

European Research Council

Established by the European Commission

SNO+ Collaboration

Queen's Alberta Laurentian

SNOLAB

TRIUMF

BNL, AASU

U Penn, UNC

U Washington

UC Berkeley/LBNL

Chicago, UC Davis

ug 15, 2013

Oxford Sussex QMUL Liverpool Lancaster

LIP Lisboa LIP Coimbra

TU Dresden

Location

Muon flux = 70 muons/day Class-2000 clean room lab

Depth, meters water equivalent

SNO+ Physics Program

• Low Energy Solar Neutrinos

• Neutrinoless double beta decay search

- Supernovae sensitivity
- Reactor Neutrinos
- Geoneutrinos
- Invisible Nucleon Decay (water phase)

Solar Neutrinos

Solar Neutrino Physics

• What can the Sun tell us about neutrinos?

- What can neutrinos tell us about the Sun?
 - CNO flux -> Resolve solar metallicity problem
 - Direct pp measurement -> Luminosity constraint

conversion

Double Beta Decay

- Hard to explain smallness of neutrino masses with Higgs mechanism
- Most favoured alternative = See-saw mechanism
 - Majorana neutrinos
 - Leptogenesis

Neutrinoless Double Beta Decay

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu} \cdot \left| M^{0\nu} \right|^2 \cdot \left\langle m_{\beta\beta} \right\rangle^2$$
Phase space Nuclear Matrix Element $\langle m_{\beta\beta} \rangle^2 = |\sum_i U_{ei}^2 m_{\nu_i}|^2$

Sum of the electron kinetic energies, normalized to the endpoint Q

Experiment options

- Select isotopes with favourable phase space
- Select isotopes with favourable matrix elements
 - Beware large uncertainty / differences between models
- Good energy resolution
- Low Backgrounds in region of interest (ROI)

0vββ search – SNO+ approach

- Statistics over energy resolution
- Tellurium 130
 - Favourable $0\nu\beta\beta$: $2\nu\beta\beta$ phase space ($T_{1/2}^{2\nu\beta\beta} = 7 \times 10^{20}$ years)
 - 34% natural abundance
 - 2.53MeV endpoint energy
- Large amount of isotope
 - 0.3% loading (by weight) = 2.34tonnes ^{nat}Te = 800kg ¹³⁰Te = \$1.5million
 - Towards tonne-scale $0\nu\beta\beta$ search at relatively low cost
- Large homogeneous detector, well defined background model
 - Aim to be dominated by solar neutrino background
- Isotope In/Out capability

SNO+ Detector

- 7ktonnes water shielding
- ~9500 8inch PMT array

Liquid Scintillator

- Linear alkylbenzene (LAB) + 2g/L fluor 2,5 diphenyloxazole (PPO)
 - Chemical compatibility with acrylic
 - High light yield, high purity
 - Good optical transparency, low scattering
 - Fast decay β α separation
 - Low toxicity, environmentally safe
 - High flash point, 140C, boiling point 278-314C
 - Low solubility in water, 0.041 mg/L

Scintillator purification plant

Purification Plant - LABPPO

• Multi-stage distillation

Remove heavy metals, improve UV transparency

- Pre-purification of PPO concentrated solution
- Steam/N₂ stripping under vacuum
 Remove Rn, Kr, Ar, O₂
- Water extraction — Remove Ra, K, Bi
- Metal scavengers

 Remove Bi, Pb
- Microfiltration
 - Remove dust

<u>Target levels:</u>

- ⁸⁵Kr: 10⁻²⁵ g/g
- ⁴⁰K: 10⁻¹⁸ g/g
- ³⁹Ar: 10⁻²⁴ g/g
- U: 10⁻¹⁷ g/g
- Th: 10⁻¹⁸ g/g

Space is limited underground!

