideas that would have been implemented by a startup will not

be implemented by the incumbent, i.e., some acquisitions will be killer acquisitions.

Table 1: Optimality conditions for implementation probabilities

Implementer Idea Creator Marginal cost Marginal benefit

Startup Startup κS · ψ ·
(
iS
)ψ−1

= ∑+∞
nS=1 θ(nS) · v(ω, nS)

Incumbent Startup κI · ψ ·
(
iA
)ψ−1

=
(

∑+∞
nS=1 θ(nS) · v(ω, n + nS)

)
− v(ω, n)

Incumbent Incumbent κI · ψ ·
(
iI
)ψ−1

= v(ω, n + 1)− v(ω, n)

As we show in Appendix A.2, the optimal research, implementation, search and acquisi-

tion choices, together with the startup rate x, pin down the invariant distribution of products

across quality and technology gaps. Appendix A.3 shows how we solve (numerically) for all

these outcomes, using a simple algorithm. Crucially, this solution is independent of wages,

consumption, and of the growth rate. We determine these variables in a second step, as

shown in the next section.

2.2.3 Aggregate outcomes

To close the model, we need to solve for wages, consumption and aggregate growth.

Using the demand function, it is easy to show that the incumbent producing product j
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demands ω
µ(n) ·

Yt
wt

units of labor. Imposing labor market clearing, we obtain the aggregate

labor share:
wtL
Yt

= ∑
ω∈Ω

+∞

∑
n=1

(
m(ω, n) · ω

µ(n)

)
, (15)

where m(ω, n) stands for the mass of incumbents with quality ω and technology gap n.

Product market clearing, in turn, implies that aggregate output is fully used for con-

sumption (Ct), research (Rt), implementation (It) and search (St). Therefore, we have

Yt = Ct + Rt + It + St. (16)

In Appendix A.4, we show that Rt, It and St are linear functions of aggregate output.

Therefore, aggregate consumption Ct grows at the same rate as output. Still in Appendix

A.4, we show that this common growth rate is given by

g = ln(λ) · ∑
ω∈Ω

(
+∞

∑
n=1

m(ω, n) ·ω ·
[
bI(ω, n) + bS(ω, n) · (1 + γ)

])
, (17)

where bI is the arrival rate of innovations from incumbent ideas, and bS is the arrival

rate of innovations from startup ideas. These quantities are given by

bI(ω, n) ≡ z(ω, n) · iI(ω, n)

bS(ω, n) ≡ x ·
(

s(ω, n) · iA(ω, n) +
(

1− s(ω, n)
)
· iS(ω)

)
.

(18)

The growth rate depends on the aggregate innovation rate. This rate is an average

of innovations by incumbents and startups, weighted by product quality ω (which in

equilibrium equals a product’s sales share) and by the average step size of ideas.

2.3 Key properties of the model

Having characterized the BGP equilibrium, we now discuss some of its key properties.10

Figure 2 plots the normalized value function v and the research policy function z for

incumbents. Firm value is increasing in quality ω and in the technology gap n. Moreover,

firm value is concave in n, as the marginal effect of higher technology gaps on markups and

profits gets smaller when the incumbent gets further ahead of its follower. The research

investment of the firm, in turn, depends on the increments of the value function. Therefore,

10All figures in this section are produced using our baseline calibration, discussed in Section 4.1.
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it is increasing in quality ω and decreasing in the technology gap n. Note that a firm

continues to invest into research no matter how high its markup becomes, though research

incentives become arbitrarily small for firms with very high markups.

Figure 2: Value functions and research policy functions of incumbent firms, by firm type.

Figure 3 plots the (normalized) acquisition surplus and the incumbent meeting probabil-

ities s. Acquisitions generate a surplus for two reasons. First, when incumbents have lower

implementation costs (κI < κS), they transfer an idea to a more efficient user. Second,

they allow the technology gap n to remain at least at its current value, instead of being

potentially lowered through entry. The first motive reflects a socially useful transfer of ideas,

while the second motive just preserves the rents of the incumbent. Some of these rents are

kept by the incumbent, and the remainder is transferred to the startup. A higher quality ω

and a higher technology gap n imply greater benefits of idea transfers and greater rents.

Thus, the acquisition surplus is increasing in both variables, and firms with higher quality

and higher technology gaps invest more resources into searching for startups.

Figure 3: Acquisition surplus and meeting probabilities, by firm type.
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Finally, the left panel of Figure 4 plots the implementation probabilities for a startup

idea, distinguishing between the case in which the startup is not acquired and invests into

implementation itself, and the case in which the startup is acquired and the incumbent

invests into implementation. In this figure (and in our baseline calibration), incumbents

have lower implementation costs than startups. Accordingly, at low levels of the technology

gap, incumbents are more likely to implement a startup idea than the startup itself. As

the technology gap increases, however, the marginal benefit of innovation for incumbents

decreases. As a consequence, incumbents start to choose lower implementation probabilities

than startups for the same idea. Therefore, acquisitions by dominant firms will on average

“kill” some startup ideas.

Figure 4: Implementation probabilities by firm type, and the invariant distribution of technology gaps.

The previous discussion shows that incumbent firm decisions about research, imple-

mentation and startup search crucially depend on the technology gap n. Therefore, the

distribution of technology gaps across products, shown in the right panel of Figure 4, is an

important equilibrium object. This distribution is endogenous, shaped by the innovation

choices of incumbents and startups. In particular, as the figure shows, high-quality products

have on average higher technology gaps, as they receive more innovation.

Changes in public policy regarding startup acquisitions will affect all endogenous

variables in our model (including the distribution). To organize our discussion of these

effects, the next section shows a useful decomposition result.

2.4 Decomposing the effect of startup acquisitions on growth

Our paper aims to quantify the effects of startup acquisitions on growth. To do so, we

will compare BGP equilibria of our model obtained for different values of search costs or
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different antitrust policies. Using our expression for the growth rate in equation (17), we

can show that the change in the growth rate between an baseline BGP equilibrium A and

an alternative BGP equilibrium B can be expressed as:

gB

gA = ShareA
inc ·

Incumbent own innovationB

Incumbent own innovationA +

(1− ShareA
inc) ·

(
Startup rateB

Startup rateA ·
Perc. of impl. startup ideasB

Perc. of impl. startup ideasA

)
,

(19)

where ShareA
inc stands for the share of growth accounted for by incumbents’ own

innovation in the baseline BGP.11

Equation (19) shows that in order to quantify the effect of any change in public policy

regarding startup acquisitions, it is sufficient to know the response of the three margins

shown in the equation: (i) changes in incumbent’s own innovation (a sales-weighted

average of the innovation rates of all incumbents), (ii) changes in the startup rate, and (iii)

changes in the sales-weighted percentage of startup ideas that are implemented. Changes

in these margins then need to be weighted by the baseline BGP share of growth accounted

for by incumbents’ own innovation.

All three margins shown in equation (19) are affected by shocks to startup acquisitions.

Consider, for instance, a ban on startup acquisitions, a policy that we will formally analyze

in Section 4. Such a ban clearly affects the incentives for startup creation, the likelihood

that startup ideas get implemented (especially if startups and incumbents implement at

different rates), and the incentives for incumbents’ own innovation. The aim of our paper is

to quantify these effects, to get at the overall effect of startup acquisitions on growth.

In order to achieve this objective, we need to map the model to the data. Thus, in

the next section, we analyze micro data on innovation and startup acquisitions. This data

shows how frequent startup acquisitions are, which incumbents are more likely to acquire

startups, and allows us to explore the effects of these operations on the involved firms and

ideas. We will then use this information to calibrate our model’s parameters.

11Equation (19) is formally derived in Appendix A.5. The variables in the decomposition are given by

Startup rate = x

Incumbent own innovation = ∑
ω,n

m(ω, n) ·ω · bI(ω, n)

Perc. of impl. startup ideas = ∑
ω,n

m(ω, n) ·ω ·
(

s(ω, n) · iA(ω, n) +
(

1− s(ω, n)
)
· iS(ω)

)
ShareA

inc = ln(λ)·Incumbent own innovationA/gA
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3 Stylized facts and empirical analysis

3.1 Startup acquisitions in the United States

To begin with, we need to get a sense of the overall importance of startup acquisitions

in the United States. This is not straightforward, as there is a limited amount of publicly

available data on startup activity. The most comprehensive data collection effort is due to

Guzman and Stern (2020), who compiled a database containing all new firms incorporated

in 32 states.12 Their data contains information about firm characteristics at incorporation

(e.g., whether the firm holds a patent application) and about the firm’s growth outcomes.

In particular, for all firms incorporated between 1988 and 2008, Guzman and Stern (2020)

record whether these firms are acquired, do an initial public offering (IPO), or grow to 100

or more employees during their first six years of existence.

Table 2: Growth outcomes for newly incorporated firms.

(1) (2)
Sample All new firms Patenting new firms

Total number 18,764,856 37,588

Outcome after 6 years

... Acquisition 0.06% 4.02%

... IPO 0.01% 1.13%

... 100+ employees 0.23% 6.60%

Source: Guzman and Stern (2020) and own computations. The sample contains all newly
incorporated firms incorporated in 32 US states between 1988 and 2008. Column (1) refers to
all new firms, and column (2) to new firms with a patent application.

Column (1) in Table 2 shows that in the overall population of new firms, acquisitions

are very rare events: only 0.06% of firms are acquired within their first 6 years of existence.

However, it is well known that most newly created firms do not have growth ambitions and

remain small throughout their existence (Hurst and Pugsley, 2011). Thus, for our purpose,

it is more relevant to consider a subsample of potentially innovative and growth-oriented

new firms, comparable to the startups in our model. To do so, we focus on firms that hold a

patent application at the time of incorporation. As shown in column (2), acquisitions of

these patenting startups are much more frequent: about 4% of them are acquired within

their first six years of existence. This number will be an important calibration target for

12These states represent 80% of US GDP. Data can be downloaded at https://www.startupcartography.com/.
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our model. Patenting startups are also much more likely to achieve an IPO or significant

employment growth.13

Figure 5 plots the percentage of acquired patenting startups by incorporation year.

Acquisitions peak for the 1999-2000 startup cohorts, in the middle of the dot-com boom, at

around 6%. However, there does not appear to be a decisive trend over time.14 This is in

line with our focus on a BGP equilibrium, in which this percentage is constant.
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Figure 5: Acquisitions of patenting startups (data from Guzman and Stern, 2020).

These facts provide us a good first sense of the frequency of startup acquisitions.

However, the Guzman and Stern (2020) database does not contain information about

the acquiring firm or about the startup’s patenting behavior (beyond the fact of holding a

patent application in the incorporation year). Therefore, in the next section, we construct

a data set that includes these elements. While our data has some disadvantages with

respect to Guzman and Stern (most importantly, the fact that we do not observe firm

incorporation dates), it also contains important new information, allowing us to describe

further characteristics of startup acquisitions and, most importantly, to provide some causal

evidence of the effect of startup acquisitions on the involved firms.

13Table B.5 in the Appendix shows that acquisitions, IPOs and employment growth are even more prevalent
among patenting firms that, apart from incorporating in their home state, also file an incorporation in
Delaware (which offers tax and judicial advantages). Indeed, Guzman and Stern (2020) show that holding a
patent and incorporating in Delaware is the strongest predictor of entrepreneurial success.

14In line with the literature, we do observe a downward trend in the percentage of startups doing an
IPO (see e.g. Ewens and Farre-Mensa, 2020), as well as in the percentage of startups experiencing strong
employment growth (see e.g. Decker et al., 2016). The fact that startup acquisitions do not increase seems to
indicate that these trends are not primarily due to high-growth startups being acquired more frequently.
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3.2 Data, definitions and descriptives

3.2.1 Data construction

To construct our dataset, we merge three sources of information: data on acquisitions

from the financial information provider Refinitiv (formerly Thomson Financial), patent data

from the NBER Patent Data Project, and accounting data for public firms from Compustat.

This section describes our data sources. Appendix B.1 contains further details.

