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Introduction : C(Sn)

Sn the symmetric group of all permutations of {1,2, · · · ,n}.

The group algebra C(Sn) spanned by formal linear
combinations of Sn group elements.

a =
∑
σ∈Sn

aσ σ

Can be scaled, added, multiplied e.g.

Product

ab =
∑
σ∈Sn

aσ σ
∑
τ∈Sn

bτ τ

=
∑
σ,τ

aσbτ στ



PCA Example 0 : The centre Z(C(Sn))

The subspace of elements which commute with everything.

Spanned by elements of the form

σ̄ =
∑
γ∈Sn

γσγ−1

One in each conjugacy class, e.g. in S3

(1,2,3) + (1,3,2)
(1,2) + (1,3) + (2,3)
()



Dimension

The dimension of the centre Z(C(Sn)) is equal to the number of
partitions of n, denoted p(n).

3 = 3
3 = 2 + 1
3 = 1 + 1 + 1

p(3) = 3.



Fourier transform and Young diagrams

Another basis for the centre is given by Projectors, constructed
from characters.
One for each irrep of Sn, i.e. one for each Young diagram R

PR =
dR

n!

∑
σ∈Sn

χR(σ)σ

dR = Dimension of R

DR(σ) : VR → VR
χR(σ) = tr(DR(σ))

PRPS = δRSPR



Example 1 : A(m,n)

Consider the sub-algebra of C(Sm+n) which commutes with
C(Sm × Sn). This is spanned by elements

σ̄ =
∑

γ∈Sm×Sn

γσγ−1

This is a non-commutative associative, semi-simple algebra.
Has a non-degenerate pairing.
- Dimension p(m,n)

- Fourier transform and a basis in terms of triples of Young
diagrams: Triple (R1,R2,R, ν1, ν2)

- R1 ` m,R2 ` n,R ` (m + n)

1 ≤ ν ≤ (g(R1,R2,R)



Applications in Invariant theory

Two matrices Z ,Y of size N, with matrix entries zij , yij . We are
interested in polynomial functions of these, which are invariant
under

(Z ,Y )→ (UZU†,UYU†)

U is a unitary matrix.

These are traces of matrix products, and products of traces

tr(ZZYY), tr(ZYZY)

First fundamental theorem.



Applications in Matrix Integrals

We are interested in∫
dZdZ̄dYdȲYe−trZZ†−trYY†P(Z ,Y )Q(Z †,Y †) = 〈PQ〉

where P,Q are gauge-invariant polynomials (invariant under
the actions before).

The enumeration of the invariants P(Z ,Y ) for degree m,n,
when m + n ≤ N, is related to A(m,n). For m + n > N, it is
related to an N-dependent quotient of A(m,n), which we will
call AN(m,n).

AN(m,n) also knows about the correlators of these
gauge-invariant polynomials.



General definition : Permutation centralizer algebras

Start with an associative algebra A which contains the group
algebra of a permutation group H. Consider the sub-algebra of
A which commutes with C(H).

This is a Permutation Centralizer algebra.

Example 2 : A = BN(m,n) - the walled Brauer algebra. The
permutation sub-algebra is C(Sm × Sn ).

Example 3: A = C(Sn)⊗ C(Sn). The interesting sub-algebra is
the centralizer of C(Diag(Sn)).



Outline of Talk

I Properties of A(m,n) : Relations to LR coeffients ;
Quotient;

I A(m,n)→ Matrix invariants and Correlators.
I Physics applications - AdS/CFT . Quantum states.

Enhanced symmetries and Charges.
I Charges and the structural question on A(m,n).
I Open problems and other examples.



Part 1 : Properties of A(m,n) - dimension

σ ∈ Sm+n , γ ∈ Sm × Sn
σ ∼ γσγ−1

The number of equivalence classes under sub-group
conjugation can be computed by using Burnside Lemma

p(m,n) =
1

m!n!

∑
γ∈Sm×Sn

∑
σ∈Sm+n

δ(σγσ−1γ−1)

This leads to a generating function

∑
m,n

p(m,n)zmyn =
∞∏

i=1

1
(1− z i − y i)



Part 1 : A(m,n) - Dimension in terms of Young diagrams

The Burnside formula can be re-written in terms of a triple of
Young diagrams.

R1 ` m
R2 ` n
R ` m + n

and g(R1,R2,R) is the Littlewood-Richardson coefficient.

∑
R`m+n

∑
R1`m

∑
R2`n

(g(R1,R2,R))2



Part 1 : LR coefficients and reduction multiplicities

For some Young diagram R with m + n boxes, we have an irrep
VR of Sm+n. The reduction to Sm × Sn produces

VR =
⊕

R1,R2

VR1 ⊗ VR2 ⊗ V R1,R2
R

States |R, I > in the VR irrep can be expanded in terms of
sub-group irreps

|R1, i1,R2, i2, ν〉

The ν runs over the multiplicity space V R
R1,R2

.