First Attempts at Te-Loaded Scintillator

First Attempts at Te-Loaded Scintillator

 ...then, breakthrough new approach was developed at BNL, works for loading Te in liquid scintillator

First Attempts at Te-Loaded Scintillator

 ...then, br developed liquid scin

ach was Jing Te in

pH Selective Telluric Acid Recrystallisation

• Telluric acid obeys the following equilibrium:

$$Te(OH)_6 \leftrightarrow Te(OH)_5 O^- + H^+$$

Insoluble Soluble Soluble - pH determines the equilibrium state

- 1. Dissolve telluric acid in water and filter it
 - Removes insoluble impurities
- 2. Add nitric acid to force the telluric acid to recrystallize/precipitate, pump away the liquid, rinse with ethanol
 - Removes soluble impurities
- By "tuning" the pH at each step, the process can be quite selective – most elements are removed with high efficiency

See S. Hans et. al. *Purification of Telluric Acid for SNO+ Neutrinoless Double Beta Decay Search*. In preparation.

Measured Single Pass Reduction Factors

Element	Reduction Factors From Spike Tests	Non-spiked, before purification	Non-spiked, after purification
Sn	>1.67×10 ²	20	<20
Zr	$>2.78 \times 10^{2}$	70	<10
Ti		40	<10
Al		<30	<30
Со	$(1.62\pm0.34)\times10^{3}$	<10	<10
Mn		150	<5
Fe		40	<30
Ag	$>2.78 \times 10^{2}$	<10	<10
Y	$>2.78 \times 10^{2}$	<10	<10
Sc	>1.65×10 ²	<10	<10
Sb	$>2.43 \times 10^{2}$	30	<20
²²⁸ Th	$(3.90\pm0.19)\times10^2$	< 0.02	< 0.02
²²⁴ Ra	$(3.97\pm0.20)\times10^2$	1400	<5
²¹² Pb	$(2.99\pm0.22)\times10^{2}$	440	<3
²¹² Bi	(3.48±0.81)×10 ²	300	<10
238U	(3.90±0.19)×10 ²	< 0.02	< 0.02

Two-pass purification should meet our purity goals.

Cosmogenics

- Nitric acid recrystallisation process performed on surface for safety
 - Cosmogenic isotopes re-develop between the end of purification and moving the Te underground
 - Goal = 5 hour transit time
 - Additional underground polishing step
 - Dissolve in warm water
 - Thermal recrystallisation

Lozza & Petzoldt, Cosmogenic activation of a natural tellurium target, Astroparticle Physics. DOI: 10.1016/j.astropartphys.2014.06.008

		Purification +
	No purification	5 hrs re-activation + "polishing" & 6
		month cool-down
^{22}Na	15309	0.0947
²⁶ Al	0.048	5.724E-7
^{42}K	565	0.0044
^{44}Sc	102	0.0004
^{46}Sc	43568	0.1993
56 Co	2629	0.0099
58 Co	25194	0.0888
60 Co	6906	0.0396
68 Ga	37343	0.2201
82 Rb	18047	0.0071
84 Rb	11850	0.0113
⁸⁸ Y	390620	2.3079
^{90}Y	823	0.0019
102 Rh	276189	1.8389
102m Rh	133848	1.0438
106 Rh	1534	0.0111
110m Ag	69643	0.4184
^{110}Ag	939	0.0056
^{124}Sb	3101138	9.7353
126m Sb	240	1.205E-5
^{126}Sb	358996	0.0015

Scale-Up

- Working with an industrial partner (SeaStar Chemicals, Sydney, BC) to scale processes up to ~200kg batch size
 - A few months to process the 4 tonnes of telluric acid for 0.3% loading
- Currently operating a 10kg pilot-scale plant
- Plan to have the full-scale system at SNOLAB this winter

Backgrounds

LAB-PPO : ²³⁸U, ²³²Th, ¹⁴C

Externals: ²¹⁴Bi,²⁰⁸Tl Υ from PMTs, AV, Ropes, H₂O

Implanted Radon daughters in AV: ²¹⁰Pb,²¹⁰Bi,²¹⁰Po

<u>Thermal neutrons:</u> capture on H to 2.2MeV Υ: Muon induced neutrons, (α,n)