Acquisitions To track acquisitions, we rely on the ThomsonONE database, using informa-

tion between 1981 and 2014.15 The database provides transaction-level data on mergers

and acquisitions (M&As) and includes practically all deals involving US firms over the

considered time period. ThomsonONE provides several variables of interest, such as the

names of the involved firms, the industries in which they operate, the announced and

effective dates of the deal, the transaction value, and sometimes even the revenue and total

assets of the involved firms.

Patents In order to measure the innovation activity of firms, we rely on patent data

from the NBER Patent Data Project (NBER-PDP), which provides US patent data for 1976-

2006.16 In addition to the patent owner, this data set also provides us with the forward and

backward citations to the patent, a measure of each patent’s originality and generality, and

patent technology classes.

A challenge in matching firm-level data to patents is that firm names are inconsistently

recorded on patent files, which leads to many false negative matches. To address this

problem, the NBER-PDP standardizes commonly used words in firm names and provides a

match to publicly listed firms (Bessen, 2009). However, further work is needed to match

patents to private firms, as we explain below.

Company accounts Finally, we use the Compustat North America database, provided

by Standard & Poor’s.17 This database contains balance sheet and income statement

information for all publicly traded firms in the United States.

Merging these three databases is straightforward for publicly listed firms, as both

ThomsonONE and the NBER-PDP provide firm identifiers that are consistent with Compustat.

For private firms, the situation is more challenging. For these firms, we do not have

15This is a commercial database, which can be accessed at https://www.refinitiv.com/en/products/sdc-
platinum-financial-securities. Due to various changes for the providing firm, the database has frequently
changed names and is currently branded as the Refinitiv SDC Platinum database. It is the standard database
used in M&A analysis (see e.g. David (2020) or Guzman and Stern (2020)).

16The data set can be downloaded at https://sites.google.com/site/patentdataproject/.
17https://www.spglobal.com/marketintelligence/en/?product=compustat-research-insight.
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accounting data. Thus, in order to match them to their patents, we can only rely on

their names. To carry out the match, we first standardize the company name provided by

ThomsonONE. Then, we employ a fuzzy name matching algorithm and a large scale manual

check to match each company to its patents, as described in greater detail in Appendix B.1.

3.2.2 Definitions and descriptive statistics

Startups: definition and importance Given our focus on innovative firms, we consider

throughout acquisitions in which the acquired firm holds at least one patent. Our dataset

does not allow us to observe the exact incorporation date of a firm, but it does provide us

with its complete patenting history. Therefore, we define a firm as a startup if it is within 6

years of its first patent.

Our data is consistent with startups being important for aggregate innovation. Startups

account for 27% of all patent applications. Remarkably, however, their patents collect 74%

of all patent citations. This suggests that startup patents are on average of higher quality

than patents filed by older firms (in line e.g. with Akcigit and Kerr, 2018). Thus, startup

innovation (and the way in which it is affected by acquisitions) is likely to have a large

impact on aggregate outcomes.

Regarding acquisitions, we find that around 49% of all transactions with a publicly

listed acquiror and a private target in our sample are acquisitions of patenting startups.

Thus, innovative startup targets account for a sizeable share of overall acquisition activity.

Table B.1 in the Appendix shows some summary statistics for our acquisition sample.

Selection into acquisition The acquisition process is obviously not random: both the

acquiring firms and the startups that they acquire are a selected sample of the overall

population of firms. For instance, Figure 6 compares, for any given year, the average sales

of publicly listed firms that acquire startups to the average sales of publicly listed firms that

do not acquire startups. Throughout our sample period, acquirers are systematically larger

than non-acquirers, by a factor of about 2.6. This implies that the average acquirer is by a

factor 2.1 larger than the average firm. Our model also suggests this link (as larger firms

have higher rents to protect), and we will target this number in our calibration.

Likewise, acquired startups are different from non-acquired startups. For instance, we

find that the patents of an acquired startup are cited four times as much as the average

startup patent. In sum, there appears to be positive assortative matching in the acquisition

process, as the largest incumbents match with the “best” startups.

These stylized facts provide some further information on the importance and character-

istics of startup acquisitions. However, our data also allows us to dig deeper into the effects
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Figure 6: Sales by type of firm: acquirers vs. non-acquirers. Data from ThomsonONE, NBER Patent Data
project and Compustat.

of these acquisitions on innovation. We do so in the next section.

3.3 The effect of acquisitions on the implementation of ideas

As we have shown in Section 2, one important channel through which acquisitions affect

growth is their effect on the implementation probability of startup ideas. An acquisition may

increase this probability (if incumbents have advantages in developing ideas and bringing

them to the market) or decrease it (if incumbents are engaging in killer acquisitions). In

this section, we try to assess the relative strength of these forces.

To do so, we need a proxy for the implementation of startup ideas. We propose to rely

on the evolution of patent citations after the acquisition event. That is, we consider the

set of patents that the startup held before the acquisition. If citations to these pre-existing

patents increase after the acquisition, we interpret this as evidence for the startup’s ideas

being further developed and built upon. If, on the other hand, citations to these patents

decrease after the acquisition, we interpret this as evidence for the idea being shelved.18

Of course, just considering the change in patent citations after acquisition faces an

endogeneity problem: in the previous section, we have shown that acquired patents are

different from the average patent. Therefore, we use a nearest neighbor matching algorithm

18In line with this interpretation, Argente, Baslandze, Hanley and Moreira (2020) show that in the consumer
goods sector, more highly cited patents lead to a higher likelihood of introducing new products.
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to link each treated patent (belonging to a startup that will eventually be acquired) to up

to ten control patents (belonging to non-acquired startups). We match on several patent

and firm characteristics, including patent application year, technological subsector and a

number of measures of patent novelty, originality and impact. We artificially assign to each

control patent the acquisition year of its matched treated patent. Appendix B.2 discusses

the matching method in greater detail. In particular, Table B.2 shows that there are no

significant differences between treated and control patents at the time of the acquisition.

With this data, we run a difference-in-difference regression:

NumCitesijt = β1 · D(Treatment)i + β2 · D(Post)it

+ β3 · D(Treatment)i · D(Post)it + αj + αt + uit,
(20)

where NumCitesijt is the number of citations received by patent i belonging to patent

pair j at year t, D(Treatment)ij takes value 1 for treated patents, and D(Post)ijt takes

value 1 for the years after the acquisition. In our baseline analysis, we consider a 14-year

window around the acquisition (i.e., 7 years before and 7 years after this event). Finally, αj

are matched patent pair fixed effects and αt are year fixed effects.

Table 3: The effect of acquisitions on the implementation of ideas

Dependent variable: Number of citations received

(1) (2) (3) (4)

D(Post) 0.405*** 0.397*** 0.439*** 0.346***
(0.028) (0.019) (0.030) (0.019)

D(Treatment) -0.016 -0.014 -0.013 -0.010
(0.068) (0.062) (0.038) (0.035)

D(Post) * D(Treatment) 0.228*** 0.226*** 0.222*** 0.218***
(0.051) (0.050) (0.044) (0.041)

Observations 206,432 206,432 206,352 206,352
Matched Pair FE X X
Year FE X X

Notes: We use a Poisson estimator. The dependent variable is the number of citations received at
the patent-year level. D(Treatment)i takes value 1 for treated patents, and D(Post)it takes value 1
for the years after the acquisition. Standard errors are clustered at the target firm level. * significant
at 10%; ** significant at 5%; *** significant at 1%.

In equation (20), a positive coefficient β3 would imply that after being acquired, a

treated patent receives relatively more citations (our proxy for the implementation of ideas)

than a control patent. Instead, a negative coefficient β3 would imply that a treated patent
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receives relatively less citations after being acquired.

Table 3 presents the estimation results. In column (1) we show the results of a simple

Poisson estimator with no fixed effects. The interaction term is positive and statistically

significant, indicating that after an acquisition, the citations of treated patents increase by

22.8% relative to the citations of control patents. This magnitude is remarkably stable even

after including year fixed effects (column 2), matched patent pair fixed effects (column 3),

or both sets of fixed effects (column 4).19 Moreover, note that the estimate for the coefficient

of the treatment dummy is always statistically indistinguishable from zero, indicating that

treatment and control patents are equally cited before an acquisition event. Appendix B.4

discusses several additional robustness checks, including changes in the number of control

patents, different event study windows, and sector-level regressions.

3.4 Heterogeneous effects

Our model predicts that the effect of an acquisition on a startup idea depends on the

characteristics of the acquirer. For instance, an acquisition by a firm with a higher technology

gap and thus a higher markup should have a less positive effect on implementation.

Moreover, in Section 5, we will briefly consider an extended model, in which acquirers can

buy both startups with an idea on their own product (implying a threat of displacement,

as in the baseline model) and startups with ideas on other products. In this extended

model, acquisitions of non-competing startups always have a more positive impact on

implementation than acquisitions of competing startups.

We test these predictions in the data. Table 4 summarizes our results. In columns (1) -

(2), we evaluate whether the effect of acquisitions depends on the acquirer’s market share

(which is likely to be positively correlated both with the technology gap and the markup,

two objects that are hard to measure in the data). We split the sample by the median of the

acquirer’s sales share in its (SIC 3-digit) industry. Consistent with our prior, the magnitude

of the estimated interaction term diminishes by almost half when the acquirer has a market

share above the median (column 1) compared to the case when it has a market share below

the median (column 2).

In columns (3)-(4) we empirically test the second hypothesis, i.e., whether competing

directly with the target diminishes the acquirer’s incentives to implement the target’s idea.

We generate a dummy taking value 1 if both acquirer and target firms have the same

primary SIC 3-digit code. In our sample split exercise, we find that being active in the same

19A matched pair is defined by the bundle of one treated patent and up to ten control patents obtained
from the matching algorithm based on a set of observables.
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product market reduces the probability of implementing ideas developed by the target firm

by more than half (column 3) compared to the case when the acquirer and the target firm

are active in different product markets (column 4).

Table 4: Heterogeneous effects by market share and product market overlap

Dependent variable: Number of citations received

Market Share Same SIC3 Same SIC3/NAICS4
(1) (2) (3) (4) (5) (6)

Above Below Same Different Same Different

D(Post) 0.371*** 0.334*** 0.361*** 0.332*** 0.399*** 0.325***
(0.022) (0.020) (0.023) (0.021) (0.022) (0.022)

D(Treatment) 0.004 0.004 0.030 -0.043 0.004 -0.031
(0.052) (0.044) (0.045) (0.049) (0.050) (0.046)

D(Post) * D(Treatment) 0.158*** 0.249*** 0.132** 0.288*** 0.158*** 0.264***
(0.059) (0.048) (0.054) (0.051) (0.055) (0.051)

Observations 88,187 92,480 83,500 122,817 67,359 130,598
Matched Pair FE X X X X X X
Year FE X X X X X X

Notes: We use a Poisson estimator. The dependent variable is the number of citations received at
the patent-year level. D(Treatment)i takes value 1 for treated patents, and D(Post)it takes value 1
for the years after acquisition. Columns (1)-(2) split the sample by the median of acquirer market
share defined at the SIC3-year level, where column (1) keeps the observations above the median in
market share and column (2) the ones below. Columns (3)-(4) split the sample based on whether
both acquirer and target have the same primary SIC 3-digit industry code. Finally, columns (5)-(6)
replicate the exercise with a sample split requiring both firms to have the same SIC 3-digit industry
code (until 1997) and the same NAICS 4-digit industry code (since 1997). Standard errors are
clustered at the target firm level. * significant at 10%; ** significant at 5%; *** significant at 1%.

Finally, as a robustness exercise, we adjust the analysis of columns (3)-(4) to the fact that

in 1997, the SIC industry classification was replaced by the NAICS industry classification.

Therefore, our dummy now takes value 1 if acquirer and target are in the same SIC 3-

digit industry until 1997 and in the same NAICS 4-digit industry after 1997. Results

remain quantitatively similar (see columns (5)-(6)). Overall, results in this table show

that the willingness to implement ideas developed by startups depends on the acquirer’s

characteristics, in line with our model.