Dim(V R1,R2
R ) = g(R1,R2,R)



Part 1 : Projector-like basis for A(m,n)

In the case of Z(C(Sn)), we had p(n) conjugacy classes and a
projector basis.

PR ∝
∑
σ∈Sn

χR(σ)σ

Now we have a

QR1,R2,R
ν1,ν2

∝
∑

σ∈Sm+n

χR1,R2,R
ν1,ν2

(σ)σ



Part 1 : Explicit formula for quiver character

quiver character
χR

R1,R2,ν1,ν2
(σ)

can be written in terms of matrix elements of

DR(σ) : VR → VR

and overlaps (branching coefficients)

〈R, I|R1, i1,R2, i2, ν1〉

The formula involves a trace over states within irreps of the
subgroup.



19 July 2016 21:20

   New Section 22 Page 1    



01 May 2016 20:23

New Section 14 Page 1



Part 1 : Wedderburn-Artin for A(m,n)

These projector-like elements have matrix-like multiplication
properties

Q
~R
ν1,ν2

Q
~S
µ1,µ2

= δ
~R,~Sδν2,µ1Q

~R
ν1,µ2

This is the Wedderburn-Artin decomposition of the A(m,n).
Isomorphism between an associative algebra (with
non-degenerate bilinear pairing) and a direct sum of matrix
blocks.



Part 1 : Number of blocks

The dimension of the algebra is∑
R1`m

∑
R2`n

∑
R`m+n

(g(R1,R2,R))2

The number of blocks is number of triples (R1,R2,R) with
non-vanishing Littlewood-Richardson coefficients. Within each
block, unit matrix is central in A(m,n).
These are projectors

PR1,R2,R =
∑
ν

QR,R1,R2
ν,ν

Dimension of centre is the number of triples (R1,R2,R) with
non-vanishing LR coeffs.



Part 1 : Dimension of Cartan

The WA-decomposition gives a maximally commuting
sub-algebra ( Cartan) : the span of

QR1,R2,R
ν,ν

The dimension of this Cartan is∑
R1`m

∑
R2`n

∑
R`m+n

g(R1,R2,R)



Part 1 : Finite N quotient.

For matrix theory and AdS/CFT applications, it will be useful to
consider the quotient

AN(m,n)

defined by setting to zero all the Q’s where the Young diagram
R with m + n boxes has no more than N rows.



Part 2 : Applications to Matrix Integrals and AdS/CFT

In 4D CFT, we have the operator-state correspondence of
radial quantization.

Quantum states correspond to “local operators” at a point in 4D
spacetime.

These local operators are gauge invariant polynomial functions
of the “elementary fields.”

In many CFTs of interest, the theory has a U(N) gauge
symmetry. The fields include complex matrices Z ,Y which
transform in the adjoint of the U(N).

This includes N = 4 SYM which is dual to AdS5 × S5 string
theory.

Invariant theory → gravitons and branes in 10 dimensions.



Correlators→ combinatorics

We want to compute the 4D path integral -

〈Oa(Z ,Y )(x1)(Ob(Z ,Y )(x2))†〉

For two-point functions of this sort, in the free-field limit, the
dependence on x1, x2 is trivial. The non-trivial part of the
problem is to find a good way to enumerate the gauge
invariants and to express the dependence on the choice of a,b.
This combinatoric problem can be formulated in a reduced
zero-dimensional matrix model.



Matrix Invariants→ Permutation equivalences

First step is the enumeration problem. Key observation is that,
for fixed numbers of Z ,Y , the gauge-invariants can be
parametrized by permutations σ ∈ Sm+n

Oσ(Z ,Y ) = Z i1
iσ(1)
· · ·Z in

iσ(m)
Y im+1

iσ(n+1)
· · ·Y in+m

iσ(m+n)

= trV⊗m+n (Z⊗m ⊗ Y⊗nσ)

Exercise shows that

Oγσγ−1 = Oσ

for γ ∈ Sm ⊗ Sn.



Path Integral =⇒ matrices Y ,Z gone

The two point functions are some functions of (σ1, σ2),
computable using Wick’s theorem, which are invariant under
independent conjugations of σ1, σ2 by the sub-group.
Explicit formulae can be written for

〈Oσ1(Y ,Z )(Oσ2(Y ,Z ))†〉

in terms of the product in A(m,n),

∑
σ3∈Sm+n

∑
γ∈Sm×Sn

δ(σ1γσ2γ
−1σ3)NCσ3



Finite N counting from U(N) group integrals

Finite N effects are very interesting in the phyics - related to
giant gravitons ; also thermodnamics of the theory.
There is a U(N) group integral formula ( Sundborg, 2000 ) for
the counting of the dimension of the space of operators. This
can be manipulated to show that the formula is

∑
R`m+n
l(R)≤N

∑
R1`m

∑
R2`n

(g(R1,R2,R))2



Orthogonal Basis at finite N

We can form linear combinations of the permutation operators,
labelled by the representation labels

OR1,R2,R
ν1,ν2

(Z ,Y ) = trV⊗m+n

(
Z⊗m ⊗ Y⊗nQR1,R2,R

ν1,ν2

)
Theorem
The two point function of the representation-labelled operators
is diagonal.