<u>Tellurium</u> : ²³⁸U, ²³²Th, ²¹⁰Po

Residual cosmogenically activated isotopes: ⁶⁰Co, ¹³¹I

Uranium and Thorium Chain

BiPo rejection

Backgrounds

Optimized ROI: $-0.5\sigma - 1.5\sigma \sim 25$ events

- Deployed sources:
 - Laserball (optics), Cerenkov source

- Deployed sources:
 - Laserball (optics), Cerenkov source

- ⁴⁸Sc, ⁶⁰Co, ⁹⁰Y (beta), ⁵⁷Co, ²⁴Na

• Embedded light injection fibres

- Deployed sources:
 - Laserball (optics), Cerenkov source

- ⁴⁸Sc, ⁶⁰Co, ⁹⁰Y (beta), ⁵⁷Co, ²⁴Na

- Embedded light injection fibres
- Internal sources

- ¹⁴C, ²¹⁰Bi, ²¹⁰Po, ²¹⁴Bi-Po, ²¹²Bi-Po

Spectrum Plot

Spectrum inputs

- 3.5m (20%) fiducial volume cut
- 5 years data taking
- >99.99% efficient ²¹⁴Bi tag
- 98% efficient internal ²⁰⁸Tl tag
- Factor 50 reduction in ²¹²BiPo (pileup)
- Negligible cosmogenics
- $m_{\beta\beta} = 200 \text{meV}$

Sensitivity 0.3% loading

3 years at 0.3% loading -> ~7.5×10²⁵ years 5 years at 0.3% loading -> ~9.5×10²⁵ years

Cuoricino T_{1/2}>2.8×10²⁴ years at 90% C.L -> <300-710meV, depending on the adopted nuclear matrix element evaluation arXiv:1012.3266 [nucl-ex]

What if we see a bump?

Percent Loading of Tellurium is Feasible

• 0.3%, 0.5%, 1%, 3%, 5% (from left to right)

- 3% Te in SNO+ Phase II DBD corresponds to <u>8</u> <u>tonnes</u> of ¹³⁰Te *isotope* (cost for this much tellurium is only ~ ^{\$15M})
- Contain isotope within a bag (KamLAND-Zen style)?
- Upgrade SNO+ PMT array High QE PMTs?

$< m_{BB} >$ and the Neutrino Mass Hierarchy

Backup slides

Status

- now filling the SNO+ detector with water
- water-filled data taking starts in 2014
 - to study external backgrounds and detector optics
- float-the-boat test in the next few months
 - to demonstrate hold-down rope system operation at full buoyant load
- now installing scintillator purification plant process piping
- liquid scintillator fill to start in 2015
- installation of tellurium purification skid and Te purification in late 2015
- addition of Te to SNO+ liquid scintillator and DBD run in 2016

TimeScale

- 2014: water fill and water commissioning
 - nucleon decay physics
 - Backgrounds analysis
 - Supernovae neutrinos
- 2015: start liquid scintillator fill
 - background analysis
 - reactor- and geo- antineutrinos
 - Supernovae neutrinos
 - low energy solar neutrinos
- 2016: 0.3% Te loading
 - neutrinoless double beta decay
 - reactor- and geo- antineutrinos
 - Supernovae neutrinos

Pep neutrinos – test for new Physics

Non-standard interactions (flavour changing NC)

Sterile Neutrinos

A matter of depth

Borexino SNO+ Analytically generated spectra with 5%/ \sqrt{E} resolution Analytically generated spectra with 5%/VE resolution Ē pp pp pep pep be7 be7 **b8 b8** cno cno c11-decays c11-decays 10 1⊨ 10⁻¹ 1.4 1.6 1.8 2 visible energy [MeV] 0.2 0.8 0.2 1.2 1.4 0 0.6 1.2 1.4 1.6 1.8 2 0 0.4 0.6 0.8 0.4 1 1 visible energy [MeV]

SNO+ solar signals

Comparing Sensitivities

Sensitivity 0.3% loading

Solar Neutrinos

- SNO+ has decided to prioritise $0\nu\beta\beta$
- Radon daughters have accumulated on the surface of the AV over the last few years in a significant way. If these leach into the scintillator, the purification system has the capability to remove them.
- However, depending on the actual leach rate, that removal might be inefficient and the ²¹⁰Bi levels in the scintillator too high for a pep/CNO solar neutrino measurement without further mitigation.
- Mitigation could include enhancing online scintillator purification, draining the detector and sanding the AV surface to remove radon daughters, or deploying a bag.
- 0νββ and low-energy ⁸B solar neutrino measurements are not affected by these backgrounds