Summing up, our findings in this empirical analysis indicate that the average acquisition

increases the likelihood that a startup’s idea is implemented. Through the lens of our

model, this suggests that incumbents have lower implementation costs, and that this cost
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advantage dominates the Arrow replacement effect. We will calibrate our model to match

this fact, by matching the results of our main difference-in-difference regression.

However, the regressions presented in this section obviously miss general equilibrium

effects that affect all firms equally. Moreover, as equation (19) shows, the implementation

channel is not the only link between acquisitions and innovation: acquisitions also affect

the innovation behavior of incumbents, as well as the incentives to create a startup. In the

next section, we return to the model to jointly evaluate all these forces.

4 Quantitative analysis

4.1 Calibration strategy

We assume that a period of unit length in the model corresponds to one year in the data.

We set some parameters externally. The discount rate is set to ρ = 0.02, which together

with a 2% target for the annual growth rate implies a real interest rate of 4%. We assume

that there are two product quality classes, Ω = {ωL, ωH} with ωL < ωH. At every point in

time, 20% of firms belong to the H class, and their sales account for 80% of output (in line

with the average industry-level sales share of the largest 20% of firms in Compustat). This

implies ωH/ωL = 16. Firms transition from ωH to ωL at a Poisson rate τ = 0.1, matching

the fact that in every year, 10% of Compustat firms belonging to the top 20% of sales in

their industry drop out of that category in the subsequent year. We set the elasticity of

R&D costs to innovation to ψ = 2, following empirical evidence summarized in Akcigit and

Kerr (2018). The average step size advantage for startup ideas is γ = 0.415. To obtain

this number, we rely on Kogan, Papanikolaou, Seru and Stoffman (2017), who estimate

that the elasticity of a patent’s market value to its number of forward citations is 0.17.

Our results from Section 3.2 indicate that the average startup patent is cited 7.7 times as

much as the average incumbent patent.20 This implies that a startup patent is on average

7.70.17 − 1 ≈ 41.5% more valuable than an incumbent patent, and we thus assume that the

former represents on average 41.5% more steps. Finally, following David (2020), we set the

Nash bargaining parameter for incumbents to α = 0.5. In Section 5, we conduct extensive

robustness checks around this baseline.

Our choices leave seven parameters to be identified: the productivity step size, λ; the

research and implementation cost shifters for incumbents, ξ I and κI; the fixed cost of startup

creation, ξS; the implementation cost shifter for startups, κS; and the scale and curvature

20Startups account for 27% of patents and for 74% of patent citations. Therefore, citations per patent are,
on average, 0.74/0.27

(1−0.74)/(1−0.27)
≈ 7.7 times higher for startup patents than for non-startup (i.e. incumbent) ones.
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parameters in the incumbent’s search cost function, χ and ϕ. We calibrate these parameters

internally, using an indirect inference approach. That is, we choose values for the seven

parameters that minimize the distance between seven model-generated moments and

their empirical counterparts.21 The success of this calibration strategy relies on choosing

moments that are relevant for the economic mechanisms we want to highlight, as well as

sufficiently sensitive to variation in parameters. As the model is non-linear, all moments

are affected by all parameters, making identification challenging. Nevertheless, we provide

economic intuitions for the identification power of different moments. To support these

intuitions, Appendix C.1 shows the results of a rigorous global identification test, indicating

that all parameters are very well identified by the chosen moments.

Table 5: Calibrated parameters.

A. Externally Calibrated Parameters

Parameter Description Value Target/Source

ρ Discount rate 0.02 4% annual real interest rate
ωH/ωL Relative product quality 16 Top 20% sales share (Compustat)
τHL Transition rate from H to L quality 0.10 Likelihood to drop from Top 20% (Compustat)
ψ R&D cost curvature 2 Akcigit and Kerr (2018)
α Bargaining weight for incumbents 0.5 David (2020)
γ Step size advantage of startup ideas 0.415 Kogan et al. (2017) and Section 3

B. Internally Calibrated Parameters

Parameter Description Value

λ Innovation step size 1.0295
ξS Startup creation cost 0.0380
κS Implementation cost scale for startups 2.4474
ξ I Research cost scale for incumbents 0.0038
κI Implementation cost scale for incumbents 1.3905
χ Search cost scale for incumbents 3.2137
ϕ Search cost curvature for incumbents 2.7254

Table 5 lists the calibrated parameter values, and Table 6 shows the seven targeted

moments. First, we target a growth rate of 2%, the long-run average growth rate of GDP

per person in the United States (Jones, 2016). This target identifies the innovation step λ.

Second, we target the likelihood of acquisitions for startups. In Section 3.1, we found

that around 4% of innovative startups in the United States are acquired. This target

21Formally, the vector of parameters θ = (λ, ξ I , κI , ξS, κS, χ, ϕ) is chosen to minimize the following criterion
distance function: ∑7

m=1
|Momentm(Model,θ)−Momentm(Data)|

0.5|Momentm(Model,θ)|+0.5|Momentm(Data)| .
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identifies χ, the search cost of incumbents for startups.

Third, we target the likelihood that an incumbent is displaced by an entrant, i.e., the

exit rate of incumbents. To do so, we follow Garcia-Macia et al. (2019) and use data from

the US Census Bureau’s Business Dynamics Statistics to compute an exit rate of “large”

firms (with 20 employees or more). For the period 1988-2014, we find an exit rate of

7.3%.22 This target identifies ξS, the cost of startup creation. We also target the contribution

of entrants to overall productivity growth. As this moment is not directly observable in

our data, we use the estimate of Akcigit and Kerr (2018), who find that entry accounts

for 25.7% of productivity growth in the United States.23 This target identifies the research

cost of incumbents, ξ I , which shifts the growth contribution of incumbents’ own innovation.

Fourth, we use our regression evidence from Section 3.3 to set the relative implemen-

tation costs of startups and incumbents, κI/κS. In Table 3 we found that, on average, an

acquisition increases the citation count of a startup patent by 22%. To make this finding

operational, we need an assumption about the relationship between patent citations (the

observed outcome in our empirical analysis) and the implementation probability of ideas

(the observed outcome in our model). For this, we again rely on Kogan et al. (2017), who

find an elasticity of 0.17 of patent value to patent citations. In our model, the expected

value of an idea is equal to the product of the implementation probability and the value of

the implemented idea (and the latter is ex ante identical for all startup ideas). Therefore,

we assume that an acquisition increases the implementation probability of an idea by

0.17 · 0.22 = 0.0374 log points, and target this number in the model.24 As shown in Panel B

of Table 5, our calibration implies that incumbents have about 43% lower implementation

costs than startups. Indeed, if costs were equal, the replacement effect would imply that

acquisitions lower implementation. However, we observe an increase in implementation in

the data, which the model rationalizes through lower costs for incumbents.

22Garcia-Macia et al. (2019) use the Longitudinal Business Database (the confidential micro data underlying
the BDS), and define large firms as those having more employees than average. Between 1988 and 2014, the
average firm in the BDS had 22 employees. As the BDS only provides data aggregated by size classes (e.g., for
firms between 10 and 19 employees), we choose the closest available cutoff of 20. As in Garcia-Macia et al.
(2019), we compute exit rates over five-year intervals. They find an exit rate of 6% for large firms between
1983 and 2013, close to our baseline. Similarly, Akcigit and Kerr (2018) compute an entry rate for innovative
firms of 5.8% (in the BGP of our model, the entry rate of innovative firms equals the exit rate of incumbents).

23To obtain this number, Akcigit and Kerr (2018) structurally estimate a creative destruction model on the
universe of patenting firms. Garcia-Macia et al. (2019), who focus on all firms, find similar numbers, namely
a 21.1% contribution of entry to productivity growth over our sample period.

24In the model, our empirical regression would yield a coefficient equal to the difference between the average
implementation probability (in logs) in the sample of acquired startups, ∑ω ∑n mA(ω, n) · ln

(
iA(ω, n)

)
, and

the average implementation probability in a control group of non-acquired startups, ∑ω ∑n mA(ω, n) ·
ln
(
iS(ω)

)
. Note that both averages need to be computed using the distribution of acquired startups over

states (ω, n), denoted mA(ω, n). This distribution holds mA(ω, n) = m(ω,n)·s(ω,n)
∑ω′ ∑n′ m(ω′ ,n′)·s(ω′ ,n′) .
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Fifth, we target an average implementation probability of non-acquired startups of 10%.

This target pins down the level of startup implementation costs κS. While this statistic is

hard to measure in the data, Guzman and Stern (2020) indicate that 6.6% of all innovative

startups that are not acquired either achieve an IPO or grow to more than 100 employees.

As we have previously identified incumbents as firms with 20 employees or more, we choose

a higher target of 10%. However, as we show in Appendix C.2, this target turns out to be

irrelevant for all our quantitative results. That is, none of our results would change if we

would target an average implementation probability of e.g. 15, 20 or 25%.25

Finally, we target selection into acquisition (on the acquirer side), matching the empirical

fact that acquirers’ sales are on average 2.1 times larger than those of the average firm

(see Section 3.2). This target identifies the parameter ϕ, the curvature in the search cost

function, which governs how steeply search costs increase for firms that search harder.

Table 6: Model fit.

Targeted moment Model Data Data source Identifies

Growth rate 2.0% 2.0% Jones (2016) λ

Exit rate 7.3% 7.3% BDS ξS

Growth contribution of entrants 25.7% 25.7% Akcigit and Kerr (2018) ξ I

Avg. implementation prob., startups 10.0% 10.0% See text κS

Effect of acq. on implementation prob. 0.0374 0.0374 Section 3 κI/κS

Percentage of startups acquired 4.0% 4.0% Section 3 χ

Relative size of acquiring firms 2.10 2.10 Section 3 ϕ

As Table 6 shows, the model matches all moments exactly. This is due to the tight link

between targeted moments and parameters, shown more formally in Appendix C.1. In

Section 5 and Appendix C.2, we conduct extensive robustness checks around this baseline

calibration.

4.2 The aggregate effects of startup acquisitions

We can now use the calibrated model to assess the effect of startup acquisitions on

growth. To do so, we solve for the BGP equilibrium for different values of the search

cost χ, keeping all other parameters at their baseline values. Recall that χ represents

frictions in the acquisition market: a low value of this parameter implies low frictions and

25Roughly speaking, growth depends on the own innovation rate of startups, which is pinned down by our
targets for the exit rate and the contribution of entry to growth. Targeting the implementation probability
of startups decomposes this innovation rate into the arrival rate of ideas and the probability that these are
implemented, but this decomposition is irrelevant for aggregate outcomes. Appendix C.2 explains this issue.
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frequent acquisitions, while a high level implies high frictions and infrequent acquisitions.

Accordingly, as shown in the left panel of Figure 7, the equilibrium frequency of acquisitions

is monotonically decreasing in χ.

Figure 7: BGP equilibria for different values of search costs χ. Notes: The frequency of acquisitions is the
product of the startup rate and the share of startups that are acquired. The baseline calibration value of χ is
marked with a vertical line in the left plot. The right plot shows the reduced-form relationship between the
frequency of acquisitions and growth. The vertical line marks the baseline frequency of acquisitions.

The right panel of Figure 7 plots the growth rate of the economy for different values of

search costs. For convenience, we plot the growth rate directly against the frequency of

acquisitions implied by different search costs.26 This figure illustrates the main result of our

paper: a higher frequency of startup acquisitions is associated with a lower growth rate.

Why is there a negative relationship between startup acquisitions and growth? To

answer this question, we use our decomposition from equation (19), which showed that the

change in the growth rate can be decomposed into changes in incumbent own innovation,

changes in the startup rate and changes in the sales-weighted percentage of implemented

startup ideas. The top left panel of Figure 8 plots changes in these three margins.

