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INTRODUCTION

Quantum Field theory ( QFT ) is the mathematical structure
underlying the standard model of particle physics.

In any quantum system the dynamical variable is subject to
quantum (Heisenberg) uncertainty relations. In quantum
mechanics of particle in one dimension the position x(t) is
subject to such uncertainty.

In field theory, the dynamical variable is a field
φ(x1, x2, x3, t) = φ(xµ, t).

Observable quantities we compute in QFT are probabilities of
out-particles given some in-particles ( such as at the LHC) with
specified momenta.



Getting at these probabilistic observables, we have to compute
expectation values

〈φ(x (1)
µ , t(1))φ(x (2)

µ , t(2)) · · ·φ(x (n)
µ , t(n))〉

These expectation values are obtained from path integrals

〈O1O2 · · · On〉 =

∫
dφ O1O2 · · · One−S(φ)

These are computed in perturbation theory

S = S0 + δS

The Oi can be polynomials in the elementary fields (one field
for each particle type) - composite fields.



String theory is a quantum theory for particles, including
gravitons. Naturally lives in 10 dimensions: reduces to quantum
field theory at low energies.

Particles in space-time can be described in terms of coordinate
functions on one-dimensional word-lines.

For strings : world-line becomes two-dimensional
world-surface.

particles -> strings -> branes.

For p-branes, we have p + 1 dimensional world-volumes.

For p-branes in D dimensions : we have D-coordinate fields
which are functions of p + 1-dimensional world-volume.
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String theory contains extended objects called branes. One
way to realize (3+1)-dimensional QFTs in string theory is to
consider (3+1)-dimensional branes.

These (3+1)-dimensional branes have quantum fields
corresponding to the transverse geometry E.g. one field for
each transverse dimension.



Brane fields and transverse geometry
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Matrix quantum fields from strings.
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When we have multiple branes, say N of them, the transverse
scalars become matrix-scalars.

φ(xµ, t)→ φi
j(xµ, t)

where i , j range in {1, · · · ,N}.

The theories are symmetric under unitary group ( U(N) )
transformations of the matrix fields. The transformations (
called gauge transformations) are

φ→ UφU†

The unitary group symmetries U are N × N matrices obeying
UU† = 1



For a large class of transverse geometries, the gauge theory of
branes is a has a product group U(N1)× U(N2)× · · ·U(Nn) as
symmetry, along with a collection of matrix fields.

The symmetry-group and matter content is parametrised by a
directed graph called a Quiver.

A Quiver is a directed graph : a collection of nodes, with edges
joining these nodes. Each edge has an orientation.

Each node labelled by a ∈ {1, · · · ,n} corresponds to a U(Na)
factor in the product gauge group.

Each edge corresponds to a matter field (Φab)ia
ib

which
transforms as

Φab → UaΦbU†b

These fields- each transforming under a pair of U(Na) group
factors are called bi-fundamental fields.
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The Quiver gauge theory has a product group as gauge
symmetry, and matter fields corresponding to the edges.

In a gauge theory, the observables of interest are invariant
under the action of the group, i.e gauge invariant observables.

This leads to the problem of enumerating polynomials in the
matter fields which are invariant under the action of the gauge
group.



IN the limit where the Na are larger than the degree of the
polynomials, there is an elegant solution to the enumeration
problem.

The solution is found by using the mathematical connections
between unitary groups and permutation groups.

U(N)←→
∞⊕

k=0

C(Sk )

I will describe this solution.



When we inspected the result of the counting problem, we
found a connection to word counting.
Suppose we have a set of letters a1,a2 and another set b1,b2,
Consider finite sequences of a’s and b’s. Impose

a1a2 = a2a1
b1b2 = b2b1

But a,b do not commute.
Subject to these rules, specify number of a1,a2,b1,b2 and
count the sequences ( or words). E.g. If we specify these to be
(1,1,0,0) we have one word :

a1a2 = a2a1

If we specify (1,0,1,0) :

a1b1,b1a1

we have two words.