〈O~Rµ1,µ2
(Z ,Y )(O~Sν1,ν2

(Z ,Y ))†〉 = δ
~R,~Sδµ1,ν1δµ2,ν2 f~R(N)

Bhattacharrya, Collins, de Mello Koch, 2008 ; Kimura, Ramgoolam,
2007 , Brown, Heslop, Ramgoolam, 2007



Orthogonal bases and Hermitian operators

This was in fact, one orthogonal basis, for 2-matrix invariants.
Another is labelled by representations of the U(2) which acts
on the Z ,Y pair. Yet another related to Brauer algebras (more
later).

Orthogonal bases of quantum states are related to Hermitian
operators with distinct eigenvalues. So what are the operators
which distinguish these orthogonal states of the 2-matrix
problem ?

Enhanced symmetries of gauge theory and resolving the spectrum of local operators,

Kimura, Ramgoolam - Phys Rev D 2008



Orthogonal bases and Hermitian operators

This was in fact, one orthogonal basis, for 2-matrix invariants.
Another is labelled by representations of the U(2) which acts
on the Z ,Y pair. Yet another related to Brauer algebras (more
later).

Orthogonal bases of quantum states are related to Hermitian
operators with distinct eigenvalues. So what are the operators
which distinguish these orthogonal states of the 2-matrix
problem ?
Enhanced symmetries of gauge theory and resolving the spectrum of local operators,

Kimura, Ramgoolam - Phys Rev D 2008



Enhanced symmetries, Casimirs, Charges

The two-point functions in the CFT define an inner product for
these invariants.

The free field action∫
d4xtr(∂µZ∂µZ †) + tr(∂µY∂µY †)

has symmetries

Y → UY
Z → VZ

where U,V are U(N) group elements.

Noether charges for these symmetries (EL,y )i
j and (EL,z)i

j form
u(N)× u(N) Lie algebra.



Casimirs built from (Ez)i
j measure the R1 Young diagram label :

[(Ez)i
j(Ez)j

i ,O
R1,R2,R
ν1,ν2

] = C2(R1)OR1,R2,R
ν1,ν2

These Casimirs - by Schur-Weyl duality - can be expressed in
terms of central elements of Sn acting on the QR1,R2,R

ν1,ν2 .

Casimirs built from (Ey )i
j measure R2.

“Mixed Casimirs” such as

(Ey ,L)i
j(Ey ,L)j

k (Ez,L)k
i

are sensitive to the multiplicity label ν1.



These left actions amount to the action of A(m,n) on itself from
the left.

Physics question: Find a minimal complete set of Casimir
charges which uniquely determine the representation labels
R1,R2,R, ν1, ν2 of the quantum states.

This is a measure of the complexity of the state space of the
2-matrix quantum states.



Charges→ structure of A(m,n)

The physics question translates into some maths questions

1. What is a minimal set of generators for the centre Z(C(Sn)) ?
Experiments show that at low n ( around 12 ) the sums over
transpositions suffice to generate. To go a bit higher we can
use sums over (ij) and (ijk).

2. In A(m,n) we described a CartanM(m,n) and a centre
Z(A(m,n)). If we consider elements inM(m,n) with
coefficients in Z ∑

i

zimi

what is the minimal dimension of a generating subspace ?



Exploiting the structure of A(m,n) for Matrix integrals.

Central elements in A(m,n), correspond to a subset of matrix
invariants.

Their correlators can be computed using characters of
Sm,Sn,Sm+n, without the need for branching coefficients etc.

Thus, for example, explicit formulae for

〈tr(Z mY n)tr((Z mY n)†)〉



The Brauer example

BN(m,n) - centralizer of U(N) acting on V⊗m ⊗ V̄⊗n.
subalgebra which commutes with C(Sm × Sn).
Fourier basis

Qγ
α,β,i,j

γ is an irrep of Brauer, labelled by (k , γ+ ` m − k , γ− ` n − k).
α is a rep of Sm , β is a rep of Sn. The indices i , j run over
multiplicity of irrep (α, β) of Sm × Sn in γ.
Can be used to build a basis for matrix invariants for Z ,Z †.
Branes, anti-branes and Brauer algebras, Kimura and Ramgoolam, 2007
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For m + n < N, we have∑
R1,R2,R

(g(R1,R2,R))2 =
∑
α,β,γ

(Mγ
α,β)2

When m + n > N, we know how to count the matrix invariants,
using a simple modification of the LHS :

l(R) ≤ N

A simple cut-off on γ does not do the job. Non-semi-simplicity.
How to do the Brauer counting of invariants for finite N ?