The figure shows, first of all, that more frequent acquisitions are associated with a higher

startup rate. Indeed, in our model, acquisitions have a strong incentive effect on startup

creation. As startups only sell to incumbents if the acquisition price exceeds their outside

option of independent development, acquisitions always increase a startup’s payoff. Thus,

all else equal, more frequent acquisitions must increase the value of creating a startup,

which in equilibrium leads to more startup creation.

On its own, the incentive effect would suggest that startup acquisitions increase growth.

However, it turns out that it is more than compensated by a decrease in incumbent’s own

26This choice is made to improve readability. The frequency of acquisitions is obviously an endogenous
outcome, and all variation in it is due to underlying variation in the search cost parameter χ.
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innovation and in the percentage of startup ideas being implemented. The main reason for

this decrease is the fact that the higher startup rate reduces the value of incumbents. Even

though incumbents can acquire startups and thereby avoid displacement, an acquisition

implies a costly sharing of rents with the threatening startup. Thus, a higher startup rate

implies a higher frequency of displacement or rent sharing, two undesirable outcomes for

incumbents. It is interesting to note that incumbents face a prisoner’s dilemma of sorts:

they would all gain by collectively agreeing not to acquire startups, but each of them has an

incentive to deviate once it is threatened by displacement.

Figure 8: Equilibrium outcomes in selected variables for different values of search costs χ. Notes: All plots
show the frequency of acquisitions on the x-axis, and all variation in this frequency is driven by changes in
search costs. The vertical line marks the baseline frequency of acquisitions.

The decrease in incumbent value due to a higher startup rate explains the decrease

in incumbent’s own innovation. It also explains that both incumbents and non-acquired

startups (which aspire to become incumbents) invest less into idea implementation, as

shown in the bottom left panel of Figure 8. This general equilibrium effect, dragging both

incumbent and startup implementation down, dominates the partial equilibrium finding that
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transferring ideas from startups to incumbents increases their implementation probability

in our model (in line with our empirical findings).

Finally, more frequent acquisitions also trigger a composition effect. In our baseline

calibration, the increase in the startup rate overcompensates the increase in the percentage

of acquired startups, so that entry slightly increases (see the top right panel of Figure 8).

Together with the fall in incumbent innovation, this shifts the invariant distribution of

technology gaps, affecting the aggregate innovation rate. However, this shift is quantitatively

very small, in line with the small changes in the entry rate and in the aggregate markup

(computed as the inverse of the aggregate labor share) shown in Figure 8.

Summing up, startup acquisitions increase startup creation, but decrease incumbent

innovation and implementation by non-acquired startups. In the aggregate, the fall in

incumbent innovation turns out to be the dominant force, so that more frequent startup

acquisitions are associated with lower growth. Indeed, in our baseline calibration, the

contribution of incumbents to growth is Shareinc = 71.7%.27 Thus, changes in incumbent

innovation have an outsize importance for the aggregate growth rate.

The results in this section suggest that policy limits on startup acquisitions could

potentially increase growth. The next section examines this issue in greater depth.

4.3 Growth effects of limits to startup acquisitions

We first consider the simplest possible policy: an outright ban on startup acquisitions.

This policy might seem radical, but it is actually in line with the Platform Competition and

Opportunity Act currently debated by the US Congress.28

Table 7 shows that this policy increases aggregate growth by 0.03 percentage points

(or 1.6%) per year. This is the net effect of a 14.9% decrease in the startup rate, which is

more than compensated by a 5.3% increase in the own innovation effort of incumbents and

a 8.4% increase in the sales-weighted percentage of implemented startup ideas.

These effects are due to the mechanisms discussed previously. An acquisition ban

strongly lowers the incentives for startup creation. However, the fall in startup creation is

a boon for incumbents, which now avoid displacement and costly acquisitions, achieve a

higher value, and therefore have higher innovation incentives. As incumbent innovation is

27The share of growth due to startup ideas (28%) is close to the share of growth due to entry (26%), which
was a calibration target. This is because entry is much more frequent than implementation of a startup idea by
an incumbent: few startups are acquired, and acquisitions only slightly raise the implementation probability.

28The Act (aimed at Technology Platforms) would prohibit all acquisitions of direct, nascent or potential
competitors, and in our baseline model, all startups are acquired by a competing incumbent. In Section 5.2,
we analyse an extended model in which incumbents may also acquire non-competing startups.
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the most important source of growth, this effect dominates in the aggregate. Accordingly,

the acquisition ban increases consumption-equivalent welfare by 1.8%.29

Table 7: The effects of a startup acquisition ban.

Outcome Baseline Acq. Ban Change

Growth rate 2.00% 2.03% +1.6%
Incumbent own inn. rate 0.494 0.519 +5.3%
Startup rate 0.760 0.647 −14.9%
Sales-weigh. % of impl. startup ideas 18.1% 19.6% +8.4%
Entry rate 7.3% 7.2% −1.6%
Percentage of startups acquired 4.0% 0% −100%
Aggregate markup 13.1% 13.1% −0.4%
Consumption-equiv. welfare +1.8%

Notes: In this table, we compare our baseline BGP to an alternative “acquisition ban” BGP. To
compute the latter BGP equilibrium, we impose that the surplus from startup acquisitions is always
zero (as it would be, e.g., if a government were to impose an arbitrarily high tax on acquisitions).

Next, Table 8 considers a less radical policy, which only bans startup acquisitions for

incumbents with the highest technology gaps. As we had shown earlier (see Figure 4),

these acquisitions are most likely to be killer acquisitions. Thus, from a partial equilibrium

viewpoint, banning them and maintaining acquisitions that increase the implementation

probability of startup ideas appears to be a better policy than a complete ban.

Table 8: The effects of partial acquisition bans.

Change in outcome Acq. Ban Ban n ≥ 2 Ban n ≥ 3

Growth rate +1.6% +1.3% +0.7%
Incumbent own inn. rate +5.3% +4.9% +3.8%
Startup rate −14.9% −14.6% −13.8%
Sales-weigh. % of impl. startup ideas +8.4% +8.3% +7.8%
Frequency of acquisitions −100% −89% −74%
Consumption-equiv. welfare +1.8% +1.6% +1.0%

Notes: This table compares the effects of various “acquisition ban” BGPs. For these, we impose that
the surplus from acquisitions for incumbents with a technology gap exceeding some cutoff is zero
(as it would be if a government were to impose an arbitrarily high tax).

29In our model, the representative consumer’s consumption-equivalent welfare change from going from a
BGP A to another BGP B is given by CB

0 exp
(

gB−gA
ρ

)
/CA

0 .
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As Table 8 shows, however, partial bans actually achieve a smaller increase in the

growth rate than the complete ban. This is due to general equilibrium effects: a partial ban

decreases the startup rate by less (as startups still have some possibilities of selling out),

and therefore delivers a smaller boost to incumbent innovation incentives.

In the remainder of the paper, we explore the robustness of our baseline results to

different choices for the targeted moments and the externally calibrated parameters. We

also consider an extended version of our baseline model, in which we allow incumbents to

acquire non-competing startups.

5 Robustness checks and extensions

5.1 Robustness to alternative calibrations

The negative link between startup acquisitions and growth in the baseline calibration

is not a hard-wired feature of our model: it is easy to construct alternative calibrations in

which our model predicts a positive link.30 Thus, our results very much depend on the data

used to discipline the model. In this section, we systematically explore the role of different

calibration targets and externally calibrated parameters.

Alternative calibration targets To analyze the role of different calibration targets for our

results, we re-calibrate our model by changing one calibration target at the time, leaving

all other targets and all external parameters unchanged. Figure 9 plots the results for

this exercise, using different targets for the causal impact of acquisitions on the number

of citations of a startup patent (shown on the x-axis). The baseline value for this target,

obtained in our empirical analysis in Section 3.3, was 22%, indicated by the vertical lines in

the figure. Each point on the left panel shows the growth effect of an acquisition ban for a

re-calibrated model with a different target, and the right panel decomposes this growth

effect into the familiar three margins.

Figure 9 shows that, unsurprisingly, targeting a more positive effect of acquisitions

on citations means that an acquisition ban provides a smaller boost to growth. As the

right panel shows, when acquisitions substantially increase citations, the ban lowers the

30For instance, when incumbents have infinite research costs (ξ I → +∞) and startups have infinite
implementation costs (κS → +∞), startups are the only firms that can create ideas, and incumbents are the
only firms that can implement them. Then, startup acquisitions are the only way to generate innovations, and
prohibiting them would reduce the growth rate to zero. This example is extreme, but it suggests an important
insight, formalized in Figure 9: the greater the comparative advantage of incumbents for implementation, the
more desirable are startup acquisitions.
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Figure 9: Robustness with respect to different estimates for the causal effect of acquisitions on the number
of citations of startup patents. Notes: Each point on the x-axis corresponds to a re-calibration of the model,
leaving all other calibration targets and all external parameters unchanged. In all calibrations, the model
exactly matches all moments. Detailed results for these calibrations are available upon request.

sales-weighted percentage of implemented startup ideas, and this drags the growth rate

down. However, Figure 9 also shows that the boost to patent citations would have to be

very large in order to reverse our baseline results: a ban lowers growth only if acquisition

boosts citations by a factor of 4.2, which is more than 16 times larger than the regression

coefficient in our empirical analysis.31 Thus, for all empirically realistic values of our

regression coefficient, the negative overall effect of startup acquisitions prevails.

Figure 10 conducts the same exercise by considering different values for the contribution

of entrants to growth. As the left panel shows, if this target exceeds its baseline value

of 25.7%, acquisition bans become less effective. Indeed, a greater role for entrants implies

that startup ideas contribute more to growth. Thus, the decrease in the startup rate after an

acquisition ban has a greater impact on aggregate growth. Accordingly, note that the three

margins shown in the right panel change relatively little. Changes in aggregate growth are

mostly due to changes in the weighting of these margins.

Summing up, our analysis shows that our baseline results are driven by two empirical

facts: incumbents account for the bulk of growth, and acquisitions only give a small boost

to idea implementation. In environments where entry accounts for a large share of growth

and acquisition gives a much larger boost to implementation, startup acquisitions are more

benign, and banning them might lower growth. In Appendix C.2, we expand on this analysis

by conducting further robustness checks with respect to all other calibration targets.

31Alternatively, one might think that the elasticity of idea implementation to patent citations is higher than
our baseline calibration value. However, Figure 9 shows that it would have to be an order of magnitude
higher to overturn our results.
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Figure 10: Robustness: the role of the contribution of entrants to growth. Notes: See Figure 9.

Alternative values for external parameters Finally, Figure 11 shows the effects of an

acquisition ban for different values of incumbent bargaining power α. For each different

value of α, we re-calibrate the model to match our baseline targets (leaving all other

external parameter values unchanged). The figure shows that greater bargaining power of

incumbents reduces the positive effects of an acquisition ban.

Figure 11: Robustness: the role of incumbent bargaining power. Notes: See Figure 9.

Greater bargaining power for incumbents means that the incentive effect of acquisitions

on startup creation is weaker. Thus, as shown in the right panel, the startup rate does

not fall as much after an acquisition ban. All else equal, this would suggest an even more

positive growth effect for an acquisition ban. However, it is more than compensated by

incumbent innovation. With high bargaining power, incumbent’s value does not suffer much

from startup activity, as startup acquisitions are cheap. When α is high enough, a higher
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startup rate is even good news for incumbents, as it implies a possibility to cheaply acquire

ideas. Accordingly, for high values of α, an acquisition ban does not increase incumbent

innovation, and therefore does not increase overall growth.

Overall, the robustness checks in this section suggest that our quantitative results are

robust to reasonable variations in our calibration targets and external parameter choices.

However, they also suggest that the effects of acquisitions on growth do depend on the char-

acteristics of the economy (and could potentially be different across industries). Precisely,

we would expect acquisitions to be more detrimental to innovation when incumbents have

a small implementation advantage, are responsible for the bulk of innovation, and have

low bargaining power.