These words, defined by partial commutation relations, were
studied by mathematicians Cartier and Foatai in the sixties.

There is a product on the set of words. Product in the monoid is
concatenation. It is associative. Identity is empty word.

In the context of counting gauge invariant observables in Quiver
gauge theories, we will encounter monoids where the letters
correspond to SIMPLE loops in the graph.



OUTLINE

I The Quiver gauge theory counting problem : Examples
and generating function for a general Quiver.

I Relation to Underlying graph-based word problems.
I The counting formulae at finite N : Littlewood Richardson

coefficients.
I Conclusions/Discussions.



Simplest case is one-node, One Edge Quiver.
The Gauge theory problem is to count U(N) polynomial
invariants in one-matrix Z which transforms as

Z → UZU†

Traces are invariant :

trZk

And products of traces.

For degree 3, for example :

trZ3 → 3 = 3
trZ2trZ→ 3 = 2 + 1

(trZ)3 → 3 = 1 + 1 + 1

for general n, we have the number of partitions of n - denoted
p(n).



For n < N this always works.

At n > N, there are relations between these traces and
multi-traces. The trZ N+1 can be written in terms of products of
lower traces by the Cayley-Hamilton theorem.

Z(n,N) = p(n) ≡ Z(n) for n < N



A generating function for p(n) is

Z(z) =
∞∑

n=0

p(n)zn

It is known that

Z(z) =
∞∏

i=1

1
(1− z i)

Example : Consider n = 3.

1
(1− z)(1− z2)(1− z3) · · ·
= (1 + z + z2 + z3 + · · · )(1 + z2 + z4 · · · )(1 + z3 + z6 + · · · )
= (1 + z + z2 + z3)(1 + z2)(1 + z3) + · · ·
= 1 + z + 2z2 + 3z3 + · · ·



For the quiver with one node and 2 edges, we have

Z → UZU†

Y → UYU†

The invariants are traces, e.g. for nx = 2,ny = 2

(trY)2(trZ)2 , tr(Y2)(trZ)2 , (trY)2tr(Z2) , trZ2trY2

tr(YZ)trYZ) , trYZtrYtrZ
tr(Y2Z)trZ , trYtrYZ2

trY2Z2 , trYZYZ

The counting result is Z(2,2) = 10. In general

Z(y , z) =
∑
n,m

Z(n,m)ynzm

The generating function is found to be

Z(y , z) =
∞∏

i=1

1
(1− z i − y i)
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Now we specify the numbers m1,m2 of A1,A2 and n1,n2 of
B1,B2 and count Z(m1,m2,n1,n2).

We ask what is the generating function

Z(a1,a2,b1,b2) =
∑

m1,m2,n1,n2

Z(m1,m2,n1,n2)am1
1 am2

2 bn1
1 bn2

2

The answer is

Z(a1,a2,b1,b2) =
∞∏

i=1

1
(1− ai

1bi
1 − ai

1bi
2 − ai

2bi
1 − ai

2bi
2)



Let us re-write this as

Z =
∏

i

1
(1− ai

1bi
1 − ai

1bi
2 − ai

2bi
1 − ai

2bi
2)

=
∏

i

1
(1− (ai

1 + ai
2)(bi

1 + bi
2))

Zroot (a,b) =
1

(1− ab)

Z(a1,a2,b1,b2) =
∏

i

Zroot (a→ (ai
1 + ai

2),b → (bi
1 + bi

2))
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The root function can be naturally associated with a reduced
graph.
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The 2-edge-1-node case : Reduction, root function, infinite
product.



For a general quiver, define a reduced graph by collapsing
multiple edges with fixed start and end-points, to a single edge.

So we have a single variable for each pair of nodes, labelled by
integers (a,b), which range from 1 to n - the number of nodes
in the graph.

The reduced graph can be associated to a matrix X ( of size
n × n ) whose entries are xab if there is an edge from a to b and
zero otherwise.