5.2 Multiproduct firms and acquisitions of non-competing startups

In our baseline model, incumbents only acquire startups that could potentially displace

them. This is an important limitation: in reality, incumbents also buy non-competing

startups in order to add new products to their portfolio. In this section, we briefly discuss

an extended model that allows for such acquisitions of non-competing startups.

Assumptions We now assume that incumbents can produce multiple products. For each

product, incumbents invest into R&D as in the baseline model, and set a search effort sR for

“related” startups (i.e., startups with an idea on the same product, which could potentially

displace them). The cost of a search effort sR for a given product is χR · (sR)
ψ ·Yt.

As in the baseline model, a startup’s idea applies to a randomly chosen product j in the

interval [0, 1], and there is a probability sR(j) that the incumbent producer of j meets the

startup. However, we now assume that startups who do not meet the incumbent producer

of their product j are matched to another incumbent, currently producing product j′, chosen

randomly in the interval [0, 1].32 When this unrelated incumbent meets the startup, there

can be an acquisition, allowing the unrelated incumbent (if it implements the startup’s idea)

to expand in the product space by adding product j to its portfolio.

We assume that for an incumbent currently producing k products, the cost of searching

for unrelated startups is given by χU · k · (sU)
ϕ · Yt. By investing this cost, the firm has a

probability sU of meeting an unrelated startup that is matched to any of its products. As in

the seminal model of Klette and Kortum (2004), both the cost function and the arrival rate

of meetings with unrelated startups are linear in the number of products, implying that all

32As there is a continuum of products, the probability that j and j′ coincide is zero.
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firms choose the same search intensity sU.33

We discuss the solution of this extended model in Appendix D. However, it is worth

noting that acquisitions of unrelated startups are not subject to a rent-preserving motive

or to the Arrow replacement effect. Therefore, they take place if and only if incumbents

have lower implementation costs for ideas, and they always increase the likelihood that the

startup’s idea is implemented. This is in line with our empirical evidence in Section 3.4,

which showed that acquisitions of unrelated startups lead to a larger increase in the citations

of the acquired patents.

Calibration and quantitative results The extended model has one additional parameter

with respect to the baseline: the scaling factor for the search cost function for unrelated

startups, χU. We calibrate this parameter internally and identify it by targeting the share

of unrelated startup acquisitions in our sample. We define unrelated startup acquisitions

as deals in which the acquirer and the target belong to different SIC 3-digit industries,

obtaining a share of 59%.34 The multiproduct model still fits the data very well, as shown

in Table D.1 in Appendix D.

Table 9: Acquisition bans in the baseline model and in the multiproduct extension.

Baseline Multiproduct

Change in outcome Acq. Ban Acq. Ban R Acq. Ban U Acq. Ban

Growth rate +1.6% +1.3% +1.2% +0.1%
Incumbent own inn. rate +5.3% +3.5% +3.3% +0.2%
Startup rate −14.9% −12.7% −13.0% +0.3%
Sales-weigh. % of impl. startup ideas +8.4% +9.8% +10.3% −0.4%
Frequency of acquisitions −100% −100% −42% −59%
Consumption-equiv. welfare +1.8% +1.7% +1.6% +0.1%

Notes: In this table, we compare the effects of different acquisition bans. To compute equilibria with
bans, we impose that the surplus from acquisitions is always zero (as it would be if a government
were to impose an arbitrarily high tax on acquisitions). For the multiproduct firm model, we also
consider separate bans on acquisitions of related and unrelated startups.

Table 9 summarizes the effect of startup acquisition bans in this extended model. The

second column shows that a ban of all acquisitions has a slightly smaller growth effect

33Note that when χU → +∞, we recover our baseline model.
34This is an intentionally conservative choice. SIC 3-digit industries are relatively narrow, and it is

conceivable that firms in different industries compete in the same product market. Choosing a lower target
yields results that are even closer to the baseline.
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in the multiproduct model, raising the growth rate by 1.3% as opposed to 1.6% in the

baseline. This is due the fact that unrelated acquisitions have a smaller effect on innovation

incentives and growth than related acquisitions, as the surplus from the former is lower

than the surplus from the latter.

Next, we consider two more sophisticated policies, a ban limited to acquisitions of

related startups, and a ban limited to acquisitions of unrelated startups. The results, shown

in the third and fourth columns of Table 9, confirm that related acquisitions have a much

larger growth effect: although they only account for 41% of the total volume of deals,

banning them achieves virtually the same growth effect than a complete acquisition ban.

Instead, banning unrelated acquisitions has almost no effect. Note that this policy lowers

the percentage of implemented startup ideas, which roughly cancels out a small increase in

incumbent innovation and in the startup rate.35

Summing up, our results for this extended model suggest that negative growth effects

of startup acquisitions are driven by acquisitions of related startups. Thus, a competition

authority with limited resources should concentrate its attention on these transactions.

6 Conclusion

In this paper, we assess the effect of startup acquisitions on aggregate growth, using a

model that takes into account a large number of potential positive and negative effects of

these operations. We discipline the model by calibrating it to micro-level data. Our results

indicate that more frequent acquisitions increase the startup rate, by providing additional

incentives for startup creation. However, this is more than compensated by a decrease in

incumbent’s own innovation and in the implementation probability of ideas. Accordingly,

a policy that bans all startup acquisitions would increase the growth rate by around 0.03

percentage points per year, increasing welfare by 1.8%.

These results are driven by the data that we use to discipline the model. Therefore,

they could vary depending on the country and time period considered, and they might

be heterogeneous by industry. For instance, we show that startup acquisitions are more

beneficial when incumbents have decisive implementation advantages, a low ability to come

up with their own ideas, and high bargaining power. Further exploring this heterogeneity is

a promising path for future research.

35Banning unrelated acquisitions lowers the outside option of startups when bargaining with related
incumbents. Thus, incumbents pay lower acquisition prices, their value increases, and both incumbent
innovation and startup creation increase.
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A Derivations and proofs

A.1 BGP equilibrium conditions

Using our value function guess, v(n, ω) = Vt(ω,n)/Yt, we rewrite equations (9) to (13) as

vNoMeet(ω, n) = (1− iS(ω)) · v(ω, n), (A.1)

vNoMeet
S (ω, n) = max

iS

{
iS ·
(

+∞

∑
nS=1

θ(nS) · v(ω, nS)

)
− κS · i

ψ
S

}
(A.2)

σ(ω, n) =max

[
0, max

iA

{
v(ω, n) + iA ·

(
+∞

∑
nS=1

θ(nS) · v(ω, n + nS)− v(ω, n)

)

− κI · i
ψ
A

}
− vNoMeet(ω, n)− vNoMeet

S (ω, n)

]
(A.3)

vMeet(ω, n) = vNoMeet(ω, n) + α · σ(ω, n) (A.4)

vMeet
S (ω, n) = vNoMeet

S (ω, n) + (1− α) · σ(ω, n). (A.5)

In all of these expressions, lower-case letters denote values that are normalized by

aggregate GDP (e.g., vNoMeet(ω, n) = VNoMeet
t (ω,n)/Yt, and so on). Using these expressions

and the Euler equation (4), we can rewrite the HJB equation (8) as

ρ · v(ω, n) = max
z,s

{
ω ·
(

1− 1
µ (n)

)
− ξ I · zψ − χ · sϕ

+ z ·max
iI

[
iI ·
(

v(ω, n + 1)− v(ω, n)
)
− κI · i

ψ
I

]
+ x ·

[
s · α · σ(ω, n)− iS(ω, n) · v(ω, n)

]}

+ ∑
ω′

τω,ω′ ·
[

v(ω′, n)− v(ω, n)
]

. (A.6)
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This equation pins down the incumbent value function v as a function of the (endoge-

nous) aggregate startup rate x and the startup’s implementation policy function iS.36 Taking

first-order conditions, the incumbent’s optimal research investment is

z(ω, n) =

 iI(ω, n) ·
(

v(ω, n + 1)− v(ω, n)
)
− κI ·

(
iI(ω, n)

)ψ

ξ I · ψ


1

ψ−1

(A.7)

where iI (ω, n) is the optimal implementation probability chosen by the incumbent for

its own ideas. The optimal choice equalizes the marginal cost of research to its marginal

benefit, which is the arrival of an unimplemented idea. In turn, the optimal startup search

investment holds

s (ω, n) =
(

x · α · σ(ω, n)
χ · ϕ

) 1
ϕ−1

. (A.8)

Intuitively, the search effort is increasing in the arrival rate of startup ideas x, in the

acquisition surplus σ (ω, n), and in the incumbent’s surplus share α.

Note that this equation implies that the incumbent does not invest into search when

the surplus from a meeting is zero. Therefore, the probability that a given startup’s idea

is implemented is always given by s(ω, n) · iA(ω, n) + (1− s(ω, n)) · iS(ω, n), even when

the meeting surplus is zero. We will use this result repeatedly in subsequent equilibrium

conditions.

Regarding implementation, the investment of incumbents into their own ideas holds

iI (ω, n) =
(

v(ω, n + 1)− v(ω, n)
κI · ψ

) 1
ψ−1

. (A.9)

Again, firms equalize the marginal cost of implementation to its marginal benefit, which

comes from increasing the technology gap. Investment of incumbents into acquired startup

ideas holds

iA (ω, n) =


+∞
∑

nS=1
θ(nS) · v(ω, n + nS)− v(ω, n)

κI · ψ


1

ψ−1

(A.10)

Finally, as equation (A.2) shows, the optimal implementation probability chosen by

36Each startup has a Poisson arrival rate 1 of ideas. Thus, x is equal to the mass of startups (both in absolute
terms and relative to the mass of incumbents) and the arrival rate of startup ideas.
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startups for their own ideas is independent of the technology gap n. It is given by

iS (ω) =


+∞
∑

nS=1
θ(nS) · v(ω, nS)

κS · ψ


1

ψ−1

(A.11)

Further, we can rewrite the value of a startup (the right-hand side of equation (14)) as

Et

[
s(ω, n) ·VMeet

S,t (ω, n) +
(

1− s(ω, n)
)
·VNoMeet

S,t (ω)

]
=

(
∑

ω∈Ω

+∞

∑
n=1

m(ω, n) ·
[

s(ω, n) · vMeet
S (ω, n) +

(
1− s(ω, n)

)
· vNoMeet

S (ω)

])
·Yt

Therefore, the free entry condition becomes

ξS = ∑
ω∈Ω

+∞

∑
n=1

m(ω, n) ·
[

vNoMeet
S (ω) + s(ω, n) · (1− α) · σ(ω, n)

]
. (A.12)

Creating a startup always delivers the startup outside option vNoMeet
S . Moreover, if the

startup meets the incumbent owning the product to which its idea applies, it is potentially

acquired and captures a share of the acquisition surplus. Thus, everything else equal, more

frequent acquisitions always increase the value of creating a startup.

A.2 The joint distribution of quality and technology gaps

To compute the endogenous joint distribution of products over quality and technology

gaps, we build an infinitesimal generator matrix. For a homogeneous continuous-time

Markov chain zt taking values in {z1, z2, . . . , zS} ∈ RS, the generator matrix M is:

M ≡


−∑j 6=1 λ1j λ12 . . . λ1S

λ21 −∑j 6=2 λ2j . . . λ2S
...

... . . . ...

λS1 λS2 . . . −∑j 6=S λSj

 (A.13)

where λij ≥ 0 is the intensity rate for a zi-to-zj transition. Note that the diagonal

elements of M collect outflows, while the off-diagonal elements collect inflows. Thus, each

row of the infinitesimal generator matrix must add up to zero.

To build this matrix in our model, we assume that the technology gap is bounded above
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by nmax = 20, so that the state space is Ω × {1, 2, . . . , 20}.37 Denoting by mt(ω, n) the

share of firms in state (ω, n) at time t, the law of motion of mt is:

∂~mt

∂t
= M>~mt (A.14)

where ~mt is a stacked vector across all states. To find the invariant distribution, we

impose ∂~mt
∂t =~0 in equation (A.14) and solve for the unique solution of the system of linear

equations holding ∑ω ∑n m(ω, n) = 1.

What are the transition rates? For any transition from (ω, n) to (ω, n + 1), with n + 1 <

nmax, the transition rate is

z(ω, n) · iI(ω, n) + x ·
(

s(ω, n) · iA(ω, n) · θ(1) + (1− s(ω, n)) · iS(ω) · θ(n + 1)
)

.

Such transitions occur because of incumbent’s own innovations, 1-step startup ideas imple-

mented by incumbents, and (n + 1)-step startup ideas implemented by startups.

For transitions from (ω, nmax − 1) to (ω, nmax), the transition rate is

z(ω, nmax − 1) · iI(ω, nmax − 1)+

x ·
(

s(ω, nmax − 1) · iA(ω, nmax − 1) + (1− s(ω, nmax − 1)) · iS(ω)
+∞

∑
nS=nmax

θ(nS)

)
.

The intuition is the same as before, but now any startup idea implemented by an

incumbent brings us into nmax, as well as any startup idea of quality nmax or larger.

Next, for transitions from (ω, n) to (ω, n + k), with k > 1 and n + k < nmax, we have a

transition rate

x ·
(

s(ω, n) · iA(ω, n) · θ(k) + (1− s(ω, n)) · iS(ω) · θ(n + k)
)

.

These transitions can only occur because of startup ideas allowing an incumbent to take

k steps or a startup to take n + k steps.

For transitions from (ω, n) to (ω, nmax), with n < nmax − 1, we have

x ·
(

s(ω, n) · iA(ω, n) ·
+∞

∑
nS=nmax−n

θ(nS) + (1− s(ω, n)) · iS(ω) ·
+∞

∑
nS=nmax

θ(nS)

)
.

37We verify that the mass of products that have a technology gap equal to 20 is always very small. Therefore,
increasing nmax to 25 or 30 does not affect our results.
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These transitions happen when startup ideas allow an incumbent to take nmax − n steps

or more, or a startup to take nmax steps or more.

For downward transitions, from (ω, n) to (ω, k) with n > k, we have a transition rate

x · (1− s(ω, n)) · iS(ω) · θ(k)

Downward transition occur only through entry, when the entering startup takes k steps.

Finally, transitions from (ω, n) to (ω′, n) are exogenous, and occur at rate τω,ω′ . Knowing

the full generator matrix, we can solve for the invariant distribution of products over (ω, n).
Summing up, given innovation, implementation, search and acquisition decisions, we

can solve for the invariant distribution of products over quality and technology gaps. These

decisions, however, in turn depend on the distribution. In the next section, we discuss the

algorithm that we use to jointly solve for all these outcomes.

A.3 Solution algorithm

To solve for the startup rate, innovation, search and acquisition choices, and the invariant

distribution of products across quality and technology gaps, we use the following algorithm.

1. We guess a value for the startup rate x.

2. Given this guess, we solve for the value function of incumbent firms, using the

following value function iteration algorithm.

(a) We guess a value function v.

(b) Using equations (A.7) to (A.11), we deduce from this guess the policy functions

z, s, iI, iA, iS as well as the acquisition surplus σ.

(c) We use equation (A.6) to compute a new implied value for the value function,

vnew.

(d) If ‖ v−vnew
vnew
‖∞ < 10−4, the algorithm has converged and we proceed to step 3. If

this condition does not hold, we compute a new guess for the value function as

0.998 · v + 0.002 · vnew and go back to step 2 (b).

3. Using the innovation rates obtained in step 2 and our guess for the startup rate x, we

compute the joint distribution of products across quality levels and technology gaps,

as described in Appendix A.2.
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4. We compute the value of creating a startup vS (the right-hand side of equation (A.12)),

using our result for the value function of incumbents obstained in step 2 and the

distribution of incumbents obtained in step 3. When the condition∣∣∣∣ξS − vS

vS

∣∣∣∣ < 10−4

holds, we have found the equilibrium. Otherwise, we update our guess for x and

return to step 2.

Note that the algorithm is independent of the level of other aggregate variables such as

the wage wt or the growth rate g. Thus, we can solve for these outcomes after computing

firm-level decisions. This block structure greatly simplifies the solution of the model.

A.4 Growth and other aggregate variables

Product market clearing implies Yt = Ct + Rt + It + St, where:

Rt = Yt ·
(

x · ξS + ∑
ω∈Ω

+∞

∑
n=1

m(ω, n) · ξ I ·
(
z(ω, n)

)ψ

)
(A.15)

It = Yt · ∑
ω∈Ω

+∞

∑
n=1

m(ω, n) ·
[

z(ω, n) · κI ·
(
iI(ω, n)

)ψ (A.16)

+ x ·
(

s(ω, n) · κI ·
(
iA(ω, n)

)ψ
+ (1− s(ω, n)) · κS ·

(
iS(ω)

)ψ
)]

,

St = Yt · ∑
ω∈Ω

+∞

∑
n=1

m(ω, n) · χ ·
(
s(ω, n)

)ϕ, (A.17)

This shows that consumption is always proportional to GDP, and thus grows at the same

rate. We next derive this common growth rate.

In line with the literature, we define the aggregate markup µ as the inverse of the labor

share (i.e., µ ≡ Yt
wt·L). This aggregate markup is pinned down by equation (15). It is then

easy to show that the labor used to produce product j at time t holds ljt = ωjt · µ
µ(njt)

· L.

Using this result, we can show

Yt = At ·M · L, (A.18)

where At is aggregate productivity, defined as

At ≡ exp
(∫ 1

0
ωjt · ln

(
ajt
)

dj
)

. (A.19)
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andM is given by

M = exp

(
∑

ω∈Ω

+∞

∑
n=1

m(ω, n) ·ω · ln
(

µ

µ(n)

))
.

The M term captures the static misallocation of labor due to markup dispersion, as

in Peters (2020). When all firms charge the same markups,M = 1. Crucially, the above

expression shows thatM is constant on the BGP. Therefore, output grows at the same rate

as aggregate productivity At.

To derive the growth rate of aggregate productivity, we write

ln(At) =
∫ 1

0
ωjt · ln(ajt)dj

= ∑
a∈A

∑
ω∈Ω

+∞

∑
n=1

mt(ω, n, a) ·ω · ln(a),

where mt(ω, n, a) stands for the mass of goods with quality ω, technology gap n and

productivity a at instant t. Note that because productivity moves on a ladder, it can only

take values in a countable set A.

Now, consider an infinitesimally small time period dt. In this period, every product in

state (ω, n) has a probability b(ω, n, k) · dt of seeing its productivity increase by a factor λk,

where b(ω, n, k) is defined as:

b(ω, n, k) ≡

bI(ω, n) + θ(1) · bS(ω, n) if k = 1

θ(k) · bS(ω, n) if k ≥ 2

and (bI , bS) are the arrival rates of innovation by incumbents and startups defined in

the main text. Therefore, applying the law of large numbers, we can write aggregate

productivity at instant t + dt as

ln(At+dt) = ∑
a∈A

∑
ω∈Ω

+∞

∑
n=1

mt(ω, n, a) ·ω ·
[

ln(a) + dt ·
+∞

∑
k=1

b(ω, n, k) ·
(

ln(a · λk)− ln(a)
) ]

= ln(At) + dt · ∑
a∈A

∑
ω∈Ω

+∞

∑
n=1

mt(ω, n, a) ·ω ·
+∞

∑
k=1

k · ln(λ) · b(ω, n, k).

Rearranging the sum, and using that by definition, ∑a∈A mt(ω, n, a) = m(ω, n), we get

ln(At+dt)− ln(At)

dt
= ln(λ) · ∑

ω∈Ω

(
+∞

∑
n=1

m(ω, n) ·ω ·
+∞

∑
k=1

k · b(ω, n, k)

)
. (A.20)
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Taking the limit as dt goes to 0 yields the growth rate of aggregate productivity:

Ȧt

At
= ln(λ) · ∑

ω∈Ω

(
+∞

∑
n=1

m(ω, n) ·ω ·
+∞

∑
k=1

k · b(ω, n, k)

)
.

As a final step, we can further simplify the inner sum. To do so, we note

+∞

∑
k=1

k · b(ω, n, k) = bI(ω, n) + bS(ω, n) ·
[
+∞

∑
k=1

θ(k) · k
]

.

The last term in square brackets is simply the expected value of the steps taken by a

successful startup innovation, and therefore equal to 1 + γ. Putting these results together,

we obtain equation (17) in the main text.

A.5 Decomposition formula

We can write the growth formula (17) as

g = ln(λ) ·
(
I + (1 + γ) · x · P

)
, (A.21)

where I and P are the sales-weighted averages of incumbent innovation and of the

implementation probability of startup ideas, as defined in equation (17), that is:

I ≡ ∑
ω∈Ω

+∞

∑
n=1

m(ω, n) ·ω · z(ω, n) · iI(ω, n) (A.22)

P ≡ ∑
ω∈Ω

+∞

∑
n=1

m(ω, n) ·ω ·
(

s(ω, n) · iA(ω, n) +
(
1− s(ω, n)

)
· iS(ω, n)

)
(A.23)

To get the decomposition, we can simply rewrite (A.21) as:

gB

gA =
ln(λ) · IA

gA · I
B

IA +
ln(λ) (1 + γ) · xA · PA

gA · xB

xA ·
PB

PA , (A.24)

which is equation (19), with ShareA
inc ≡

ln(λ)·IA

gA .
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B Data appendix

B.1 Data construction

Our data sources are fully described in the main text. In order to match the firms in the

acquisitions database to their patents and accounts, we follow different routes for publicly

listed and private firms.

For publicly listed firms, we use the fact that ThomsonONE provides us with a firm

identifier, GVKEY, which is also used in the NBER Patent Data Project database and in

Compustat. However, GVKEY is not a permanent firm identifier, as may change for instance

after major mergers and acquisitions. Therefore, we first need to match each GVKEY to a

permanent firm identifier, PERMCO, provided by the Center for Research in Security Prices

(CRSP), and then match all data sets based on this PERMCO.

For private firms, we cannot follow this procedure, as there are no common identifiers

across datasets. Instead, we match these firms based on their names. To do so, we

first standardize names, by removing commonly used endings such as "CO", "CORP" or

"CORPORATION". This yields some exact matches, but their number is still relatively small.

Therefore, we complement this by a manual matching exercise, considering all private firm

names in the acquisition database and checking whether there is a corresponding firm name

in the patent database. This catches many cases with minor variations in the spelling of

firm names, such as for instance “ACCENT OPTICAL TECH INC” and “ACCENT OPTICAL

TECHN INC”.

B.2 Matching treated to control patents

This section provides further details on how we match treated to control patents.

We start with a broad sample of USPTO patents for which one of the inventors is located

in the US. Next, we identify patents granted to any startup firm that will be acquired in

the 6 years following its first patent application. Finally, conditional on this sample, we keep

the subset of patents granted at least two years prior to the acquisition, as this allows us to

track citations received before the acquisition. This leaves us with 3,040 patents, the treated
patent sample. For each of these treated patents, we aim to find a set of control patents that

looks at similar as possible in terms of observables at the time of the acquisition.

First matching stage In the first stage we do an exact match on two categories: applica-

tion year (24 values ranging from 1980 to 2003) and technological subcategory (31 values).
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In other words, we limit the pool of potential control patents to the ones that have the same

application year and the same technological subcategory as the treated patent.

Second matching stage Conditional on satisfying the criteria of the first matching stage,

we estimate a propensity score matching algorithm based on several variables, aiming to

capture ex-ante intrinsic patent features as well as citations received before acquisition.

Variables capturing ex-ante text-based patent features are from Arts, Hou and Gomez (2021).

The authors develop natural language processing techniques to identify the creation and

impact of new technologies in USPTO utility patents between 1969 and 2018. They validate

the new techniques and their improvement over traditional metrics and provide open access

to code and data.