This is called the weighted adjacency matrix of the reduced
graph.



The root function is

Zroot (xab) =
1

det(1− X )

The quiver gauge theory generating function, depends on
variables xab;αab where αab runs over the number of edges
going from a to b.

Z(xab;αab ) =
∞∏

i=1

Z(xab →
∑
αab

x i
ab;αab

)
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Application of the determinant formula to a more complicated
2-node quiver.



PART II : The hidden word problem
It turns out : The expansion of the inverse determinant itself
has only positive coefficients. Suggests the root function itself
is counting something. What can it be ?

Consider the 1-node 2-edge quiver.

Zroot =
1

(1− x − y)

Zroot = 1 +
∞∑

n=1

(x + y)n

= 1 +
∞∑

n=1

n∑
n1=0

xn1yn−n1

(
n
n1

)

This has a word-counting interpretation. Take a language with
two letters x̂ , ŷ which do not commute. Consider the number of
words with n1 copies of x̂ and (n− n1) copies of ŷ . The number
of these words is the binomial coefficient.
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There are letters ŷ1, ŷ2, ŷ12 for each simple loop in this
reduced quiver.

Two letters commute if they do not share a node. These words
form a monoid. Product is concatenation.



This story is very general.

For any n-node reduced quiver, there is a monoid ( called a
trace monoid). The generators correspond to simple loops.

Simple loops are loops that visit any node no more than once,
and traverse every edge no more than once.

The trace monoid has a letter for each simple loop. They
commute if they do not share a node.



The root function has an expansion in positive powers of the
simple-loop variables ys, with positive coefficients.

These coefficients are the counting functions for the words,
subject to the partial commutation relations.



This monoid features in the work of Cartier and Foata.

The formulation above is in terms of simple closed loops. There
is also a word formulation in terms of open-edges.

In the 2-node case,

yn1
1 yn12

12 yn2
2 = xn11

11 (x12x21)n12xn22
22



In the open-edge word formulation, we have letters :

x11 → x̂11
x12 → x̂12
x21 → x̂21
x22 → x̂22

Consider words made from these letters, subject to partial
commutation relations. x̂1a and x̂2b always commute for any
a,b.



Letters corresponding to edges with distinct starting points
commute.

Letters for distinct edges with the same starting point do not
commute

x̂11x̂12 6= x̂12x̂11
x̂11x̂21 = x̂21x̂11
x̂11x̂22 = x̂22x̂11
x̂12x̂21 = x̂21x̂12
x̂21x̂22 6= x̂22x̂21

Subject to these rules, count the words for specified numbers of
x̂ab. The resulting numbers are the coefficients from the
expansion of

1
det (1− X )



The equivalence between the open-edge word counting and the
closed-edge word counting was proved by Cartier and Foata.

Summary of the talk : The root of the quiver gauge theory
counting problem is the quiver word counting problem.



The central pun of the talk I gather - mostly from Wikiedia -
that these trace monoids are used to model “computational
processes” in computer science. The letters are
events(computational steps) and the words are processes. The
length of a word is “parallel execution time”

Commuting letters are computations that can be performed
simultaneously or in any relative order.

IN this usage of trace, the word trace means a history of events
which is the process.

Nothing to do with matrix traces.
This talk - Count the words in the trace monoid with a
generating function. Take infinite products with appropriate
substitutions. The result counts matrix traces in quiver gauge
theories !!



Finite N counting : Young Diagrams and LR coefficients.



Questions :
1. The asymptotics of p(n) were worked out by Hardy and
Ramanujan. Have lots of applications in string theory.

2. The 2-matrix case ∏
i

1
(1− x i − y i)

Asymptotics are of interest in string theory. Are they also of
interest in computer science ?

3. Finite N counting with LR coefficients are related to
computational complexity problems .... finite N quiver gauge
theory counting could lead to further common mathematical
structures.

4. Counting is the first step - Next is correlators ... role of trace
monoids there ?