We merge their dataset to ours and use the following ex-ante text-based measures:

(1) new word combinations - contains the number of new pairwise keyword combinations

introduced by the patent; (2) new bigrams - contains the number of new bigrams (two

consecutive keywords in the patent document) introduced by the patent for the first time;

(3) new trigrams - contains the number of new trigrams (three consecutive keywords in the

patent document) introduced by the patent; (4) novelty - defined as 1 minus the backward

cosine, where the backward cosine contains the average cosine similarity between the focal

patent and all other patents filed in the five years before the focal patent;38 (5) impact -

defined as forward cosine textual similarity divided by backward cosine textual similarity.

The intuition is that a patent has a greater impact if it is dissimilar to previous patents, but

at the same time many future patents follow on its footsteps.

Moreover, we also match on the following four measures: (6) originality, based on

Trajtenberg, Henderson and Jaffe (1997), if a patent cites previous patents that belong to a

narrow set of technologies the originality score will be low, whereas citing patents in a wide

range of fields would render a high score; (7) number of claims - claims specify in detail

the building blocks of the patented invention, and hence their number is indicative of the

scope or width of the invention (Lanjouw and Schankerman, 1999); (8) citations received

in the first year after the patent is granted; (9) citations received in the second year after is

granted. We perform the propensity score matching on a caliper width of 0.3 and allow for

up to 10 control patents for each treated patent.

38Novelty should capture how different the patent is compared to patents filed in the previous five years.
More novel patents are arguably more dissimilar in content compared to prior patents.
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B.3 Summary statistics

Table B.1 shows some descriptive statistics on the variables used in our empirical

analysis. The dependent variable in our regressions is the number of citations received

at the patent-year level, and has a mean of 1.54 in our sample of 206,432 observations.

Around 40% of observations satisfy the condition that both the acquirer and the target have

the same primary 3-digit SIC code. When decomposing acquirers by industries, around 23%

are in the IT sector, 22% in the medical sector, and 19% in the semiconductors sector.

Table B.1: Descriptive statistics

Obs Mean Min Median Max

Number of Cites 206,432 1.54 0 1 8
Received (2.28)
Dummy Treatment 206,432 0.09 0 0 1

(0.29)

Dummy Post 206,432 0.62 0 1 1
(0.48)

Acquirer Market 206,432 0.01 0 0.01 0.33
Share (0.04)
Dummy Same SIC3 206,432 0.40 0 0 1

(0.49)
Dummy IT Sector 206,432 0.23 0 0 1

(0.42)
Dummy Medical 206,432 0.22 0 0 1
Devices Sector (0.41)
Dummy Semicon- 206,432 0.19 0 0 1
ductors Sector (0.14)
Dummy Other 206,432 0.53 0 1 1
Sector (0.50)

Notes: Number of Cites Received summarises the values of the (winsorised) dependent variable.
Dummy Treatment takes value 1 for patents of a target firm that is acquired in the first 6 years since
starting to patent. Dummy Post takes value 1 for the years after an acquisition. Acquirer Market Share
is the market share in the primary industry code of the acquiring firm at the time of acquisition.
Dummy Same SIC3 is a dummy taking value 1 when both the acquirer and target firms have the
same primary industry code. The remaining variables are dummies based on the sector to which the
acquiring firm belongs to.

Table B.2 compares treated patents to control patents after our propensity score match-

ing. The resulting sample of 2,519 treated patents and 25,135 control patents has similar
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mean values in all nine variables that were involved in the matching exercise. Regarding

the five text-based measures (new word combinations; new bigrams; new trigrams; novelty;

impact), the t-test is never statistically significant. Treated and control patents also have

similar means in terms of originality and cites received in the initial years. The only statis-

tically significant difference (at the 10% level) is in the number of claims, where treated

patents have a slightly higher value. Overall, this table supports the claim that both sets of

patents are similar across a large number of observables.

Table B.2: Comparison of matching variables - Treatment vs Control group

Treatment Patents Control Patents t-test

Obs. Mean Obs. Mean p-value
(St.dev.) (St.dev.)

New Word Combination 2,519 140.81 25,135 131.86 0.52
(415.44) (683.06)

New Bigrams 2,519 3.15 25,135 3.05 0.35
(4.73) (5.37)

New Trigrams 2,519 4.97 25,135 4.81 0.35
(6.62) (8.03)

Novelty 2,519 0.97 25,135 0.97 0.57
(0.01) (0.01)

Impact 2,519 1.03 25,135 1.03 0.74
(0.15) (0.15)

Originality 2,519 0.54 25,135 0.54 0.73
(0.31) (0.32)

Number of Claims 2,519 22.10 25,135 21.38 0.07*
(17.56) (18.95)

Cites Received 1st Year 2,519 1.71 25,135 1.63 0.37
(3.90) (4.27)

Cites Received 2nd Year 2,519 4.02 25,135 3.87 0.35
(7.11) (7.81)

Notes: This table compares treated to control patents for the variables incorporated in the propensity
score matching exercise. All variables are defined in Section B.2.

B.4 Additional tables and figures

Table B.3 shows that our baseline findings in Section 3.3 are robust to many alternative

specifications. All columns in this robustness table include both year fixed effects and
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matched patent pair fixed effects. For comparison purposes, column (1) replicates the

main finding in column (4) of Table 3: treated patents receive 21.8% more citations in

the post-acquisition period compared to control patents of the same matched patent pair.

Column (2) reduces the number of closest control patents for each treated patent from

10 to 5. Column (3) reduces the event study window to 5 years before and after the

acquisition, while our baseline is 7. Column (4) does not winsorize the dependent variable.

Column (5) includes industry-year fixed effects instead of the baseline year fixed effects.

In all these robustness tests using the Poisson estimator, the estimated coefficient stays

both economically and statistically significant. Finally, in the last two columns we present

results from OLS estimations. In column (6) the dependent variable is in levels, so that the

estimated coefficient of the interaction term cannot be interpreted as an elasticity anymore;

instead, we find that treated patents in the post-acquisition period will on average receive

0.419 additional citations and the result is highly statistically significant. In column (7), the

dependent variable is the log of the number of citations received plus one. The economic

magnitude is now slightly smaller than in the Poisson estimations (13.1% vs 21.8%) but

still statistically significant at the 1% level.

Appendix Table B.4 splits our sample according to the industry of the acquirer. For

acquirers from the IT, semiconductor and medical devices industry, we find always a positive

and statistically significant coefficient on the interaction term. The magnitude of these

sector-specific coefficients do not differ too much from the value for the full sample (21.8%).

Appendix Table B.5 provides some descriptive statistics on the growth outcomes of

startups coming from Guzman and Stern (2020). In column (1) we include all startups

(independently of whether they patent or not) and look at some success measures after

6 years of existence. For this full sample we find that 0.23% reach a threshold level of

100 employees or above; 0.06% will be acquired during these initial years; finally, only

0.01% of startups go public in the first 6 years of existence. Column (2) repeats the exercise

for the selected subset of startups who patent. The sample shrinks from over 18 million

in column (1) to 37,588 startups in column (2). As expected, the probability of success

outcomes rises substantially. This subset of firms will reach 100 or more employees with a

probability of 6.60%. Also, 4% will be acquired and over 1% will even manage to go public

in the initial 6 years of existence. Finally, column (3) chooses an even more selected subset

of startups; it only keeps that ones that patent and additionally file in Delaware. Out of

these 10,804 startups, almost 14% succeed in having over 100 employees, almost 10% will

be acquired, and almost 3% of them will go public.
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Table B.3: The effect of acquisitions on the implementation of ideas - Robustness

Dependent variable: number of citations received

(1) (2) (3) (4) (5) (6) (7)

D(Post) 0.346*** 0.343*** 0.226*** 0.392*** 0.373*** 0.541*** 0.197***
(0.019) (0.020) (0.017) (0.023) (0.018) (0.021) (0.006)

D(Treatment) -0.010 -0.006 -0.007 -0.010 -0.009 -0.014 -0.006
(0.035) (0.034) (0.034) (0.045) (0.029) (0.039) (0.012)

D(Post) * D(Treatment) 0.218*** 0.223*** 0.216*** 0.263*** 0.215*** 0.419*** 0.131***
(0.041) (0.041) (0.042) (0.061) (0.032) (0.083) (0.025)

Observations 206,352 112,553 186,184 206,352 205,601 206,432 206,432
R-squared . . . . . 0.297 0.287

Matched Pair FE X X X X X X X
Year FE X X X X X X X

Closest control patents X
Pre & Post Year Window X
No winsorization X
Industry × Year FE X
OLS: levels X
OLS: logs X

Notes: We use a Poisson estimator. The dependent variable is the number of citations received at
the patent-year level. D(Treatment)i takes value 1 for treated patents, and D(Post)it takes value 1
for the years after the acquisition. For ease of comparison, column (1) repeats our baseline result.
Column (2) limits the sample to the 5 closest nearest neighbors for each treated patent. Column (3)
shrinks the window of years to 5 years prior acquisition until 5 years post acquisition. Column (4)
does not winsorize the dependent variable. Column (5) includes industry-year fixed effects instead
of year fixed effects. Column (6) is an OLS regression in levels. Finally, column (7) is an OLS
regression in logs. Standard errors are clustered at the target firm level. * significant at 10%; **
significant at 5%; *** significant at 1%.
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Table B.4: Industry-level regression results

Dependent variable: number of citations received

Medical Semi- Other
IT Devices conductors Categories

D(Post) 0.214*** 0.460*** 0.116 0.336***
(0.022) (0.019) (0.099) (0.019)

D(Treatment) 0.033 -0.004 -0.014 0.010
(0.046) (0.059) (0.181) (0.044)

D(Post) * D(Treatment) 0.177*** 0.268*** 0.335* 0.254***
(0.052) (0.057) (0.187) (0.049)

Observations 43,970 46,474 2,796 120,893
Matched Pair FE X X X X
Year FE X X X X

Notes: We use a Poisson estimator. The dependent variable is the number of citations received at
the patent-year level. D(Treatment)i takes value 1 for treated patents, and D(Post)it takes value 1
for the years after the acquisition. Standard errors are clustered at the target firm level. * significant
at 10%; ** significant at 5%; *** significant at 1%.

Table B.5: Growth outcomes for newly incorporated firms: more details.

(1) (2) (3)
Sample All new firms Patenting new firms Patent & Delaware

Total number 18,764,856 37,588 10,804

Outcome after 6 years

... Acquisition 0.06% 4.02% 9.32%

... IPO 0.01% 1.13% 2.94%

... 100+ employees 0.23% 6.60% 13.74%

Source: Guzman and Stern (2020) and own computations. The sample contains all newly
incorporated firms incorporated in 32 US states between 1988 and 2008. Column (1) refers to
all new firms, column (2) to new firms with a patent application, and column (3) to new firms
with a patent application and an incorporation in Delaware.
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C Calibration details

C.1 Global identification

This section lays out a rigorous test of global identification for the calibration exercise

presented in Section 4.1. We use a method that was first developed by Daruich (2022).

The Daruich (2022) method Denote our vector of parameters by θ ∈ Θ ⊂ RM
+ , where

Θ is the parameter space and M ∈ N is the number of internally calibrated parameters.

First, we create a large M-dimensional hyper-cube P ⊂ Θ in the parameter space (which

requires choosing lower and upper bounds on each parameter). Then, we iteratively pick

quasi-random realizations from P using a Sobol sequence, which successively forms finer

uniform partitions of the space. For a sufficiently large number of Sobol draws, this routine

efficiently and comprehensively explores every corner of P . For each parameter draw, we

solve the model and store its results in a matrix. For this step, we use a high performance

computer (HPC), allowing us to parallelize the procedure into thousands of separate CPUs,

thereby saving us a great amount of computation time. After N Sobol draws (in practice,

N ≈ 2 million), we have a N ×M matrix R of results and a N ×M matrix P ∈ P of the

corresponding parameters. The model-generated data contained in the (R, P) matrices can

then be exploited to obtain information about identification.

We implement the following procedure. First, for each parameter p ∈ θ, we select a

target moment m which we believe is particularly sensitive to the parameter. Note that,

because of the Sobol routine, for each given value of p there is a distribution of values for m
resulting from underlying random variation in all the remaining M− 1 parameters. Using

this fact, we then divide the support of p into 50 quantiles, and compute the 25th, 50th

and 75th percentiles of this underlying distribution at each quantile. With this, we may

study how sensitive m is to changes in p by exploring the properties of how the moment’s

distribution behaves across different values for p.

We say that p is well-identified by m when the following four criteria are satisfied:

(i) the distribution changes monotonically across quantiles of p;

(ii) the rate of this change is high;

(iii) the inter-quartile range of the m distribution is small throughout the support of p;

(iv) at the calibrated value, the empirical target falls within the inter-quartile range.
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Criterion (i) implies that m is sensitive to variation in p; criterion (ii) gives an idea of

how strong this sensitivity is; criterion (iii) implies that other parameters are relatively

unimportant to explain the moment; and criterion (iv) implies that the empirical target

is not an outlier occurrence at the calibrated value of the parameter. Importantly, all the

remaining parameters are not fixed throughout this analysis, but vary in a random fashion.

Therefore, this method gives us a global view of identification. In doing so, it outperforms

identification methods based on local elasticities (i.e., methods based on pseudo-derivatives

of moments obtained by keeping all but one of the parameters fixed at their calibrated

values).

Identification results Figure C.1 presents the results from the global identification proce-

dure explained above, where we have associated each targeted moment with the parameter

that the moment most plausibly identifies (the same pairing as in Table 6 and in our verbal

discussion in Section 4.1). All in all, we find that all the parameters of the model are very

well-identified by all four criteria.

C.2 Additional robustness exercises

Using the methodology introduced in Section 5, Figures C.2 and C.3 show additional

robustness results for the growth effects of an acquisition ban, for different re-calibrations

of the model across alternative calibration targets. Each row in these figures considers a

different targeted moment (the growth rate, the exit rate, the relative size of acquiring

firms, the percentage of acquired startups, and the implementation probability of startup

ideas). The left column shows the overall growth effect of the ban across the different

calibration targets, and the right column shows the usual decomposition into the three

sources of growth. Vertical lines indicate the value targeted in the baseline calibration.

Figure C.2 shows that the growth effect of the acquisition ban becomes stronger when

we target a lower growth rate, a higher exit rate, a larger relative size of acquiring firms

and a higher percentage of acquired startups.

The implementation probability of startup ideas Figure C.3 illustrates the claim made

in Section 4.1: different targets for the implementation probability of startup ideas lead

to the same quantitative results. In particular, a ban on startup acquisition raises the

growth rate by the same amount irrespective of whether the target for the implementation

probability is 10, 20 or 25%.

This irrelevance is not a coincidence. First, the target for the implementation rate of
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Figure C.1: Global identification results. For each parameter-moment pairing, the black dots are the median
of the distribution generated by random variation in all the other parameters, and the gray dots are the
inter-quartile range of the distribution. The dashed horizontal line marks the empirical target, and the vertical
line marks the calibrated parameter value.
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Figure C.2: The role of different calibration targets for the growth effect of a startup acquisition ban. Notes:
See Figure 9.
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Figure C.3: Robustness: the role of the average implementation probability of startups. Notes: See Figure 9.

startups pins down the parameter κS, but this parameter is irrelevant for policy analysis in

our model. Indeed, κS only appears once in the equilibrium conditions pinning down the

growth rate, in equation (A.11), determining the implementation choice iS of non-acquired

startups. However, from this equation, it is clear that κS is just a scaling factor, and the

elasticity of iS with respect to any policy change is thus independent of κS.

Second, the calibrated level of iS also does not matter for policy. In all equilibrium

conditions, outcomes do not depend on iS, but on the product x · iS. If we were to abstract

from the distribution of incumbents over quality and technology gaps, this product would

be exactly pinned down by two other targeted moments: the contribution of entrants to

growth ( ln(λ)·x·iS
g ) and the growth rate itself (g). The target for the implementation rate of

startups only pins down iS and x, but this decomposition is irrelevant for growth outcomes.

Of course, with heterogeneous incumbents, the argument becomes somewhat more

complex. However, as Figure C.3 shows, the irrelevance of the target for the implementation

probability of startups still continues to apply quantitatively.

D Multiproduct Extension

This section describes the equilibrium and calibration of the multiproduct model in

Section 5.2 of the main text.

Model solution As firms can produce multiple products, the incumbent’s value function

in principle has an additional state variable in this extended model: the number of products

produced, denoted by k. However, it is easy to show that the value function is linear in k,
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so that

v(k, ω, n) =
k

∑
j=1

v(ωj, nj),

where ω ≡ {ωj}k
j=1 and n ≡ {nj}k

j=1 are the vectors containing the product quality and

technology gap of every product produced by the firm.

Using this result, we can derive the HJB equation for the incumbent’s value function in

the extended model. To do so, we first derive the continuation values of incumbents and

startups after the arrival of a startup idea. Consider the case of a startup that has an idea on

a product j, characterized by a quality ω and a technology gap n. Proceeding by backward

induction, suppose first that this startup does not meet the current producer of product j,
and is matched to the current producer of product j′, characterized by a quality ω′ and a

technology gap n′. For this startup, the continuation value in case of no meeting with the

unrelated incumbent is still given by equation (A.2):

vNoMeet
S (ω) = max

iS

{
iS ·
(

+∞

∑
nS=1

θ(nS) · v(ω, nS)

)
− κS · i

ψ
S

}
. (D.1)

For the unrelated incumbent, instead, the continuation value in case of no meeting with

the startup is just v(ω′, n′). The surplus generated by a meeting between the startup and

the unrelated incumbent is therefore

σU(ω) = max

[
0 , v(ω′, n′) + max

iU

{
iU ·

(
+∞

∑
nS=1

θ(nS) · v(ω, nS)

)
− κI · iψ

U

}
− v(ω′, n′)− vNoMeet

S (ω)

]

= max

[
0 , max

iU

{
iU ·

(
+∞

∑
nS=1

θ(nS) · v(ω, nS)

)
− κI · iψ

U

}
− vNoMeet

S (ω)

]
.

(D.2)

Comparing the surplus with (D.1), note that the surplus σU(ω) is strictly positive if

and only if κI < κS. There is no rent-preserving motive for acquiring unrelated startups:

these acquisitions can only be motivated by lower implementation costs for the incumbent.

Moreover, as the unrelated incumbent does not currently produce the product of the

acquired startup, the Arrow replacement effect does not apply: acquisitions of unrelated

startups always increase the probability that the startup’s idea is implemented.

Note that the surplus only depends on startup product quality ω, and is independent

of the characteristics of the acquirer. Thus, all acquirers choose the same implementation

probability iU(ω), and all incumbents choose the same search effort sU for unrelated

startups. The continuation value for an incumbent after meeting an unrelated startup with
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an idea on a product with quality ω is

vMeetU (ω′, n′
)
= v

(
ω′, n′

)
+ α · σU(ω). (D.3)

For a startup, in turn, the continuation value when meeting an unrelated incumbent is

vMeetU
S (ω) = vNoMeet

S (ω) + (1− α) · σU(ω). (D.4)

With this, we can consider the interaction between the startup and the related incumbent.

In the absence of a meeting between these two firms, the value of the incumbent is given by

vNoMeetR(ω, n) =
[

1−
(
(1− sU) · iS(ω) + sU · iU(ω)

)]
· v(ω, n). (D.5)

That is, the related incumbent is displaced with probability iS(ω) if the startup is not

acquired, and with probability iU(ω) if the startup is acquired.

For the startup, in turn, the expected continuation value in case of no meeting with the

related incumbent is

vNoMeetR
S (ω) = vNoMeet

S (ω) + sU · (1− α) · σU(ω). (D.6)

This is the sum of the value of the startup as a stand-alone firm, and the expected surplus

from a potential meeting with an unrelated incumbent.39

Finally, the surplus from a meeting between a startup and a related incumbent is

σR(ω, n) = max

[
0 , v(ω, n) + max

iA

{
iA ·

(
+∞

∑
nS=1

θ(nS) · v(ω, n + nS)− v(ω, n)

)

− κI · i
ψ
A

}
− vNoMeetR(ω, n)− vNoMeetR

S (ω)

]
.

(D.7)

As in the baseline model, the continuation value of the startup and the related incumbent

in case of a meeting is then just the sum of their outside options and their share of the

surplus.

With these elements, we can now write the HJB equation of an incumbent firm as

ρ · v(ω, n) = max
z,sR,sU

{
ω ·
(
1− λ−n)− ξ I · zψ − χR · s

ϕ
R − χU · s

ϕ
U

39Note that, as in the baseline model, we are implicitly assuming here that all firms are risk-neutral.
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+ z ·max
iI

[
iI ·
(

v(ω, n + 1)− v(ω, n)
)
− κI · i

ψ
I

]
+ x ·

[
sR · α · σR(ω, n)−

(
(1− sU) · iS(ω) + sU · iU(ω)

)
· v(ω, n)

]
+ x · sU ·Eω′,n′

( (
1− sR

(
ω′, n′

))
· α · σU(ω

′)
)}

+ ∑
ω′

τω,ω′ ·
[

v(ω′, n)− v(ω, n)
]

. (D.8)

Finally, in equilibrium, the value of a startup idea must hold

ξS = Eω,n

(
vNoMeet

S (ω) + (1− α) ·
(

sU · σU(ω) + sR(ω, n) · σR(ω, n)
))

.

These conditions summarize the dynamic problem of incumbents and startups. In

the next paragraph, we describe the remaining equilibrium conditions and the solution

algorithm.

Closing the model To close the model, we need to derive the generator matrix for the

invariant distribution of (ω, n). This generator matrix has the same structure as the one

in the baseline model, shown in Section A.2. The only difference is that now, unrelated

incumbents might also implement startup ideas. For the technology gap, these operations

are exactly equivalent to startups implementing their own ideas. Thus, to obtain the new

distribution, it is sufficient to replace the probability with which startups implement their

own idea ((1− s(ω, n)) · iS(ω) in the baseline model) with the probability that either the

startup or an unrelated incumbent implements the startup idea, given by

(1− sR(ω, n)) · (sU · iU(ω) + (1− sU) · iS(ω)) . (D.9)

Likewise, the growth rate is still given by equation (17), where the probability that

a startup implements its own idea is replaced with the probability that a startup or an

unrelated incumbent implements the startup idea.

To solve this model, we cannot use the exact same algorithm as in the baseline model.

This is because the solution of the VFI problem now depends not only on the startup rate

x, but also on the entire distribution of products over quality and technology gaps (ω, n).

Thus, instead of our baseline loop over the startup rate, we now need a joint loop over the
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startup rate and the invariant distribution.40

Calibration and model fit We calibrate the multiproduct model by targeting the same

moments as in the baseline model, as well as the percentage of acquisitions in which the

startup is unrelated to the incumbent. In our sample, 59% of acquired startups do not

belong to the same SIC 3-digit industry than the acquiring incumbent, and we use this

number as a proxy for the percentage of unrelated acquisitions.

Table D.1: Fit of the multiproduct model.

Targeted moment Model Data Data source Identifies

Growth rate 2.0% 2.0% Jones (2016) λ

Exit rate 7.3% 7.3% BDS ξS

Growth contribution of entrants 25.7% 25.7% Akcigit and Kerr (2018) ξ I

Avg. implementation prob., startups 10.0% 10.0% κS

Effect of acq. on implementation prob. 0.0374 0.0374 Section 3 κI/κS

Percentage of startups acquired 4.0% 4.0% Section 3 χR

Relative size of acquiring firms 2.10 2.10 Section 3 ϕ

Percentage of unrelated acquisitions 59% 59% Section 3 χU

Table D.1 summarizes the fit of the multiproduct model. Just as the baseline model, the

model exactly matches all moments.

40Moreover, in order to compute the search effort for related startups, we need to know the search effort
for unrelated startups, and vice-versa. Thus, we need to solve for these two decisions with an inner loop.
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